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Generalised continuation by means of right limits

David Sauzin and Giulio Tiozzo

January 7, 2013

Abstract

Several theories have been proposed to generalise the concept of
analytic continuation to holomorphic functions of the disc for which the
circle is a natural boundary. Elaborating on Breuer-Simon’s work on
right limits of power series, Baladi-Marmi-Sauzin recently introduced
the notion of renascent right limit and rrl-continuation.

We discuss a few examples and consider particularly the classical
example of Poincaré simple pole series in this light. These functions
are represented in the disc as series of infinitely many simple poles
located on the circle; they appear for instance in small divisor problems
in dynamics. We prove that any such function admits a unique rrl-
continuation, which coincides with the function obtained outside the
disc by summing the simple pole expansion.

1 Introduction

When one is given a function g holomorphic in the unit disc D, one can ask
whether g is related in some way to a holomorphic function defined outside
the disc. A first answer to the question comes from Weierstraß’s notion of
analytic continuation. Given a point λ on the unit circle, if there exists
a neighbourhood V and a holomorphic function on V whose restriction to
V ∩ D is g, then we say that λ is a regular point and the restriction of g to
the outer part of V is an analytic continuation. If there is no regular point
on the unit circle, then we say that the unit circle is a natural boundary
for g, but is it the end of the story?

It is the purpose of “generalised analytic continuation” to investigate
this situation and suggest other ways in which an outer function can be
related to the inner function g. The reader is referred to the monograph
[RS02] for a panorama of various theories which have been proposed to go
beyond Weierstraß’s point of view on analytic continuation.

This paper deals with a particular case of generalised analytic continu-
ation, called rrl-continuation, which was put forward in the recent article
[BMS12]. This notion is based on the right limits introduced in [BS11] as a
tool unifying various classical criteria to detect a natural boundary. In the
first part of the article, we review the definition of rrl-continuation, illustrate
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it on examples and discuss ways in which it can be useful in the theory of
dynamical systems.

In the second part, we apply the theory to the classical situation, first
considered by Poincaré in 1883, where g(z) is defined for |z| < 1 as a series of
simple poles

∑ ρn
z−eiθn

, where the points eiθn are dense on the unit circle and
the nonzero complex numbers ρn form an absolutely convergent series. For
such a function the unit circle is a natural boundary in the classical sense;
however, there is a natural candidate for the outer function, namely the sum
h(z) of the simple pole series for |z| > 1. We shall prove (Theorem 3.4) that
every simple pole series g(z) inside the disc has a unique rrl-continuation,
which coincides with the outer function h(z).

2 Continuation by renascent right limits and dy-

namical examples

2.1 Preliminaries

We are interested in holomorphic functions defined in the unit disc by power
series of the form

g(z) =
∞∑

k=0

akz
k (2.1)

with a bounded sequence of coefficients {ak}k∈N. Our aim is to investigate
the possibility of defining ‘generalised analytic continuations’ for |z| > 1
even when the unit circle is a natural boundary. We shall even accept what
is called a strong natural boundary in [BS11]:

Definition 2.1 ([BS11]). A function g(z) holomorphic in the unit disc is said
to have a strong natural boundary on the unit circle if, for every nonempty
interval (ω1, ω2),

sup
0<r<1

∫ ω2

ω1

|g(reiω)| dω = ∞. (2.2)

Clearly, if the unit circle is a strong natural boundary for g, then the
unit circle is a natural boundary in the usual sense, since the function is not
even bounded in any sector {reiω | r ∈ (0, 1), ω ∈ (ω1, ω2)} (as would be the
case if there were a regular point on the unit circle).

The article [BS11] provides a remarkable criterium to detect strong nat-
ural boundaries (Theorem 2.5 below), based on the notion of right limit that
we now recall.

Definition 2.2 ([BS11]). (i) Let a = {ak}k∈N be a sequence in a topolog-
ical space E. A right limit of a is any two-sided sequence b = {bn}n∈Z
of E for which there exists an increasing sequence of positive integers
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{kj}j≥1 such that

lim
j→∞

an+kj = bn for every n ∈ Z. (2.3)

(ii) Let g be a holomorphic function of the unit disc. We say that b is a
right limit of g if the sequence a formed by the Taylor coefficients at
the origin, ak := g(k)(0)/k!, is bounded and b is a right limit of a.

In view of (2.3), each bn must be an accumulation point of a. When E
is a compact metric space, every sequence a admits right limits; given ℓ ∈ Z

and c accumulation point of a, one can always find a right limit b such that
bℓ = c (see e.g. [BMS12, Lemma 2.1]).

In the case of a function g with bounded Taylor coefficients, each right
limit gives rise to two generating series which will play an important role
when investigating the boundary behaviour of g:

Definition 2.3. Given a two-sided bounded sequence of complex numbers
b = {bn}n∈Z, we define the inner and outer functions associated with b as

g+b (z) =
∑

n≥0

bnz
n, z ∈ D,

g−b (z) = −
∑

n<0

bnz
n, z ∈ E,

where D = { z ∈ C | |z| < 1 } is the unit disc and E = { z ∈ C | |z| >
1 } ∪ {∞} is a disc centred at ∞ in the Riemann sphere Ĉ.

Definition 2.4 ([BS11]). Given an arc J of the unit circle, b = {bn}n∈Z
is said to be reflectionless on J if g+b has an analytical continuation in
a neighbourhood U of J in C and this analytical continuation coincides
with g−b on U ∩ E.

(This terminology, introduced in [BS11], comes from the spectral theory
of Jacobi matrices, it is not related to the Schwarz reflection principle.)

Theorem 2.5 (Breuer–Simon, [BS11]). Let g be holomorphic in D with
bounded Taylor coefficients at 0.

(i) Consider a nonempty interval (ω1, ω2) and the corresponding arc of the
unit circle J = { eiω|ω ∈ (ω1, ω2) }, and assume that (2.2) is violated.
Then every right limit of g is reflectionless on J .

