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This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration are stimulated by harmonically imposed stress. The mass balance with diffusion and stress-sensitive kinetics represents a rare example where the Damköhler and Deborah numbers appear together in an effort to simulate the development of mass transfer boundary layers in porous viscoelastic biomaterials.

The Boltzmann superposition integral is employed to calculate timedependent strain in terms of the real and imaginary components of dynamic compliance for viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells. Rates of nutrient consumption under stress-free conditions are described by third-order kinetics which include local mass densities of nutrients, oxygen, and attached cells that maintain dynamic equilibrium with active protein sites in the porous matrix. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive critical value. The critical stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic strain on nutrient consumption and tissue regeneration, is proportional to the Deborah number and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials.

Introduction

The material properties of biological tissue arise from nanoscale and microscale architecture of sub-cellular, cellular, and extracellular networks [START_REF] Magin | Fractional calculus models of complex dynamics in biological tissues[END_REF]. Living cells grow and exert their activities while embedded in a dense, complex extracellular matrix. This matrix contains an array of structural and directional cues that guide and support the morphogenesis of multi-cellular structures such as tissues and organs. Dynamic models with the potential to predict macroscale behavior from the microscale continuum are useful to describe underlying multi-scale processes that occur when tissues are stimulated by mechanical stress. Fractional (non-integer order) calculus has been applied to develop models that consider these biological events [START_REF] Magin | Fractional calculus models of complex dynamics in biological tissues[END_REF]. The mechano-biology of tendons requires a complete understanding of its liquid constituents in the presence of stress, because tendon viscoelasticity depends on (i) water content and (ii) physico-chemical influence on anisotropic intra-tendon diffusion [START_REF] Tassoni | Fluid flow in tendons under stress, IRBM[END_REF]. In some cases, wave propagation described by the reaction-diffusion equation initiates deformation in cardiac tissue via a process known as mechano-electrical feedback [START_REF] Keldermann | Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems[END_REF]. Exact and approximate solutions of the one-dimensional reaction-diffusion equation describe oxygen delivery by the microcirculation system and oxygen diffusion/consumption in muscle tissue when oscillatory boundary conditions mimic local blood flow regulation as a function of oxygen concentration [START_REF] Goldman | A mathematical model of oxygen transport in intact muscle with imposed surface oscillations[END_REF].

Viscous shear at fluid-solid interfaces [START_REF] Belfiore | Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation[END_REF][START_REF] Belfiore | Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors[END_REF] and centrifugal-force-induced compressive stress [START_REF] Belfiore | Pressure-sensitive nutrient consumption via dynamic normal stress in rotational bioreactors[END_REF] have been employed previously to stimulate endothelial cell and bone cell proliferation, respectively, in chemisorbed monolayers on protein-coated surfaces.

When nutrient media flow past active surfaces that contain anchoragedependent cells, simple 1-dimensional Newtonian fluid velocity profiles and the magnitude of the velocity gradient tensor are required to construct stress-kinetic reciprocal couplings that obey Curie's theorem in nonequilibrium thermodynamics [START_REF] Belfiore | Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation[END_REF][START_REF] Belfiore | Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors[END_REF][START_REF] Belfiore | Dynamic shear in continuous-flow rotating-disk catalytic reactors with stress-sensitive kinetics based on Curie's theorem in nonequilibrium thermodynamics[END_REF][START_REF] Belfiore | Transport Phenomena for Chemical Reactor Design[END_REF]. In this study, strain-activated tissue regeneration is stimulated by subjecting viscoelastic biomaterials that contain uniformly dispersed anchorage-dependent cells to harmonic tensile stress. The formalism for scalar cross-phenomena originates from a consideration of the mechanochemistry of materials [START_REF] Gutman | Mechanochemistry of Materials[END_REF] and the corresponding rate of entropy generation in solids [START_REF] Stalhand | Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains[END_REF], but slight modification is necessary to include a contribution from timeindependent strain to stress-sensitive reactions. Hence, scalar stress-kinetic couplings are reformulated in terms of the magnitude of the 2 nd -rank strain tensor, not the velocity gradient tensor or the corresponding symmetric rate-of-strain tensor that is typical for fluids. The strain-energy function represents another option to characterize the effect of deformation on biochemical kinetics [START_REF] Stalhand | Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains[END_REF][START_REF] Narayanan | The micromechanics of fluidsolid interactions during growth in porous soft biological tissue; and (ii) Biological growth: reaction, transport and mechanics: theory and numerical models[END_REF]. A strain-energy-dependent source term for bone cell proliferation that monitors tissue rigidity was proposed by Harrigan and Hamilton [START_REF] Harrigan | Finite-element simulation of adaptive bone remodeling: a stability criterion and a time-stepping method[END_REF] which becomes activated when strain energy density increases above a predetermined threshold [START_REF] Narayanan | The micromechanics of fluidsolid interactions during growth in porous soft biological tissue; and (ii) Biological growth: reaction, transport and mechanics: theory and numerical models[END_REF]. This threshold is analogous to the identification of a critical
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The Boltzmann superposition integral for time-dependent strain [START_REF] Belfiore | Physical Properties of Macromolecules[END_REF] contains elastic and viscous contributions to deformation in porous biomaterials, and harmonic stress excitation introduces storage and loss compliances in the effect of strain on proposed kinetic models. Optimal synthetic scaffolds that exhibit ideal combinations of physical, chemical, and biological stimuli pose a bioengineering design dilemma.

