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Abstract: We present a real-time robust positioning system based on interval analysis and
constraint propagation that computes position domains, and that is able to detect and reject
erroneous measurements. GPS pseudorange measurements are represented by intervals assumed
to contain the true value with a given confidence level. A 3-D map of the drivable space is also
available to constrain the vehicle location.
By the use of a breadth-first exploration strategy and of measurement consistency counters, the
algorithm can be stopped at any time of the evaluation, and can instantly return the solution
subpaving and the list of identified erroneous measurements. The method has been evaluated
with real raw GPS data (i.e. pseudodistances on visible satellites) in a urban environment with
a low-cost high-sensitivity GPS receiver providing faulty multipath measurements.

1. INTRODUCTION

In this paper, we aim at estimating a vector of parameters
from a set of measurements and prior information, while
detecting and identifying erroneous measurements. These
erroneous measurements, also called outliers, are observa-
tions that cannot be explained by the observation model,
either because they correspond to extreme noise values,
or because they result of phenomenons or faults that have
not been modeled.

We focus on a snapshot localization problem, where time
dependency of position is not considered. Therefore, only
an observation model is considered with no evolution
model.

In urban environments, GPS positioning is likely to suffer
from erroneous measurements. In the case of GPS, faults
may arise from satellite or control segment failures. Aug-
mentation systems (like WAAS and EGNOS) are available
to protect users against such system failures. Another
source of outliers is the alteration of signal propagation
by the user’s environment. Indeed, for time-of-flight mea-
surement, signals are assumed to follow a direct path
from the satellite to the receiver. However, especially in
urban environments, when the direct path is blocked by
an obstacle (like a building or a tree), the receiver may
acquire a reflected ranging signal. It is called non line-of-
sight propagation. This measurement is then an outlier,
since the observation model is based on the hypothesis of
direct propagation.

Fault detection and identification (FDI) methods are im-
plemented in some GPS receivers, to provide receiver au-
tonomous integrity monitoring (RAIM). They are often
based on range residuals (Walter and Enge [1995]) or par-
ity space (Ding [2008]). RAIM is used in aeronautical nav-
igation, to detect and identify erroneous measurements,
and compute protection levels, which are bounds on the
positioning error that may result from undetected faults.

Interval based methods have successfully been applied to
model based diagnosis, as they enable to take model un-
certainties into account and can handle nonlinear systems.
Marx et al. [2010] use interval observers to detect change
of operation mode, and Adrot et al. [2002] propose a
parity space approach where the parity matrix depends
on uncertain parameters.

Set-membership methods have already been used to
compute uncertainty in GPS networks with zonotopes
by Schön and Kutterer [2006] and for interval based
height-aided GPS localization (Drevelle and Bonnifait
[2011b]) with fault-detection results consistent with stan-
dard RAIM methods. In this paper, we compute a position
domain in which the user is located using an interval
based method that is robust to the presence of erroneous
GPS measurements. The method performance is increased
thanks to the use of a 3D map of the drivable space.
Along with the computation of the localization confidence
domain, the algorithm enables to detect and identify the
faulty measurements. Our contribution is to perform FDI
within the set-inversion process, in a quickly interruptible
algorithm thanks to the use of measurement compatibility
counters.

The paper is organized as follows. Interval analysis meth-
ods for robust bounded-error estimation are first pre-
sented. Then, a way to detect and identify outliers from
robust set-inversion results is shown, and an algorithm
than enables quick interruption of computation with fault
detection result is presented. Finally, experimental results
are reported with raw GPS measurements.

2. ESTIMATION USING INTERVAL ANALYSIS

2.1 Interval analysis

Interval analysis (Jaulin et al. [2001]) involves intervals
and their multidimensional extension, interval vectors (or
boxes). In opposition to arbitrary sets, intervals and boxes



are easy to represent and manipulate. The set of real
intervals [x] = [x, x] is denoted IR, and the set of n-
dimensional boxes is IRn. In this paper, a box is denoted
[x] = [x,x], where vectors x and x are respectively the
lower and upper bounds of [x].

Interval arithmetic allows performing computations on
intervals and boxes thanks to the interval extension of
classical real arithmetic operators +,−,× and ÷.

[x] + [y] = [x+ y, x+ y], [x]− [y] = [x− y, x− y]

In the same way, elementary functions such as tan, sin
and exp can be extended to intervals. This is done by
returning the smallest interval covering the range of the
input through the function.

