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PROBABILISTIC STRUCTURAL
MODELING IN LINEAR DYNAMIC ANALYSIS
OF COMPLEX MECHANICAL SYSTEMS
II. NUMERICAL ANALYSIS AND APPLICATIONS

by

F. CHABAS , A. DESANTI and C. SOIZE

ABSTRACT

This paper concerns the numerical developments of a probabilistic modeling of
structural fuzzy in complex mechanical systems, the theoretical foundations of which
are laid down in the first part of the paper.

We present further numerical analysis needed to implant the method in a finite
element solver, along with certain elements identifying the behavioral law of structural
fuzzy we have built.

We present a numerical simulation of the method on standard structures (beam-
plate-shell). We show that the first-order approximation of the random solution is
sufficient for dispersion parameters of the fuzzy up to at least 50%, which illustrates
the advantage of the method from a practical point of view.



I. — INTRODUCTION

In the first part of this paper we laid down the
theoretical foundations of the probabilistic modeling
of structural fuzzy in complex structures. We recall
from that discussion that, in the linear dynamic analy-
sis of complex systems, the theory proposed provides
a way of expressing elements or parts of the structure
that contribute effectively to the system dynamics
but which are either inaccessible or nearly so by
conventional finite element modeling. The method
consists of introducing these elements globally in the
form of a probabilistic surface impedance constructed
from a probabilistic law of fuzzy behavior, under
which conditions the state variables of the system are
modeled by random variables and we thus have to
solve a linear equation with random operators.

In this second section of our paper we present
additional developments and elements for validating
the proposed theory numerically. After a brief
review of a method for analyzing structures in the
medium-frequency domain, we explain the application
of this method to the solution of the linear vibration
equation of a master structure with its fuzzy.

We then go into a numerical parametric analysis
of the fuzzy constitutive equation itself, to identify
roughly the fuzzy class it defines.

Finally, in the third section, the theory is validated
directly on standard beam, plate and shell structures
using a numerical simulation which establishes a
domain of validity for the method along with the
conditions under which it can be applied in practice.

This second part of our paper will use everywhere
the same notation and certain relations as in the first
part, but without explaining them again to avoid
repetition.

II. — FURTHER ELEMENTS
IN THE DEVELOPMENT

II.1. — REVIEW OF A METHOD OF ANALYSIS
IN THE MEDIUM FREQUENCY DOMAIN

Let us consider the following linear equation over
C" in the Fourier space:

(—w? M (0)+in%(n)

+K@)U(@=F@), oz0 (1)
where, for any =0, /(o) %(w) and
K(w)eMat(N,N) are real definite, positive Nx N
matrices, where t— F(t)=(F,(t),...,Ey(t)) [resp.
t=U@)=(U,(t),...,Uy(2))] is a function defined

over R, with values in C¥, having a Fourier transform
denoted mHF(m)—(F (@), ..., Fy(w). [resp.
o~ U(e)=(U, (©),...,U x (@) ] defmed over R with
values in C”

The function U represents the mechanical variables,
for example the displacements, and F is given and
corresponds for example to the forces. We further
assume that the applications @— # (©), €(®) and
K(w) are piecewise continuous over R* =[0, + o).

According to these hypotheses, if FeHy(R,C")
with B being a bounded ramdom closed interval of
R then Ue Hy(R, CV) (see Part I).

IL,1. 1. — Band of analysis and MF band
Let B,,=[:Q,,— A2 0 + "'\2‘”} be a bounded closed
interval of R* with a central frequency Q,>0, of

bandwidth Aw>0 such that Q, — Az_co >0. We denote

the open interval associated with B, as B,.
A narrow MF band is an interval B, such that
Aw/Q,<1. The centered LF band associated with B,

will be denoted B, —[— %a—), A_zcu‘:|

Let B=[w;; o] (0<w,<w;) be a closed bounded
interval of R*. This interval, a priori of random
width, will be called the band of analysis.

In the MF method, this band is partitioned into a
finite number Ny of narrow disjunct MF bands

Np
(B= U B,,) and the MF analysis is carried out on
n=1
each B, separately. We will further assume that the
partitioning is done in such a way that the applica-
tions © - .# (w), ®+— % (o) and ©— K(o) are conti-
nuous over each B, and are thus also bounded in
consideration of the hypothesis of section II,1 above.
Consequently, for the MF algorithm, the solution
of (1) for FeHy(R,C") comes down to solving Ng
independent equations of the type:

(—0* H# (@)+i0E(0)+K(@) U, (©)=F,©). )
with F,eHp (R,C") and U, (0)=U(0)1, (o),

where o1, (m) is the function indicating the inter-
val B,.

I,1.2. — Approximate solution over B,

Let w—A (») be a continuous, bounded applica-
tion of B, in Mat (N, N). We can then define the
mean matrix A, over B, such that

1
A,= ZO—)J;HA(m)dm. (3)

Denoting the mean matrices over B, associated with
Al (), € (o) and K (o) (which exist, considering the



hypothesis) as .#,, €, and K,, we define the approxi-
mate solution U,(w) of equation (2) relative to the
band B,, which is such that for Fe H, (R, C"):

(-0 M, +i0%,+K) U, (@=F,(0). (4

We can easily check that, as Aw — 0, U,(®) tends
toward the true solution ﬁm(m) for the norm of
L*(R, C¥. It is nonetheless clear that the approxi-
mation is of interest in practice only if the conver-
gence does not require us to take Aw too small. This
problem is addressed in [78] and we will not come
back to it.

II,1.3. — Expression of the approximate solution over
B

n

The MF algorithm method consists of introducing
two time scales, one short time scale 1, associated
with the central frequency of the band and one long

time scale T, associated with the bandwidth B,. We

thus associate with the functions t~— F,(tf) and
t—U, (1) of Hy (R, C") the functions ¢+ Fy(r) and
t+— U,y (1) defined by:

Fo(t)=F,(1)e” "™ (3)
Up ()=U, (1) ™" (6)

Trivially we can verify that Fy, Ug, U,, U, (where
U designates the derivative of U with respect to t)
are in Hy (R, CY). Applying the sampling theorem
and by Fourier transform we then get the expression
for the approximate solution U, and its derivatives:

Ci‘n (fﬂ) = an (m) T Z UO (m TI) e—im:; (0—Qy,) (7)

mel

U, (@)=15 @7 T (Uomz)

melZ

+iQ, Uy (mt))e mue ) (8)

U, @) =15, @7 T (Uolmz)
melZ

+2iQ,Uy(m1)
—Q2Uy(m1))e” @™ (9)

2n " . i
where 1,= E—’ the series being convergent In
®

L%(R,C").

