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GusT LoADING FACTORS WITH NONLINEAR
PRESSURE TERMS

By Christian Soize'

INnTRODUCTION

A considerable number of theoretical and experimental studies have been
carried out in the last 15 yr with a view to providing an improved modeling
of the wind structure near the ground and of the effects of wind on buildings.
These studies include the development by A. G. Davenport (6,7) of an analytical
expression for the gust response factor of buildings in which the nonlinear
pressure terms are neglected.

The purpose of this paper is to develop a similar expression in which these
terms are taken into account. The main steps leading to this expression will
be presented and numerical examples will be given showing the influence of
the nonlinear terms on the magnitude of the response.

Prosiem FormuLATION AND ANALYSIS

The structure under consideration is assumed to be linearly elastic and to
have n degrees-of-freedom. Its vibrations are governed by the matrix equation:
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in which M, C and K are real and symmetric (n X n) mass, damping and
stiffness matrices, respectively, and Y and G are column (n X 1) matrices
of the node displacements and of the external forces applied to the nodes,
respectively.

The vibrations are examined in a plane parallel to the direction of the mean
wind. Each node i of the windward face may be approximatively assumed to
carry a force G,(t) acting on its tributary area S;:
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5
in which ¢, = the overall drag coefficient of the structure; p, = the air density;
m = a generic point at elevation z; U (m,1) = the longitudinal component of
the wind velocity field in a point m and at the time ¢;: § = U, 8§, with §
being the total area of the windward face, and where dm = dy dz. As noted,
for example, in Ref. 32, virtual mass effects are negligible and have therefore
not been included in Eq. 2. The longitudinal component of the wind velocity
may be written as:

Umty=Um)+Vm,t) .......... N W SR B S e e n 3)

in which U(m) = the velocity averaged over 7'; and ¥ (m,) = the longitudinal
fluctuation modeled by a Gaussian stochastic field with zero mean and stationary
in time. The U(m) law (1,5) is a function of site roughness and of a reference
average wind U,. For a given roughness and a fixed Uy, the stochastic field
V(m,t)is completely described and the expressions of its spectral density function
as well as those of its coherence functions are known (5,8,10,11,12,24).

Let o, (m) denote the variance of V(m,t). We denote:

Z(m)=U*(m) + ai(m)
Z(m,t) = V*(m,t) + 2U(m) V(m, 1) — o’ (m)

Z(m,t) is a stochastic field with zero mean and stationary in time. From Egqs.
3 and 4 there follows:
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in which

1
G.()= S 3 PeCoZ(m)dm

Sy

1
F(r) = S ?p, cp Z(m,t)dm

Sy

The solution of Egq. 1 may be written as Y = Y + X where Y is the average
response solution of K Y = G, which can be solved in a classic manner by
a deterministic static analysis, and X is the column matrix (n X 1) of the
displacement fluctuation solution of:

MX+CX+KX=F(@) ........... Sep, AR HAY SRR S )

In general, the matrix of structural damping is not numerically known and
preference is given to the introduction of a critical damping rate for every
vibration mode. The modal analysis gives a matrix solution:

t
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in which H(t — ') = ®h(r — 1) ®"; & = matrix of the vibration modes
of the-undamped system such that ®”" M @ = I h(r) = diagonal matrix of



the impulse responses h #() = 8, h,(t); and 8, = Kronecker symbol A () =
€™ /w,V1 — £ sin (V1 —&] w1), in which w, is such that [®7 K &) =
8, v; and &, < 1 the critical damping rate of the jth vibration mcde.