The image of a box by a function f : Rn → Rm is generally
not itself a box, but an arbitrary set. This problem is
solved using the so-called inclusion functions: The interval
function [f ] from IRn to IRm is an inclusion function for
f if the image of [x] by f is included in the image of [x] by
[f ], i.e.

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]).

The box hull 2S of a set S is the smallest box that includes
S. Since the union of boxes is not generally a box, the box
union operator t returns the box hull of the union of two
boxes: [x] t [y] = 2([x] ∪ [y]).

2.2 Contraction and propagation

When the components of a vector x are linked by relations
or constraints, one can define a constraint satisfaction
problem (CSP). It consists in finding the solution set
X = {x ∈ [x]|f(x) = 0}, where [x] is the domain of the
variables and f(x) = 0 represents the constraints, and can
also represent inequalities by introducing slack variables
(Jaulin et al. [2001]).

A contractor C for a CSP is an operator that computes a
smaller domain [xc] = C([x]) without affecting the solution
set, i.e.X ⊂ [xc] ⊂ [x]. There are many ways to implement
a contractor, one of them is the forward-backward con-
tractor based on constraint propagation (Benhamou et al.
[1999]).

2.3 Set inversion and subpavings

The set inversion problem consists in determining the set
X such as f(X) = [y], where [y] is a known interval vector
of m measurements. To approximate compact sets in a
guaranteed way, subpavings can be used. A subpaving of
a box [x] is the union of non-empty and non-overlapping
subboxes of [x].

Using interval analysis, the solution X = f−1([y]) can be
approximated between two subpavings X and X such that
X ⊆ X ⊆ X. The SIVIA algorithm allows performing
such a set inversion, by recursively bisecting an initial box
(Jaulin et al. [2001]).

Algorithm 1 implements a SIVIA that only computes an
outer approximation X of the solution set in a given
domain [x0], since we are seeking to characterize the
positioning confidence domain. It uses a list of boxes L
managed by the push and pull functions. If L is a queue,
the algorithm employs a breadth-first strategy. ε controls
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Fig. 1. q-relaxed intersection of three sets

the sharpness of the subpaving X. A contractor C([x])
is used to apply the constraint from measurements on
each box. It may either reduce the size of a box without
losing any solution, or return an empty box if the initial
box is incompatible with the measurements. Boxes larger
that ε after contraction are bisected and enqueued to be
processed again.

Algorithm 1 SIVIA(in: [x0], C, ε)
X := ∅ // empty subpaving
push([x0],L)
while L is not empty

[x] := pull(L)
[x] := C([x]) // contract the box
if width([x]) < ε then

X := X ∪ [x]
else if [x] 6= ∅ then

([x1], [x2]) := bisect([x])
push([x1],L); push([x2],L)

endif
end
return X

2.4 Robust set-inversion

The presented set-inversion method is likely to return an
empty solution set in the presence of erroneous measure-
ments. Robustness to outliers can be achieved by com-
puting the set of solutions that are compatible with at
least a given number of measurements instead of the set
of solutions compatible with all the measurements.

By using the q-relaxed intersection of m measurement
constraints (Fig. 1), a set of solutions compatible with at
least m− q measurements is computed.

If a contractor Ci is available for every measurement, then
a q-relaxed contractor C{q} can be built. It is presented in
Algorithm 2.

Figure 2 shows the results of the presented SIVIA al-
gorithm with the q-relaxed contractor. Three constraints
are provided by ranging beacons, one of which is faulty
and gives an erroneous distance measurement. SIVIA is
employed with the C{1} contractor to compute an outer
approximation of the 1-relaxed intersection of the three
constraints. The obtained solution subpaving is consistent
with ground truth.

Algorithm 2 C{q}: q-relaxed contraction (m measures)

for i = 1 to m { [xi] := Ci([x]) }

[xc] := 2

 {q}⋂
i∈{1,. . . ,m}

[xi]


return [xc]
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Fig. 2. Results of a 1-relaxed set inversion in a localization
problem with 3 ranging beacons. The measurement
from beacon B3 is erroneous. The solution subpaving
covers the true solution-set.

3. FAULT DETECTION AND IDENTIFICATION

The principle of the method is to compute a solution set
and then to analyze the compatibility of the measurements
with this set.

In practice, it is necessary to compute a solution with
robustness. Otherwise, the solution can often be empty,
which prevents fault identification. The robust method
that we use in this work is the q-relaxed set inversion.
It enables computing a solution set robust to a specified
number of outliers.