These relations show that the solution U, will be
entirely determined once we know U, Uy, U, at times
mt, mel.

Note: We can observe that the algebraic treatment
of the high-order frequency components of the F,
and U, signals [relations (5) and (6)] introduce no
approximation in the method, the only errors of a
numerical order being related to the computation of
the LF solution U,

IL,1.4. — Computation of the Low Frequency Solution
Uo

Let us consider the time equation associated with
(4) that is written

MU, (1) +€,U, (1) +K,U,(0)=F, (). (10)

Substituting (5) and (6) in (10), we verify that U, is
the solution of

M, Uy +C,Uq (1) + K, Ug () =F, (1) (11)
with

C,=%,+2iQ, H, (12)
K,=K,+iQ,%,—Q> 4, (13)

Since supp U,=supp F, =[__A7m; A2m:|, (11) is an
equation in the low frequency domain and can be
solved by any unconditional stable implicit numerical
integration method. We chose a modified Newmark
scheme [78].

Also, as Foe Hy (R, C"),¥&,>0, 3m, e Z such that

f "™ By @[3 de <o (14)

20

Similarly, Uy,€Hg, (R, C"), thus Ve, >0, 3m,eZ
such that

f | Up ()| 3 dr <&, (15)

my T

Then, taking the initial conditions U, (1) = Uy (£)=0
for t=<m,1t, the numerical integration is carried out
between times m, 7, and m, 1. Of course under these
conditions, the summations in relations (7) to (9) must

my

be replaced by ) .

m=mg

IL2. — COMPUTATION OF THE RANDOM
SOLUTION OVER B,

The equation of the vibrations over B, of the master
structure with its fuzzy, discretized with N degrees of
freedom, is written

(Z (@) +Ze (0, L) U, (@) =F,(©)  (16)

where Z; is a deterministic impedance, Z, is a ran-
dom impedance defined over (=7, 7, #) with values
Mat (N, N), centered, and where F,e Hy (R, C").

We have shown in part one that under certain
hypotheses, which we will assume to be verified here,



the solution U, of (16) is written 2 almost surely (or
“a.s.”) for do almost all ® in B,;

ﬂ‘a (0)= [jm) (0)

L

+Z{Z -iXuX

=1 k=1

x&wﬂMm@(m

where U and U, _(keN*) belong to Hy (R, C")
and where the X, terms are random variables defined
over (of, F, #), with real values, generally indepen-
dent, havmg a uniform probability with support
[=._ /3, \/5]. They are thus centered and have a
variance of unity.

IL,2. 1. — Computation of the mean solution

According to section I, U is such that:

(_032 ‘/{(n'%'im%n'i_Kn) mO) (0))=ﬁ”(ﬁ)), }
(18)
F,eH, (R, CY).

Considering the hypotheses, (18) is analogous to
the standard MF equation (4) and all of the results
in section II,1, can be applied directly in computing
0o,

I1,2.2. — Computation of the random fluctuation terms

According to part I, the U terms are given by
the following recurrence:

(-0 M,+i0%6,+K) U, (@)=0) (@) (19)

where

Q11 Jk.,,(m)= —(—o? Rik n
+iol, JUETH | (@), (20)
Q... z,",,EHB,,(Rs CN)-

Here again, equation (19) is of the same form as
(4) and the MF method can be applied.

Let U,1 I, and Q@ .  be the low frequency of
the UX and Qe 51gnaIs defined by:

ly.dg, n
Ugl)...:k.,,u(t)=UE; Jkl,,(t)eiln": (21)
Q'ln-lk.no(t)=Qll Ikl,,(t)e_innt' (22)

Supposing the solution is known at the (k — 1) order
of the recurrence, ie in fact the

k=1
UL, (mt),meZ, we have to compute Bl o

from (20) to solve the low frequency equation at order
k:
"ﬂn Ug:] Iy no (t) + Cn U?;) i*-ao (t)

+K, U, 0=0y 4, 0. @3)

A simple calculation gives:

Q[luu.‘k.ﬂo(r) S ™ Z U(k_ A, ng (mtl)
melZ
x (=R +iLD (1) (24)
where
R (=R, [ .()+2Q, £, )+ F. ()] (29)
P =1, [Fn®)+Q,5,0)] (26)
with i
_,sin(t—m1) (Aw/2) r
iy o oemal o
S (1) =Ao> 5
1 Aw
fm([)—m{ACDCOS[(IHmTJT] 2
28
—Jf,,,(t)} if t#Fmr i
jm (m T[=0
1
x"'(t)_i(t—mr[)
I Aw
X {EACD 51n[(r—m 1;)7]
(29)

—2fm(f)} if t#my

2/ Ao \?
XAmm=§(f).

The k order solution U ., Of the recurrence is
then given by the relation (7) to (9).

Note: Relation (24) uses only the values of

[3’{’;’},(’ ,, At the sampling points and not those of its
derivatives. This is to minimize the numerical errors

due to the integration scheme.

II,3. — OBSERVATIONS OF THE MECHANI-
CAL SYSTEM

IL3. 1. — Frequency response functions
The displacement frequency response of function
Ti(w) is the random variable defined over (&, 7,
#) with values in Mat (N,N) such that, for
F,eH, (R, CY:
U, (@)=Ti(@)F, () (30)

where f),, is the solution of (16) constructed in II,2.



