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LINEAR DYNAMIC ANALYSIS OF MECHANICAL
SYSTEMS IN THE MEDIUM FREQUENCY RANGE

C. Soize, P. M. Hutin, A. Desanti, J. M. Davip and F. CHaBas
Office National d'Etudes et de Recherches Aérospatiales 29, Avenue de la Division Leclerc, 92320
Chatillon, France

1. INTRODUCTION

We will study the dynamic analysis of some general
mechanical linear systems in the medium frequency
(MF) range. To simplify the mathematical devel-
opments, we will only consider the discretized sys-
tems which have a finite number of degrees of free-
dom (DOF). This introduction has four parts. First,
we will introduce some notations and definitions.
In a second part we will explain the problem in tak-
ing a particular and classical mechanical system. In
a third part we will briefly introduce the general
problem which will be developed in details. In the
last part we will give the outline of this paper.

1.1 Notations and definitions

LetU = (U, ..., U,) beaC™ vector and Q
a linear operator from C™” to C". In all this paper,
we identify the U vector with the (m x 1) column
matrix of its U; components. In the same way, the
Q linear operator is identified with its (n X m) ma-
trix on the canonical basis of C” and C”. To sim-
plify the notations we take the same symbols for
the matrices. The C” complex vector space is
equipped with the usual scalar product and the as-
sociated norm:

(U, V)= (U, V), = 371, UV, (1)
U= Ul = (U, U2, (2)

where V; is the complex conjuguate.
Let H,, = L*(R, C™) be the Hilbert vector space

of all the C™-valued mappings + — U(r) almost
everywhere (a.e.) defined on R such that

12
Ul = (froopge) <+= o

The mapping U— || U || » from H,toR* isa
norm on H,,. The associated scalar product is writ-
ten as

U, V)= (U, D) = [ U0, Vi dr. (@)

For any V € H,,, the Fourier transform (FT) of
V is the mapping w — (¥V)(w) = V(w) belonging

to H,,, such that for a.e. » € R:
P,(w)=Le-‘m’w(r)d;, €l ..omb. ()
For a.e. 1 € R, the inverse FT is given by
vu)éif wt (w)d {1 m}. (6)
b —21‘; RE jlw)dw, A TN 1 1 8

We have the Plancherel’s equality for any U and
Vin H,,.:

1 =
o (U, Viim:
o (7)
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1.2 Particular case of an elastic structure in vacuo

Let us consider a linear elastic structure in
vacuo, i.e. without external or internal fluid and
so on. Theoretically, the linear vibrations of an elas-
tic, viscous, heterogeneous, anisotropic structure
occupying a bounded domain in R* space, slightly
damped, can be studied without difficulty if we
know explicitly the spectrum {w;}, j € N of eigen-
frequencies for the associated undamped system,
and the corresponding modal basis {¢;}, j € N. In
practice, for such a structure, the modal basis is not
explicitly known and must be calculated numeri-
cally by using finite element method.

For the high frequency range, the excitation fre-
quencies are high enough to use specific methods,
like that, asymptotic methods and the SEA method.

For the low frequency (LF) range, the excitation
frequencies are low enough for the response to be
of the modal type. Therefore, only the first modes
of the structure intervene in the response.

We are interested in the MF range which is the
intermediary frequency range. In this MF range, all
the principal elements of the structure, the “‘exact”
geometry, the boundary conditions play a funda-
mental part in the response of the mechanical sys-
tem. Let us note first of all that the structure must
be finely discretized into finite elements in this MF
range. This leads us to reason using discretized sys-



tems with a large number of DOF. For instance, 30
000 or 40 000 DOF’s may be necessary.

Let m be the number of DOF. Let Mg, Cs, and
Ks be, respectively, the mass, damping, and stiff-
ness (m X m) real, symmetric, and positive definite
matrices of the discretized linear heterogeneous an-
isotropic viscous elastic structure. The vibrations
of this structure are fully described by the fre-
quency response function (f.r.f.) which is the con-
tinuous and bounded mapping w — T(w) defined on
R with values in the (m x m) complex symmetric
matrices:

T() = [-w*Ms + ioCs + Ks]™'.  (8)

The T(w) matrix is associated to the linear dif-
ferential equation on C™, which governs the linear
vibrations of the discretized system

MsU(r) + CsU(r) + KsU() = F(1),  (9)

where U(r) is the (m x 1) column matrix of the
unknown nodal displacements. U(r) = dU(r)/dr,
U(t) = d*U(¢)/dr?, respectively, the velocity and the
acceleration. The (m x 1) column matrix F(z) rep-
resents the equivalent nodal excitation forces. At
the present time we consider deterministic excita-
tion. )

Letbe F € H,,; then F € H,,. Let U be the FT
of U defined by the following equation for a.e. w in
R:

U(w) = T(w) Fw). (10)
Then U is into H,, and U is usually called the forced
vibrations. Indeed, if U(¢) is the solution of eqn (9)
for t > 1y, such that U(#) = U, and U(zy) = U,,
then

,EEL 10(2) = 0() | = 0. (11)

Let us investigate what are the possibilities to apply
LF method for solving MF problem. In LF range,
linear vibrations of structures can classically be
solved: M1—By direct numerical time integration
of eqn (9); M2—by a numerical time integration of
the equations in the truncated modal basis {®,, . . .,
®,} with p < m. This is the modal synthesis in the
time domain. M3—By calculating the f.r.f T(w) de-
fined by eqn (8), which can be (a) carried out using
the truncated modal basis:

T(w) ~ 2f1=y hj(w) O,B], (12)
where hj(w) is the f.r.f. relating to the modal co-
ordinates. This is the modal synthesis in the fre-
quency domain; (b) or carried out directly calcu-
lating, for each value of w considered, the T(w)
matrix given by eqn (8).

If applied to MF, the methods described above

for LF would lead to the following adaptations in
use:

(1) For a broadband MF excitation, the M1 method
requires a long integration time with a very small
integration time step. Consequently, the total num-
ber of the integration time steps is large. As the
order of the matrices is very large (e.g. m = 30 000),
there are many numerical difficulties (numerical
noises. . .). On the other hand, the data processing
of a such job is tricky. Nevertheless, the substruc-
turing technique is easy.

(2) Methods M2 and M3 (a) require the calculation
of the vibration eigenmodes up to a high order (e.g.
1000 eigenmodes). As the discretized system has a
large number of DOF, it seems difficult (1) to di-
rectly determine the necessary truncated modal
basis and (2) to compute with enough precision the
eigenmodes and to separate numerically the eigen-
values, considering the current state of the art in
numerical analysis for solving a large generalized
eigenvalue problem. The substructuring analysis is
possible, but not very easy. At the present time and
for the MF problem, the modal approach is not
really efficient and is very expensive in CPU time
and I/O. Method M3 (b) involves finding the solu-
tion to the complex linear system:

[— ©®Ms + ioCs + Ks] Ulw) = F(w), (13)
carried out for each w. If the calculation is to be
carried out only for a few values of w, this method
is then very effective in the MF range. This is true
when the excitation is one or several rays. But if
the excitation is a broadband signal, as is often the
case for both deterministic and stationary random
excitations in the MF domain, numerous values of
w must be considered. It is also the case for a direct
broadband dynamic identification (e.g. 2000-4000
Hz). Moreover, method M3 (b) should normally
lead to the consideration of very many values of w,
because the elastic medium being bounded and
slightly damped a priori, it seems difficult to assume
a slow variation of the mapping w — T(w) in an MF
band before any calculations are made. This ex-
cludes, a priori, a calculation involving only a few
values of w and the cost of this method may then
appear prohibitive. We present in this paper a nu-
merical method for the MF range, based on the fol-
lowing principles. An MF broadband B C R~ is
written as B = U,B,, where B, is a narrow MF
band. For each B, band, the vibration equation will
be directly solved by a technique of multiple scales
which uses, simultaneously the advantages of both
the M1 and M3 (b) methods. Moreover, the sub-
structuring technique is very easy to use. On the
other hand, the proposed MF method allows one
to solve the general case which is introduced in the
next section.

1.3 The general problem considered
In the last section, the Mg, Cs, and Kg matrices
do not depend on w. In the present paper we are



considering the MF vibrations of the discretized
system governed in the Fourier domain by the fol-
lowing linear equation on C™:

[ w’M(w) + iwC(w) + K(w)] U(w) = Fw), (14)
where the M(w), C(w), and K(w) matrices depend
on w € R. For instance we have this equation for
an elastic structure with viscoelastic materials, or
for an hydroelasticity problem, i.e. for an elastic
body coupled with an unviscous compressible un-
bounded external fluid.

On the other hand we shall consider some de-
terministic and random excitations.

1.4 Qutline of this paper

This paper contains two parts: (a) In part I, we
will present a method for studying the vibrations of
general linear mechanical systems in the MF do-
main. We will develop the theory of the proposed
MF method. We will establish the formulas which
allow to compute directly the response of the me-
chanical system. At the end of this first part, we
will speak about the implantation of this method in
the ADINA program[3] on scalar and vectorial
computers.

(b) Part II concerns the applications. In a first
section we will study the linear MF vibrations of
elastic structures in vacuo. The second section con-
cerns the hydroelasticity problems. We will study
the MF vibrations of an elastic structure coupled
with a perfect compressible unbounded external
dense fluid. In the third section we will study the
elastic structures coupled with a viscous compress-
ible bounded internal fluid. The fourth section con-
cerns an elastic structure with viscoelastic material.