A scalar observation D(t) in the structure can be a displacement, or a force,
or a stress, etc. In view of the linear behavior of the structure, a column
matrix Q of (n X 1) dimension exists such that: D) = QT Y(r). D(t) can
be written as:

DEY=D+d(ty i .« ::..: I I T B )
in which
D=0Q"Y; d=0Q"XUEY . . .o vvcevs vss st s nn (10)

The fluctuation d{r) can be written as:

L

d(:)=Q’"E e g T (1n

The derivative d(r) of d(¢) at time ¢ can be written in Eq. 11 in substituting
H by H such that H(x) = d H(u)/du. ;

The calculation of the mean of the extreme values over the time T of d(r)
requires the joint probability density function f, (x, ») to be known at the time
t of the random variables d, and d,. Now the vectorial stochastic process F(¢)
is not Gaussian, because the transformation that allows to pass from V(m,t)
to F(r) is nonlinear. Therefore, d(t) and d(t) are non-Gaussian stationary
stochastic processes with zero mean. The random variables d, and d, are not
statistically independent (contrary to the Gavssian case). Nevertheless, the
calculation of f,(x,y ) can be made by calculating its Fourier transform.

Fourier TRaNsFORM oF f,

The theoretical developments given in Ref. 26 permit the calculation, with
no simplification of the Fourier transform f, of f,. An analytical expression
of f,(u,v) is obtained in this manner. The joint probability density function
f>of d,and d, can therefore be calculated by simple inverse Fourier iransformation.
The analytical expression of f, includes operators that are defined over functional
spaces. For a numerical calculation of f; , it is necessary to project these operators -
on subspaces of finite dimensions (see Ref. 28).

From a numerical point of view, the value of d(s) and d(f) at the time ¢
is not a function of the whole time history, because the dynamic behavior
of the structure forms a filter. This results in the possibility of calculating
/> at any fixed time ¢ and reducing the time integration interval (—oo,7) of Eq.
11 to a finite interval (0, T,). The joint probability density function f, that is
sought then becomes the joint probability density function of the non-Gaussian
and nonstatistically independent random variables dy = d(t = T) and d,,
= d(t = T,). The present study only gives the results that will be used for
further developments in this paper. The results obtained are given in Appendix
E
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Let £ be a level of d(¢). By taking into account the stationary state of d(r),
the mean of the number of upcrossing of the level £ by the trajectory of the
d(t) process in time (0, T) can be written as follows (see Ref. 4):

+@
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In calculating the gust loading factor “g,”” we proceed to the same type of
analysis as that used by Davenport (6,7) for the linear case. It is nevertheless
assumed that in the nonlinear case, the distribution function F,,,, of the positive
extreme values of () during the time T is always written:

Frp(£) =Prob(d=<g)=exp [-&NZE)] ... ... ey e e (13)

which supposes that the threshold crossings at positive extreme values are
independent events.
The mean of the positive extreme values over T may then be written:

4o = S L R R S . (19

0

An analytical calculation of the Eq. 14 cannot be carried out by using Egs.
42 and 13, but a numerical calculation is quite possible. However, we want
to obtain an analytical expression of “‘g”* for the nonlinear case and to this
end, the Edgeworth’s series (3,14) are used, which consist in developing f,
in the form of a series comprising the normal law and its derivatives. In practice,
for the wind loaded elastic structures we may stop the development at the
4th order. This makes it possible to find corrective factors of the gust factor
by means of the linear theory.,

Let a(m) be the normal probability density function with zero mean and
unit variance. The derivatives of a(n) with regard to m can now be written
d®a(n)/dn” = (—1)" H,(m) a(n), in which H ,(n) are the Hermite polynomials
(see Appendix II). The value M, designates the moments of the random variables
d, and d,, whose definition is given by:

M= @UATHEY w5505 0% s amameme s (15)
Because the two random variables d r, and dr. have a zero mean, one has:
Moy =My S0 s v v 58 BB S e o te m o . e (16)

As a consequence, M, and M, are the variances of d r, and &rl , respectively.
On the other hand, because the d(¢) process is stationary, &{(d” () is a time
independent constant; in differentiating with regard to the time, one obtains
&d”~'(t) d(1)) = 0, which leads for p = 1, 2 and 3 to:

My=My=Mym0 .....0000iuiviinmensivnnnnnn, (17

Let f(m, {) be the joint probability density function of the normalized random
- variables dpy =d, My and dy = d, - M3

Fabal) = M M VM E MY v v (18)