Letje{1,2, ..., N} be a fixed degree of freedom
of the structure and F/ be the application of
Hy (R, C") such that

[Fi(0)),=0 si k#j

' 1 . tAo |, 31
[F3 (1)]; = — sin ——— ¢it (31)
nt 2
Fi is then such that [F}(@)];=15, ().
Let Uje Hy (R, CY) be such that:
Ul (0)=Ti () Fj (). (32)

The relations (17) and (32) show that the displace-
ment crossed frequency response function relative to
the degree of freedom g is written #-a.s. for dw-al-
most all ® in B,

[T ()], =104 © )],
L L
+z{z LT X%
=1 k=1

xxl,‘m{;s'fu,‘_"(wnq} (33)

where U@ and UJ ® . (keN*) are constructed
as in section IL2. by settlng F =F/ in (16).

The direct frequency response functlons are found
for g=j in (33).

We can also define the velocity and acceleration
frequency response functions, written respectively
(# a.s. for dw-almost all o in B,):

[T @), =102 ©)],
L

+z{z T Xix

I1=1 k=1
X, [U£©, (), } R
[T2 ()], =[0 © @),

+Z{ZL .iX,lx

ly=1 =1

x X’lk [UJ N Ain (m)}q } (35)

I1,3.2. — Boundary condition impedances

Let j,, jy ..., J; be the I degrees of freedom
selected with Yie{1,2, ..., I}, jie{L,2, ..., N}
Then I= N (and even, most often, I < N).

For any j, ie{1,2, ..., N} we consider the excit-
ation Fli of Hy (R, CY) defined by (31) for j=j,
Following the method explained in section II,3. 1, we
compute for each fixed J, the random response
Uli(w) defined over (o, 7 #) that is due to the
excitation Fi and we get from this, for all

ke{l,2, ..., 1}, the direct and crossed replacement
frequency response functions that are written, accord-
ing to (34):

[ (0));,= [ﬁi' el ()];,

EE o f

k=1 Ll=1 =1

x X, [Uf- o "(m)]jk}. (36)

Considering all of the excitations Fii as i describes
{1,2, ..., 1}, we thereby construct a random IxI
matrix 8, (©), defined over (¢, 7, %), that is complex
symmetrical and such that, for any i and any k in
$H 20 o vy T

[6, (m)]k,- = [Ti ((D)]j;,j;' (37)

Considering (36), the random matrix 6, (®) is writ-
ten:

8, (@) =6 (0)+8, () (38)
with
+ o L L
mw—z{z LY X
k=1 =1 =1

x X, Bﬁﬁ'?..lk,,n(m)} (39)

where 8 (w) and 6{’ .. (o) (for all k" in N and
ell the multi-indices ! . 1) are deterministic, com-
plex, symmetrical I xI matriccs such that, for any i
andany kin {1,2, ..., I}

(6 (@)}, =[T @ ()], (40)
[9{’; il e ,,(m)]kl_[U"‘ (kt)k , (@), (41)

Let us also suppose that all of the degrees of free-
dom j,, j, ..., Jj; selected are free. Then for any ©
in B,, 0 (@)~ " exists and there exists a A,>0 such
that, for Sup, ., [|»(®)| . < Xp 6,(@)"", 2 almost
surely exists.

Under these conditions, the I x I random boundary
condition impedance matrix defined over (&, 7, 2)
relative to the degrees of freedom j,, j, .. ., j; is writ-
ten:

0, (@)=6,(w)™". (42)

We also have the following result:

The boundary condition impedance matrix relative
to the degrees of freedom j,, j, ..., j; is written 2
a.s. for dw-almost all @ in B,

0, ()=6," (o)

+ Y (=D (@) B, (@ 6 (@)™ (43)
k=1



where 8 (w) and 8, () are given by (38), (39) and
(40), the series being # a. s. convergent.

The proof involves the same process as the con-
struction of the random solution established in
section 1, and will not be explained here. '

11,3.3. — Second order characteristics of the mechani-
cal observations associated with a first order expansion
of the random solution

In this section we discuss the case where the random
solution U, is expanded to the first order, which is
the only case where the second order characteristics
of the observations can be obtained reasonably in
algebraic form.

According to (17) the first order expansion of 0,
is written:

L
U,(@=0,+ ) X,U() (44)

=1

where we let U (@) =U, ().
Under these conditions, relations (33) to (35)
become, with obvious notation:

L
[T (@), =0} @), + T X[Ui@], (49
I=1
A L A
[T2(),=[Vi@),+ ¥ X[Ui@), (46
=1

A L A
[T2 ()], =0} @)+ ¥ X i), (@7
=1

and relation (43) is written:

0,(©)=8,(®

L
+ Y —er_).,(m)“9:(03)(_3,.((0)*1 (48)
=1

with, for any iand kin {1, 2, .. ., I}:
[6, @), =10} (@)l
and (49)
8, (@), = [Uf (@),
As relations (44) to (48) are all of the same form,

we introduce the random variable Y (w) with values
in C such that:

L
Y=Y @+ ¥ X (50)

I=1
where Y and y,(I=1, 2, ..., L) arein Hg (R, C) and
where the X;(I=1, 2, ..., L) are uniform orthonor-

med random variables in L?(#/, R) (see section I).

The following are the second order characteristics
[mean (&) and variance (c?)] of the quantities related
to Y (w). The computations are simple but sometimes
fastidious and are not reproduced here.

Real part

& {Re(Y ()} =Re(¥ (o)) (51)
L

okegey= L RE(Y, (@)™ (52)
1=1

Imaginary part
&{Im(¥ (@)} =Im{ ¥ (o) } (53)

L
Glzm F @)= 121 [Im( ?l ((9))]2 (54)

Square of the modulus

%
(Y@ )=Y@]*+ X |V, (@)]*> (59
1=1
- -~ A
25w 2=4 Y, [RE(Y (o) Y, (@)
=1

w |y

Z, iﬂ(m)r

+25 T [Ré(T,(@) V(@) (56)

I=1 I'=1

Energy in a sub-band B (B, < B,)

This is the random variable defined by:

1 -
Egi=— b if 2 do.
A MACCIE o7

we have

5(533)=ﬁ{j.|f’(03)|2
B,

L
do+ ¥ J“lfﬂ(mﬂzdm} (58)

1=1JB},

1 1
Oy = 47?{4 Y H Ré(¥ (@) }ﬂ(m))a‘tm]2
5

1=1
L 2
y (.[ |f’,(m)|2da})
1=1\JB}

@Y % U_Ré(mmﬁ,.(m))dm]’}. (59)
B

=1 I'=1

2
5

We recall that if B=B,, the Plancherel theorem
yields the following, since supp Y =B,

Ej, = j | Y (@) dr. (60)
R



Note 1. We cannot obtain the exact algebraic
expression for the second-order characteristics of the
modulus and of the phase. We could approximate
by computing a Taylor expansion of these random
variables; but the numerical findings show that the
order of expansion required to achieve good accuracy
is too large for the algebraic form of the results to
remain simple. Recourse to a numerical simulation
is necessary in this case, and this is the general method
that should be used anyway for all observations when
the random solution U is expanded to an order greater
than one.