We will give, for each of these cases: (1) some
theoretical elements, (2) the corresponding devel-
opment in ADINA, (3) some comments on the val-
idation, and (4) some concrete examples, with ex-
perimental comparisons in several cases.

2. PART I: THEORY OF THE PROPOSED MF METHOD

2.1 Vibration equation

We consider the MF vibrations of a discretized
system which is governed in the Fourier space by
eqn (14) on C™ with the following hypotheses: (1)
The functions © - M(w), w — C(w) and w — K(w)
with values in the (m x m) real symmetric matrices
are continuous on R. (2) For Q(v) € {M(w), C(w),
K(w)}, there is a finite real positive constant kg such
that YV € R”™, infuer (Q@)V, V) = ko || V [
Then Yo € R, M(w), C(w), and K(w) are positive
definite matrices. Consequently, the frequency re-
sponse function:

w—T(w) = [— 0*M(0) + ivClw) + K(w)] ™' (15)
is a continuous and bounded mapping on R with
values in the (m.x m) complex matrices [but T(w)
is not Hermitian].

For any F € H,, the solution of eqn (14) is
unique and w — U(w) = T(w)F(w) is such that U €
H,.

2.2 Narrow band signal (NBS). The set H,,(B,)

LetB, = [Q, — Aw/2,Q, + Aw/2] be a compact
frequency band of R with a central frequency (2,
> () and a bandwidth Aw such that 0 < Aw < 2(},,.
We denote by B, the band [— Aw/2, Aw/2]. Let 7y,
and 7. be such that

2w
= — 16
Aw’ ki

L Te =

RIF

Let H,,(B,) be the set of all C™-valued function ¢
— F,(¢t) a.e. defined on R such that

H.(B,) = {F,EH,;F,(0) =0,Yo&B,}. (7)
Let us note that H,, = H.(R).

A signal F, is called a narrow band signal (NBS)
(1) if F, € H,.(B,) and (2) if 1./, = Aw/Q), < 1.
The small time scale is 7. and the large time scale
is L.

If F,, is a NBS, we can associate with F, a low
frequency signal (LFS) F, belonging to H,.(By),
such that for a.e. 1 in R and w' in By:

Fn(f) efiﬂnz.,
Folo + Q).

Fo(r)
fR'o(w')

(18)

The LFS F, has one an only one time scale, the 7,
scale.

2.3 Examples of excitation and associated responses

2.3.1 Narrow band deterministic excitation.

(a) Let F, be a NBS on B,. Then denoting by
U, the solution, we have for a.e. w € B,:

Un(w) = T(w)F(w) (19)
and we see that U,, U,, and U, € H,.(B,) are
NBSs.

(b) Let us study a particular case. Let v —
ig,,(u{) be the R-valued function defined on R such
that 1z (w) = 0if 0 € B, and 15,(w) = 1 ifw € B,.
Foranyj € {l,..., m} letF,;be a NBS on B,
such that !‘?,,J-(m) = ig,,(w) A;, where A, is the (m x
1) complex column matrix such that [A;]c = &;(5,
= 0ifj# k, 8; = 1). Let U, (w) = T(w)F, (w) be
the response. Thus, we see that for w € B,,, all the
elements [T(w)]y; = [U, {w)ly, fork {1, . .., m},
of the f.r.f. w — T(w) are obtained by calculating
the response of the system to the particular exci-
tation F, ;. Let us note that the LFS: [t — 1g,(¢)]
€ H,(B,) associated with the NBS: [t — 15,(1)] €
H\(B,) is written as 1g,(f) = (mr)™" sin(mt/ry).

2.3.2 Broadband deterministic excitation.

Let B = [wy, ws] C R™ be a compact broad MF
band. The given deterministic excitation F is an ele-
ment of H,,(B). Let N be a finite positive integer.



We write B = UY_,B,, NY_,B, = @, where each
B, is a narrow MF band. Then, we have
Fo) = 3N, 1a,(0) F(0), (20)
where F, € H,,(B,) is a NBS on B,. Then using
eqn (19), we see that the solution U of eqn (14) is
written as
U(w) = N, p(0)0,(w), 21

where U,, U,, U, € H,,(B,) are NBSs on B, and
U, U, U € H,(B). Using 2.3.1 (b) we can identify
T(w) on the broad band B.

2.3.3 Narrow band stationary random excita-
tion.

2.3.3(a) The set HS,,(B,). Let B, be a narrow
MF band and B, = [-(Q, + Aw/2), —(Q, — Aw/
2)]. Let {X(1), t € R} be an R™-valued, second
order, centered, stationary, and continuous in
quadratic mean stochastic process. Let 1 — Rx(7)
= % [X(¢ + 7) X(r)7] be the autocorrelation function
continuous on R, with values in the (m X m) real
symmetric matrices (% designates the mathematical
expectation). We suppose:

(1) that the spectral measure has a density Sx:

R, = L " Sy(w) do. 22)

The spectral density function (s.d.f.) w — Sx(w) is
defined on R with values in the (m X m) complex
Hermitian matrices [Sx(w) = Sx(w)*];

(2) that the s.d.f. has a compact support B, U
B,,i.e. Vo € B, U B,, Sx(w) = 0. Let Cx be the
(m x m) real covariance matrix such that

Cg = Bxll) = 2 JB Re Sx(w) dw, @23)

where Re designates the real part. Then we know
that

(1) the total power Px of the process X(#)is such
that

Py = TrCx = 372, [Cxlyy = (|| X(1) |B) < + .

(2) Px > 0, because we exclude the trivial case
where X is the null constant vector.

(3) Cxisa(m x m)real symmetric positive defi-
nite matrix.

Such a process is called a narrow band station-
ary random process. The set of all the stochastic
processes which verify all the preceding properties
is denoted by HS,.(B,).

2.3.3(b) Stochastic response for an excitation in
HS,.(B,). Let us consider the (m x m) convolution
linear filter whose f.r.f. @ — T(«) is defined by eqn
(15). If the input of this linear filter is a stochastic
process F, belongingl to HS,,(B,), consequently we

know([29, 44, 60] that (1) the output process denoted
by U, belongs to HS,,(B,), (2) the quadratic mean
derivatives U,(1), U,(z) exist and belong to
HS,.(B,), and (3) the s.d.f. Sy,(w) of U, is such that
Su.(w) = T(w) Sg,(w) T(w)*.
2.3.3(c) Particular case. Letbe JE{l,...,m}
and ¥y, ..., ¥,, J given vectors of R™. LetF, €
HS,.(B,) the random excitation defined by
F ) = 37, X1} W, (24)
where X = (X,, . . ., X;) is a given stochastic pro-
cess belonging to HS,(B,). Under these conditions
we can easily prove that

Yw € B,
SUn(w) o E_,{k:l {Sx('-ﬂ)]jk Gn,j(w} Uu.k(w)*.

Vo € B,, (25)
Sua(w) = Sy,(0),
w' = — w€EBR,,
where, forj € {1, ..., J}, U,; € H,(B,) is the
NBS on B, such that
U, (@) = T() F, (), (26)

and where F,; € H,,(B,) is the NBS on B, such
that F,, ;(w) = 15,(w)¥;. The relations (25) and (26)
show that the second order quantities of U, can be
obtained by calculating J deterministic responses
U,.; due to J narrow band deterministic excitations
Fi;,
2.3.3(d) General case. Let F, be in HS,.(B,).
Let \; > 0 and ¥; € R™ be, respectively, an eigen-
value and an eigenvector of the covariance matrix
Cr such that
Ci'n\yj = Aj‘{’j. (27)
We know that there is a normalization such that the
set of eigenvectors {W¥,, . . ., ¥,,} is an orthonormal
basis of R™: (¥;, ¥,),, = 8. We order the \;s in
decreasing values: A; = A, = -+ = \,, > 0. Thus,
(1) the process F,, is written as F,.(r) = %, X;(1)¥,,
where X = (X, ..., X,,) belongs to #S,,(B,) and
has an s.d.f. Sx(w) given by [Sx]ix = (Sg,(@)¥y,
¥:)ms (2) the total power Pg, of the process F, is
21 N;; (3) for any € > 0, there is a positive integer
J. < m such that P, — 3/* \\; < e
This projection is of interest if m is very large
(which is our case), and if for a small enough fixed
€, we have J, < m. In this case we can write
F.(t) ~ 3fe, X(1) ¥, (28)
The approximation (28) is taken in the quadratic
mean sense. The random excitation (28) is of the
type (24) and the results of the particular case are



applicable (e.g. m = 30 000 and J, = 10). Let us
note that generally the excitation is not applied on
all the DOFs, but only on m' DOFs of the system
with m’ < m (e.g. m' = 2000). In this case, the
eigenvalue problem (27) must be solved on the con-
densed equation to determine the J, first eigenval-
ues and eigenvectors.

2.3.4 Broadband stationary random excitation.
Let F be a random excitation belonging to HS,,.(B),
where B is the compact broad MF band of Sec.
2.3.2. Using the same method, we can write Sg(w)
= XN, 15,(w) Sk, (w) with F, € HS,.(B,). Then,
we have Sy(w) = 212, 15,(0) Sy, () and Sy, (w) is
calculated with egn (25).