(ii) If b = {bn}n∈Z and b̃ = {b̃n}n∈Z are two distinct right limits of g and
if there exists N ∈ Z such that either bn = b̃n for all n ≥ N or bn = b̃n
for all n ≤ N , then the unit circle is a strong natural boundary for g.
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2.2 The rrl-continuable functions

Breuer–Simon’s work motivated the following

Definition 2.6 ([BMS12]). (i) A renascent right limit of a sequence a in
a topological space is any right limit b = {bn}n∈Z of a such that bn = an
for all n ≥ 0.

(ii) An rrl-continuable function is a holomorphic function g which admits
a renascent right limit b; then g+b = g in D and the function g−b , which
is holomorphic in E and vanishes at ∞, is said to be an rrl-continuation
of g.

(iii) An rrl-continuable function g is said to be uniquely rrl-continuable if
it has a unique rrl-continuation; in the opposite case, it is said to be
polygenous.

Here is the motivation behind these definitions:

Proposition 2.7. Let g be an rrl-continuable function. Then

(i) either there is an arc of the unit circle through which g admits analytic
continuation; then g is uniquely rrl-continuable and all the analytic
continuations of g through arcs of the unit circle match and coincide
with the rrl-continuation of g,

(ii) or the unit circle is a strong natural boundary for g.

If g is polygenous, then the unit circle is a strong natural boundary
for g.

Proof. Suppose that b is a renascent right-limit of g. If there exists an arc J
in the neighbourhood of which g = g+b admits an analytic continuation,
then Theorem 2.5(i) implies that this continuation coincides with the rrl-
continuation g−b in E. If on the contrary there is no analytic continuation
for g across any arc of the unit circle, then the given renascent right limit
is not reflectionless on any arc and the unit circle must be a strong natural
boundary.

The last statement follows from Theorem 2.5(ii).

Example 2.8. In the case of a preperiodic sequence, g(z) =
∑∞

k=0 akz
k

with ak = ak+p for all k ≥ m, one checks easily that there is no renascent
right limit unless m = 0, i.e. the sequence is periodic, in which case g(z) =
(a0+a1z+ · · ·+ap−1z

p−1)/(1− zp) is rational and uniquely rrl-continuable.

More generally, any rational function which is regular on the Riemann
sphere minus the unit circle and whose poles are simple is uniquely rrl-
continuable; this follows from Theorem 3.4 below (we shall see that one can

4



even afford for an infinite set of poles on the unit circle—of course the func-
tion is then no longer rational). Notice that we restrict ourselves to simple
poles because we consider only the case of bounded Taylor coefficients.

We emphasize that a holomorphic function g with bounded Taylor co-
efficients may have no rrl-continuation at all, independently of whether the
unit circle is a natural boundary or not. For instance, if the sequence of
Taylor coefficients of g at the origin tends to 0, then the only right limit
of g is bn ≡ 0 and g cannot be rrl-continuable unless g(z) ≡ 0; the previous
example also shows that no nonzero polynomial is rrl-continuable.

Observe also that if two holomorphic functions of D differ by a function h
which is holomorphic in a disc { |z| < R } with R > 1, then they have the
same right limits; for instance, for any such h, the function h(z) + (1− z)−1

has only one right limit, the constant sequence bn ≡ 1, but only when
h(z) ≡ 0 is this right limit a renascent one.

When an rrl-continuable function g has a natural boundary on the unit
circle, we may still think of the rrl-continuations of g as being somewhat
“connected” to g and consider them as a kind of generalised analytic contin-
uation, and the case of a unique rrl-continuation may then be particularly
interesting.

Notice that even with the usual analytic continuation it may happen
that, for a given g ∈ O(D), there are several arcs through which analytic
continuation is possible but leads to different results. Think e.g. of (1 −
z)1/2(1 + z)1/2. However, in view of Proposition 2.7, such examples are not
rrl-continuable.

2.3 Power series related to dynamical systems

A first interesting class of power series which arises in connection with dy-
namical systems is as follows:

Definition 2.9. Let E be a metric space and T : E → E be a continuous
map. Given γ ∈ E, we consider its orbit {γk = T k(γ)}k≥0. Then, for any
bounded function ϕ : E → C, we say that the sequence

ak = ϕ
(
T k(γ)

)
, k ≥ 0

is generated by the dynamical system T (in that situation ϕ is called an
observable).

To determine the right limits of the power series
∑∞

k=0 ϕ
(
T k(γ)

)
zk, one

may try to determine first the right limits of the orbit {T k(γ)} itself (and
then to exploit continuity or discontinuity properties of the observable ϕ).
The following result is a generalisation of a lemma proved in [BMS12].

Lemma 2.10. The right limits of the orbit {ϕ
(
T k(γ)

)
}k≥0 are exactly the

full orbits1 of T which are contained in the ω-limit set ω(γ, T ).

1
i.e. the two-sided sequences {xn}n∈Z of E such that xn+1 = T (xn) for all n ∈ Z
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Proof. Adapt the argument given in [BMS12, Lemma 2.4] for the case where
{γk} is dense in E.

One finds in [BMS12, Theorem 2] an example of such a sequence ak =
ϕ
(
T k(γ)

)
which has uncountably many renascent right limits: the corre-

sponding generating series is highly polygenous (in that example the ob-
servable ϕ is continuous but the dynamics T is a non-invertible map of a
compact interval of R; the non-invertibility helps construct a huge set of full
orbits).

Example 2.11. The arithmetic example due to Hecke

gH(z) =

∞∑

k=1

{kθ}zk, z ∈ D, (2.4)

where θ ∈ R \ Q and { · } denotes the fractional part, was shown to have a
strong natural boundary in [BS11]. This can be viewed as a series generated
by the translation x 7→ x+ θ on R/Z for a discontinuous observable.

We shall see in Proposition 2.14 that gH(z) is uniquely rrl-continuable
and that z−1gH(z) has exactly two rrl-continuations. Notice that, given
r ∈ N∗ and g ∈ O(D) divisible by zr,

h is a rrl-continuation of g =⇒ z−rh(z) is a rrl-continuation of z−rg(z),

but the converse is not necessarily true.

Another class of examples arises from symbolic dynamics: if E =
⋃n

k=1 Pk

is a partition of the phase space in a finite number of sets, we can define the
piecewise constant observable

ϕ(x) := ck for x ∈ Pk,

for some choice of constants c1, . . . , cn. Then, given a point x, the corre-
sponding sequence generated by a dynamical system T : E → E is called
itinerary of x:

itin(x) :=
{
ϕ
(
T k(x)

)}
k≥0

.