Motivation and Strategy

This research contribution analyzes predictions from the reaction-diffusion equation in biological systems that respond to deformation. The overall objective is to develop guidelines that quantify the importance strain-catalyzed rates of nutrient consumption when anchorage-dependent cells are stimulated in viscoelastic biomaterials. Nutrients diffuse inward from the external biomaterial interface to support cell proliferation, and the mass transfer boundary layer thickness in the presence and absence of stress is used as a metric to evaluate tissue regeneration. Hence, nutrient boundary layers decrease in thickness when harmonic excitation is transmitted to attached cells in a porous matrix. The next section provides a phenomenological explanation for enhanced rates of nutrient consumption by anchorage-dependent cells via symmetry-breaking phenomena [START_REF] John | Actin-Based Propulsion: Intriguing Interplay between Material Properties and Growth Processes, Ch.#2[END_REF] as a consequence of stress imbalance. The reaction-diffusion equation is satisfied throughout the nutrient boundary layer with assistance from the von Kármán-Pohlhausen integral method of analysis that yields a time-dependent expression for boundary layer thickness, δ MTBLT , which is affected by stress-free and stress-sensitive rates of consumption. Numerical results in Figures 234might be useful to design compliant biomaterials for tissue regeneration such that nutrients, oxygen, and growth factors exist throughout the matrix under quasi-steady-state conditions to support cell proliferation and sustainability. Mathematical solution of the reaction-diffusion equation is performed using dimensionless variables and parameters, with time t and spatial coordinate x transformed according to the combination-of-variables method of analysis. The intra-tissue Damköhler number emerges as the most important parameter governing the thickness of the nutrient boundary layer. Since nutrients are consumed according to stress-free and stresssensitive kinetic pathways, an intra-tissue Damköhler number is defined for each mechanism. The strain-catalyzed mechanism of nutrient consumption is formulated in terms of the real and imaginary components of dynamic compliance for viscoelastic solids, as described in the next section. Consequently, the Deborah number appears as a dimensionless parameter in the reaction-diffusion equation, and in the numerical results for δ MTBLT . The Deborah and Damköhler numbers have not appeared together in previous examples of the reaction-diffusion equation because strain-catalyzed (or stress-sensitive) nutrient consumption has not received much attention and the corresponding dimensionless equations have not been analyzed. These are important modeling issues in
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The magnitude and frequency of mechanical excitation are the focus of current biomaterials research. This investigation combines elements of (i) transport phenomena, (ii) strain-catalyzed reaction kinetics, and (iii) viscoelastic biomaterials to identify critical values of the stress-sensitive intra-tissue Damköhler number, above which tissue engineering design should consider the effect of biomaterial deformation on cell proliferation and tissue regeneration.

Magnitude of the st rain t ensor for viscoelast ic solids subjected to harmonic stress via the Boltzm ann superposition integral

The cell/nutrient-medium interface is analogous to a gel-liquid boundary, and cell growth and deformation produce elastic stresses that depend on the mechanical properties of the cell, according to the laws of continuum mechanics [START_REF] John | Actin-Based Propulsion: Intriguing Interplay between Material Properties and Growth Processes, Ch.#2[END_REF]. Spherical cells that grow axisymmetrically generate a normal tensile stress imbalance on their outer surface, in the tangential direction (i.e., σ ΘΘ ), when symmetry is perturbed (i.e., symmetry breaking) as a consequence of natural fluctuations and cell motility. The magnitude of these elastic stresses is proportional to the thickness of the cell's outer "comet-shaped" surface that develops [START_REF] John | Actin-Based Propulsion: Intriguing Interplay between Material Properties and Growth Processes, Ch.#2[END_REF].

The state of deformation and the macroscopic stress distribution "catalyze" rates of nutrient consumption by anchorage-dependent cells in the regenerative process. Kinetic models are proposed herein [i.e., see Eq. ( 4)] that contain an additional contribution due to viscoelastic deformation of the biomaterial support. The scalar rate of nutrient consumption is coupled to the magnitude of the second-rank strain tensor [START_REF] Narayanan | The micromechanics of fluidsolid interactions during growth in porous soft biological tissue; and (ii) Biological growth: reaction, transport and mechanics: theory and numerical models[END_REF][START_REF] Harrigan | Finite-element simulation of adaptive bone remodeling: a stability criterion and a time-stepping method[END_REF], defined by the square-root of the double-dot product of the strain tensor with its transpose [START_REF] Bird | Transport Phenomena[END_REF]. Harmonic tensile stress is given by;

! " t;# ( ) = " DC +" AC cos #t ( ) (1) 
such that σ AC < σ DC , and the time-dependent creep compliance for an infinite spectrum of Voigt elements in series [START_REF] Belfiore | Physical Properties of Macromolecules[END_REF] is expressed in terms of the relaxation time distribution function, J D (λ);