2.4 Model equation for the MF vibrations

The results of Sec. 2.3 show that for a large class
of deterministic and random excitations, the solu-
tion is obtained by solving only some problems with
a narrow band deterministic excitation (see Sec.
2.3.1). Then, we must find the NBS U, € H,.(B,)
such that, for a given NBS, F, € H,,(B,), we have
for a.e. win B,:

[— 0*M(w) + ivC(w) + K(w)]U.(0) = F.(w). (29
Let us introduce the auxiliary equation to eqn (29).
Let U, € H,,(B,) be the NBS such that for a.e. w
in B,:

[-w’M, + iwC, + K,] Us(w) = Fu(w), (30)
where F, is the same NBS on B, as in eqn (29), and
where

Mn — M(Qn)9 Cn = C(ﬂn)r

K, =K(,). (31

we let

Tuw) = [—0®M, + iwC, + K,]"'. (32)
Taking into account the results of Sec. 2.1, we con-
clude that the functions w — T(w) and w — T,(w)
are continuous on the compact interval B,. Thus,
for any fixed € > 0, there is dw(e) €]0, Aw] such
that

{1n+ Bwle)2 i "
J. | Do) = Unle) 3 do < e.
2 — Buwie)/2 o5

(33)
The inequality (33) shows that one can always take
a band B, with a small enough bandwidth Aw such
that U, ~ U,. For the numerical point of view, this
approximation is interesting if the continuous func-
tion w — M(w), C(w), and K(w) are smooth func-
tions. Thus, for a fixed €, the bandwidth Aw is not
too small and the construction of the solution on a
broadband B = UJ_ B, does not require a large
value of N.

2.4.1 Model equation in the Fourier space.
Equation (31) is.called the model equation in the

Fourier space for the MF vibrations. The corre-
sponding MF model problem can be formulated as
follows: Find the NBS U, € H,,(B,) which verifies
eqn (30) for a given NBS F, in H,.(B,,).

This solution is written as Ugdw) = T,(w)
F,.(w) for a.e. w in B, but obviously, we will build
this solution without directly computing the matrix
T,(w), i.e. without solving the complex linear sys-
tem (30) for many values of w in B, (see the Intro-
duction).—— — — — - = -

2.4.2 Model equation in the time space. The
NBS U, on B,,, which is such that U,, is the solution
of eqn (30), verifies for a.e. r € R the following
equation:

M,U.(1) + C,U,(1) + K,U,(r) = F,(1). (34)
Using Sec. 2.3.1(a), we know that U,, U,, and U,
€ H,.(B,). Equation (34) is called the model equa-
tion in the time space. Using the results of Sec. 2.2,
we see that F, and U, have two time scales: the
small time scale 7. and the large time scale 1.

2.5 Actual construction of the model MF equation

We use a specific method of multiple scales to
solve the MF equation (34). (1) The small time scale
7. is analytically treated by using eqn (30) in the
Fourier space. We apply a frequential shift with the
value (,,. Thus, no approximation is introduced in
the construction of the solution for the rapid fluc-
tuations with the 7. time scale. (2) The large time
scale 1y, is directly treated in the time domain. This
low frequency part of the solution is given by a time
differential equation, called the associated low fre-
quency equation. This equation is solved by using
a classical direct step by step numerical integration
method. Thus, some usual approximation errors are
introduced, but only on the 7, scale slow fluctua-
tions of the solution.

2.5.1 Analytical treatment of the rapid fluctua-
tions We apply to eqn (30) the shift defined by w
=w + O, with w' € By and v € B,. We obtain
for a.e. w' € By:

[—(w + Q)'M, + ilw’ + Q,)C, + K,]
X Uy’ + Q,) = F (0 + Q). (35)
Using eqn (18) we see that the LFSs Uy and F, in

H,,(By), associated with the NBSs U, and F, in
H,.(B,) are such that, for a.e. w' in By and t in R:

Fol@)=Faw +Q,); Fo(t) =e ™F,(1), (36)

Us(0) =0’ +Q,);  Un0) =e™Up(). (37)
Then we have for a.e. o’ in By:
[—w?M, + io'D, + Z,] Ug(w') = Fylw'), (38)

where D, and Z, are (m X m) complex symmetric



matrices:

D, = C, + 2i(M,,
Z, = K, + iQ,C, — Q}M,.

I

(39)
(40)

The LFS Ug on By, solution of eqn. (38) is such that
Uy, Up, and Uy € H,.(By), and verifies for a.e. ¢ in
R:

M, Uo(1) + D, Uo(1) + Z,Uo(r) = Folr). (41)
Equation (41) is called the low frequency equation
in the time domain, associated with the MF equa-
tion (34), because the only time scale of F, and Up
is the large time scale 1. We see that eqn (41) can
also be obtained in replacing the expression (37) of
U,(z) in eqn (34).

2.5.2 Explicit MF solution as a function of the
associated LFS. Forany l[€EZ = {—-=, ..., —1,
0,1, ..., +} we define the family of functions
¢ on R such that

_ 1 sin[n(t/r, — D]
Vo, wlthy = D)

The set {¢;, | € Z} is an orthonormal basis of
H,(By). Then, considering the Shannon’s sampling
theorem[34, 79, 85] for the function Uy € H,.(By),
and taking into account eqn (37), we obtain for U,
€ H,.(B,), and for a.e. ¢ in R:

t— @) = (42)

Un(t) = Voo e Sz Uollry) (). (43)
Moreover, in the Fourier space, we have fora.e.
in R:

Un(@) = 1 15,(0) Ziez Up(lry) e~e=M (44)
The expressions of fI,,(m) and ﬁn(w) are given by
eqn (44) replacing Up(lty), respectively, by Vo(lt)
and Wy(ltL), with

Vollr) = Ug(lr) + i, Uslre), (45)
Wollry) = Usllry) + 2iQ,Us(lrL) — Q2Ug(r).
(46)

The series on the right sides of eqns (43) and (44)
are convergent in H,,(B,). The relation (44) deter-
mines the MF solution as only a function of the low
frequency sampled time solution U, of eqn (41). In
particular the relation (44) determines the f.r.f. o
— T(w) on B, by taking into account the results of
Sec. 2.3.1(b). Let p € {1, 2, ..., m} and let Q
be the constant (p X m) real matrix such that an
observation g,(t) of the mechanical system is writ-
ten as

gu(1) = QUA(1). 47

Thus, ¢, 4., and g, € H,(B,) and for a.e. w in R
we have

galw) = 1 15,(0) ZjezQUo(lry) e~ =0,

(48)

Likewise, we obtain §,(w) and §.(w) by replacing
into egn (48), Uy by V, and W,.
Moreover, the energy of g,, given by

1 2 5
E(B) =l allz =5 L | Gn(w) [p do  (49)

is written as

E,(B,) = 1 Ziez || QUoll7L) |3 (50)
If we write B, = U/_ B, ,, the energy E (B, is
given by eqn (49), but cannot be calculated by eqn
(50). One must calculate E,(B, ;) by using eqns (49)
and (48) with the frequency integration on B, ;. In
the same way we have similar results for g, and
n» replacing into egns (49) and (50), g,, by g, or ¢,,
and U, by V, or Wy,. Note that there are two pos-
sibilities for the representation of the square norm
of the f.r.f. of g, on B,: (1) a high frequency res-
olution is obtained by calculating @ — | ga(w) |3
with eqn (48) for a.e. w in B,. (2) A representation
per frequency band is given by studying i —
E,(B,...).

In the applications of the part 11, we have chosen
the second representation. The bands B, are fixed
and inside each band B,, the frequency evolution
is given by i = E (B,) or i = 10 logo E,(B,,).

2.5.3 Numerical treatment of the slow fluctua-
tions. Let Uy € H,,,(B,) be the LFS, solution of eqn
(38), or equivalently of eqn (41). Thus one can easily
prove that, for any € > 0, there are two finite real
constants f;(e) < 0 and tF(e) > 0 such that

Il o= Us llm<e (51)
where Up is the unique solution belonging to H,, of
the following problem:

M, Uo(1) + D, Uo(t) + Z,Uo(1) = Fol1),
t €] tile), (e,
Uo(1) = Uo(r) = 0forany 1 =< n(e) and 1 = 1g(e).
(52)

It is obvious that || Uy — Up || » — 0 when f(e)
— —oo and tg(e) = +oo.

In these conditions we can build a numerical ap-
proximation of eqn (41) by solving the problem (52)
which is a standard low frequency problem. We can
thus use any direct unconditionally stable step by
step time integration algorithm: Newmark, 6-Wil-
son method.



(a) As the highest frequency existing in the LFS
Fyand Uy is Aw/2, the integration time step, denoted
by Ar, must be less than the sampling time .. To
use formulas (43), (44), (48), and (50), Up(r) must
be known at instants /t;, [ € Z. Consequently, At
will be such that At = 7/Ly where Ly is a positive
integer greater than 1. The choice of Ly partially
conditions the precision that will be obtained in the
solution and depends only on the numerical method
of integration used. For instance, with the New-
mark method Ly = 3 is a good value.

(b) We let t; = — Lyt and tp = L1, Where L
and Ly are positive integers. The initial and final
instants ¢; and ¢y are thus defined by Lyand Lg. The
selection of L, is related to the part of the input
energy truncated. As Fy € H,,(By), for any € > 0,
finite L; exists such that [ZLrL || Fo(2) |12, df < e
Thus, the input energy truncated can be made as
small as desired. For instance, L; = 3 or 5 is a good
value for the excitation defined in Sec. 2.3.1(b).