The cumulants k, of the normalized variables d, and d, are functions of the
M,, moments. By taking into account Eqs. 16 and 17, it shown (28) that the
cumulants until the 4th order are such that:

Epsky=ky=kn=83=0 o.v v usmwiwewos sawensass (19)
kao=MsoM:.|htr”2; ku:Mle;o”zMo:; kw=M40M;uz =%
k=M M Mg ' — 1; koy=Mg,Mz? =3 ..o i i (20)

However, ky, k. ko3, and k5 are nonzero, their values need not be determined.
The 4th order development of f,, can now be written:

ko k kas
Sa(, §) = a(m) Ot(l)[l + ?Hs(‘ﬂ) * fﬂz(‘l)ﬂz(lﬁ) o THa(C)

24 6 4

By taking into account Eqs. 18 and 21, after having carried out all the calculations,
it becomes possible to write Eq. 12 in the following form:

k4o ky, K koq
+_H4("l)+—H|(TI)H3(§)+_H2(ﬂ)Hz(§)+;H4(C) cee 2D

4
F(NH(E) = ,\(x)(l + 2 a, x") ...................... (22)
=0
in which
el e T L T YY (23)
1
ag = ; Bho—06ky —ky); ay=—(kp—ky) ar=—(kn—ky)
1
a; = 'gkm, ay,= kqo .......................... (24)
1 M2
p= S T L TR R S A (25)
x2
AMx)=v Texp (-- -5-) ........................... (26)

Note that Eqs. 25 and 26 are similar to the expressions which have been
obtained for the linear case, but that v let the moments M, and M,,, which
result from the nonlinear calculation. On the other hand, the Eq. 22 exhibits
a correction factor with respect to the linear calculation: by using the fact
that (log A)(log vT) "' is small with regard to 1, in a similar way to the linear
case, the Eq. 26 may be written:

s log A

x=\’ZIogvT(l—- = ) ....................... 27)
2logvT

Eqgs. 13, 22, 23 and 27 lead to:

FonE)=exp{-X(1+d,—d,logh)}. .. ..... .. . c..v.... (28)




in which
4 4
b= a,(V2logvTY; ¢,= > ja,(V2logy Ty ;
4=0 1=1
b, = s (29)
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By taking into account Eqgs. 23, 27 and 28, the mean value of the positive
extreme values over T given by Eq. 14 is now written:

. 1
o =M,'_6'2{(l +d —d,)V ZIogvTIN___\/ETg_v";(I +d,— &,

b,
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42 +V210gvT } 60

b

in which IN = S exp {—A(l + ¢, — b, logA)} dr

o

b
JN=S (logA)exp {—X\(1 +¢, —d,logA)}dr L ........... (E2))
1]

b

KN = S (log X)* exp {=A (1 + &, — b, logh)) dr

0
and where the upper bound 5 is a large positive number such that:
o SR R R (32)

in which € being a very small positive number (note thas in the linear case
b = vT). The Egs. 31 leads to the following relationships:

A+, = &) IN =1 + &, N }

......... 33
(1 + 61~ 62N = —y ~ log (1 + $,) + b, KN + b, LN W
in which vy = 0.577 is Euler’s constant and
b +om
LN = S (S ™ dr)(l +IEXY PG e wiws s s (34)
0 Al+dy)
By replacing Eq. 33 in Eq. 30, the following expression is obtained:
i — =  Y+log(l +4¢,) b, LN
o =M |V 210gv T + —— . 35
n [ g V2logy T V2logy T =

On the other hand, it is shown (28) that:
¢, LN

V2logyT

in which

< Res
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z[m] }exp[ lelger) 0T T Thrrees (36)

and e = exp (1). Mumerical calculations show that the preceding term is negligible
with respect to the others. AS a consequence, Eq. 35 can be written as follows:

. e T+~:+log(l+¢.) a7
A . = v N . s s E e b e e G e e
d =g MI: & 2log /2 logs T

It is seen that the gust loading factor which has thus been found differs
from the linear case by (2 108 vT)™"/* log (I + é,), where ¢, depends on
a,(2 log vT)Y"* for j € (0,4), ard where the a, and v values are functions
of the moments M,,, My, Mi2s Mo, My, Mo, M,, which have been obtained
by a nonlinear calculation. Expressions for the quantities M,, are given in

Appendix I.