Afterward, it is possible to try to identify the faulty mea-
surements. Indeed, uncertainty affecting the measurements
makes the identification not always possible. The method
that we propose is to check if the boxes of the solution
subpaving are compatible with each measurement.

For each measurement, an inclusion test is done for every
boxes of the subpaving. Detection and identification can be
obtained using Boolean tests. The presence of an outlier
is detected when the subpaving does not contain a box
that can satisfy all the constraints. Outlier detection is
performed when there is not any box than can satisfy the
constraint of a given measurement. For instance, at the
beginning of the process, all measurements are marked as
outliers. As soon as a box compatible with the measure-
ment is found, the measurement is unmarked. Once the
whole subpaving has been tested, the measurements that
remain marked are identified as outliers.

f-1(y1)
Xq=1

f-1(y2)
f-1(y3)

b1 b2
b4

b3

Box \ Measurement [y1] [y2] [y3] [y]

b1 1 0 1 0
b2 1 1 1 1
b3 1 1 0 0
b4 0 1 1 0

Result 1 1 1 1

Fig. 3. Detection and identification table with no erroneous
measurement. The final row describes if the measure-
ments are compatible with the computed subpaving.

In Fig. 3, the compatibility of a box with [y] (last column)
is computed using a logical AND between the elements of
the corresponding row. For instance, box b2 is compatible
with the three measurement intervals and box b1 is com-
patible with the single measurements [y1] and [y3], but not
with [y2] nor all the measurements together [y]. The results
for the solution subpaving are obtained by applying a
logical OR between the elements of each column. Since the
lower-right element equals one, no erroneous measurement
is detected.

b1
b2

b3

Box \ Meas. [y1] [y2] [y3] [y]

b1 1 0 1 0
b2 1 0 1 0
b3 1 1 0 0

Result 1 1 1 0
detection

Fig. 4. Detection and identification table with an outlier
detected.

In Fig. 4, there is no box in the subpaving that can fulfill
the constraints of all the measurements since the lower-
right element equals zero. The presence of an outlier is thus
detected. However, since there is at least a box compatible
with each measurement in the solution subpaving, it is not
possible to identify the faulty measurement. The detection
and identification table contains also extra information.
For instance, if there is no more than one outlier at a time,
one can conclude that the faulty measurement is either [y2]
or [y3].

b2b1

Box \ Meas. [y1] [y2] [y3] [y]

b1 1 1 0 0
b2 1 1 0 0

Result 1 1 0 0
identification detection

Fig. 5. Outlier identified: [y3]

In Fig. 5, the presence of an erroneous measurement
is detected like in Fig. 4. Moreover, the outlier can be
identified in this particular case. Indeed, there is no box
in the subpaving that can satisfy the constraint from
measurement [y3]. The latter is thus identified as the faulty
measurement. The identification is guaranteed as long as
the number of true outliers remains lower or equal to the
degree “q” of the q-relaxation.

4. OPTIMIZED IMPLEMENTATION

One of the main drawbacks of the previous method is
that the processing is long to interrupt, since a post-
processing has to be performed on the solution subpaving



to carry out fault identification. It is unfortunate, as the
set inversion process can be interrupted at any time to
quickly provide an approximate solution. The ability to
provide a solution with a reduced and guaranteed latency
is a basic requirement for real-time systems.

We present in this section a way to prepare as much as pos-
sible the fault identification process during the exploration
of the solution space. The idea is to use measurement
compatibility counters. As it slows down each iteration of
the set inversion algorithm, this implementation reduces
the number of bisections per second. However, as the bisec-
tion loop terminates, only few quick operations are needed
to get the solution subpaving and the list of identified
outliers.

RSiviaExtCount (Alg. 3) computes a subpaving that
covers the q-relaxed solution, and, in the meantime, keeps
track of the compatibility of the subpaving with the
measurements through the use of counters. Set-inversion
can be interrupted at any time, and outlier detection and
identification can then be done by checking the counters
values. To reduce the number of inclusion tests, each box is
augmented with a compatibility bit-field, which indicates
which measurements are compatible with it.

When there is no solution (i.e. an empty set), there
are more outliers in the measurements than q, which is
the maximum number anticipated. Each counter equals
zero in this case. If one wants to get a non empty
result, it is possible to restart the estimation process
with more relaxation (e.g. q := q + 1). This strategy is
known as GOMNE (Guaranteed Outlier Minimal Number
Estimator) presented in Jaulin et al. [1996].