(c) As U € H,,, again, for any e > 0, finite Ly
exists such that [{7 || Us(?) |7 df < e. Thus, the

energy not taken into account in the interval [tg,
+2¢[, can be made as small as wanted. The choice
of Lyis directly related to the dynamics of the sys-
tem governed by the damping matrix C,. As the
total energy introduced is known before integration
is started, and as at each instant ¢+ > 74, the total
energy dissipated during the time interval r — rycan
be determined, the energy budget makes it possible
to determine Ly automatically to obtain a given
precision of the solution. Let us note that, in the
MF domain, ), is large enough. Thus, even a
very slightly damped system, the function ¢ —
| Unlt) lln = Il Uole) || is rapidly decreasing. For in-
stance, Ly = 7 or 9 is a good value for the following
case: (1) the excitation is defined in Sec. 2.3.1(b),
(2) Aw/Q),, = 1/20, (3) the equivalent mean damping
rate on the band B, is £, = 0.005.

(d) The relations (43), (44), (48), and (50) use a
sum of every instant [y, [/ € Z. The energy con-
siderations discussed in points (b) and (c) above,
directly give the truncations to be carried out on
the sums 2/eg. The ez need only replaced by
SFE

(e) As a final remark, let us indicate that for all
the presented applications in part II, the calcula-
tions have been realized for each narrow band B,
with a total number of integration time step: Ly (L
+ Lg) of the order of 30-40. For this small num-
ber, using eqn (48), we obtain all the dynamics in
the MF band B, with a very good precision.

2.6 Implantation of the MF method in ADINA

2.6.1 General considerations. For a fixed band
B,, we must (1) solve problem (52) and, (2) calculate
the quantities such as eqns (43), (44), (48), (49), and
(50). Note that the matrices D, and Z,, defined by
eqns (39) and (40) are (m x m) complex, symmetric,
and that the initial band or skyline structure of the
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matrices M,,. C,, and K, is kept for D,,and Z,,. Thus,
the implantation of the MF method, in a general
finite element program changes neither the funda-
mental structure of the program nor the dynamic
allocation of the core and the I[/O management. We
must only complexify the step by step time inte-
gration algorithm. We are going to specify this
point. Let us consider the step by step solution of
egn (52) using the Newmark integration method.
Let ag, @y, ... . a; be the real constants of the
Newmark’s algorithm. This algorithm is the follow-
ing:

(a) Initial calculations: (1) Form the effective ma-
trix H = Z, + asM,, + a,D,. Using eqns (39) and
(40) we obtain

H =K, + bM, + b,C, (53)
with bg = da; + EQ,, and b| = apy + 2(’0,,(1| = Q,:,
are two complex constants. (2) Triangularize the
complex effective matrix: H = L D L” where L and
D are complex matrices.

(b) For each time step: (1) Calculate effective
loads at time ¢ + Az: R(r + At) = Folt + A1) +
M,,'{QQUD(I) + azUo(f} + (13[‘}0(!)] L= Dn[(IIU[)[f) =
ayUo(1) + asUy(1)]. Using eqn (39) we obtain

R(r + Ar) = Fy(r + A1) + M, [b:Uu(12)
+ b3Uo(t) + bsUp(1)] + C,la Ugl1)

+ aUs() + aUs(0)], (54)
where b, = ay + 2iQ),a,, bs = a> + 2iQd,a4, by =
a; + 2if),as are complex constants. (2) Solve for
displacements at time ¢t + At:

LD LT Ug(r + A1) = R(r + An). (55)

(3) Calculate accelerations and velocities at time ¢
+ Ar:

Ut + Af) = ao[Uolt + A1) — Uy(n)]
= G}_Ug(f) — (13ﬁo(f). (56)
UQ{! + Ar) = UU(I) + abﬁo(f) + 61'7["5(:“ + At).

Thus we see that the fundamental structure of the
Newmark algorithm is not modified. This conclu-
sion is true for other algorithms such as the 8-Wil-
son algorithm. One must only:

(1) Realize the assemblage of the effective ma-
trix H [egn (53)] with a complex form.

(2) Complexify the subroutine which realizes (i)
the factorization of H, (ii) the reduction of the right-
hand side effective load vector and the back sub-
stitution [eqn (55)].

(3) Complexify the calculation of the effective
loads [eqn (54)] and the calculation of the acceler-
ation and velocity [egn (56)]. Note that the sub-
structuring capabilities are kept.



2.6.2 Implantation in ADINA. We have devel-
oped at ONERA this MF method in ADINA[3].

(A) we have added the MF linear dynamic an-
alysis. In order to do so we have realized the modi-
fications described in Sec. 2.6.1 with the Newmark
method and we have added the algorithms to com-
pute eqns (44), (48)-(50).

(B) Moreover, for our applications (see part II)

we had to increase the capabilities in three direc-
tions: -
(a) Take into account a consistent damping ma-
trix C,, generated by finite elements. We need a con-
sistent damping matrix (1) for the viscoelastic ma-
terials, ,(2) for the viscous compressible fluids
occupying a bounded domain of the space, and (3)
for hydrodynamical operator relating to the hy-
droelasticity with a perfect compressible un-
bounded fluid.

(b) Take into account a multiple load vector, 1.
e. for each time step: (1) build simultaneously J ef-
fective loads R;(7 + Ar) due to a multiple excitation
Foj,j €1{1,2,...,J}[eqn (54)], (2) compute si-
multaneously Ug (1 + Ar),jE€{1,...,J} withegn
(55), and (3) calculate simultaneously eqn (56) for
all the j’s. We need this possibility (1) for random
excitations (see Sec. 2.3.3); for instance we use this
case to study the MF vibrations of an elastic struc-
ture excited by the hydrodynamical turbulent
boundary layer; (2) in the developments relating to
the probabilistic modelization of the structural
fuzzy in the complex structures.

(c) Increase the finite element library. This point
will be discussed for each new finite element in part
II.

(d) Note that for all these developments we have
maintained the capabilities of ADINA, i.e. (1) an-
alysis with substructures, (2) the linear constraint
equations, (3) the access to the whole library of fi-
nite elements.

(e) Two new versions have been developed. A
scalar version on a CYBER 170/750 computer, and
an optimized vectorial version on a CRAY 1 com-
puter. The CPU gain factor between scalar and vec-
torial version is satisfactory. For large systems the
gain factor can be 20.

3. PART II: APPLICATIONS

3.1 Linear MF vibrations of elastic structures in vacuo
3.1.1 Setting the problem. We consider the lin-
ear MF vibrations of an elastic, slightly damped,
heterogeneous anisotropic structure in vacuo, oc-
cupying a bounded domain in R* space. The first
characteristic of the MF range is that the response
brings a very large number of high order vibration
eigenmodes. The modal density can be high a
priori. On the other hand, for this range we can
obtain modal behaviors as in LF, locally or not, as
well as global dynamic behaviors, grouping by ei-
genmode packages when the modal density is large
enough. All of the behaviors may appear simulta-
neous at certain frequencies in the MF broadband

considered. That is the case, for instance, for a shell
with stiffeners that we will study hereafter. We are
going to specify this point. Let us consider the vi-
bratory response of an elastic structure subjected
to a point force. In the LF domain the vibratory
energy propagates broadly into the structure be-
cause the first eigenmodes are generally global.
Thus the vibratory energy is not localized around
the point where is located the excitation force. In
the MF domain, (1) if the modal density is locally
small in a MF narrow band we can obtain a similar
phenomenon. Generally there is a propagation of
the energy for this narrow band, (2) but if the modal
density is locally high in this MF narrow band, the
vibratory energy is localized around the excitation
force. The energy does not propagate into the struc-
ture. The concrete example that we present here-
after, shows that the MF situation is complicated
because, for heterogeneous structures, the modal
density has rapid variations in the MF range.

3.1.2 Theoretical complements. For this case,
the theoretical complements are reduced to hardly
anything, because the linear elasticity theory is
standard.

3.1.2(a) Modelization. For an heterogeneous
anisotropic linear elastic structure we use the stan-
dard linear elastic finite elements: truss, beam,
plate, thin and thick shell, 2D and 3D solid ele-
ments. In these conditions, the consistent mass ma-
trix M,, and the stiffness matrix K, defined by eqn
(31) are independent of the frequency and are de-
noted by Mg and K. In the MF range, the damping
in the materials is globally introduced in writing
the damping matrix as

Cn = AHMS ¥ p-nKS (57)
with two possibilities for the constants A, and p,:
(1) N\, = 26,0, and p, = 0. Thus &, is the mean loss
rate of the structural damping on the MF band B,,.
this means that the critical loss rate of an eigenmode
of eigenfrequency w,; in the band B, is § =
£0,w; ' The damping will be approximatively uni-
form on the band B, because 0, ' Aw < I.
(2) A, = £.0,and p, = £,Q.(05 — Aw?/4)"". Thus
the §; value is such that & ~ &, for Q, ' Aw < 1.
In this case the damping is uniform on the narrow
band B,, but, £, can be modified when the band B,
is changed.

Note that the situation will be very different for
viscoelastic materials: the C, matrix will be gen-
erated by finite elements (see Sec. 4).

We suppose that the boundary conditions are
such that the hypotheses introduced in part | are
verified.