NumERICAL APPLICATIONS

The writer has developed @ computer program that permits the calculation
of f;, the varicus M, moments and g. The functions that have been used for
describing Uand ¥V arc given in the Appendix II. Concerning the present example,
many numerical tests have been carried out to check the convergence of the
calculated quantities.

This example is a parametric study of the influence of nonlinearity in the
presence of resonant amplification effects. The structure has deliberately been
chosen as a simple one, and repfesents a water tower with an area normal
to the alongwind direction of 20 ra’ (Fig. 1). The drag coefficient is assumed
to be ¢, = 1. The parametric study consists of varying the following parameters:
the height /, of the tower, the fundamental frequency s, of the first bending
mede, the rate £, of the critical damping of this mode, the average reference
velocity [/, as well as the terran roughness whose characteristics are the
parameter « of the power law of the mean wind velocity, and the standard
deviation of the fluctuation of V at the reference level, o,,,. The parameter
values of the seven cases which have been studied are summarized in the Table
1; all the results are given in S.1. units.

The d(t) observation under study represents the horizontal displacement of
the point m; at the top of the cantilever beam. We have taken T = 3,600
sec. Considering that the surface § is sufficiently small, it has been assumed
ne = 1. For each of the seven cases under study, numerical tests have been
carried out in order to determine the values of T, and n,, , the results of which
are summarized in the Table 2.

Table 2 contains the following data: (1) The moments M, as defined by
Eq. 15 and calculated by Ed. 44; (2) the cumulants k,, are calculated by Eq.
20; (3) the value a, is calculated by Eq. 24; (4) the value o = M3*; (5) the
value o, is caiculated by using linear theory; (6) the values ¢, and ¢, are
calculated by Eq. 29; (7) the value g the gust factor is calculated by Eq. 37;
(8) the value g, the gust factor 1s calculated by using linear theory, which



is such that g, = V' 2logv, T + 0.577(2 log v, T) ~"/% (%) Res, the constant
is calculated by Eq. 36; and (8) the values ¢, ¢,, €,, and €,,, the relative
errors in percentage arising beiween the results obtained with the linear theory
and the present nonlinear theory and pertaining respectively to the standard
deviation of the observation process, the standard deviation ofits derived process,

TABLE 1.—Parameter Values

Case® 1 2 3 Case® 4 5 6 7
(1) (2) (3) (4) (5) (6) (7 (8) (9)
Uso(m/s) 8. [13. |13 |Uem/e) 28 [28 [13. |1
Ty(m/s) 4.6 5.8 5.8 |oy,(m/s) 4.6 4.6 5.8 5.8
Io=0y,/Up| 0.148] 0.350| 0.350 | I, =0 /U, | 0.120] 0.120] 0.215| 0.215
a 0.15 0.35 035 |a 0.15 Jd.15 0.35 | 0.35
ép 0.05 0.03 0.05 |&, 0.03 0.05 0.03 | 0.05

*h, = 20. m; § = 20 m*; ¢, = 1.; constant stiffness = 85300. N/m; concentrated
mass at the point m = 2161. kg; and n, = 1. Hz.

“h, = 80. m; § = 20 m?; ¢, = 1.; constant stiffness = 85300. N/m; concentrated
mass at the point m ¢ = 13500. kg; and n, = 0.4 Hz.

w1

T e 45 a7
FIG. 1.—Geometry of Water Tower

the v, the gust factor g, and d,,, = go over the ovservation time T = 3,600
sec.
An examination of Table 2 allows to draw the following conclusions:

1. The error in the calculation of g tends to increase as (a) n, increases
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or the height, h,, decreases; and (b) the terrain roughness increases. The
dependence of this error upon damping is seen to be quite weak.