Note 2: The formulas (51) to (56) apply for a
fixed  in B. In other words, the expression (50)
represents the general form of the relations (44) to
(48) when the analysis in the frequency domain is
made ror discrete values of ®.

In fact we may also be interested in knowing the
means of the quantities computed over frequency
band elements measuring 8w (it should be noted that
3w has no a priori relationship with the MF band
Aw, but in general 8o <Aw). Under these conditions,
the mean operator applied to (50) yields:

L
(Y=L ¥t ¥ {¥)s (61)
1=1

where, for any application f defined over R, we have
let:

l w4+ (6w/2)
<f>m=—J. f (w) do. (62)

dw ©—(5w/2)

The o-dependent quantities in relations (51) to (56)
then have to be replaced by their averaged values
given by (62).

III. — COMPUTER DEVELOPMENTS

All of the computer developments related to the
fuzzy theory are implanted in the ADINA-ONERA
software, which is a general finite element structural
computation code for static and dynamic computa-
tions in linear and nonlinear analysis. In what con-
cerns us here, for a deterministic or random steady
excitation in time, this software can compute the
linear LF or MF vibrations of a bounded elastic
structure with or without fuzzy, in the presence or
absence of an internal or internal (infinite or semi-
infinite) compressible fluid. Substructuring is pos-
sible, even with finite elements of fuzzy in the sub-
structures.

These developments conserve the optimization of
the code, which means vectorizing the computations
as much as possible and minimizing the disk transfers.

I11,1. - FINITE ELEMENTS OF FUZZY

For the constitutive equations of isotropic, ortho-
tropic or anisotropic locally homogeneous fuzzy, the
finite elements, with isoparametric formulations, are
of the curvilinear type with two or three nodes and
of the surface type with four to eight nodes.

We can emphasize that these elements generate a
consistent and intrinsic damping matrix from the
givens in the fuzzy constitutive equations.

I11,2. — COMPUTATION OF THE RANDOM
SOLUTION

The program computes the random solution of the
zero, first and second orders. For the zero order,
only the mean part of the response is computed.

To do this, we use a “multicase excitation” comput-
ation sequence which, for a given B,, solves equation
(4) for different right-hand members simultaneously.
Throughout the whole computation, the matrix
system has to be triangularized only once, as the
solution for each of the cases of excitation comes
down to simply descending the matrix.

This sequence is used here for computing the fluctu-
ating parts of the random solution [equation (20)]
and for computing boundary condition matrices for
which the structure must be excited at various points
in succession. It has nonetheless been implanted in
quite a general framework and can be used, for exam-
ple, in analyzing the steady random vibrations by
functional reduction of the excitation field [80].

The first- and second-order moments of the random
observation variable are computed either by applying
the relations of section I,3. 3 or by a numerical estim-
ation.

IV. — NUMERICAL ANALYSIS
OF THE FUZZY CONSTITUTIVE EQUATION

In this section we offer a few elements for identify-
ing the probabilistic fuzzy constitutive equation
described in part I of our publication.

The objective here is essentially to verify that this
law does not involve any a priori incompatibility with
the dynamics of the actual mechanical systems. In
other words, and although the equation is apparently
quite general in its application, we want to make sure
that there is no fundamental reason it cannot actually
represent the mechanical behavior of certain real fuz-
zies. This does not mean we are trying to list the
types of fuzzy that might belong to the class of fuzzy
defined by the proposed constitutive equation. This
problem involves rather difficult analysis that will be
addressed elsewhere.



For this identification, we have analyzed numeri-
cally the terms involved in the matrix of the constitu-
tive equation and how they evolve as the various
parameters supplying it vary. We refer the reader to
the first part of this paper for the explicit algebraic
form of these terms [relations (92) to (106)].

To simplify the computations involved in this para-
metric analysis, we take the scalar case (fuzzy with
one degree of freedom) and a zero cutoff
frequency. We also introduce the following hypo-
theses:

(a) The equivalent mean mass p(®) of the fuzzy is
constant in @. We can give it a value of unity since
it enters the computation only in the form of a pro-
portionality factor.

(b) The function defining the dispersions
o A(0) =1, (0), A,(0), A;(0)) at values in R? is
constant in @ such that A(w)=(A, A, &), (L>0) for
any o in R*. This hypothesis, which perhaps does
not correspond to reality, is interesting because it
brings out the relative effects of each of the three
fluctuating parts of the probabilistic impedance.

(c) The mean damping rate o+ &(w) is constant
in @. N

For all of the computations the frequency domain
is from 1 to 10,000 Hz. From a numerical point of
view the quadratures are made by a two-dimensional
trapezoid method and all of the guarantees have been
made concerning the discretization of the integration
domains.

The quantities shown in figures 1 to 6 are the mean
functions of the impedance w— R(w) and o~ I(w)
and the standard deviations o~ oz(®) and
o — o, (o) such that:

or(©)=[R, (@)’ +R, (@)*+R; (@)’]"*  (63)
o (@) =[I (@) +1 (@) +13 (@) (64)

A set of curves in figure 1 shows, for different
critical damping rates £ of the fuzzy, the mean real
part of the impedence for a constant unit modal
density in ® and small fluctuation parameters

R (w}
ll =009
g_ 0.5
1 i
0.9 ‘
= 0.001
A=0.001
°-7zf w (Hz2)
T T T -
1 10 100 1000 10000

Fig. 1

8Loguo (L(w)) £=0.001

£ = 0,005 B

6 =0.01 =£=0.