A powerful application is Milnor–Thurston’s kneading theory [MT88]. Let
T : [0, 1] → [0, 1] be a continuous, unimodal map, with T (0) = T (1) = 0
and a critical point c ∈ (0, 1) which we assume non-periodic for simplicity;
we consider the piecewise constant observable ϕ which takes the value 1 on
[0, c] and −1 on (c, 1]. The kneading sequence {ǫk}k≥0 of T is defined to be
the itinerary of c. The kneading determinant is the power series

D(z) := 1 +
∑

k≥1

ǫ1 · · · ǫkz
k.

6



One of the applications of the kneading determinant is to find the topological
entropy of the map. Indeed, if s is the smallest real zero of D(z), then the
entropy of T equals − log s ([MT88], Theorem 6.3).

Example 2.12. As an example, consider T (z) := z2 + c with c the Feigen-
baum parameter (c ∼= −1.401155189 . . .). Then its kneading determinant is
known to be

D(z) =

∞∑

n=0

(−1)τnzn,

where τ := (01101001 . . . ) is the Thue-Morse sequence generated by the
substitution 0 → 01, 1 → 10, starting with 0. Notice that, by the defining
relation of τ , it is not hard to prove that

D(z) =

∞∏

m=0

(
1− z2

m)

(from which it follows that the entropy of T is 0). One can check that D(z)
has precisely two renascent right limits, hence the unit circle is a strong
natural boundary.

A thorough investigation of the applications to symbolic dynamics will
be the object of a forthcoming article.

2.4 A theorem about the series generated by a circle map

The following result is a variant of a theorem proved in [BS11] and used
there to show that Hecke’s example has a strong natural boundary on the
unit circle. It deals with the series generated by a dynamical system on the
circle, with a special kind of observable:

Theorem 2.13. Let T := R/Z. Suppose that f : T → T is a homeomorphism
and that x∗ ∈ T is such that {fk(x∗)}k∈N is dense in T. Suppose that a
bounded function ϕ : T → C is continuous on T\∆, where ∆ ⊂ T has empty
interior, and that each point of ∆ is a point of discontinuity for ϕ at which
right and left limits exist and ϕ is either right- or left-continuous. Let

g(z) :=

∞∑

k=0

ϕ
(
fk(x∗)

)
zk, z ∈ D.

Then:

(i) If fk(x∗) /∈ ∆ for all k > 0, then g is rrl-continuable.

(ii) If fk(x∗) /∈ ∆ for all k ≥ 0 and there exists n < 0 such that fn(x∗) ∈
∆, then g has at least two different rrl-continuations.
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Proof. Let us use the notation

yj
>
−→ y∗, resp. yj

<
−→ y∗,

if {yj}j≥1 is a sequence and y
∗ is a point in T for which there exist lifts ỹj and

ỹ∗ in R such that limj→∞ ỹj = ỹ∗ and, for j large enough, ỹ∗ < ỹj < ỹ∗+ 1
2 ,

resp. ỹ∗ − 1
2 < ỹj < ỹ∗. We set

xn := fn(x∗), n ∈ Z

and notice that, by the density of {xk}k≥0 in T, for every y∗ ∈ T one can

find increasing integer sequences {k+j }j≥1 and {k−j }j≥1 such that xk±j
≷
−→ y∗.

Suppose first that fk(x∗) /∈ ∆ for all k > 0. Let us choose an increasing
integer sequence {kj}j≥1 such that xkj

ǫ
−→ x∗ with ǫ standing for ‘>’, un-

less x∗ ∈ ∆ and ϕ is left-continuous at x∗, in which case ǫ stands for ‘<’.
Then, for every n ∈ Z, xn+kj = fn(xkj )

ǫn−→ fn(x∗) = xn with ǫn stand-
ing for ‘>’ or ‘<’ according as fn preserves or reverses orientation, and
bn = limj→∞ ϕ(xn+kj ) exists by right- or left-continuity of ϕ at xn. Now,
for n > 0, we have xn /∈ ∆, hence bn = ϕ(xn); for n = 0, we also have
b0 = ϕ(x0) even if x0 = x∗ ∈ ∆ thanks to our choice of {kj}; therefore we
have found a renascent right limit for {ϕ(xk)}k∈N.

Suppose now that fk(x∗) /∈ ∆ for all k ≥ 0 and that one can pick
ℓ > 0 such that f−ℓ(x∗) ∈ ∆. Let us choose increasing integer sequences

{k+j }j≥1 and {k−j }j≥1 such that xk±j
≷
−→ x−ℓ. For each n ∈ Z, we have

xn+ℓ+k±j

ǫn−→ xn, with ǫn depending on whether fn preserves or reverses

orientation, and b±n = limj→∞ ϕ(xn+ℓ+k±j
) exists by right- or left-continuity

of ϕ at xn. For n ≥ 0, ϕ is continuous at xn, thus bn = ϕ(xn), but for
n = −ℓ we have

b+−ℓ = lim
x

>
−→x−ℓ

ϕ(x) 6= b−−ℓ = lim
x

<
−→x−ℓ

ϕ(x),

which means that we have two different renascent right limits.

We now discuss the rrl-continuability of Hecke’s example.

Proposition 2.14. Let us fix θ ∈ R \ Q and denote the fractional part
function by { · }. Then the function gH(z) =

∑∞
k=1{kθ}z

k has a unique
rrl-continuation, which is

g−
H
(z) = −

∑

n<0

{nθ}zn = gH(z
−1) + (1− z)−1, z ∈ E. (2.5)
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Moreover, the function z−1gH(z) =
∑∞

k=0{(k + 1)θ}zk has exactly two rrl-
continuations:

−
∑

n<0

{(n+ 1)θ}zn = z−1g−
H
(z) and − z−1 + z−1g−

H
(z), (2.6)

and the unit circle is a strong natural boundary both for gH(z) and z
−1gH(z).