! J C t " # ( ) = 1 E i 1" exp " t " # ( ) $ i T ( ) % & ' ( ) * + , - . - / 0 - 1 - i=1 N 2 3 N 45 J D $ ( ) $=0 5 6 1" exp " t " # ( ) $ % & ' ( ) * + , . / 0 1 d$ (2)
The Boltzmann superposition integral for time-dependent strain [START_REF] Belfiore | Physical Properties of Macromolecules[END_REF] is employed to evaluate the magnitude of the strain tensor in terms of the storage J'(ω) and loss J"(ω) components of dynamic creep compliance at excitation frequency ω. Biophysical Chemistry: revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue ! Magnitude of the strain tensor; " t;#
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As illustrated in Figure#1, the coordinate direction in which deformation occurs is transverse to the diffusional flux of nutrients and other essential ingredients required for cell proliferation and tissue regeneration. ---------------------------------------------------------------------------------------------------------------- It is not unreasonable to (i) identify ω as the dominant frequency in the power spectrum when one considers the coupling between cardiac and respiratory oscillators superimposed on random noise [START_REF] Stefanovska | Modeling couplings among the oscillators of the cardiovascular system[END_REF][START_REF] Stefanovska | Reconstructing cardiovascular dynamics[END_REF], and (ii) design experiments with significant overlap between these oscillations and the excitation frequency that stimulates tissue regeneration. The scaling of time in viscoelasticity (i.e., material response time λ relative to a characteristic time for the deformation process) is accomplished via the Deborah number De, which is given by ωλ(T) for a one-time-constant model with static compliance 1/E, where E is the static modulus of the elastic element in the viscoelastic model [START_REF] Belfiore | Physical Properties of Macromolecules[END_REF]. The factor of 0.5 under the square-root sign in Eq. ( 3) guarantees that the magnitude of the symmetric 2 ndrank strain tensor reduces to its only independent off-diagonal element when all other elements vanish [START_REF] Bird | Transport Phenomena[END_REF].

Stress-free and stress-sensitiv e rates of nutrient con sumption in viscoelastic biomaterials

It is necessary to construct mathematically correct stress-kinetic reciprocal relations that describe scalar cross-phenomena [START_REF] Belfiore | Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation[END_REF] when the state of deformation in viscoelastic biomaterials is coupled to the rate of nutrient consumption and cell proliferation in regenerative tissue. This phenomenon could be significant at small length scales in cellular "micro-reactors" (i.e., on the order of isolated cells with a diameter of 10 µm that are attached to a regenerative matrix). The magnitude of the strain tensor in Eq. ( 3) is employed to accomplish this coupling, according to Curie's theorem in nonequilibrium thermodynamics [START_REF] Belfiore | Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation[END_REF][START_REF] Belfiore | Dynamic shear in continuous-flow rotating-disk catalytic reactors with stress-sensitive kinetics based on Curie's theorem in nonequilibrium thermodynamics[END_REF][START_REF] Belfiore | Transport Phenomena for Chemical Reactor Design[END_REF] when the rate of entropy generation contains fluxes and force whose tensorial ranks differ by an even integer (i.e., in this case, two). This formalism is employed to modify scalar rates of reaction when the medium is subjected to tensile or compressive deformation. For mechanochemical systems that are not too far removed from equilibrium, homogeneous rates of nutrient consumption are written in the following form;

R homogeneous nutrient consumption = k stress" free # nutrient # oxygen # cells +$ stress % AC 2 J' & ( ) cos &t ( ) + J" & ( ) sin &t ( ) { } 2 (4) 
where the scalar Onsager coupling coefficient κ stress has dimensions of nutrient mass per volume of the viscoelastic biomaterial per time. The form of the stress history function in the Boltzmann superposition integral for time-dependent strain [i.e., see Eq. (3)] eliminates effects from time-independent stress σ DC on the rate of nutrient consumption. However, the fact that harmonic stress always induces tensile strain (i.e., since σ DC > σ AC ) has an implicit effect on scalar stress-kinetic coupling. The second term on the right side of Eq. ( 4) has been modified phenomenologically via the magnitude of the strain tensor, instead of employing the velocity gradient tensor or the symmetric rate-of-strain tensor, as
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Biophysical Chemistry: revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue suggested by the linear laws of irreversible thermodynamics for viscous fluids that focus on products of fluxes and forces in the rate of entropy generation [START_REF] Belfiore | Transport Phenomena for Chemical Reactor Design[END_REF]. This phenomenological modification (i.e., replacing the magnitude of the velocity gradient tensor by the magnitude of the strain tensor) in viscoelastic solids is reasonable because anchorage-dependent cells dispersed homogeneously throughout porous biomaterials experience enhanced rates of proliferation in response to constant stress and harmonic stress. The stress-kinetic reciprocal (i.e., second) term on the right side of Eq. ( 4) represents a zeroth-order rate of nutrient consumption. Stress-free rates of nutrient consumption, given by the first term on the right side of Eq. ( 4), require the presence of nutrients, oxygen, and attached cells whose receptors form complexes with functional groups in the chemical structure of conformationally accessible proteins dispersed throughout, or embedded within, porous biomaterial matrices. Hence, the appropriate signaling exists for cells to consume nutrients and proliferate within the context of regenerative medicine. The form of Eq. ( 4) is sufficiently flexible to account for the effects of deformation that might change the reaction pathway or the products that are generated if another parallel pathway were equally important with comparable or lower activation energy [START_REF] Hillig | Surfaces, Stress Dependent Surface Reactions, and Strength[END_REF][START_REF] Rawat | Chemical kinetics of stress relaxation in compressed wood blocks[END_REF] when external forces increase bond dissociation rate coefficients [START_REF] Truskey | Transport Phenomena in Biological Systems[END_REF], relative to the stress-free kinetic contribution. In summary, scalar representations of tensorial quantities in the mechanochemistry of viscoelastic biomaterials have been respected in developing a self-consistent model for the coupling between time-dependent strain and reaction kinetics in stress-sensitive systems.