= 'g- : -—-g_=01
4_
2—
0- 2l{w)=n=

i A = 0,001 w(Hz)

1 10 100 1000 10000

Fig. 2

(A=0.001). The positive character of the @+ R(w)
function shows that, for the computation parameters
chosen, the real part of the impedance is of the body
type. Also, as o increases, we tend toward the situa-
tion where all of the equivalent mass of fuzzy is set
into vibration. The associative computation of the
mean imaginary part of the impedance (Fig. 2) shows
a linear increase in the function w— I(®) for a
given ‘é The decrease in the level of the curves as §
increases provides a way of verifying that the apparent
dissipation brought in by the fuzzy actually does
involve kinetic and potential energy transfer from the
main structure to the fuzzy.

Figures 3 and 4 graph the functions ©+— R (o)
and @~ I(o) for fixed A=0.001 and £=0.005, for
different functions o+ n(w). Figure 4 is interesting

R (w)

1 —
”~
/
v g
0.9 / — plw=w
/ ——— 1w =1
——q(w) =Vw
0.8
0.7 A =0,001
‘r _§_= 0.005 w (Hz)
T T T T
1 10 100 1000 10000
Fig. 3
84 Logo (I {w))
A = 0.001
6 £ =0.005

2
—nlw=w
0 ——-nlw)=1
— —nlw) =1w
w (Hz)
T T T ek
1 10 100 1000 10000
Fig. 4



on the practical level because it illustrates the relative
character of the modal density of the fuzzy from a
frequency point of view: compare the solid and dashed
curves corresponding to the values n(o)=o and
n(w)=Const. =1, respectively. For high values of ®
the first curve can be considered as the limit curve,
with respect to the second, of the function ®— I1(®)
as n(w)—-+c Yet we observe that the two curves come
together for the same values of ®. This means that,
for the imaginary part of the probabilistic impedance,
a given numerical value of the mean modal density
of the fuzzy is meaningful only relative to a given
frequency domain. Here, for example, a constant
mean modal frequency of 1s.tad ™" corresponds to
an infinite apparent modal density beyond 100 Hz.

Let us note that other computations show that this
result does not depend either on A or on &.

Figures 5 and 6 show the standard deviation
0 () and 0 o;(®) for n(w)=Const.=1 and
£ =0.005, for different values of A.
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V. —VALIDATION OF FUZZY THEORY
BY NUMERICAL SIMULATION

V,1. — SIMULATION OBJECTIVES

Part 1 of this paper presented the theoretical ele-
ments of the probabilistic approach to modeling struc-

tural fuzzy, and the principle of solving the equation
of the linear vibrations of structure with its fuzzy. In
particular, we showed that there exists a Ay > 0 such
that, for ||A(®)||, < A the random solution exists,
is unique and is written 2 a.s. for do almost all @
in B,

U, (0, N)=02(e, 1)

+w L L
+Z{Z-~Z&V~%mﬂmmﬂ}®$
k

=1 Lh=1 k=1

We recall that if L fuzzy laws are used in the model,
the function ©+— A (®) has values in (]0, 1[)** and can
be used to check the dispersion of the mechanical
parameters of the fuzzy laws.

Yet from a practical point of view, this function
can take on large values in norm. This will happen,
for example, if we use finite elements of fuzzy to
model a part of the structure where the mechanical
characteristics are poorly known. For the method
to be effective, the constant A, used to define (65)
must be able to take on large enough values to cover
the majority of cases in practice.

But the problem does not stop there. It is quite
evident that, from a numerical point of view, the
solution will be sought in the form:

U, (0 2)=U09 (0, 1)

x L L
+z{2.02mr”%mgh@m}m®

k=1 L13=1 =1

where ¥ is a finite positive integer. Yet the volume
of calculations needed to construct (66) is directly

Lt* 1)

proportional to , where L is the total num-

ber of independent random variables used to
construct the constitutive equations for the entire
fuzzy of the structure. A compromise thus has to
be found in the order of expansion ", between the
precision of the approximation (66) and the computa-
tion cost, both of which must remain reasonable and
capable of producing the expected results.

The numerical simulation thus has the triple objec-
tive:

— first to validate the computer developments;

— then to determine the domain of values A, for
which relation (65) [or (66)] is verified;

— finally to determine the order % of the expan-
sion (66) which can achieve the correct results for the
previous values of Ap.

In fact, the second point is going to be very diffe-
rent because we are going to show that the simulation



method used forces us to consider high values of Ap
at the start, which will lead us to determine the
minimum upper bound to be placed on the A, values
to make them compatible with (65). As for the third
point, we will limit ourselves to the first-order expan-
sion by showing that it leads to entirely correct results
for the various structures studied.

V,2. — PRINCIPLE OF THE SIMULATION

For a given master structure and band-of analysis
B, the numerical simulation involves four stages:

(a) The structure is identified mechanically over B,
i.e. we calculate the forced response of the structure
to an excitation F (deterministic in our case) such
that Fe Hz(R, CY) by finite elements using the MF
method;

(b) A structural complexification is modeled on the
main structure with mechanical disturbance systems
having random mechanical and geometric characteris-
tics, with these characteristics being determined
according to given laws of probability;

(¢) For Q independent drawings of all of the above
characteristics, we compute as in (a) the forced res-
ponse of this complexified structure and then deter-
mine the statistical quantities over the Q drawings by
estimating first and second order moments of the
mechanical observations of the system;

(d) Finally, we compute the response of the struc-
ture with the structural fuzzy theory, for mechanical
parameters of the fuzzy that are equivalent in law
(which implies equivalency of mean and of standard
deviation) to the Q previous drawings and the results
are compared with those of the statistic from stage (c).

V,3. — CHOICE OF DISTURBER SYSTEMS

We have chosen the simple damped linear oscillator
as an elementary mechanical model for representing
the structural complexification introduced by the
fuzzy.