Proof. Hecke’s example falls into Case (i) of Theorem 2.13: denoting by
π : R → T the canonical projection, we can define the homeomorphism f by
f ◦ π(x̃) = π(x̃ + θ) and the discontinuous observable ϕ+ by ϕ+ ◦ π(x̃) =
x̃ − ⌊x̃⌋, then gH(z) =

∑∞
k=0 akz

k with ak := ϕ+
(
fk(x∗)

)
and x∗ := π(0),

and ∆ is reduced to {x∗} in that case, with ϕ+ right-continuous.
Therefore, gH has at least one rrl-continuation. To show its uniqueness,

we observe that the canonical projection π is a continuous right inverse for
ϕ+ : T → R; for every right limit b = {bn}n∈Z of {ak}k∈N, this implies that
yn := π(bn) defines a right limit for {fk(x∗)}k∈N, and the continuity of f
and f−1 clearly implies yn = fn(y0); if b is a renascent right limit, then b0 =
0, hence y0 = x∗ and yn /∈ ∆ for n ∈ Z∗, and bn = ϕ+

(
yn) = ϕ+

(
fn(x∗)

)
by

continuity of ϕ+ on T \∆. We thus obtain (2.5) (the representation of g−H
as gH(z

−1) + (1− z)−1 stems from x̃ ∈ R \ Z =⇒ −{−x̃} = {x̃} − 1).
On the other hand, the function g(z) := z−1gH(z) falls into Case (ii) of

Theorem 2.13. Indeed, the only difference with the previous case is the initial
condition, x∗1 = π(θ). Therefore, g has at least two rrl-continuations. By
Theorem 2.5(ii), it follows that the unit circle is a strong natural boundary
for g, and thus also for gH.

Arguing as above, we see that any renascent right limit of g is of the form
b = {bn}n∈Z with π(bn) = fn(x∗1); now π(bn) ∈ T \∆ only for n ∈ Z \ {−1},
while π(b−1) = π(0). Since b−1 ∈ [0, 1], we conclude that there are only
two possibilities: b−1 = 0 or 1. Both cases are possible (if not there would
be only one renascent right limit), we thus find the two rrl-continuations
indicated in (2.6).

Notice that these functions can be written −
∑

n<0 ϕ
±
(
fn(x∗1)

)
zn, with a

function ϕ− : T → R defined by ϕ− ◦π(x̃) = x̃−⌈x̃⌉ which is left-continuous
at π(0) = f−1(x∗1).

Corollary 2.15. With the same assumptions and notations as in Proposi-
tion 2.14, defining

gH,γ(z) :=

∞∑

k=0

{γ + kθ}zk, z ∈ D

for every γ ∈ R \ (Z+ θZ), one gets a unique rrl-continuation for gH,γ:

g−
H,γ(z) = −

∑

n<0

{γ + nθ}zn = gH,−γ(z
−1) + z(1− z)−1 + {γ}, (2.7)

and the unit circle is a strong natural boundary.
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Proof. The existence of the rrl-continuation is guaranteed by Theorem 2.13(i),
exactly as in the proof of Proposition 2.14. One finds that (2.7) is the only
possible rrl-continuation by following the same lines.

Since 0 is an accumulation point of the sequence
{
ak = {γ + kθ}

}
k∈N

,
we can find a right limit {bn}n∈Z such that b0 = 0. With the same notations
for π, f and ϕ+ as in the proof of Proposition 2.14, since π is continuous,
it maps {bn} onto a right limit {yn} of the sequence

{
π(ak) = fk

(
π(γ)

)}
,

which is necessarily of the form yn = fn(y0) (because f is continuous). Since
y0 = π(0), the observable ϕ+ is continuous at each of the points yn with
n ∈ Z∗, hence {ϕ+(yn)} is a right limit of the sequence {ϕ+ ◦ π(ak) = ak}.

We just obtained that {nθ}n∈Z is a right limit of gH,γ . By virtue of
Proposition 2.14, this right limit is not reflectionless on any arc, Theo-
rem 2.5(i) thus implies that the unit circle is a strong natural boundary.

Remark 2.16. There is a relationship between the arithmetical properties
of θ and the functions gH,γ : for any 0 ≤ γ1 < γ2 < 1,

gH,γ1(z)− gH,γ2(z)−
γ2 − γ1
1− z

=
∑

k∈N (γ1,γ2)

zk,

where N (γ1, γ2) is the set of the occurence times of the sequence
{
{kθ}

}
k≥0

in [1− γ2, 1− γ1), that is N (γ1, γ2) := { k ∈ N | kθ ∈ [−γ2,−γ1) + Z }.

3 Poincaré simple pole series and rrl-continuability

3.1 Poincaré simple pole series

The second half of this article is dedicated to what is probably the sim-
plest non-trivial situation in which one might wish to test the notion of
rrl-continuability. The main theorem is Theorem 3.4 below, which was an-
nounced without a proof in [BMS12, Appendix A.2].

We shall use the same notations as in Definition 2.3 for Ĉ, D and E. We
shall denote by S the unit circle, viewed as a subset of C ⊂ Ĉ.

Definition 3.1. Let ℓ1(S,C) be the set of all functions ρ : S → C such that
the family

{
ρ(λ)

}
λ∈S

is summable. Given ρ ∈ ℓ1(S,C), its support is the set
(finite or countably infinite)

supp ρ := {λ ∈ S | ρ(λ) 6= 0} = {λ1, λ2, . . .}

and
∑

λ∈S

|ρ(λ)| =
∑

m

|ρ(λm)| < ∞. We then define the Poincaré simple pole

series (PSP-series for short) associated with ρ as the function

Σ(ρ)(z) :=
∑

λ∈S

ρ(λ)

z − λ
, z ∈ Ĉ \ supp ρ, (3.1)

10



and the inner and outer PSP-series by

Σ(ρ)+ := Σ(ρ)|D ∈ O(D), Σ(ρ)− := Σ(ρ)|E ∈ O(E).

We say that the outer PSP-series Σ(ρ)− is associated with the inner PSP-
series Σ(ρ)+.

Since the series (3.1) converges normally on every compact subset of
Ĉ \ supp ρ, the functions Σ(ρ)± are holomorphic respectively on D and E.