Stoich iom etric requ irem ents for nutrient consumption by anchorage-d ependent m ammalian cells

This application of tissue regeneration in viscoelastic biomaterials includes stressfree and stress-sensitive rates of nutrient consumption, where the latter is stimulated by harmonic excitation. It is necessary to connect the rate of nutrient consumption to the rate of cell proliferation. Effective biomass yields between 40% and 50% have been reported for a selected group of glucose-fed micro-organisms [START_REF] Doran | Bioprocess Engineering[END_REF][START_REF] Pirt | Principles of Microbe and Cell Cultivation[END_REF]. Hence, ε cells /ε nutrient ≈ 0.45 is employed in Eq. ( 5), in consideration of the fact that some nutrient consumption could be channeled into other products and metabolic activities not related to cell proliferation, such as energetic support for cell mobility and sustainability. Yield coefficients that characterize cell mass produced per mass of oxygen consumed (i.e., ε cells /ε oxygen ≈ 0.45) for the production of hematopoietic cells in 3-dimensional perfusion bioreactors suggest a 1:1 mass ratio for oxygen to nutrient consumption [START_REF] Pathi | Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells[END_REF][START_REF] Bailey | Biochemical Engineering Fundamentals[END_REF]. Both of these stoichiometric ratios (i.e., ε cells /ε nutrient ≈ 0.45 and ε oxygen /ε nutrient ≈ 1) are required to simulate tissue regeneration via the following relations between mass densities in porous biomaterials; 

A C C E P T E D M A N U S C
" i x,t ( ) # " i x = L,t = 0 ( ) = $ i % i % nutrient " nutrient x = L,t = 0 ( ) # " nutrient x,t ( ) { } (5) 
where υ cells = +1, and υ oxygen = -1. These parameters are used in Eqs. ( 15) & ( 16).

React ion-diffusion equation for one-dim ensional d iffusion and stress-sen sit ive con sumption in biom aterials with rectangular symmetry

Fick's second law of diffusion with nutrient consumption (i.e., the modified diffusion equation) describes the transient and spatial dependence of the mass density of each reactive species (i.e., nutrients, oxygen, growth factors, etc.) within a viscoelastic biomaterial of thickness 2L that supports tissue regeneration [START_REF] Truskey | Transport Phenomena in Biological Systems[END_REF][START_REF] Grzybowski | Chemistry in Motion: Reaction-Diffusion Systems for Micro-and Nano-technology[END_REF][START_REF] Baronas | Mathematical Modeling of Biosensors: An Introduction for Chemists and Mathematicians[END_REF][START_REF] Belfiore | Nutrient diffusion and simple n th -order consumption in regenerative tissue and biocatalytic sensors[END_REF]. For one-directional flux in the x-direction across the thinnest dimension of this matrix (i.e., transverse to the "stretch" direction), one must solve the reaction-diffusion equation for nutrient mass density, ρ nutrient (x,t);

! "# nutrient "t = D A,effective,intra$tissue " 2 # nutrient "x 2 $ R homogeneous nutrient consumption (6)
where time t accounts for transient response, D A,effective,intra-tissue is the effective diffusion coefficient for species A within porous viscoelastic biomaterials, and the total pseudohomogeneous rate of nutrient consumption by anchorage-dependent cells within the matrix is calculated via Eq. ( 4) in the presence and absence of stress. Both sides of the regenerative matrix (i.e., x = ±L) are exposed to a well-mixed nutrient medium at time, t=0. The required boundary conditions are;

! " nutrient = " nutrient,medium ; x = L; t > 0 #" nutrient #x = 0; and " nutrient $ 0; x = x critical t ( )

" nutrient = 0; t = 0; x critical % x < L (7)
The zero-flux boundary condition at x critical is reminiscent of a boundary-layer problem because the central core is nutrient-starved at short times for all reasonable values of the intra-tissue Damköhler number. Dimensionless variables are introduced for nutrient mass density, spatial position in the thinnest dimension of the sample, and time; [START_REF] Belfiore | Dynamic shear in continuous-flow rotating-disk catalytic reactors with stress-sensitive kinetics based on Curie's theorem in nonequilibrium thermodynamics[END_REF] where Θ Diffusion represents a characteristic time constant for intra-tissue diffusion. This allows one to re-express the modified diffusion equation and its boundary conditions in dimensionless form for nutrient mass density Ψ A (η,τ);
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Λ 2 A,stress-free is the species specific stress-free intra-tissue Damköhler number that represents an order-of-magnitude ratio of the stress-free consumption rate to the rate of diffusion toward anchorage-dependent cells [START_REF] Belfiore | Transport Phenomena for Chemical Reactor Design[END_REF][START_REF] Truskey | Transport Phenomena in Biological Systems[END_REF]. Hence:

! " A,stress# free 2 =
k stress# free $ nutrient,medium 2 L 2 D A,effective,intra-tissue [START_REF] Gutman | Mechanochemistry of Materials[END_REF] where ρ nutrient,medium is the mass density of nutrients in the vicinity of the external tissue surface, and k stress-free is the pseudo-volumetric third-order kinetic rate constant for stressfree consumption. The stress-sensitive intra-tissue Damköhler number [START_REF] Belfiore | Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation[END_REF] is defined as follows:

! " A,stress 2 =
# stress $ AC L 2 2E% nutrient,medium D A,effective,intra-tissue [START_REF] Stalhand | Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains[END_REF] where κ stress is the Onsager scalar coupling coefficient, σ AC is the amplitude of harmonic stress excitation, and E is the viscoelastic biomaterial's static modulus of elasticity. Eq. (9) represents a rare example in the refereed journal literature where the Damköhler and Deborah numbers appear together in the reaction-diffusion equation to parameterize mass transfer in viscoelastic biomaterials subjected to stress. The Damköhler number (i.e., a
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10 Biophysical Chemistry: revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue reaction-diffusion parameter) has been employed previously to model reaction and diffusion in cell cultures [START_REF] Truskey | Transport Phenomena in Biological Systems[END_REF][START_REF] Peerani | Manipulation of signaling thresholds in ''engineered stem cell niches'' identifies design criteria for pluripotent stem cell screens[END_REF], microchannel bioreactors [START_REF] Zeng | Numerical simulation of mass transport in microchannel bioreactors with cell micro-patterning[END_REF], and electrochemical biosensors immobilized within a highly dispersed mesh of carbon nanotubes [START_REF] Lyons | Transport and kinetics at carbon nanotube-redox enzyme composite modified electrode biosensors: redox enzymes dispersed in nanotube meshes of finite thickness[END_REF]. The pressure-sensitive Damköhler number was developed recently to quantify mechanosensitive zeroth-order bone tissue growth in response to centrifugal-force-induced hydrostatic pressure modulations in rotating-cup bioreactors [START_REF] Belfiore | Pressure-sensitive nutrient consumption via dynamic normal stress in rotational bioreactors[END_REF]. The concept of the intra-tissue Damköhler number in biological systems is analogous to the intrapellet Damköhler number for heterogeneous catalysis in packed reactors [START_REF] Belfiore | Transport Phenomena for Chemical Reactor Design[END_REF][START_REF] Bird | Transport Phenomena[END_REF]. Numerical solution of Eq. ( 9) via finite-difference calculus is awkward, due to zeroth-order stresssensitive rates of nutrient consumption that must be extinguished in the tissue's central core at short times when nutrients have not diffused inward to a significant extent. There are very few literature references that invoke the von Kármán-Pohlhausen profile method and solve the modified diffusion equation with chemical reaction to predict transient mass transfer boundary layer thicknesses (i.e., 4 matches in Web of Science™ to diffusion, reaction, von Kármán). Profile methods have not been employed to solve mass transfer boundary layer problems in the presence of stress-sensitive biochemical kinetics [START_REF] Paritskaya | Stress-sensitive effects in the diffusion zone[END_REF].

Solution of the mod ified diffusion equat ion v ia the von Kármán-Pohlhausen integral m ethod of boundary layer analysis

The transient reaction-diffusion equation, Eq. ( 9), was solved for dimensionless nutrient mass density, Ψ A (ϕ), and the dimensionless mass transfer boundary layer thickness δ MTBLT (τ;Λ A,stress-free ,Λ A,stress ) by postulating a quadratic function of the combined variable ϕ according to the von Kármán-Pohlhausen profile method of boundary layer analysis [START_REF] Belfiore | Nutrient diffusion and simple n th -order consumption in regenerative tissue and biocatalytic sensors[END_REF];

! " A #,$ ( ) = " A % ( ) = & + '% +(% 2 % = 1)# * MTBLT $;+ A,stress) free , + A,stress ( ) (12) 
The proposed quadratic function for dimensionless nutrient mass density Ψ A in Eq. ( 12) is consistent with steady state profiles for zeroth-order rates of consumption in tissue with rectangular symmetry [START_REF] Belfiore | Transport Phenomena for Chemical Reactor Design[END_REF][START_REF] Belfiore | Nutrient diffusion and simple n th -order consumption in regenerative tissue and biocatalytic sensors[END_REF], for all values of both intra-tissue Damköhler numbers. Boundary conditions at η=1 [i.e., Ψ A (ϕ=0) = 1] and η=1-δ MTBLT [i.e., {∂Ψ A /∂η} ϕ=1 = Ψ A (ϕ=1) = 0] yield numerical values for the constants α, β, and ζ. Hence;

! " A # = 0 ( ) = $ = 1 " A # = 1 ( ) = $ + % +& = 0 '" A '( ) * + , - . (=1/0 MTBLT = /1 0 MTBLT 1;2 A,stress/ free , 2 A,stress ( ) '" A '# ) * + , - . # =1 = /% / 2& 0 MTBLT 1;2 A,stress/ free , 2 A,stress ( ) = 0 (13) 
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11 Biophysical Chemistry: revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue with α=1, β=-2, ζ=1. If Ψ A ⇒ 0 with zero slope at ϕ=1, then the initial condition is satisfied as ϕ ⇒ ∞. Upon substitution of the postulated profile for Ψ A (ϕ) via Eq. ( 12) into Eq. ( 9), multiplication by δ MTBLT , and integration with respect to ϕ from 0 to 1, it is possible to obtain a first-order ordinary differential equation (ODE) for δ MTBLT (τ;Λ A,stress-free ,Λ A,stress ) that represents conservation of nutrient mass over the thickness of the boundary layer. This is illustrated in Eq. ( 14).