‘We have made this choice for two reasons:

— These are discrete systems whose various
mechanical parameters are well known and whose
simple and inexpensive modeling allow us to repro-
duce them in large numbers on a given master struc-
ture;

— They correspond to the subjacent deterministic
mechanical model of the fuzzy law and thereby assure
us, which is imperative for the simulation, that they
model a fuzzy that clearly belongs to the class defined
by the law used.

Each oscillator is modelled by a bar element (a
single degree of freedom) having zero mass and a

linear law of visco-elastic behavior with instantaneous
memory [7], to which a point mass m, is
attached. Its random characteristics are its spatial
location in the master structure, the mass mg, the
eigenfrequency o, of the associated conservative sys-
tem and the damping &, (or the imaginary part of its
complex tensile-compressive modulus E,, which
comes down to the same thing).

V.4 — MECHANICAL HYPOTHESIS
CONCERNING THE SIMULATED FUZZY

We introduce the following hypotheses for all of
the structures analyzed. They in no way detract from
the generality of the findings but do simplify the
computations considerably:

(a) The fuzzy is homogeneous or locally homoge-
neous over the surface £ of the master structure;

(b) Tt is orthotropic and acts in only one direction,
so we can limit the number of degrees of freedom of
the models for the simulations (because in the fuzzy
theory the number of degrees of freedom is not increa-
sed);

(c) the fuzzy cutoff frequency is zero, so that for a
Mg

given MF band B,,(B: U B,), the fuzzy vibrates
n=1
throughout the entire band;
(d) The mechanical parameters of the fuzzy are
constant with respect to .

V,5. — APPROXIMATION OF THE FUZZY BY
DISCRETE SYSTEMS

In this section we consider the problem of modeling
a homogeneous fuzzy over an area § of R3 of nonzero
finite measure AS, with a finite number M of oscilla-
tors distributed randomly over S in a frequency band
of width A.

(a) Spatial aspect

We recall that, for the fuzzy constitutive equation
we have constructed, the fuzzy must be seen as a
continuous system. In other words, if m represents
a generic point of §, the probabilistic fuzzy impedance
operator applied to § is a continuous operator with
respect to m. It thus appears that the model of a
homogeneous fuzzy over a surface S of nonzero
measure requires an infinite number of oscillators or,
equivalently, that a fuzzy simulated by a finite number
M of discrete systems cannot be perfectly homoge-
neous over S.

Yet there exists an optimum model that consists of
partitioning § into a finite number of subsurfaces K



Ks
of constant measure AS, S= (J S, with, for all
k=1
k=1, ..., K;, AS;=AS,=AS/K;. By taking the
same laws of probability on each S, to determine the
random parameters of the oscillators, we model a
homogeneous fuzzy “relatively to the scale of surface
element AS,”. In particular, the number of oscillators
contained in each S, over the band Aw will be cons-
tant and denoted by M.

(b) Frequency aspect

Another loss of homogeneity comes from the dis- -
persion specific to the random drawer for determining
the M eigenfrequencies of the oscillators in a surface
element §,. To reduce this dispersion we have to
carry out a heterodyning during the selection of the
eigenfrequencies, which will be all the more effective
as My is large.

This finally leads us to determine the values of K
and Mg that are maximum together, which should
verify Kg. Mg=M. Trivially, we get:

Ks=Mg=M"'2, (67)

Notes: (1) The results are identical when S is a
curve of R? (as in a linear fuzzy).

(2) The procedure used defines the mean modal
density of the fuzzy from the number of oscillators
used for modeling it. In fact, it is of course possible
to proceed in the reverse direction, in which case Mg
is given and we get

a relation which is more licit than (67) since K, M
and MeN.

V.6. — SELECTION OF THE RANDOM CHAR-
ACTERISTICS OF THE OSCILLATORS

From now on we assume the quantities AS, and
M (and thus K5 and M) to be known for a given
structure and MF band. For fixed k in
{1,2, ..., K}, a point m of S, is represented by its
local curvilinear coordinates (p, 1), where

pe[—pws ] and  me[—my Ml

We let

B;= [Q,,—A—m; Q.+ %:l
2 2

The oscillator characteristics over the band B, are
drawn as follows:

(a) For each S, (k=1, 2, ..., Ky), we determine
Mg realizations of the random vector variable

r=(p, n) at values in [—p,; p,] x [—nw M) according
to the law of probability:

1
dP_ (x, y)= | PO 69
(X, 9) A, [—mk: mid
XI[-nk:nk](y)dxdy (69)
the values {r}, i=1, ..., M, corresponding to the

spatial locations on S, of the oscillators contained in
the surface element S, for the band B,.

(b) Still foreach S, (k=1, 2, ..., M), we draw the
eigenfrequencies of the M, oscillators at random. To
do this,; we adopt a value of the modal density fluctua-
tion parameter A5 and partition the band B, into M

disjunct sub-bands B, ; of width dw= QME’ centered at
S

frequencies @;=Q, — Tm +(—1)dw [A; and Aw are
constants according to hypothesis 5.4 (4)].

Foreachj (j=1, 2, ..., Ms), we determine a reali-
zation mg; of the random variable ®, at values in
[Q; Q,] of the probability law coming from the
theory of construction of the fuzzy law (see Part I);

dP,, (@, 0)=h(®, ©)1q .o, (0)d®  (70)

with
EO si (‘x—)e[mj—(Sl; OJJ‘E'B].]
1 _, Gs=1?
h(@ @)= 1603n,(0,—0)> ~ 4k, (71)
si
0e[Q; 0;—8,]U[w;+8,; Q]
where
1 1 |
e et
2no(1+43) 2no(1—-23)

(72)

Q=0+——
2 2ma(14A)

n, being the known mean modal density of the fuzzy.

This way we get values {og;};, j=1, 2, ..., Mg for
each §,, M5, and the doublets {r, w,},
1=1,2, ..., Mg are assigned at random to the M

oscillators contained in §,.