3.1.2(b) Special treatment of 3D structures with
axisymmetric parts. Let us consider a 3D structure,
a large part of which is formed with axisymmetric
bodies, but the global structure is not axisymmetric.
We can modelize such a structure with 3D finite
elements. But, for a given number of DOF, we ob-



tain a better approximation in modelizing the axi-
symmetric parts with axisymmetric finite elements.
Thus we use this technique when we have this sit-
uation. An axisymmetric body is described in the
cylindrical coordinates (r, 6, z) where z is the rev-
olution axis. The radial, axial and tangential com-
ponents of the displacement field are written as

u(r,0,2,0) = Lns=olun s(r,z,1)
——coSsNO+uyastrizytysinNe———

1(r,0,z,1) = In=olvns(r.z, 1)
cos N8 + vn as(r,z,1)sin N8,

(58)

ug(r,0,z,t) = En=olww.slr,z,1)

SinNO + wy as(r,z,1)cos N6],

where (uy.s, Un.s. Wa.s) and (x5, Unas, Wh as)
are, respectively, the symmetric and antisymmetric
fields of the meridian section and where N is the
circumferential node pattern. The methodology is
the following: (1) the 3D part is modelized with fi-
nite elements. (2) Each axisymmetric part is mo-
delized with axisymmetric finite elements. So we
consider N values of N and for each N we introduce
the symmetric and/or antisymmetric DOF’s. (3) The
whole 3D structure is assembled by using linear
constraint equations defined by eqn (58).

3.1.3 Corresponding development in ADINA.

(a) For the linear MF dynamic analysis, the
damping matrix can be generated by eqn (57). When
substructures are used, the C,-damping matrix can
be different in each substructure.

(b) We have implanted in the 2D solid elements,
the element type: “‘axisymmetric N = 1" which can
be used (1) for isotropic and orthotropic linear elas-
tic material, and (2) for other materials (see Secs 3
and 4).

3.1.4 Validarion. We present a very simple ex-
ample which allows to validate the MF algorithm.
We consider a thin circular cylindrical shell with a
constant section. The conditions are the shear dia-
phragms at both ends. For this structure an ana-
lytical solution is known. The data (in SI units) are
the following: length 0.863, thickness 0.008, radius
0.25, material; isotropic steel, E = 0.21 x 10", v
= 0.3, p = 7850, £, = 0.003. We use the excitation
F, jdefined in Sec. 2.3.1(b) on the band B, = [2000-
2100] Hz. The spatial part A, is a concentrated force
located in the central plane of symmetry. Taking
into account one of the two planes of symmetry,
only a half cylinder is meshed in 3D with (10 x 11)
nine nodes thin shell elements. A reduced integra-
tion scheme is used. The model has 2205 DOFs
and the MF integration parameters are Ly = 3, L,;
= 4, Ly = 9. The observations g, are the radial
displacements at the nodes located on the genera-
trix and on the half-section which contains the ap-
plied force. The calculated quantities are (1) the
f.r.f. of the radial displacement at the excitation
point, (2) the energy E,(B,) of g, [eqn (50)]. The

ADINA results are compared with the theory of
cylinders on Figs. 1(a) to I(c). The comparison is
satisfactory.

3.1.5 MF local effects in 3D stiffened shell cyl-
inder. In this section we give an example of the local
effects in linear dynamic analysis of a structure in
the MF range. The given experimental results,
which have been made at ONERA are extracted
from Ref. [91]. The structure is a steel circular shell
cylinder with 56 inside transverse stiffeners (all the
stiffeners are not the same), with a floor in the cen-
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Fig. 1. Simple example for the validation. Thin circular
cylindrical shell. Band B, = [2000-2100] Hz. (a) Longi-
tudinal propagation of energy; (b) circumferential propa-
gation of energy; (c) frequency response function of the
excitation point.



tral ferrule, with two bottoms and with internal sub-
systems. This structure is a 3D linear elastic me-
dium with an axisymmetric part. The geometry and
material properties are defined by Fig. 2(a). The
internal subsystems are modelized but are not rep-
resented on this figure. The MF dynamic calcula-
tions are realized for the broadband B = [0-3600]
Hz. This band is partitioned into 36 MF narrow
bands B, of bandwidth 100 Hz. For each band B,,,
we apply the excitation F,, ; defined in Sec. 2.3.1(b).
The spatial part A; is a concentrated force located
in the central plane of symmetry [see Fig. 2(b)]. The
observations §, are the radial accelerations at some
points of the shell located (1) on the inside gener-
atrix of the shell and (2) in the three half-crowns
M, N, and P [see Fig. 2(b)]. The modelization is
realized with the method described in Sec. 3.1.2(b).
The axisymmetric part is meshed with axisymme-
tric 2D solid elements. We have introduced 14 val-
ues of the circumferential node pattern: N € {0, 1,
2, ..., 13}. The floor and the internal subsystems
are modelized in 3D. Taking into account two
planes of symmetry, only a quarter of the structure
is considered [see Fig. 2(c)]. The total number of
DOF is 25 292. The calculations have been made
with a CRAY 15/1000 computer. The parameters
are defined in Table 1. The mass matrix is consis-
tent, the damping matrix is generated by eqn (57).
The fundamental eigenfrequency of this mechanical
system is around 80 Hz. We give a few results of
the complete analysis which has been made[91].
The experimental results concern only the fre-
quency band [2000-3600] Hz. Figures 3(a) and 3(b)
show the f.r.f. of the radial acceleration expressed
in terms of energy integrated by frequency band of
20 Hz at two observation points on the shell, lo-
cated close to the force. These curves are the
graphs of i, n — 10 log\y E4(B, ;) which are com-
puted as we have indicated in Sec. 2.5.2. Figures

4(a) to 4(c) and 5(a) to 5(d) show the spatial prop-
agation of the normalized energy E = E;(B,) Enax
or the radial acceleration per B, band, and com-
puted by eqn (50). Figures 4(a) and 4(b) show that,
in the LF domain, the vibratory energy propagates
broadly into the structure. When the frequency is
increasing to reach the MF domain, Figs. 4(c) and
5(a) to 5(d) show that the vibratory energy is par-
tially or completely localized around the applied
force. A detailed examination of these figures
shows that the phenomena are relatively compli-
cated.

3.2 Linear MF vibrarions of elastic structures coupled
with an external unviscous compressible unbounded
fluid

3.2.1 Setting the problem. In this section we
study the linear vibrations of an elastic body im-
mersed in an unbounded compressible fluid and ex-
cited in the MF range. We are interested to cal-
culate the MF vibration states of the body and the
acoustic field radiated by the body in the fluid. In
the MF range it is difficult to use a modal repre-
sentation of the structure for the reason given in the
Introduction. This last representation is classically
used for the LF range. Thus, we propose a direct
coupled representation by using the basis of the fi-
nite elements of the elastic body. The matrices of
the hydrodynamical coupling and radiating opera-
tors are built with an integral equation of the Helm-
holtz problem for the fluid.

3.2.2 Theoretical complements. The hypotheses
on the elastic structure are those of Sec. 3.1 and we
use the same method for modelizing the structure.
In particular the mass, damping and stiffness ma-
trices Ms, Cs, and K of the discretized elastic
structure verify the hypotheses of part I (Sec. 2.1).
The body occupies an open bounded domain § of
R’ with smooth boundary 4§ = 3 U X,. This body

Table 1. In vacuo calculations with CRAY 15/1000 for each band B,,

MTOT = 600 000 words (64 bits)
NEQ: Number of DOF

NWK: Number of matrix elements (complex word 128 bits)

ISTOH: Maximum block length (complex word 128 bits)

NEQC: Number of DOF to be condensed in a substructure

NEQ NWK ISTOH NBLOCK NEQC
Substructure 1 1183 96 480 84 900 2 1060
Substructure 2 1776 217 545 84 900 3 1590
Substructure 14 1776 217 545 84 900 3 1590
Master structure 3439 1 397 549 84 904 17
Total number of DOF = 25 292
NSTE = Ly(Ly + Lg) = 3% (4 + 7) = 33

CPU time = 860 secs
I/O = 9.3 10® words (64 bits)

Total for 36 bands B, (B = [0-3600] Hz)

CPU time = 30 960 secs
/0 = 2.1 10™ bits
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is immersed in an unviscous compressible dense
fluid which occupies an open unbounded domain L
of R* with aL = ¥ U 2,, where X, is a free surface
(see Fig. 6). If there is no free surface X; = .
Neglecting the gravity wave on the free surface, we
can build an equivalent new problem without free
surface. This new problem is defined for the elastic
medium §" = S U S’ without free surface, where
S’ is the body which is symmetric to § with regard
to 3,. Consequently, we shall consider 2, = &
henceforth. Note that in the developed computer
program we can take into account a free surface
which is treated with the previously described
method. In these conditions the MF vibration equa-
tion of the discretized coupled system, expressed
with the only displacement field of the structure, is
of the type (29) and is written as

—0’[Ms + My(w)] + iw[Cs + Cplw)]

+ Ks] Un(w) = Fulw), (59
where the matrix Bg(w) of the hydrodynamical
coupling operator is such that

"UJZBH((IJ) = —(.UZMH((.L)) + IwCH(LIJ) (60)

The matrices Mgy(w) = Re By(w) and Cylw) = —w
Im By(w) are real symmetric positive definite and
classically named the added-mass and radiation
damping matrices. We give hereafter a few preci-
sions on the construction of By(w) and some indi-
cations on how to obtain the MF model equation
(30) starting from eqn (59).

3.2.2(a) Hydrodynamical coupling and radiating
operators. As 2, = I, we have dL = X. Let x be
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a generating point of the space R* equipped with a Let us consider the following Neumann problem
Cartesian system Ox,x,x;. Let « be the unit normal related to the Helmholtz equation in the unbounded

to ¥ internal to domain L (see Fig. 7). Let p be the domain L:
mass density of the fluid in its equilibrium state and

¢ the corresponding speed of sound, both assumed Ad +
to be constant. For any w in R, let x — iwu(x) be a
C3-valued harmonic velocity field defined on % due b

to the deformation of . Denoting by V, ¢, and p,

i : 5 ; da
respectively, the harmonic velocity field, velocity
potential, and pressure in the fluid, we have ‘ o _
ar

V=gradd; p= —iwpd. (61) o] =

(=]

£ & =0into L,
=

iw (u, a); on X,

= 0(1/r),

vw¢
i—
{34

oQlry, r = Ox|— +=.