Our terminology is motivated by Poincaré’s article [Po83] (see also [Po92]),
where he studies this kind of series; assuming that the support of ρ is dense
in S, Poincaré proves that the unit circle is a natural boundary for Σ(ρ)± and
he discusses the relationship between the two functions. Later Borel, Wolff
and Denjoy studied such series, considering also more general distributions
of poles λ (not restricted to lie on S).

The subclass of PSP-series Σ(ρ) with suppρ contained in the set of roots
of unity was studied in [MS03] for dynamical reasons, in relation with small
divisor problems.

Notice that one might be tempted to enlarge considerably the frame-
work by considering series of rational functions which are regular in Ĉ \ S

rather than series of simple poles. However one must be aware that such
an expansion may represent a constant function in D and another constant
function in E, a phenomenon which certainly does not fit with our intuition
of what generalized analytic continuation should be (see [Po92], [RS02]).

The class of inner PSP-series is an interesting class of functions for which
we shall prove unique rrl-continuability. It clearly contains the rational
functions which are regular on Ĉ \ S and whose poles are simple, but we are
more interested in the case where S is a natural boundary.

Any inner PSP-series uniquely determines the associated outer PSP-
series, because ρ and thus Σ(ρ)− are uniquely determined by Σ(ρ)+:

Lemma 3.2. Suppose that ρ ∈ ℓ1(S,C). Then

ρ(λ) = lim(z − λ)Σ(ρ)+(z) as z → λ radially

for every λ ∈ S. Hence the map ρ ∈ ℓ1(S,C) 7→ Σ(ρ)+ ∈ O(D) is injective.

Proof. Given λ∗ ∈ S, we can write

(z − λ∗)Σ(ρ)+(z)− ρ(λ∗) =
∑

λ6=λ∗

ρ(λ)
z − λ∗

z − λ
, z ∈ D.

For each λ 6= λ∗, we have z ∈ [0, λ∗] ⇒ |z−λ∗

z−λ | < 1 and z−λ∗

z−λ → 0 as z → λ∗,
whence the result follows by dominated convergence.

11



Remark 3.3. In fact, one even has

ρ(λ) = lim
z
NT
→ λ

(z − λ)Σ(ρ)+(z), λ ∈ S,

where ‘ lim
z
NT
→ λ

’ denotes nontangential limit.

Lemma 3.2 shows that, if λ ∈ supp ρ, the function Σ(ρ)+ is not bounded
on the ray [0, λ], hence λ is necessarily a singular point of the function. This
entails a dichotomy:

(a) either supp ρ is not dense in S; then Ĉ\supp ρ is connected and S\supp ρ
is a countable union of open arcs of the unit circle, in the neighbourhood
of which Σ(ρ) is holomorphic; we can thus view Σ(ρ)+ and Σ(ρ)− as the
analytic continuation of each other through any of these arcs;

(b) or suppρ is dense in the unit circle, D and E are the two connected

components of Ĉ\supp ρ = Ĉ\S and the unit circle is a natural boundary
for both Σ(ρ)+ and Σ(ρ)−.

In the latter case, one may still study the convergence of (3.1) on the unit
circle (by restricting oneself to z ∈ S “sufficiently far” from suppρ) and try to
“connect” the functions Σ(ρ)+ and Σ(ρ)− by a property of Borel-monogenic
regularity. We shall return to these questions later (Proposition 3.7).

Our main theorem about inner PSP-series is in term of the notion of
generalized analytic continuation discussed in Section 2: the outer PSP-
series is the unique rrl-continuation of the inner PSP-series with which it is
associated.

Theorem 3.4. Let g ∈ O(D) be an inner PSP-series. Then g is uniquely
rrl-continuable and its rrl-continuation is the associated outer PSP-series.

The proof will be given in Sections 4.1 and 4.2. Together with Proposi-
tion 2.7, this immediately yields

Corollary 3.5. Assume that the unit circle is a natural boundary for an
inner PSP-series g ( i.e. the support of the corresponding ρ ∈ ℓ1(S,C) is
dense in S). Then the unit circle is a strong natural boundary for g.

3.2 An example

Here is an example which is reminiscent of Hecke’s example:

Proposition 3.6. Let ϕ : R → C be continuous and 1-periodic and assume
that the sequence (ϕ̂(j))j∈Z of its Fourier coefficients is absolutely conver-
gent: ∑

j∈Z

|ϕ̂(j)| <∞. (3.2)

12



Then, for any θ ∈ R \Q, the sum of the convergent power series

g+(z) :=
∑

n≥0

ϕ(nθ)zn, z ∈ D (3.3)

is an inner PSP-series, with associated outer PSP-series given by

g−(z) := −
∑

n<0

ϕ(nθ)zn, z ∈ E. (3.4)

Moreover, if ϕ is not a trigonometric polynomial, then the unit circle is a
strong natural boundary for g+.

Proof. Use the formula (4.2) for the Taylor coefficients at 0 of an inner PSP-
series and the coefficients at ∞ of the associated outer PSP-series: consider
the pairwise distinct points λj = e−2πijθ, j ∈ Z, and define ρ : S → C by

ρ(λj) = −λjϕ̂(j)

and ρ(λ) = 0 if λ is not an integer power of e−2πiθ; then ρ ∈ ℓ1(S,C) and
−
∑
ρ(λ)λ−n−1 =

∑
ϕ̂(j)e2πijnθ = ϕ(nθ), hence g± = Σ(ρ)±.

In Hecke’s example, the observable ϕ+ violates condition (3.2) and is not
continuous. Still, the formula (2.5) that we obtained for its rrl-continuation
looks like an echo of (3.4).

3.3 Monogenic regularity

Let us return to the general case of a PSP-series Σ(ρ). We now wish to
analyze the relationship between the inner and the outer functions in terms
of regularity: at least for a certain class of ρ’s, the connection between them
can be reinforced. The reader is referred to [MS03] or [MS11] for the defini-
tion of the space of Borel monogenic functions M

(
(Kj),C

)
associated with

a monotonic non-decreasing sequence of compact subsets of the Riemann
sphere Ĉ and to [MS11] for the notion of H 1-quasianalyticity.

Proposition 3.7. Let ρ ∈ ℓ1(S,C) with infinite support

suppρ = {λ1, λ2, . . .}

and assume that there exists σ > 1 such that
∑∞

m=1m
σ|ρ(λm)| <∞.