(¢) The drawing of the masses and critical damping
rates of the oscillators is simpler. For the two para-
meters we adopt the mean values m, (resp. £,), the
parameters A, (resp. A,) and we draw M realizations
{mo}i—1.  aand {€o,}i=1, .... s Of the random varia-
bles

mo=mo(1x X,,) (73)
Eo=Eo(1+X;,), (74)



where X, (resp. X;,) is a centered random variable
of uniform law having the support [—24,; A,] (resp.
[—X; A,]). These M realizations are then assigned
randomly to the M oscillators of the model.

V,7. — MECHANICAL PARAMETERS OF THE
EQUIVALENT FUZZY

According to the comments in section V,5, a fuzzy
modeled by a finite set of discrete systems over a
surface area S is homogeneous over S only relative
to the scale of surface element AS, Under these
conditions, we must associate parameters relative to
the AS, scale for the simulation fuzzy with the mecha-
nical parameters defined at a given point (from a
spatial point of view) of the fuzzy constitutive
equation.

Mean modal density n,

For a surface element of area AS, we have, on
the average, one oscillator throughout the frequency

interval of width Aw, whence
M,
ne=—2. 75
= (75)

Mean mass m  per unit length or area

For a surface element of area AS,, the equivalent
mean resonant mass of fuzzy associated with the
above mean modal density is that of an oscillator

M
=Moo t76)

Fluctuation parameters

The definition of a surface element of homogeneity
only allows us to model a homogeneous fuzzy by
averaging over S. It is in effect clear that the relative
positions of the oscillators inside the surface elements
S, may vary widely as k describes {1, 2, ..., K} and
thus introduce a local dispersion. This dispersion is
given by the following result:

For the chosen model of a homogeneous fuzzy over
a surface § by a finite number M of discrete systems
such that M = M2, the real loss of homogeneity causes
a specific dispersion which is expressed by:

hy= V3 (1—L)m. (77)

M3 Mg
X
Let S= \U S, be a finite partition of the surface §
k=1
into K, surface elements S, of area AS,. For each k
(k=1, 2, ..., Kg), we make M independent draw-

ings of points of §,, with each drawing following the
same law of uniform probability.

Let Nf , be the random discrete variable represen-
ting the number of points selected for selection g in
the surface sub-element 8S} of S, having the area
88 = ASe'

M

Since only one point is determined at each drawing,
NE . can take on only the values 0 or 1. Then, since
the law of probability of the selection is uniform, we

have:

1
P(Nf =1)=— 78
(Who=D= (78)
1
P(N* =0)=1——. 79
(N ,=0) M, (79)
So that for fixed i, k and g we get:
EWNE )=— (80)
Mg
1
E{(N* )P} =—. (81
{(N:)*} M, )

Mg
Now let the random variable Nf= ) N ,, which
g=1

represents the number of points contained in &S, for
fixed i and k after M drawings.
According to (80) and (81) we get:

1
E{(ND?*} —&(NFYP=1——. (82)
M
Let us also define the random variable
Mg
Zf=i Y. N¥. It is the variance of this random
s k=1

variable which give us the dispersion we are looking
for, since it measures the fluctuations of the number
of points contained in 8Sj for fixed i as we scan the
K elements S, (k=1, 2, ..., Ky).

A simple calculation gives:

1 1
2 = —(1——|. 83
i Ms( Ms) &2

As £(Z) =1, the variation index A, defined by

Gy.
= /3— 84
7\.,, \/g ( i) ( )

yields (77).

Note 1: The dispersion parameter A, affects only
the equivalent mass and modal density variables of
the fuzzy constitutive equation because the critical
damping of the fuzzy is an intrinsic parameter that is
unaffected by problems of homogeneity.



Note 2: A, is a parameter specific to the simulation
method used and has to be added to the dispersion
parameters A, and A, that are specific to the fuzzy
constitutive equation. In fact, for the values of M,
A, and A, used in applications, we shall see thdt
Ay <€ X, and A, <€ X,, which will bring us to study
wide-dispersion fuzzies.

VL. — APPLICATIONS

In the following computations, the structure is in a
vacuum and is referenced to an orthonormal cartesian
system (x, y, z). Also, the findings presented corres-
pond to an expansion of the first-order random solu-
tion.

VL,1. — BEAM WITH HOMOGENEOUS FUZZY

The master structure is a cantilever beam running
along the x axis, clamped at x =0, having length L=2
and free at x=L, with constant cross-sectional area
§,=1x10"% It is excited in bending mode in the
(x, y) plane by a unit point force applied at
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Fig. 8. — Standard deviation of the energy (at x=2).

x=L. The band studied is 0-1,0000 Hz, partitioned
into 10 MF bands 100 Hz wide.

The beam is homogeneous with a mass density
p=31,400, Young's modulus E=2.1 x 10!, Poisson
coefficient v=0.3, bending inertia I=1x10"% and
structural damping level £=0.003.

The fuzzy is homogeneous, orthotropic (nonzero in
the y direction) and is modeled by 2,890 oscillators
in the band analyzed. On each narrow MF band,
the mean parameters of the oscillators are
n,=2.89 Hz !, £,=0.002 and m =0.006 (or a fuzzy-
master structure mass ratio of the order of 3%). The
dispersion parameters are A,=h,=Xx;=0.001 and
=04

The structure is modeled by straight two-node
beam elements and the fuzzy by two-node line ele-
ments.

The mechanical observations of the system are the
acceleration energies in each 5 Hz band and the aver-
aged boundary condition impedances in each 5 Hz
band. For the simulation, there are ten drawings for
the energy computation and five for the impedance
computation.

Figures 7 to 10 summarize all of the energy compu-
tations (energy expressed in decibels) for the observa-
tion points x=L and x=1.4.
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We note that, in the band we have chosen to
analyze, the response of the master structure is typi-
cally modal; but despite this and the weak mass
disturbance introduced by the fuzzy, the smoothing
of the resonance peaks is very large.

The agreement between the simulation and the
theory is excellent, in spite of a slight drift of the
standard deviation between 700 and 1,000 Hz. Yet
for the energy type observations the significant quan-
tities are the mean parts, which are rms values consi-
dering the fluctuating part of the random response
[relation (58)].