(62)
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Table 2. Hydroelasticity calculations with CRAY 1S5/2000 for each band B,

Step (1): Calculation of By ({,) with FSMFM

NDOFF = number of fluid DOF’s (m') = 1473

NWKF = number of matrix elements By ((2,) = 2 169 729 (complex word 128 bits)
CPU time = 1407 secs

Step (2): Solving the coupled problem with ADINA

MTOT = 580 000 words (64 bits)

NEQ: Number of DOF

NWK: Number of matrix elements (complex word 128 bits)
ISTOH: Maximum block length (complex word 128 bits)
NEQC: Number of DOF to be condensed in a substructure

NEQ NWK ISTOH NBLOCK
Substructure 1 1357 149 779 43 200 4
Substructure 2 2037 338 541 43 200 8
Substructure 14 2037 338 541 43 200 8
Master structure 3744 2 239 289 42 898 54

Total number of DOF = 27 852
NSTE = L, + L) =3*(4 + 7) = 33
CPU time = 1555 secs
Step (3): Acoustic field radiated computed with FSMFR
CPU time = 307 secs

Total for one B, band and three steps:
CPU time = 3269 secs
/O = 2.6 10° words (64 bits)

Total for the complete analysis on B = [2000-4000] Hz

CPU time = 65 380 secs
/O = 3.3 x 10" bits

NEQC
1176
1764

1764
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If the function x — (u(x), a(x)); belongs to an ap-
propriate set of functions, it is known that, for any
fixed real w, the problem (62) has a unique solution
& which is a C-valued continuous functionon L =
L U X (and also on R?) such that

i(ﬂ@m(<up Ct)}).
I‘mg-?—w,x((uv u)])s

(63)
(64)

bx
Vx € L, ¢(x)

where ¢x is the potential on X, ¢(x) the value of
the potential at a fixed point x in L, and where
B, and R, . are linear operators that must be de-

termined. We introduce the notation

[(u, 7)) = fz(u(x}, () dE(x). (65)

Let v be a test function belonging to an admissible
class of functions. The hydrodynamical coupling
operator, denoted by By(w), is defined by the
equality

(for, D] = @ [(Bulw)u, )], (66)

where f, is the hydrodynamical force field applied
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Free surface




to % such that
(Fu, D] = — fz Ps(x) (ax), 2000 d3(x),  (67)

where Py is the pressure field on X. So, using egns
(61) and (63) we see that the complex symmetric
operator By(w) is defined by the sesquilinear form

u, v = [(Balw)u, )]

= —p [, o s Bullo w2 AT (68)

In the same way, for any fixed x in L, the hydro-
dynamical radiating operator, denoted by #(w, x)
is defined by the equality
plx) = — 0 Rylo, X)u. (69)

So, using eqns (61) and (64), the linear operator
R u(w, x) is defined by

u— Rylw, Hu = — pRu ({1, &)3).  (70)
3.2.2(b) Spatial approximation of the hydrody-
namical operators. The surface X is meshed with
isoparametric finite elements which are compatible
with the finite elements of the structure (on Z).
Thus, there is a (3 x m') real matrix Q(x) such that
forx € 3, u(x) = Q(x)U’, where U’ is the (m" X 1)
column matrix of the m' fluid DOFs introduced in
the mesh of 2. Thus, the (m' x m’) complex sym-
metric matrix Bj(w) and the (1 x m') complex ma-
trix Riy(w, x) of the operators By(w) and Rylw, x)
are such that

(Bu(@)U', V')
Ri(w, x)U’

[(Balwu, V)],

Ry(w, x)u.

(71)
(72)

il

I

If there is a unit normal to % at a fluid node, we use
only one fluid DOF for this node by taking an ap-
propriate local coordinate system. If it is not the
case, we have three fluid DOFs at this node. This
method allows us to obtain the smallest number of
fluid DOF. For the finite element program which
solves the coupled equation, the matrix By(w) is
seen by this program as the matrix of a special finite
element having m' DOFs. This matrix is assembled
with the matrices of the finite elements of the elastic
structure. Thus in eqn (60), we have denoted by
B;(w) the hydrodynamical coupling matrix By(w)
assembled with the matrices of elastic structure.
Note that the matrix By(w) is full.
3.2.2(c) Numerical construction of the hydrody-
namical matrices. Two cases are considered.
General case: The surface 2 is any surface of B?
and there may be a free surface. The hydrodyn-
amical coupling and radiating matrices are built by
solving the problem (62) with an exact integral
equation formulation on X, which has been devel-

oped at ONERA. This method has been developed
and validated in a low frequency range[49, 57, 24, 76]
and has been improved for the MF range. This last
theory is exposed and validated in Ref. [2]. For any
w in R, no irregular frequencies are obtained. Some
general programs have been developed on scalar
and vectorial computers. The program FSMEFM
builds By(w) and FSMFR builds Ry(w, x). For this
MF dynamic analysis with fluid-structure interac-
tion, three steps are used. In a first step FSMEFM

‘computes Bj;(w). In a second step ADINA realizes

the MF analysis of the coupled problem. In a third
step FSMFR calculates the radiated acoustic field.
The corresponding programs for an axisymmetric
coupled problem are FSMFMA and FSMFRA.
Particular case: The surface X is a slender axi-
symmetric surface and there is no free surface (the
coupled problem is not necessarily axisymmetric).
In this case the coupling and radiating matrices are
built by using a hydrodynamical assymptotic the-
ory developed at ONERA for the slender surface.
This theory has been developed and validated in
low frequency[20, 86] and has been modified and
validated for the MF range[88]. The gain obtained
on the numerical costs is large enough, but this
method can be employed only for particular cases.
The programs FSMFME and FSMFRE have been
developed for 3D case, i.e. for an unaxisymmetric
coupled problem. The corresponding programs for
an axisymmetric coupled problem are FSMFEA
and FSMFREA.
3.2.2(d) To obtain the MF model equation. To ob-
tain the MF model equation (30), starting from eqn
(59), we use the method exposed in Sec. 2.4, We
note that the functions v — M(w) = Ms + Mglw)
and w — C(w) = Cs + Cylw) verify the hypotheses
of Sec. 2.1. Consequently, for a narrow MF band
B,, we have

M, =M;s +Mg(Q,);C, =Cs + Cul2,);K, =Ks.
(73)

This approximation, which is described in Sec. 2.4,
is very efficient because w — Mpy(w) and 0 — Cxlw)
are smooth functions due to the fact that the fluid
domain is unbounded [no spectral problem is as-
sociated to the Neumann problem (62)]. We have
studied in details the validity of this approximation
in Refs [89 and 90].

If U, is the MF solution of the coupled problem
for the MF narrow band B,., which is built with the
general method exposed in part I, the radiated
acoustic field is written as

Il

plw, ¥) = —0’Ry(Q,, DU, (0) |z

R(Q2,,, x) Uy(w) |5,

(74)

Il

where x € L, U, |; is the restriction to X of U, and
where U,(w) is calculated with the formula given in
Sec. 2.5.2.



3.2.3 Corresponding development in ADINA.
For the linear MF dynamic analysis we have im-
planted in ADINA a special fluid element. The
input data of this element concerns the list of the
numbers of the fluid nodes of 3, and the fluid DOFs.
During the assembling phase, the (m’ x m') full
complex symmetric matrix Bj({),) is read on a file
which has been generated by step (1). At the end
of step (2) with ADINA, a file containing Wo(/r.) |5,
| € [—L,, Lg] is generated [see eqn (46)]. This file
is read in step (3) to calculate the radiated acoustic
field [eqn (74)].

3.2.4 Validation. The proposed MF method and
the programs have been validated by comparing the
results given (1) with some analytical solutions (e.g.
an elastic sphere[2]), (2) with the numerical solu-
tions computed with other validated programs de-
veloped at ONERA for LF domain (e.g. an elastic
circular cylinder with bottoms)[88-90] (note that
the MF method can be used in LF range in order to
validate the MF programs), and (3) with MF exper-
imental measures realized by ONERA on several
systems[58, 91]. We present hereafter an example
with experimental comparisons taken in Ref. [26].
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3.2.5 Hydro-elasto-acoustic of a stiffened shell
cylinder. In this section we give an example of a
MF hydro-elasto-acoustic calculation with experi-
mental comparisons. We consider the structure de-
fined at Sec. 3.1.5, but the bottoms are closed and
there is no floor. Thus the geometry and the ma-
terial properties are defined by Fig. 2(a). This struc-
ture is immersed in an unbounded compressible
fluid (water) and there is a free surface. The fluid
properties and immersion depth are given in Fig. 8.
This structure has axisymmetric part but is not
axisymmetric due to the internal subsystems. On
the other hand, the fluid-structure coupled problem
is not axisymmetric because there is a free surface.
The MF linear dynamic calculations of the coupled
system are realized for the broad frequency band
B = [2000-4000] Hz. This band is partitioned into
20 MF narrow bands B, of bandwidth 100 Hz. For
each band B,, we apply two excitation forces F,
and F,, « which are defined in Sec. 2.3.1(b). The spa-
tial parts A; and A, are two concentrated forces lo-
cated symmetrically with regard to the central plane
of symmetry [see Fig. 8(b)]. The modelization of
the elastic structure is realized with the method de-
scribed in Sec. 3.1.2(b) and is meshed with axisym-
metric 2D solid elements. We have considered 14
values of N (circumferential node pattern): N € {0,
1,2,..., 13}, with an evolutive mesh. Taking into
account two planes of symmetry, only a quarter of
the structure is considered [see Fig. 8(c)]. The total
number of structural DOFs is 27 852. The mass
matrix is consistent and the structural damping ma-
trix is generated by eqn (57). The mesh of the in-
terface is defined in Fig. 8(d). There is m’ = 1473
fluid DOFs for a quarter of the X interface. A free
surface is taken into account. For each B, band the
hydrodynamical matrices By(0,) and R (0, x) are

computed with the general method and with the
programs FSMFM and FSMFR. The calculations
have been made with a CRAY 1S/2000 computer.