! "# A "$ % & ' ( ) * + = d# A d, ", "-MTBLT % & ' ( ) * + d-MTBLT d$ = ., -MTBLT / + 20, { } d-MTBLT d$ . d-MTBLT d$ , / + 20, { }d, = . 1 2 / + 2 3 0 { } d-MTBLT d$ 0 1 1 " 2 # A "+ 2 % & ' ( ) * $ = 1 -MTBLT 2 d 2 # A d, 2 = 20 -MTBLT 2 1 3 d-MTBLT d$ = 2 -MTBLT . -MTBLT 2 A,stress 2 1+ De 2 cos 3t ( )+ Desin 3t ( ) { } 2 .-MTBLT 2 A,stress. free 2 # A , ( )# oxygen , ( )# cells , ( )d, , =0 1 
1 ( 14 
)
The differential equation for δ MTBLT in Eq. ( 14) reduces to Eq. ( 15) at steady state in the absence of stress (i.e., Λ A,stress ⇒ 0) when the mass transfer boundary layer thickness is independent of dimensionless diffusion time τ. 

! " MTBLT # $ %;& A ,stress' free ( ) = 2 & A,stress' free ( A ) ( )( oxygen ) ( )( cells ) ( )d) ) = 0 1 * $ ( cells + =1,# = 0 ( )= 0.25 $ ( oxygen + =1,# = 0 ( )= 0.75 50 & A,stress' free $ ( oxygen + =1,# = 0 ( )=1 26 
If the kinetics are zeroth-order instead of third-order, then the square-root term in the denominator of Eq. ( 15) is unity and the steady state dimensionless boundary layer asymptotically approaches a thickness of √(2)/Λ A,stress-free when the stress-free intra-tissue Damköhler number is greater than or equal to its critical value of √(2) [START_REF] Belfiore | Transport Phenomena for Chemical Reactor Design[END_REF][START_REF] Belfiore | Nutrient diffusion and simple n th -order consumption in regenerative tissue and biocatalytic sensors[END_REF]. For complex stress-free nutrient consumption by anchorage-dependent cells requiring the presence of several ingredients for proliferation, porous biomaterials can operate further into the diffusion-limited regime at steady state such that the critical stress-free intra-tissue Damköhler number Λ A,stress-free,critical ranges from √(26) to √(50) [i.e., dependent upon Ψ oxygen (η=1,τ=0) & Ψ cells (η=1,τ=0)] before regeneration ceases in the tissue's central core.

Stress-sensitive param etric an alysis of mass transfer boundary layers when viscoelastic relaxation of the mat rix occurs

The time-dependent ODE in Eq. ( 14) was solved for the development of δ MTBLT (τ;Λ A,stress-free ,Λ A,stress ), subject to the initial condition δ MTBLT (τ=0) = 0 when the Deborah (16)

The external biomaterial surface at x=±L is exposed to dissolved oxygen in the well-mixed nutrient medium, and the entire porous matrix is seeded uniformly with attached cells. Time-dependent growth of the dimensionless mass transfer boundary layer δ MTBLT (τ), measured inward from the external tissue surface is illustrated in Figure#2 when viscoelastic relaxation occurs in porous biomaterials and the stress-free intra-tissue Damköhler number is slightly greater than its critical value, such that the tissue's inner core, defined by 0 ≤ η ≤ 1-δ MTBLT , is starved of the essential ingredients required for cell proliferation.