2. The comparison between the cases 1 and 6 for instance shows that e,
is of the same order in the two cases even though the respective turbulence
intensities differ significantly. As a consequence, ¢, would have to be greater
for the case 6 than for Case 1. This means that €, tends to increase as n,
increases.

ConcLusions

An investigation has been presented into the effects of the nonlinear pressure
terms, which are neglected in current procedures for calculating alongwind
response, upon the magnitude of that response. The analytical procedure used
in the investigation has been briefly summarized. The numerical example
presented shows that for structures in the range of approx 40 m-100 m height,
the errors in the calculation of the fluctuating part of the response is of the
order of 10%-25% if the nonlinear terms are ignored. These errors tend to
decrease as the terrain roughness decreases, and as the height of the structure
increases. The influence of the nonlinear terms is thus particularly significant
for structures with heights of the order of 50 m in urban terrain, subjected
to moderate winds such as occur during full-scale response measurements. The
results obtained suggest therefore that in interpreting measurements of wind-in-
duced response and, in particular, measurements of wind-induced accelerations,
the effect of the nonlinear pressure terms should be taken into account.
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Genera.lly, only the fundamental vibration mode will be taken into consideration
however higher modes can also be assumed without any additional difficult '
Let h 1(r) be the impulse response of the fundamental mode and @' the co!um);;
matrix (n X 1) of the associated normal mode.

In.the ]flst part of this appendix, the indices i, J» P, q, will be taken into
consideration as an index change such that the index p should correspond to
any couple (i,/) of indices and the index k to any couple (p, q) of indices

Every previously defined S, is partitioned in n ; parts. Let be s, one ‘of the

h par ts Of S center ed at ﬂ]e omnt m,, = m End n ]1 8] f
J J1 p L 4 t
i P 5 e t tal nllmbcl QO SU

ny "
S=Us,=Uy s,j=»l_fl s, -

The time interval [0,T] is iti i i
% 4 partitioned in n,. intervals of Ar i
the gth has the origin ¢ 4 i it



The k index associated with (p,q) varies from one to n, = ng x ny . The
polar coordinates (r,8) are used. Therefore f,(u,v) = f,(r cos 0,r sin 8) which
for simplifying purposes will be noted as f;(r,0). The following quantities have
to be defined:

1. The covariance matrix C of (n, X n,) dimension of the stochastic field
V(m,1) is such that: C . = E{Vim,,1,) V(m,.,t,.)} = R, (m,, m,., t,—t,)
in which &indicates the mathematical expectation and R, (m,m’,1) the cross-
correlation function of the gaussian, stationary ¥ (m, t) process, with zero mean.
The C matrix is symmetric, rcal, defined and positive. The Chowlesky’s
decomposition allows to write C = L L” with L being a real, triangular (n
X 7 ,) matrix.

2. The scalars w, and w, are such that:

l n
W, = ?pa(Al)(E Q,d:,') OB — L YIS, & v v 5 mnivn s (38)

in which @) = ®); w, is obtained by replacing h, by A, in the expression
of w,.

3. The column matrices A, B, E(8), D(8) of (n, x 1) dimension, as well
as the square matrices W, W, N(8) of (n, X n,) dimension are such that:

A= ZU(mp); B, = _Uzi’(mp); W =84 W, Wkk' = By Wy
&(9), = (cos 8) w, + (sin 8) w,; D(B) = L7 (cos 8 W + sin 8 W) A;
N@O®)=2L"(cos@W+sin8 W)L . .. ... ................ 39)

in which 8,,. is the Kronecker symbol.
The Fourier transform f; is then written for any r € (0, +x), 8 € (0,2m)

Sa(r,8) = {det [U+irN(@®)]) "exp {—ir ET®)B

1
= r'DT@) I+ irNE)] n(e)} ...................... (40)

in which i indicates the pure imaginary complex number, and where I is the
unit matrix of {(n . X n,) dimension (see Ref. 28).