So the results show us that, for this structure and
for a high fuzzy dispersion parameter (A,=40%;), the
expansion of the first order solution seems to be
sufficient. Moreover, a second order computation
shows that the exact gain in accuracy (less than 1 dB)
does not justify the effort needed to compute it.

Figures 11 to 14 illustrate a few results of direct
and cross boundary condition impedances. The scale
of the coordinate axis is linear and each of the curves
is normalized with respect to the maximum of the
quantity observed throughout the band analyzed.
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VL2. — BEAM WITH LOCALLY HOMOGE-
NEOUS FUZZY

The master structure, the boundary conditions and
the excitation forces are all the same as in section
VL1. The fuzzy is orthotropic in the y direction,
locally homogeneous in the two disjunct zones defined
by 0.5<x<0.8and 1.3<x<1.7. The fuzzy constitu-
tive equations in each zone are different, but globally-
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—with respect to the beam —the mean parameters
of the fuzzy are equivalent to those in section VI, 1.
However, the dispersion parameters A, in each zone
are 55 and 447 here and the number of drawings for
the simulation is five.

Figures 15 and 16 show the mean parts of the
acceleration energy, in decibels, for each 5 Hz, at the
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Fig. 18. — Standard deviation of the energy. Point (x, y)=(0, 0).

excitation point and in the vicinity of the clamping
point. We can note that there is practically no diffe-
rence between figure 15 and the section VL1,
although there is no fuzzy at the level of the excitation
point,

VL3. — PLATE WITH HOMOGENEOUS FUZZY

The master structure here is a plate centered at (0,
0, 0), of length L=1, width /=0.5 and thickness
e=0.003 and having its mean plane in z=0. It is
homogeneous and isotropic and has a mass density
p=7,850, Young’s modulus E=2.1x 10*%, Poisson
coefficient v=0.3 and structural damping level
£=0.003. As before, the 0-1,000 Hz band analyzed
is broken down into ten narrow MF bands, each
100 Hz wide. We are concerned with the bending
vibrations of the plate as it rests on its edges and is
excited by a unit point force applied along the z axis
at its center,

The fuzzy is orthotropic, homogeneous and acts
only in the z direction. It is modeled in each MF
band by 576 z axis oscillators with mean parameters
my=0.00056, no=5.6 Hz™! and £,=0.003. The
dispersion parameters are A, =h,= A;=0.001 and
Ay=0.34.
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The finite elements of the master structure are Master structure  --------s T |
Numerical simulation

three-node plates and the finite elements of the fuzzy Complex structure g AL
are three-node surfaces. The number of drawings for uzzy theory
the statistical computation is five and the quantities 1010 x Log, o (E)

computed are the acceleration energies in each 5 Hz
band, represented in decibels in figures 17 to 20.
Here again, the response is rather modal
throughout the band analyzed. Aside from the first
two modes, the smoothing of the resonance peaks
is large, with the response tending even toward a
quasi-static response at the excitation point
(Fig. 17). The agreement between the simulation
and the fuzzy theory is excellent and confirms the
findings for the beam, for a two dimensional medium.
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The master structure here is a circular cylinder. It Fig. 22. — Mean energy. Poim(o' glf)_
is open-ended, centered at (0, 0, 0), with the z axis as 5
its axis of revolution. TIts length is L=2.52, thickness

¢=0.045 and mean radius R=0.619. Its ends are Master struptire e

swivel-mounted in two rings, nondeformable in their Complex structure ’ Numerical simulation
planes. The 0-1,300 Hz band analyzed is partitioned Fuzzy theory
into 13 narrow MF bands and the unit point force is 10" 10 x Log;o (E)
applied at (0, R, 0) along the y axis. 0-
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It has a mass density p=1,920, Young’s modulus
E=4.5x%10'°, Poisson coefficient v=0.3 and structu- — 20+
ral damping level £=0.003. — 304
The fuzzy is homogeneous, orthotropic and acts
only radially. It is modeled in each MF band by = 401
256 oscillators with mean parameters m,=0.1, — 50+

n,=2.56 Hz ', and £,=0.003. The dispersion para-
meters are A, =k, =4,;=0.001 and %,=0.4.

The structure is modeled in eight-node shell ele- — 707
ments and the fuzzy in eight-node surface elements. S SO e s’ % .
The vertical plane of symmetry at x=0 was used for 0 200 400 600 800 1000 1200
all of the computations because the symmetric pro- Fig. 23. — Mean energy. Point (R, 0, 0).
blem of the plate shows that a homogeneous fuzzy
reflects the symmetries on the average.
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The number of drawings in the statistical computa-
tion is five, and the mechanical observations are the

107 10 LogysiE) normal acceleration energies in each 5 Hz band.

0+ Figures 21 to 23 summarize the computations for a

— 101 few points of observation. The theory and simulation
again compare very well here, despite the small num-

— 207 ber of selections. From a mechanical point of view

— 30 we can note a major modification of the structure

_ 40- dynamic for the points where the dynamic is control-
led by the energy propagations (Fig 22 and 23).
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In this second part of our publication we have
Fig. 21. = Mean energy. Point (0, R, 0). presented the numerical and computer developments



of the probabilistic model of the fuzzy in complex
structures

The validity of the fuzzy constitutive equation was
analyzed by numerical simulation on a few standard
structures, and this has brought out two essential
points:

— The theoretical findings seem to be valid for
fuzzy dispersion parameters going at least up to 509,
which should make it possible to cover a sufficient
number of practical cases;

— For these dispersion parameters, the expansion
of the first-order random solution is sufficient and
thus allows reasonable computation costs, conforming
with the approach to the problem.

The problem still remains open to further develop-
ments, though. Other probabilistic fuzzy constitutive
equations can be constructed from different elemen-
tary deterministic mechanical models, e.g. to take
into account the spatial memory of the fuzzy. It may
also be thought to construct other laws by inverse
identification on the basis of statistical data from
experiments on real structures.

The tool presented here should allow parametric
studies, at lesser cost, of mechanical phenomena such
as the energy propagation in the structure, the impe-
dance couplings, truncation problems, etc.
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