Then there exists an increasing sequence (Kj) of compact subsets of Ĉ
such that K :=

⋃
Kj has its complement contained in the unit circle and of

zero Haar measure, and such that the space of Borel monogenic functions
associated with (Kj),

M
(
(Kj),C

)
,

contains Σ(ρ) and is H 1-quasianalytic.

13



Proof. For each m ≥ 1, let ωm ∈ [0, 1) be such that λm = e2πiωm. For j ≥ 1,
define

AR
j := {ω ∈ R | ∀m ≥ 1, ∀N ∈ Z, |ω − ωm −N | ≥

1

jmσ
}

and observe that the Lebesgue measure of [0, 1] \ AR
j is less than 2ζ(σ)/j

(where ζ denotes the Riemann zeta function). Proceed adapting [MS11,
sect. 5] (or [MS03, sect. 2.4–2.5]).

The H 1-quasianalyticity property means that any function g of the
space M

(
(Kj),C

)
is determined by its restriction to any subset of K which

has positive linear Hausdorff measure; in particular it is determined by its
inner restriction g|D. This yields a totally different way of recovering the
outer function g|E from the inner function. In view of Theorem 3.4, one may
wonder whether it is true that g|E is the only rrl-continuation of g|D for any
g ∈ M

(
(Kj),C

)
.

A particular case of Proposition 3.7 occurs in the case of the solution∑∞
m=1Gm

wm

qm−1 of the cohomological equation considered in [MS03] (with
the “multiplier” q playing the role of the variable z of the present article).

4 Proof of Theorem 3.4

4.1 Existence of rrl-continuation by the outer function

Let ρ ∈ ℓ1(S,C), g := Σ(ρ)+, h := Σ(ρ)−. We must prove that h is an
rrl-continuation of g.

The Taylor expansion of g at the origin and the Taylor expansion of h
at∞ are easily computed by expanding the geometric series 1

z−λ = −λ−1(1−

λ−1z)−1 = z−1(1 − λz−1)−1 and permuting sums; one can write the result
as

g(z) =
∑

n≥0

bnz
n, h(z) = −

∑

n<0

bnz
n, (4.1)

bn := −
∑

λ∈S

ρ(λ)λ−n−1 for n ∈ Z. (4.2)

The problem is thus to find an unbounded integer sequence (kj)j≥1 such
that

lim
j→∞

bn+kj = bn for every n ∈ Z (4.3)

(indeed, from any such unbounded sequence, one can extract an increasing
sequence for which (4.3) still holds, showing that b = (bn)n∈Z is a right limit
of (bk)k∈N, with g = g+b and h = g−b ).
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We have bn+kj = −
∑

λ∈S λ
−kj · ρ(λ)λ−n−1. By the dominated conver-

gence theorem, if the sequence (kj)j≥1 satisfies

lim
j→∞

λkj = 1 for each λ ∈ suppρ (4.4)

then (4.3) holds. The problem thus reduces to find an unbounded integer
sequence (kj)j≥1 satisfying (4.4).

1st case

Assume that suppρ is contained in the set of all roots of unity. Then

one can take kj := j!, since λj! = 1 for any j ≥ order of λ as a root of unity.

2nd case

Assume that supp ρ is not contained in the set of all roots of unity. We
write supp ρ = {λ1, λ2, . . .}. For each j ≥ 1, we set

Vj := { e2πiω | 0 ≤ ω < 1/j } ⊂ S

and we consider the “cells”

Wℓ1,ℓ2,...,ℓj := e2πiℓ1/jVj × e2πiℓ2/jVj × · · · e2πiℓj/jVj ⊂ Sj

(where e2πiℓr/jVj is short-hand for { e2πiω | ℓr/j ≤ ω < (ℓr + 1)/j }) for each
integer j-tuple (ℓ1, ℓ2, . . . , ℓj) with 0 ≤ ℓ1, ℓ2, . . . , ℓj ≤ j − 1; these are jj

cells which cover the torus Sj. Now consider the jj + 1 points

Λj,m := (λm1 , λ
m
2 , . . . , λ

m
j ) ∈ Sj, for m = 0, 1, . . . , jj .

Out of them, at least two belong to the same cell, we thus can find mj < m′
j

such that Λj,mj and Λj,m′
j
belong to the same cell Wℓ1,ℓ2,...,ℓj ; this means

that

λ
mj
r , λ

m′
j

r ∈ e2πiℓr/jVj

for all r = 1, 2, . . . , j. This implies

λ
kj
r ∈ Vj , where kj := m′

j −mj (4.5)

for all r ≤ j. Keeping r fixed but arbitrary, we thus get limj→∞ λ
kj
r = 1.

Therefore we have obtained (4.4) with the sequence (kj)j≥1 defined by (4.5).
Now this sequence cannot be bounded because, if it were, (4.4) would imply
that each element of supp ρ is a root of unity. This ends the first part of the
proof.
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4.2 Uniqueness of rrl-continuation

4.2.1 Reduction of the problem

Let ρ ∈ ℓ1(S,C), g := Σ(ρ)+, h := Σ(ρ)−. We must prove that any rrl-
continuation of g coincides with h. In fact we shall prove more: using the
notations (4.1)–(4.2) for the Taylor coefficients of g and h, we shall see that,
for any increasing sequence of positive integers {kj}, the property

lim
j→∞

bn+kj = bn for each n ≥ 0 (4.6)

implies
lim
j→∞

λ−kj = 1 for each λ ∈ suppρ. (4.7)

By the dominated convergence theorem, this will imply

lim
j→∞

bn+kj = bn for each n < 0. (4.8)

Indeed, recall that

bn = −
∑

λ∈S

ρ(λ)λ−n−1 for n ∈ Z,

hence bn+kj = −
∑

λ∈S ρ(λ)λ
−n−1 · λ−kj will tend to bn also for negative n.

The implication (4.6) ⇒ (4.7) will follow from the

Proposition 4.1. The operator M : ℓ1(S,C) → ℓ∞(N) defined by

M(α)(n) :=
∑

λ∈S

α(λ)λn, n ∈ N

for every α ∈ ℓ1(S,C) is injective.