The N(6) matrix is a real symmetrical matrix. An orthogonal matrix W(0)
exists therefore such that W7 (8) W (8) = W(6) W"(0) = I and W(8) N(8) ¥(6)
= {}(0), where {2(8) is a diagonal matrix whose diagonal elements, noted £, (0),
are the eigenvalues of N(). We define as follows:

- 0,0 "(6)B
Bi(r®) = = — > Arctg (70, (9) ~ rE"(9)

k=1

1
+ By P DTO)WO)[I+ > 02(0)] ' W7(6) N(6) D(0);

B,(r, 0) = ﬂ([ + r2 i) ',



l‘ \
B,(r,0) = + 3 DT(0) W(O)[I + > *(8)] ~' w7 (o) D& ......... (41)
and as a consequence f, is defined by the following expression: (see Ref. 28)

2 +oc w
VS L R e S S 7B2(r,0) cos [B,(r,6)
2m) 0

0
+ r(x cos 8 + y sin 8)] exp [-Bs(r0) drde . ......... ... . _ . (42)

Carcuiamion of M, Moments

It is possible to proceed to an analytical calculation of M,, (Ref. 25), but
the calculation of the other moments soon becomes extremely difficult. We
shall therefore use the Fourier transform J> which can be written in polar
coordinate:

fz(’)9)= S

“+e

X grireivna g ey)dedy ... ... ... .. ... (43)

By successive derivations of Eq. 43 and by proceeding from expression Eq.
40, it may be shown that:

B ('rr
M, = q(0); Mo|=Q'(;)i My =X, (0) Mﬁl=xl\_2_); My, = X,(0);

T 1 Vv 2 ™
My, =X, (0) My =X, '2— H M11=“?M30+__3'— X, T

(9 wam g (5(5) () - Lo
T g 4 ’ 22—3 3 4 + A, T _"6_(M4o+ 04) (44)

in which: X, (0) = ¢*(0) + 2(8); X,(0) = a’°(8) + 3¢(8) 2(8) + 3s(0);
X1(8) = g"(6) + 6¢°(8) z(8) + 124(0) s0) +3z°0) + 12¢(0) . ... ... (45)
and:

1 1
q(8) = rY Tr [Q©)] + ET(6) B; z(0) = D" (0) D(8) + ] Tr [Q2®)];
1
5(8) = D" (8) N(8) D(0) + = Tr [2°(0)];

1
£(6) = D" (8) N*(8) D(6) + Y TR o oo o s a5 g 5 (46)

where Tr [-] designates the trace of the matrix [-]. The accuracy of the numerical
calculations of the moments M  With regard to some possible analytical calcula-
tions depends on: (1) The width of (0,T,); and (2) the partition fineness of
the §, and of (0, T}), i.e., values of ngandn.,. .

To estimate the obtained accuracy, one must check that 1/2 7r [R(0)] +



E"(0) B and 1/2 Tr [(n/2)] + E"(n/2) B are near to zero and that D7 (0)
D(0) is near to the variance of linearly calculated variance d(t). Then, the
calculated M, moments are near to the actual values which could possibly have
been obtained by an analytical calculation.

Arpenpix Il

Hermite Polynomials.—The hermite polynomials are Hy(x) = 1; H(x) = x°
=3x; H(x(=x; Hy(x) = x* — 6x* + 3; and H,(x) = x* — L.

Wind Functions used in Numerical Calculations.—It is the writers intention
to adopt simple assumptions of functions which describe the wind structure
in order to simplify the numerical calculations. This should not change the
type of results U(m) = U,, (z/10)* in which z = the height of the point m
expressed in meters

o ,(m) =o,,, = constant

By taking into account the small dimension of the windward surface in the

= \
} 0.6 \
= N
2 04
= \‘\

02

[ ——
I 5 ool @™ B’ W % 0

Value of T, in seconds

FIG. 2.-—Correlation Function of ¥

numerical example as well as 2 simplifying measure, it has been put:
Ry (m,m' )= Uzvm py(T)

where p,(7) is the function defined by Fig. 2.
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