Otherwise, the values of the counters are examined to
check the presence of outliers. If the global counter call is
equal to zero, then the presence of an outlier is detected,
since there is no box in the solution that is compatible with
all the measurements. One can notice that call corresponds
to the lower-right element of a detection and identification
table (see Fig. 4). It is then possible to check if an outlier
has been identified, simply by studying the values of
individual measurement compatibility counters ci, which
keep track of the number of boxes in the subpaving that
are compatible with each measurement. If the counter ci
is null, then the measurement yi is identified as an outlier,
like in the last row of a detection and identification table
(see Fig. 5). Figure 6 shows the counter values and outlier
detection results after a 1-relaxed set inversion on simple
examples.

This implementation of fault detection and identification
inline with set-inversion not only enables reducing the
latency when the computation is stopped, but also mon-
itoring outliers during the computation. This is another
advantage of this approach since it provides valuable infor-
mation for online optimization of the set-inversion compu-
tation. Indeed, once a measurement has been identified as
an outlier, computing a q-relaxed solution set with all the
measurements is equivalent to compute a (q − 1)-relaxed
solution with all the measurements but the identified
outlier. The robust set inversion algorithm can therefore
dynamically discard measurements as they are identified
as outliers and thus speed up the computation by reducing
the number of constraints to satisfy.

Algorithm 3 RSiviaExtCount
(in: [x], {Ci, i = 1 . . .m}, [f ], [y], q, ε; out: Sx)
// Initialize measurements compatibility counters
for i = 1 to m {

ci := 1
call := 1
[x].ci := 1

}
L := {[x]}
Sx := ∅
while L 6= ∅ and not timeout {

// Pick a box from the list
[x] := pull(L)
// q-relaxed contraction with measurements
for i = 1 to m {
. [xi] := Ci([x])
}

[xc] := 2

 {q}⋂
i∈{1,. . . ,m}

[xi]


// Update inclusion-test results bit-field
for i = 1 to m {
. if [fi]([xc]) ∩ [yi] 6= ∅ then [xc].ci := 1
. else [xc].ci := 0
}
// Update counters
if [xc] 6= ∅ then {
. if w([xc]) < ε then {
. . // Box is too small
. . Sx := Sx ∪ [xc]
. . // Update compatibility counters
. . for i = 1 to m {
. . . ci := ci + [xc].ci − [x].ci
. . . call := call +

∏
i

[xc].ci −
∏
i

[x].ci

. . }

. }

. else {

. . // Bisect and enqueue suboxes

. . ([x1], [x2]) = bisect([xc])

. . push([x1],L); push([x2],L)

. . // Update compatibility counters (2 boxes)

. . for i = 1 to m {

. . . ci := ci + 2 · [xc].ci − [x].ci

. . . call := call + 2
∏
i

[xc].ci −
∏
i

[x].ci

. . }

. }
}
else {
. for i = 1 to m {
. . ci := ci − [x].ci
. . call := call −

∏
i

[x]ci

. }
}

}
// Compute solution set
Sx := Sx ∪ L
if call = 0 then outlier detected
for i = 1 to m {

if ci = 0 then [yi] is an outlier
}



(a) No outlier

(b) Fault detected, unidentified outlier

(c) Outlier identified: y3

c(all)=1   c(y1)=3   c(y2)=3   c(y3)=3

f-1(y1)
Xq=1

f-1(y2)
f-1(y3)

1 3 1 2 3
3 2

1
2

c(all)=0   c(y1)=3   c(y2)=1   c(y3)=2

1 3
1 3

1  2

c(all)=0   c(y1)=2   c(y2)=2   c(y3)=0

1  21 2

Fig. 6. Outlier detection and identification with compati-
bility counters

5. EXPERIMENTAL RESULTS

In this section, we report experimental GPS positioning
results obtained with a real-time implementation of the
algorithm implemented in C++. Raw time-of-flight mea-
surements (pseudoranges) from a low-cost high-sensitivity
uBlox LEA4T GPS receiver are used to constrain the
user position. Measurement noise is taken into account
by representing pseudoranges with intervals. A 3D map
of the drivable space (provided by the french Institut
Geographique National) is also used a constraint on po-
sition. Positioning is done with the previously presented
robust set-inversion algorithm. The contractors for GPS
and 3D map are respectively based on interval constraint
propagation and on a polygon clipping algorithm, and can
be found in Drevelle and Bonnifait [2011a].