We give a few numerical results of the complete
analysis which has been made on this coupled sys-
tem(26] and some experimental results realized by
ONERA[58].

Figure 9(a) shows the evolution with the fre-
quency bands B, of 10 log,, E, where £ = E,(B,)
is calculated with egn (50), at two observation
points of the elastic structure. Experimental com-
parisons are made. Figure 9(b) shows the graph of
J.on—10log,, £,;(B, ;) for a given observation point
on the shell, close to the excitation force. Figures
9(c) and 9(d) show the spatial propagation of the
normalized energy E = E (B, )/Epn.. of the radial
acceleration ¢ for the B, bands [2700-2800] and
[3600-3700] Hz. Experimental comparisons are
given. Figures 10(a) to 10(d) are related to the en-
ergy E,(B,) of the radiated acoustic field p for the
band B, = [3600-3700] Hz. Figure 10(a) shows the
radiation diagram with a free surface. Figures 10(b),
10(c), and 10(d) show the radiation diagram without
free surface.

3.3 Linear MF vibrations of elustic structures coupled
with an internal viscous compressible bounded fluid
3.3.1 Serting the problem. In this section we
study the linear fluid-structure interactions in the
MF range of a 3D linear elastic body with a viscous
compressible fluid which occupies a bounded do-
main. For example, let us consider a steel or alu-
minium elastic structure with a large enough inter-
nal cavity filled with a light fluid (e.g. air). When
we study such a coupled problem in a broad fre-
quency band, we can obtain an MF behavior for the
structure and an LF behavior for the internal fluid
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Fig. 10. Radiation diagram. Energy in the band [3600-
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m. Plane YOZ. (d) Without free surface. Distance from
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(i.e. the first acoustical eigenmodes of the internal
cavity with a perfectly rigid boundary, have eigen-
frequencies in the analyzed frequency band). Con-
sequently, we must use a fluid formulation which
allows us to take into account this situation. It is
classically obtained if the internal fluid is governed
by an interior Neumann problem associated with
the Helmholtz equation, i.e. the fluid is perfect and
compressible. On the other hand, if the cavity has



a rigid boundary, we want the level pressure to be
controlled in the cavity when an excitation source
is applied into the fluid. Thus, we must introduce
the viscosity of the fluid.

For the fluid, one can use either an integral for-
mulation on the interface X, or a finite element for-
mulation in the bounded interior domain. The first
formulation introduces a coupling fluid operator w
— D(w) which depends on frequency. Thus, the
hypotheses introduced at the end of Sec. 2.4 are

not satisfied because w — D{w) is not a smooth

function, due to the existence of the associated in-
terior spectral problem. Consequently we shall use
the finite element formulation in the cavity. In this
case the mass, damping and stiffness matrices of
the fluid do not depend on frequency, and the gen-
eral MF method developed in part I is applicable.

With the proposed MF method, we do not need
to solve the eigenvalue problem related to the as-
sociated conservative coupled problem. Conse-
quently we shall use for this fluid-structure inter-
action problem a symmetric formulation with only
one unknown scalar functional to describe the fluid
state. Thus a node of a fluid finite element has only
one DOF. The fluid-structure coupling matrix is
classically generated with fluid-structure interface
finite elements, and is assembled in the global
damping matrix. So, we obtain a consistent damp-
ing matrix for the coupled problem. Note that we
have already introduced a consistent damping ma-
trix in the MF method (see Sec. 2.6).

3.3.2 Theoretical complements. We consider an
elastic body which occupies an open bounded do-
main S of R* with smooth boundary 5§ = £, U 2
and an internal fluid which occupies an open
bounded domain L such that L = . Let x be a
generating point of R* and « be the unit normal to
a8 external to the domain S. We let o' = —a« (see
Fig. 11). We study the linear vibrations of the cou-
pled system around a static equilibrium state. The
hypotheses on the elastic structure are those of Sec.
3.1, and we use same method for its modelization.
The mass, damping and stiffness matrices (M5, Cs,
and Kj) of the discretized elastic structure verify
the hypotheses of part 1. The fluid is compressible
and viscous, and we assume that the entropy is a
constant. We denote by p, ¢, and n the mass den-

sity, the speed of sound and the dynamic viscosity
coefficient of the fluid in its equilibrium state. We
assume p, ¢, and m to be constant. The kinematic
viscosity coefficient is v = n/p.

3.3.2(a) Fluid equations. Let V = (V,, V3, V3) be
the fluid velocity and p be the pressure field fluc-
tuation around the equilibrium state. We suppose
for the moment that there is no excitation source
into L. In these conditions, the continuity equation
is

1 dp ;
?E-FPleV:O (75)
and the linearized equation of movements is
1% . .
p— = —gradp + n(AV + jgraddivV), (76)

at

where A = div grad is the Laplacian operator in
R*. Using the formulas div rot V = 0, rotrot V =
grad div V — AV, applying the div operator to the
two members of eqn (76), and considering eqn (75),
we cbtain

1d°p 4 7 op
S——=-z—SA—-Ap=0. 77
e af 3 pc? 0 at 4 e
We are searching for a solution in the form
ab. =
p=—pa—?mtoL=I_U2, (78)

where ¢ is the new unknown functional. Note that
we have V # grad ¢, because rot V is not null into
L. Substituting egn (78) into eqn (77) we obtain

2
1 8°¢d (l

4 n 0 .
e = tol. (7
e + )Ad) 0 into (79)

3 pc?at
As we explained in the preceding paragraph, we

write rot V ~ 0 in a neighborhood of %. Thus, using
eqns (75) and (78), eqn (76) gives

4 n d o
Vv (1 - 3 pclat) grad ¢ = 0on Z. (80)

Let u = (u,, u2, us) be the elastic structure dis-
placement field. Consequently, the boundary con-
dition on Z, for the fluid, is written as

4 m 9\ ad <au
l+-—5=]==(=,a 81
( 3pczat)au’ a " " ,Onz (81)
and the boundary condition on Z, for the elastic
structure, is
g(a) = — paon X,

(82)

where o is the 3D stress tensor of the elastic body.



3.3.2(b) Variational formulation for the fluid and
finite elements. Let ¢ be a test function belonging
to an admissible class of functions. Using Green's
formula, and since o’ is the exterior normal to the
fluid, we have

) 40 [, ]
I:Q ar? "p] i ?spc"'l:gai ar * ®
+ [ R, @] - [(g&p. 3—‘!‘)} -0, (83)

where the linear operators 2, %, and ¥ are defined
by

= P
[g‘d)v "P] = Cz J;_ ¢"P d‘x!
(96, ] = p [ (grad &, grad ¢)s dx,  (84)
[(%d, w)] = p L olu, a'); d2.

The fluid-structure coupling operator, denoted by
%5, is defined by the following bilinear form:

(;) : (;) S [, D) + (e, W], (85)

Using the finite element formulation, we obtain
classically the matrices Q, R and C.s of the oper-
ators 2, R, and € 5, where the matrix C;sis written

as
0 H
CLS = [HT 0] ]

and where H is the matrix of #.

3.3.2(c) Discretized equation of the coupled sys-
tem. Denoting by &, the column matrix of the fluid
DOF's, the MF vibration equation of the discre-
tized coupled system is written in the Fourier space
as

(- @M, + iwC, + K,) (g) L] (1;,,) , (8D

(86)

where the matrices M,,, C,,, and K,, are such that

_|Ms 0 |,
Mn_[o _Q]p
e B 88
n = 4 7 ; (88)
T M
- _’,[:uc'I’l
oy
0 g

K,

I
[ —
el
2}

i = a’] '
oS
If there is an excitation source in the fluid, the null

term in the right member of egn (87) must be re-
placed by the excitation term. On the other hand,

to take into account the loss phenomenas in the
neighborhood of X, which are not directly model-
ized in the present model, one can artificially in-
crease the value of n for the fluid finite elements
located close to X. Note that the eqn (87) is a MF
model equation of the type (30). The matrices M,,,
C,, and K, are constant, real and symmetric. We
see that the hypotheses introduced in Sec. 2.1, i.e.
M,. C,, and K, are positive definite matrices, is
not systematically verified. But this point is not im-
portant. Indeed the necessary hypothesis is the fre-
quency response function w — T(w) [defined by eqn
(15)] to be a continuous and bounded mapping on
R. So, one can easily verify[27] that this hypothesis
is satisfied for eqn (87) if M,,, C,,, and K, verify all
the hypotheses of Sec. 2.1.