-

-------------------------------------------------------------------------------------------------------------- Figure#2
von Kármán-Pohlhausen boundary layer predictions, based on the solution of Eq. ( 16) for nutrient diffusion and stress-sensitive consumption in porous biomaterials that experience viscoelastic relaxation (i.e., De = 1). The stress-free intra-tissue Damköhler number (i.e., Λ2 A,stress-free = 30) is greater than its critical value of 26, according to Eq. ( 15), when the initial condition for cells and oxygen mass densities on the external biomaterial surface are: Ψ cells (η=1,τ=0)=0. ----------------------------------------------------------------------------------------------------------------------------The amplitude of harmonic tensile stress excitation, σ AC , represents a convenient parameter that allows one to systematically vary the stress-sensitive intra-tissue Damköhler number within the regime of linear viscoelastic response. Harmonic excitation of solid-like biomaterials at higher Deborah numbers in Figure#3 occurs at the same frequency (i.e., 1 hz.) relative to the simulations in Figure#2 when De=1, but the dimensional analysis of time in the oscillatory strain function includes the Deborah number [i.e., see Eq. ( 9)]. Hence, higher Deborah number response translates to more oscillations of the nutrient boundary layer thickness on the dimensionless time axis when the ratio of the diffusion time constant Θ diffusion to the material response time λ(T) remains the same, even though each time constant is longer in rigid solids relative to those that undergo viscoelastic relaxation. The effect of the Deborah number on dynamic compliance is primarily responsible for (i) smaller amplitude oscillatory response in -----------------------------------------------------------------------------------------------------------------Figure#3 von Kármán-Pohlhausen boundary layer predictions, based on the solution of Eq. ( 16) for nutrient diffusion and stress-sensitive consumption in solid-like biomaterials (i.e., De = 5). The stress-free intra-tissue Damköhler number (i.e., Λ 2 A,stress-free = 30) is greater than its critical value of 26, according to Eq. ( 15), when the initial condition for cells and oxygen mass densities on the external biomaterial surface are: Ψ cells (η=1,τ=0)=0. ---------------------------------------------------------------------------------------------------------------------------The critical value of the stress-sensitive intra-tissue Damköhler number, above which it is necessary to consider the effect of harmonic stress on nutrient consumption and tissue regeneration, is defined qualitatively as Λ 2 A,stress,critical when the nutrient mass transfer boundary layer thickness decreases by ≈10% relative to the stress-free simulations in Figures 234. This reveals that Λ 2 A,stress,critical is proportional to De, and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials characterized by higher Deborah numbers. -------------------------------------------------------------------------------------------------------------------Figure#4 von Kármán-Pohlhausen boundary layer predictions, based on the solution of Eq. ( 16) for nutrient diffusion and stress-sensitive consumption in liquid-like biomaterials (i.e., De = 0.2). The stressfree intra-tissue Damköhler number (i.e., Λ 2 A,stress-free = 30) is greater than its critical value of 26, according to Eq. ( 15), when the initial condition for cells and oxygen mass densities on the external biomaterial surface are: Ψ cells (η=1,τ=0)=0.25 and Ψ oxygen (η=1,τ=0)=1. The effect of stress on the nutrient mass transfer boundary layer increases from the stress-free uppermost curve to the lowermost curve. The critical stress-sensitive intra-tissue Damköhler number is approximately 3% of the stress-free intra-tissue Damköhler number. Parameters: ω = 2π radians/s, Θ diffusion /λ = 2π, 5000 steps in dimensionless diffusion time τ, from τ=0 to τ=5 Biophysical Chemistry: revised April 2011
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Conclu sion s

Biological systems respond to stress, in general, via complex mechano-transduction pathways [START_REF] Bader | Mechanical conditioning of cell-seeded constructs for soft-tissue repair: are optimization strategies possible[END_REF]. Some of the most favourable bioreactor designs for tissue regeneration are those based on (i) dynamic flow (i.e., bone, cartilage) [START_REF] Belfiore | Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation[END_REF][START_REF] Belfiore | Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors[END_REF], and cyclic stretching (i.e., tendon, ligament, bone). Tendons are stimulated by tension and bone cells proliferate at accelerated rates under compressive stress [START_REF] Belfiore | Pressure-sensitive nutrient consumption via dynamic normal stress in rotational bioreactors[END_REF][START_REF] Shi | Dynamic straining bioreactors for collagen-based tissue engineering[END_REF][START_REF] Floren | Anisotropic poly(D,L-lactic acid) foams with tunable morphologies prepared in supercritical carbon dioxide for bone regeneration: dynamic in vitro biological evaluation[END_REF]. Recently, stress-sensitive kinetics have been identified experimentally in physicochemical systems that exhibit no biological influence [START_REF] Rosner | Coupling between homogeneous rate processes and fluid deformation rate: Brownian particle coagulation in a rapidly dilating solvent[END_REF]. The fields of biorheology and mechanobiology describe some aspects of stress-sensitive rates of nutrient consumption. The foundations of stress-kinetic scalar cross-phenomena are evident in the transport-phenomena-based rate of entropy generation and the corresponding linear laws proposed by Onsager, with assistance from Curie's theorem. It is desirable to develop regenerative tissue under reaction-diffusion conditions where the stress-free intra-tissue Damköhler number is less than its critical value to guarantee that the entire porous biomaterial matrix is exposed to nutrients, oxygen, and growth factors at steady state. The von Kármán-Pohlhausen integral method of boundary layer analysis of the reaction-diffusion equation reveals time-dependent growth of the mass transfer boundary layer inward from the external tissue/nutrientmedium interface toward the central core. Transient boundary layer predictions are compared in the presence and absence of harmonic stress excitation for viscoelastic biomaterials at large and small Deborah numbers. Thinner nutrient mass transfer boundary layers are stabilized at shorter dimensionless diffusion times when the stress-free intratissue Damköhler number increases above its critical value that depends on initial Biophysical Chemistry: revised April 2011

Reaction-diffusion models in stress-sensitive regenerative tissue conditions and stoichiometric parameters in the stress-free consumption rate. material response time for viscoelastic biomaterials Λ A,stress-free intra-tissue stress-free Damköhler number, which represents an order-ofmagnitude estimate of the stress-free consumption rate with respect to the rate of species-specific diffusion toward the central tissue core Λ A,stress-free,critical critical value of the intra-tissue stress-free Damköhler number, above which the tissue's central core is starved of essential nutrients at steady state Λ A,stress intra-tissue stress-sensitive Damköhler number, which represents an order-ofmagnitude estimate of the stress-dependent consumption rate with respect to the rate of species-specific diffusion toward the central tissue core Λ A,stress,critical critical value of the intra-tissue stress-sensitive Damköhler number, above which it is necessary to consider the effect of harmonic stress on nutrient consumption and tissue regeneration, when the nutrient mass transfer boundary layer thickness decreases by ≈10% relative to stress-free simulations τ dimensionless independent time variable, defined in Eq. ( 8) ω frequency of harmonic, time-dependent, stress and strain ------------------------------------------------------------------------------------------