Proposition 4.1 implies the second part of Theorem 3.4. Suppose that (4.6)
holds for a sequence {kj}, i.e.

∑

λ∈S

ρ(λ)λ−n−1 · λ−kj −−−→
j→∞

∑

λ∈S

ρ(λ)λ−n−1 for each n ≥ 0.

This assumption can be rewritten as

〈φn, ψkj 〉 −−−→
j→∞

〈φn, χ〉 for each n ≥ 0, (4.9)

where the scalar products are intended in the Hilbert spaceH := ℓ2(supp ρ,C)
and φm, ψm, χ ∈ H are defined for any m ∈ N by

φm(λ) = |ρ(λ)|1/2eiθ(λ)λ−m−1,

ψm(λ) = |ρ(λ)|1/2λm,

χ(λ) = |ρ(λ)|1/2,
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for every λ ∈ suppρ, with any θ(λ) ∈ R such that ρ(λ) = |ρ(λ)|eiθ(λ). Let
W denote the closure of the span of {φm}m∈N in H. Since

∥∥ψkj − χ
∥∥
H

≤
2‖χ‖H , we get, by dominated convergence,

〈φ,ψkj 〉 −−−→
j→∞

〈φ, χ〉 for each φ ∈W (4.10)

Now, suppose β ∈W⊥. This means that β ∈ ℓ2(supp ρ,C) and
∑

λ∈S

β(λ)φ̄0(λ)λ
n = 0 for each n ≥ 0

(because φn(λ) = φ0(λ)λ
−n). Setting α(λ) := β(λ)φ̄0(λ), we get α ∈ ℓ1(S,C)

such that M(α) ≡ 0, which implies α ≡ 0 by Proposition 4.1, hence β ≡ 0.
Thus W is the whole H.

Given λ ∈ S, we define δλ ∈ H by δλ(λ
′) = |ρ(λ)|1/2 if λ′ = λ and

δλ(λ
′) = 0 if λ′ 6= λ. Then, (4.10) with φ = δλ reads

〈δλ, ψkj 〉 = |ρ(λ)|λ−kj −−−→
j→∞

〈δλ, χ〉 = |ρ(λ)|,

which is (4.7). As explained above, this implies (4.8) and the proof is com-
plete.

4.2.2 Proof of Proposition 4.1

We first introduce some notation: given F ⊂ S finite, we define the polyno-
mials

PF (X) :=
∏

µ∈F

(X − µ), Qλ,F (X) :=
∏

µ∈F\{λ}

(X − µ) for each λ ∈ F .

Observe that

Qλ,F (X) = PF\{λ}(X) =
PF (X)

X − λ
and Qλ,F (λ) = P ′

F (λ) for each λ ∈ F .

(4.11)

Lemma 4.2. Let F be a finite subset of S and α ∈ ℓ1(S,C). Then

M(α) = 0 =⇒ α(λ) = −
∑

µ∈S\F

Qλ,F (µ)

Qλ,F (λ)
α(µ) for each λ ∈ F .

Proof. The assumption M(α) = 0 implies that, for any Q ∈ C[X],
∑

µ∈S

Q(µ)α(µ) = 0.

Choosing Q = Qλ,F , since Qλ,F (µ) = 0 for µ ∈ F \ {λ}, we get

Qλ,F (λ)α(λ) +
∑

µ∈S\F

Qλ,F (µ)α(µ) = 0.
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This is already sufficient to conclude when the support of ρ is contained
in the set of roots of unity

R :=
⋃

m≥1

Rm, Rm := {λ ∈ S | λm = 1 } for m ∈ N∗.

Lemma 4.3. Let α ∈ ℓ1(S,C) with suppρ ⊂ R. Then

M(α) = 0 =⇒ α = 0.

Proof. Suppose suppα ⊂ R and M(α) = 0 and fix λ ∈ R. For every m ≥ 1
such that λ ∈ Rm, Lemma 4.2 implies

α(λ) = −
∑

µ∈S\Rm

Qλ,Rm(µ)

Qλ,Rm(λ)
α(µ).

But PRm(X) = Xm − 1 and, by (4.11),

Qλ,Rm(X) =
Xm − 1

X − λ
=
Xm − λm

X − λ
=

m−1∑

k=0

λm−1−kXk,

therefore Qλ,Rm(λ) = mλ−1 and
∣∣Qλ,Rm(µ)

∣∣ ≤ m for every µ ∈ S, whence∣∣∣Qλ,Rm(µ)
Qλ,Rm(λ)

∣∣∣ ≤ 1 and

|α(λ)| ≤
∑

µ∈S\Rm

|α(µ)|.

By choosing m = j!, since the sequence {Rj!}j≥1 exhausts R, we get a
sequence of inequalities in which the right-hand side tends to 0 as j tends
to ∞, whence α(λ) = 0.

For the general case, the idea is to use Diophantine approximation to
enrich any finite subset of suppα so as to make it “close enough” to one of
the sets Rm. By “close enough”, we mean that PF (X) is close to PRm(X) =
Xm − 1 in the following sense:

Definition 4.4. Let ε ∈ (0, 1). A finite subset F of S is said to be ε-balanced
if ∥∥∥PF (X)− (X |F | − 1)

∥∥∥
1
≤ ε,

where |F | denotes the cardinality of F and ‖ · ‖1 : C[X] → R+ is defined by

‖a0 + a1X + · · ·+ adX
d‖1 := |a0|+ |a1|+ · · ·+ |ad|.

Lemma 4.5. Suppose that F ⊂ S has finite cardinality m ≥ 1. Let λ ∈ F .
Then

(i) one has ‖Qλ,F ‖1 ≤ m‖PF ‖1;
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(ii) if moreover F is ε-balanced for a given ε ∈ (0, 1), then

max
µ∈S

|Qλ,F (µ)| ≤ m(2 + ε) and |Qλ,F (λ)| ≥ m(1− ε).

Proof. We can write PF (X) = a0 + a1X + · · · + amX
m with am = 1 and

Qλ,F (X) = b0 + b1X + · · ·+ bm−1X
m−1.

(i) The identity PF (X) = (X − λ)Qλ,F (X) implies

a0 = −λb0

a1 = −λb1 + b0
...

am−1 = −λbm−1 + bm−2.