The dataset consists in three loops around the mairie of
the 12th arrondissement in Paris, covering 3 kilometers
in 16 minutes (Fig. 7). It is very challenging for GPS
since the narrow streets with high buildings prevent good
reception of the satellites’ signals, and are source of er-
roneous measurements due to multipath and non-line-of-
sight signal propagation. A common practice to reduce the
number of erroneous GPS measurements is to filter out
observations whose signal-to-noise ratio (SNR) is too low.
In order to test the presented algorithm in the presence
of a lot of outliers, we set the SNR filtering threshold
to a very low value of 20 dBHz (the standard being at
37 dBHz). Pseudorange measurements were modeled by
±3 m intervals.

The robust set-inversion algorithm used in this experiment
implements the GOMNE strategy: computation starts
with no constraint relaxation, and the number q of relaxed
GPS measurements is increased until a non-empty solution
is found. Since an empty solution-set with a q-relaxed set
inversion indicates that there are at least q + 1 outliers
in the measurements vector, the algorithm is able to

Fig. 7. Path followed around the mairie of the 12th

arrondissement in Paris.
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Fig. 8. Number of detected and identified outliers at each
epoch.
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Fig. 9. Two outliers identified at epoch #80. Left: mea-
surement compatibility counters values (normalized
by the number of boxes). Right: 3D view of solution.
The solution subpaving is in green. Green lines are
lines-of-sight to the used satellites. Thick red lines
represent identified outliers.

report a lower bound of the number of outliers. This is
the number of detected outliers shown in Fig. 8. Outliers
identification is performed with the compatibility counters
presented in the previous section. Since the use of intervals
to characterize the solution as a subpaving, the results
are dependent on the coordinate system. Computations
are done in a “East, North, Up” local tangent frame, that
enables very efficient altitude contraction with the map
constraint.

Fig. 8 shows that the algorithm detects at most 3 simul-
taneous outliers during the trial, and is able to identify at
most two outliers. This is illustrated by Fig. 9, where two
outliers are successfully detected and identified at epoch
#80 (t=400 s).

Due to the lack of redundancy, fault detection may fail, and
even lead to wrong exclusion. This happens at epoch #89
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Fig. 10. Fault detection and identification failure at epoch
#89. The circle represents ground truth position.
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Fig. 11. Northing and easting error (in meters) when
using the subpaving’s center of gravity as a position
estimate. The lower row shows the number of active
and relaxed GPS constraints (number of detected
faults) at each epoch.

(t=445 s) where a single fault is detected and identified
with the measurements compatibility counters, but leads
to an erroneous solution set (Fig. 10). In fact, at that
particular epoch, four out of the five received signals have
very low SNRs, and even the remaining stronger signal
would have normally been filtered out by a standard SNR
threshold of 37 dBHz. With 4 wrong measurements out of
5, it is not possible to compute a solution consistent with
the ground truth.

The center of gravity of the solution subpaving can be used
as point estimate for position. Fig 11 represents position-
ing error in the north and east coordinates, with respect
to the position solution of an Applanix inertial navigation
system. The mean horizontal positioning error during the
whole trial is 9.47 m, with a median of 5.78 m. Large errors
in Fig 11 are mainly due to the lack of measurements (e.g.
at t=630 s) which leads to disconnected solution sets rep-
resenting multiple localization hypotheses. Another source
of error is the presence of too many outliers at particular
epochs since the SNR threshold for measurement rejection
was set very low (e.g. at t=445 s).

6. CONCLUSION

An interval-based position estimation method with fault
detection and identification has been presented. It en-
ables computing a localization domain from a few GPS
measurements with outliers and a 3D map. An optimized
implementation with measurement compatibility counters
has been introduced, and tested on a sequence of real GPS
data in a very difficult urban environment. The method is
able to compute a position and to successfully detect and
identify outliers when GPS measurement redundancy is
high enough. However, it may fail to detect a fault when
there are not enough GPS measurements (at least 3 satel-
lites are required, then detection performance depends if
the error moves the computed position out of the drivable
space or not), or identify a good measurement as a fault
when there are more erroneous measurements than good
observations.

Improvements to the fault detection capability of the
method could be obtained by the computation of an inner
solution subpaving along with the outer subpaving, or by
checking particular points like box centers. Finally, this
paper has proposed a purely static approach ; A dynamic
approach could improve the overall performance by taking
time dependency into account.
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