-Figure# 1

 1 Figure#1Schematic representation of porous biomaterials subjected to harmonic mechanical stimulation, with one-dimensional nutrient diffusion inward along the thinnest tissue dimension to support cell proliferation and sustainability.
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  25 and Ψ oxygen (η=1,τ=0)=1. The effect of stress on the nutrient mass transfer boundary layer increases from the stress-free uppermost curve to the lowermost curve. The critical stress-sensitive intratissue Damköhler number is approximately 5-7% of the stress-free intra-tissue Damköhler number. Parameters: ω = 2π radians/s, Θ diffusion /λ = 2π, 1000 steps in dimensionless diffusion time τ, from τ=0 to τ=1 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 13 Biophysical Chemistry: revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue

Figure# 3

 3 relative to Figure#2, and (ii) the fact that larger stress-sensitive intra-tissue Damköhler numbers in rigid biomaterials are required to reduce the thickness of the nutrient boundary layer relative to the stress-free simulation.

  25 and Ψ oxygen (η=1,τ=0)=1. The effect of stress on the nutrient mass transfer boundary layer increases from the stress-free uppermost curve to the lowermost curve. The critical stress-sensitive intra-tissue Damköhler number is approximately 20-A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 14 Biophysical Chemistry: revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue 30% of the stress-free intra-tissue Damköhler number. Parameters: ω = 2π radians/s, Θ diffusion /λ = 2π, 1000 steps in dimensionless diffusion time τ, from τ=0 to τ=0.4

  revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue η dimensionless spatial coordinate in the thinnest dimension of tissue with rectangular symmetry; Eq. (8) η critical critical value of the dimensionless spatial coordinate, below which reactants do not penetrate into the tissue's central core υ i stoichiometric coefficients for reactants (i.e., oxygen) and products (i.e., cells) ρ cells mass density of attached cells ρ nutrient intra-tissue mass density of nutrients ρ nutrient,medium mass density of nutrients on the external biomaterial surface ρ oxygen intra-tissue mass density of dissolved oxygen Ψ A dimensionless mass density of nutrients, defined in Eq. (8) Ψ cells dimensionless mass density of attached cells Ψ oxygen dimensionless mass density of dissolved oxygen σ(t,ω) harmonic tensile stress excitation σ AC amplitude of harmonic, time-dependent, stress excitation σ DC time-independent stress excitation σ ΘΘ normal tensile stress along the polar direction in spherical coordinates Θ Diffusion characteristic time constant for intra-tissue diffusion; L 2 /D A,effective,intra-tissue

  R I P T

	ACCEPTED MANUSCRIPT
	Nutrient mass density; " A =	# nutrient # nutrient,medium	
	Spatial coordinate in thinnest dimension; $ =	x L
	Dimensionless diffusion time; % =	tD A,effective,intra&tissue L 2	=	t ' Diffusion
	!			
		9	
			Biophysical Chemistry: revised April 2011
	Reaction-diffusion models in stress-sensitive regenerative tissue

  The critical stress-sensitive intra-tissue Damköhler number is proportional to the Deborah number, and corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials characterized by higher Deborah numbers. in the thinnest dimension of the tissue x critical critical value of the spatial coordinate in the thinnest dimension of rectangular tissue, below which reactants do not penetrate the central core of the tissue MTBLT time-dependent dimensionless mass transfer boundary layer thickness, measured inward from the external biomaterial surface ∇ gradient operator ε cells /ε nutrient stoichiometric ratio of the mass of cells produced per mass of nutrients consumed, ≈ 0.45 ε oxygen /ε nutrient stoichiometric ratio of the mass of oxygen consumed per mass of nutrients consumed, ≈ 1 ϕ combined variable in the von Kármán-Pohlhausen quadratic molar density profile, see Eq. (12) κ stress scalar Onsager coefficient that couples deformation to the rate of consumption; mass/{volume-time} λ(T)
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Biophysical Chemistry: revised April 2011 Reaction-diffusion models in stress-sensitive regenerative tissue number is on the order of unity, characteristic of viscoelastic relaxation. The initial rate of increase of δ MTBLT with respect to τ is infinitely fast, according to the first term due to diffusion on the right side of the ODE in Eq. ( 16) that does not depend on the rates of stress-free or stress-sensitive consumption. Analogously, only the first term on the right side of Eq. ( 9) is important at τ=0, prior to the development of the mass transfer boundary layer. Previous analytical solutions of the modified diffusion equation with simple n th -order kinetics (i.e., n=0,1,2) in biomaterials with rectangular symmetry [START_REF] Belfiore | Nutrient diffusion and simple n th -order consumption in regenerative tissue and biocatalytic sensors[END_REF] reveal that δ MTBLT ≈ 0.0346 at τ = 10 -4 when Λ A,stress-free = 4 in the absence of stress. This pseudo-initial condition is employed in Eq. ( 16).