3.3.3 Corresponding development in ADINA.
We have implanted in ADINA:

(a) Compressible viscous fluid finite elements
which generate a *“‘mass’’ matrix —Q, a consistent
“*damping’” matrix —4/3(n/pc?)R, and a *‘stiffness”
matrix —R. Each element node has one DOF. The
elements are: (1) 2D fluid element isoparametric
quadrilateral with a number of nodes 4-8. The ele-
ment can be used either for a two-dimensional or
for an axisymmetric N = 0, 1, 2 . . . problem. (2)
Three-dimensional fluid element isoparametric or
subparametric curvilinear hexahedra with a vari-
able number of nodes 8-21.

(b) Fluid-structure interface finite elements
which generate a consistent damping matrix C; s de-
fined by eqn (86). An interface finite element has
fluid nodes and structural nodes. At each fluid
nodes corresponds a structural node having the
same coordinates. The elements are: (1) IDinterface
element isoparametric curvilinear line with 2 x 2
or 2 X 3 nodes. The element can be used either for
a two-dimensional or an axisymmetric problem. (2)
Two-dimensional interface element isoparametric
curvilinear quadrilateral with a variable number of
nodes 2 X 4to2 x 8.

3.3.4 Validation. The validation has been made
by comparing the MF numerical results with known
analytical solutions. These comparisons are given
in Ref. [27].

3.3.5 Example. We consider a shell circular
closed cylinder with elastic bottoms and internal
fluid. We are studying the MF vibrations of this
system subjected to an axisymmetric loading in the
broad frequency band B = [0-4000] Hz. This band
is partitioned into 40 MF narrow bands of band-
width 100 Hz. The geometry, the mechanical prop-
erties and the finite element modelization are given
in Fig. 12. Taking into account one plane of sym-
metry, only half-system is modelized. For the elas-
tic structure, the mass matrix is consistent and the
structural damping matrix is generated by eqn (57)
with &, = 0.003.
3.3.5(a) Influence of the elasticity of the walls. The
fluid is excited with axisymmetric ponctual sources
applied to all the fluid nodes located on the OY and
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Fig. 12. Fluid-structure interaction with a closed cylinder. Finite element modelization and mechanical
properties.

OZ axes (see Fig. 12). The frequential part of the
excitation is ig,,(m) on each band B,,. Two cases are
analyzed: (1) the structure is perfectly rigid with
internal fluid, (2) the structure is elastic with inter-
nal fluid. Figure 13(a) shows, for the two cases con-
sidered, the graphs of j, n — 10 logip E,/(Bn ),
where p is the pressure at the fluid observation
point O (see Fig. 12). This figure shows the influ-
ence of the elasticity of the walls on the fluid pres-
sure. Figures 13(b) to 13(e) show, for the two ana-
lyzed cases, the spatial repartition in the fluid of the
normalized energy E = E,,(B,)/ Emax for bands
[1000-1100] and [2600-2700] Hz.

3.3.5(b) Influence of the internal fluid on the struc-
tural vibrations. The elastic structure is excited
with a radial concentrated force applied to point A
(see Fig. 12). The amplitude is 1 and the frequential
part is 15, (w) on each B, band. Two cases are ana-
lyzed: (1) the structure is elastic without internal
fluid (vacuum) and (2) the structure is elastic with
internal fluid.

Figure 14(a) shows, for the two cases, the graphs
of j, n — 10 logyo E;(B, ), where g is the normal
velocity of the structure to the observation point B
(see Fig. 12). This figure shows the influence of the
internal fluid on the vibratory behavior of the elastic
structure. Figures 14(b) to 14(d) show, for the two

analyzed cases, the spatial propagation of the nor-
malized energy E = E;(B,)/Emax for the band B, =
[1600-1700] Hz.

3.4 Linear MF vibrations of elastic structures with
viscoelastic materials

3.4.1 Setting the problem. In this section we
study the MF linear vibrations of an elastic struc-
ture with viscoelastic materials. The viscoelasticity
introduces a temporal memory. Consequently in
the Fourier domain, the MF vibrations are gov-
erned by an equation of type (29). So, we shall use
the method described in Sec. 2.4 to obtain the
model MF equation (30).

3.4.2 Theoretical complements. Let us consider
an isotropic linear viscoelastic material. Let u(x ¢)
be a 3D displacement field, where x = (x;, x3, x3)
is a generating point R?. Let oy, and €, be, respec-
tively, the 3D stress and strain tensors. We have
€(u) = 1/2 (du;lox, + du,/ax;). In the classical the-
ory of linear viscoelasticity[11, 12, 42] the stress—
strain relation in the Fourier domain is written as
Gje(w, 1) = Mw) 827 = 1€5p(2) + 2p(w) €l),  (89)
where p(w) = pi(w) + inaw) = | Ww) | [1 + izg
d.(w)] is the complex shear modulus, and where



AMw) is the complex number such that

E(w) - 2u(w)

MWfes) = EGw)” o

Mw) = ww)

We have denoted by E(w) = Ej(w) + iEz(w) =
| E(w) | [1 + itg dg(w)] the complex Young's mod-
ulus and by 3, (w) and 8£(w) the loss factors.
Consequently, in the Fourier domain, a finite
element with a linear viscoelastic material has con-

sistent damping and stiffness matrices which de-
pend on frequency. The mass matrix is constant.
Thus, the MF vibrations equation of the discretized
elastic structure with viscoelastic materials is writ-
ten as
{—w*Ms + M,) + iw[Cs + C.(w)]

+ (Ks + K()}Uaw) = Fulw), O

_where Mg, Cs, Ksand M, C,, K, are, respectively,
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Fig. 13. Influence of the elasticity of the walls of a closed cylinder on the fluid pressure. (a) Frequency

response function expressed in terms of energy. E = energy of p/p integrated by frequency band of

20 Hz at the point O into the fluid. (b) Spatial repartition in the fluid of the energy of p/p in the band

[1000—1100] Hz with elastic walls. (c) Spatial repartition in the fluid of the energy of p/p in the band

[1000-1100] Hz with rigid walls. (d) Spatial repartition in the fluid of the energy of p/p in the band

[2600-2700] Hz with elastic walls. (e) Spatial repartition in the fluid of the energy of p/p in the band
+[2600-2700] Hz with rigid walls. ((c)-(e) appear on the following page.)
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the matrices of the elastic part and of the visco- feners. This structure is one ferrule of the system
elastic part. To obtain the MF model equation (30), described in Figs. 2(b) and 2(c). An industrial vis-
starting from egn (91), we use the method exposed coelastic material is placed on the shell between the
in Sec. 2.4. Consequently for a narrow MF band  stiffeners. We have analyzed this system on the fre-
B,, we have quency band B = [2000-4000] Hz which is parti-

tioned into 20 MF narrow bands B, of bandwidth

100 Hz. The modelization of this system is realized

M. =My % M with the method described in Sec. 3.1.2(b). We
C, = Cs + C,(Q,); (92) have used axisymmetric 2D solid elements and as-

sembled 11 circumferential node patterns: N € {0,
Kn = Ks + Ku(Q2). 1,2, -+, 10} The total number of DOF is 12 913.

Taking into account the central plane of symmetry,
We see that the memory of the viscoelastic material only half of the system is considered. The mechan-
is taken into account by writing B = U,B,, where ical properties and the finite element modelization
the bandwidth of each B, is determined in studying are given in Fig. 15. The functions © — | wlw) |, te
the variations of the complex valued functions w — 8,.(w), | E(w) |, and tg 8z(w) of the viscoelastic ma-
E(w) and v — p(w). terial are defined in Figs 16(a) and 16(b). The elas-
3.4.3 Corresponding development in ADINA. tic structure is excited with a concentrated force
For the linear MF dynamic analysis, we have im- (see Fig. 15) with an amplitude of 0.5 and a fre-
planted the isotropic linear viscoelastic material quential part i5,(w) on each B, band. Two cases are
model in the 2D and 3D solid elements. For 2D ele- analyzed: (1) elastic structure without viscoelastic
ments, the N = 1 axisymmetric type can be used. material and (2) elastic structure with viscoelastic
These finite elements generate a mass, a consistent material.
damping and a stiffness matrix. For a fixed B, Figure 17 shows, for the two cases analyzed, the
band the material model is defined by the four me- graphs of j, n — 10 log,y E;(B,,) where § is the
chanical constants p,(Q,), p2(2.), E(Q.), and radial acceleration of the elastic structure at the ex-

E»(11,,). citation point. Figures 18(a) and 18(b) show, for the
3.4.4 Validation. The validation of the new fi- two considered cases, the spatial propagation of the
nite elements is made in Ref. [12]. normalized energy E = E;(B,)/Eq.x into the gen-

3.4.5 Example. The elastic structure is a steel aratrix and into the excitation crown for the B,
circular shell cylinder with 11 inside transverse stif- bands [2200-2300] and [3100-3200] Hz.

-
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Fig. 15. Elastic structure with viscoelastic material. Modelization and mechanical properties.
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4. CONCLUSIONS

The difficulties encountered in studying the dy-
namics of linear elastic media in the medium fre-
quency range with modal techniques led us to de-
velop a method supported by numerical processes.
This approach can be used to address problems of
fluid-structure interaction in the same frequency
ranges, and in particular linear elasto-acoustical
problems. We are currently attracted to this method
s0 as to be able to process practical cases entailing
modelization with a large number of degrees of free-
dom. The numerical analysis that we have carried
out shows that this method can be used without
difficulty in the main existing structural computa-
tion codes.
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