This entails |b0| ≤ |a0| and |bk| ≤ |ak|+ |bk−1| for k = 1, . . . ,m− 1, whence
|bk| ≤ |a0|+ · · ·+ |ak| ≤ ‖PF ‖1 for k = 0, . . . ,m− 1, and finally ‖Qλ,F‖1 ≤
m‖PF ‖1.

(ii) The ε-balancedness assumption reads

|a0 − 1|+ |a1|+ · · ·+ |am−1| ≤ ε. (4.12)

On the one hand, we have ‖PF ‖1 ≤ ‖Xm − 1‖1+ε = 2+ε, hence maxS|Qλ,F | ≤
‖Qλ,F ‖1 ≤ m(2+ε) by (i). On the other hand, by (4.11), Qλ,F (λ) = P ′

F (λ) =

mλm−1 +
∑m−1

k=1 kakλ
k−1 and (4.12) implies that

∣∣∣
∑m−1

k=1 kakλ
k−1

∣∣∣ ≤ mε,

whence the conclusion follows.

Now, by adapting the proof of Lemma 4.3, we get

Lemma 4.6. Let ε ∈ (0, 1). Let α ∈ ℓ1(S,C) with suppα ⊂
⋃

j≥1

Fj , where

{Fj}j≥1 is an increasing sequence of ε-balanced subsets of S. Then

M(α) = 0 =⇒ α = 0.

Proof. SupposeM(α) = 0 and fix λ ∈ R. For every j ≥ 1 such that λ ∈ Fj ,
Lemma 4.2 implies

α(λ) = −
∑

µ∈S\Fj

Qλ,Fj
(µ)

Qλ,Fj
(λ)

α(µ)

and Lemma 4.5(ii) then yields

|α(λ)| ≤
2 + ε

1− ε

∑

µ∈S\Fj

|α(µ)|.

The right-hand side tends to 0 as j tends to ∞, therefore α(λ) = 0.

19



Now, the following Diophantine approximation result will be sufficient
to conclude:

Lemma 4.7. For any finite subset G of S there exists a finite subset H of S
such that G ∪H is 1

2-balanced.

Proof of Lemma 4.7. Let us write λ = e2πiθ(λ) with θ(λ) ∈ R for each λ ∈ G.
Let m := |G|. For each integer M ≥ 1, Dirichlet’s theorem ([Ca57], Thm
VI) yields integers N and {p(λ)}λ∈G such that 1 ≤ N ≤M and

∣∣∣∣θ(λ)−
p(λ)

N

∣∣∣∣ ≤
1

NM1/m
for each λ ∈ G.

We shall see that
H := RN \ {e2πip(λ)/N}λ∈G

satisfies the required properties provided M is large enough.
Let F := G ∪ H: this set is obtained from the set of all Nth order

roots of unity by replacing those of the form e2πip(λ)/N by the corresponding
e2πiθ(λ). Choosing M > 2m, we ensure that |F | = N (because for p 6= p′,∣∣∣ p

′

N − p
N

∣∣∣ ≥ 1
N cannot be ≤ 2

NM1/m ) and there is a bijection ξ : RN → F

such that

µ ∈ ξ−1(H) =⇒ ξ(µ) = µ,

µ ∈ ξ−1(G) =⇒ ξ(µ) = λ such that µ = e2πip(λ)/N .

We can set δ(µ) := µ− ξ(µ), so that

µ ∈ ξ−1(H) =⇒ δ(µ) = 0,

µ ∈ ξ−1(G) =⇒ |δ(µ)| ≤
2π

NM1/m
.

We want ‖PF − PRN
‖1 ≤

1
2 . We have

PF (X) =
∏

µ∈RN

(
X − ξ(µ)

)
=

∏

µ∈RN

(
δ(µ) +X − µ

)
=

∑

K⊂RN

δKPRN \K(X)

with the notation δK :=
∏

µ∈K

δ(µ) for any subset K of RN . Of course δ∅ = 1

and K 6⊂ ξ−1(G) ⇒ δK = 0, hence

PF (X) − PRN
(X) =

∑

∅6=K⊂ξ−1(G)

δKPRN\K(X). (4.13)

Let K ⊂ ξ−1(G) with |K| = k ≥ 1. On the one hand, |δK | ≤
(

2π
NM1/m

)k
.

On the other hand, Lemma 4.5(i) says that
∥∥PL\{µ}

∥∥
1
≤ |L|‖PL‖1; by induc-

tion on k, this yields
∥∥PRN\K

∥∥
1
≤ N(N − 1) · · · (N − k+1)‖PRN

‖1 ≤ 2Nk,
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whence
∥∥δKPRN \K

∥∥
1
≤ 2

(
2π

M1/m

)k
≤ 2 (2π)m

M1/m . Since there are at most 2m

choices for K as a subset of ξ−1(G), (4.13) then yields ‖PF − PRN
‖1 ≤

2m+1 (2π)m

M1/m , which is ≤ 1
2 for M large enough.

End of the proof of Proposition 4.1. Suppose α ∈ ℓ1(S,C) and M(α) = 0.
Since suppα is countable, we can find a sequence {F ∗

j }j≥1 of finite subsets

of S such that suppα ⊂
⋃

j≥1

F ∗
j . We proceed by induction to construct an

increasing sequence {Fj}j≥1 of 1
2 -balanced subsets of S such that

F ∗
k ⊂ Fk for each k ∈ N∗. (4.14)

For j = 1, Lemma 4.7 yields a finite H1 ⊂ S such that F1 := F ∗
1 ∪ H1 is

1
2 -balanced. For j > 1, assuming to have already defined 1

2 -balanced subsets
F1 ⊂ · · · ⊂ Fj−1 such that (4.14) holds for k = 1, . . . , j − 1, we applpy
Lemma 4.7 with G = Fj−1 ∪ F ∗

j : this yields a finite Hj ⊂ S such that

Fj := Fj−1 ∪ F
∗
j ∪Hj is 1

2 -balanced.

The inclusion suppα ⊂
⋃

j≥1

Fj with such a sequence {Fj}j≥1 implies

α = 0, by virtue of Lemma 4.6.
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