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STRONG COUPLING BETWEEN INVISCID FLUID
AND BOUNDARY LAYER
FOR AIRFOILS WITH SHARP LEADING EDGE.
I. 2-D INCOMPRESSIBLE STEADY CASE

by

J.J. ANGELINI (*) and C. SOIZE (*)

ABSTRACT

We consider here the strong coupling between inviscid fluid and two-dimensional
boundary layer in cascade aeroelasticity problems. As a significant situation, we take
the upper surface boundary layer separated at the leading edge and reattached before
the trailing edge. In this first part, we study the incompressible steady case. The aim
is to develop the mathematical and physical model using experiments made on a flat
plate with sharp leading edge with four degrees of incidence at a Reynolds number
of 400,000. The assumptions and the construction of the physical and mathematical
model are given along with the numerical analysis, and we compare the experiments
with numerical results.

Keywords (NASA thesaurus): Aerodynamics — Aerolasticity — Boundary layer
flow.

(*) ONERA, BP n° 72, 92322 Chitillon Cedex.
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I. —INTRODUCTION

In the framework of cascade aeroelasticity prob-
lems [40, 41], the comparisons of experimental results
with the predictions given by numerical models are
not satisfactory if the model takes into account only
the inviscid fluid but not the upper surface boundary
layer, In effect, in the case of an airfoil with a
sharp leading edge at a positive angle of attack, not
completely stalled (situation investigated here), the
upper surface boundary layer separates on the leading
edge and reattaches on the airfoil, Analysis of the
experimental results shows that it is the separated-
reattached sitnation which modifies the phases and
that modeling with an inviscid fluid alone is therefore
not sufficient to predict the aeroelastic instabilities.
in this case, it is necessary to include the upper surface
boundary layer in the model and to take the inviscid
fluid/boundary layer strong coupling into account in
the unsteady model with separation on the leading
edge and reattachment on the airfoil, using a two-
dimensional model.

Mathematical and physical models as well as opera-
tional programs exist for strong coupling in the 2D
incompressible and compressible case. For instance,
defective integral equation (EDI) methods were devel-
oped at ONERA [25-32] and much research has been
done on the mathematical and physical models of the
boundary layer [2, 3, 15].

In the separated-reaftached situation, there is a
large amount of turbulence in the boundary layer, in
particular in the upstream separated region. It has a
significant effect on determination of the position of
the reattachment point on the airfoil, and it seems to
be the fluctuations of this position which cause phase
modifications in the unsteady case. It is therefore
necessary to correctly account for this phenomenon
in the model, which leads to modifying the transport
equations and modeling a turbulence term which
appears in the Karman equation. In addition, con-
ventional models seem to have difficulty in represent-
ing the physics in the initial percentages of the upper
surface near the leading edge. For this reason, we
chose an appropriate model based on experimental
results. Finally, this situation requires modifying the
solving methods for strong coupling, as the
separated-reattached situation is very different from
the attached-separated situation from the standpoint
of the mathematical nature of the equations, which
affects the solving schemes.

As was indicated, the case considered requires revis-
ing certain points of the physical model, the math-

ematical model and the solving methods.
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This part I concerns study of the 2D incompressible
steady case. It is aimed at developing the model
which will be used as basis for the developments
relative to the aeroelasticity problems and therefore
for the compressible or incompressible unsteady
model.

All these developments were established and veri-
fied mainly based on the measurements made in the
steady case [3] on a flat plate with leading and trailing
edges beveled on one side for a 4-degree angle of
attack and a Reynolds number of approximately
400,000, as we had pressure coefficients as well as
upper surface boundary layer parameters (displace-
ment and momentum thicknesses, form parameter,
integral turbulent friction, turbulence integral). We
also used another experimental base, i e. the measure-
ments made in the steady case[43] on the
Pflenminger-Sulzer (PFSU) blade profile, with an
angle of attack varying from 4 to 7 degrees for a
Reynolds number of approximately 2,500,000. For
these measurements we actually had only Cps and we
used these results only qualitatively, mainly to check
the region of the reattachment point according to the
angle of attack and the angle above which stalling
occurred. However, we give experimental compari-
sons for the Cps of PFSU.

II. —MODEL CONSTRUCTION DATA
AND HYPOTHESES

We consider an airfoil with a sharp leading edge,
a chord L, an angle of attack «,, in a flow at a velocity
V4, with a Reynolds number Z=p[|V,, || Lip. All
the parameters of the problem are made dimension-
less. The geometry of the dimensionless airfoil with
unit chord is identified in a reference system OXZ,
where O is the leading edge and 0X is the chord. We
therefore have V , =(cos oy, sin ;) and |V, [|=1. A
curvilinear abcissa x with origin O is defined on the
airfoil, positioned to cover the upper surface from O
to the trailing edge F and the lower surface from F
to 0. The curvilinear abscissa of F corresponding to
X=1is noted x;. The upper surface is described for
xe]0, xg[ and the lower surface for xelxg x{. We
consider the local orthonormal curvilinear reference
system (xx’, xz) whose origin is the curvilinear
abscissa x, with xx” tangent to the wall and xz point-
ing along the external normal.

The hypotheses of the model corresponding to [3]
are as follows:

(H1) The airfoil has a sharp leading edge at a
positive angle of attack.

{H2) The flow is steady, incompressible, 2D at a
high Reynolds number.

(H3) The upper surface boundary layer is a turbu-

lent thin 2D layer separated at the leading edge and
reattached on the airfoil.



The upper surface curvature terms can be neglected
in the boundary layer equations.

(H4) The lower surface boundary layer may not
be taken into account in the model.

(H5) The external inviscid fluid flow is potential.

. —MODEL
FOR THE UPPER SURFACE
BOUNDARY LAYER

II1,1. — BASIC EQUATIONS OF THE MODEL

The equations of the model are the averaged
Navier-Stokes equations with incompressible constant
viscosity (NSMI) for a turbulent thin 2D boundary
layer in the vicinity of a flat wall and at a high
Reynolds number. Generally, the terms related to
the turbulent kinetic energy are neglected in these
equations, but for the reasons already stated, we keep
these terms in the NSMI. They have the effect of
coupling the Karman equation with the transport
equations. To the NSMI equations must be added
three transport equations whose closure is conven-
tionally provided by modeling. Considering {(H3), the
upper surface boundary layer is a flat wall. We
therefore establish the equations for a flat wall and
use them directly in the local curvilinear reference
system of the airfoil upper surface. Space R? is
therefore referenced to a cartesian reference system
Oxyz; the flat wall is in plane Oxy, the main direction
of the flow is Ox, the boundary layer is on side z>0,
and the 2D flow plane is plane Oxz. u, v, w are the
velocity compenents in Oxyz, p is the pressure and p
is the density. If A designates one of the values, we
write A=A+ A4’ where A={A> is the mean value
and A’ is the fluctuation. In the incompressible case,
p'=0 and p=p. As the viscosity is constant, p’=0,
the dynamic viscosity coefficient p=p and v=p/p. In
the framework of the above hypotheses, the NSMI
equations are written:

e 6w
— =0 I
ox 62 )
) 72
p—a—+p—( )+p~(uw)
ap 61: 2
= - ¢ 2
6x P (<u > (2
aw 8 __ 3
i i e ) — =2
pat+pax(HW) paz(W)
-
m—wf’n——_(p<w'2>) (3)
oz
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where:

- du
Tam = 5-15;

—pLlu'w' (4)

&)

where T1,,,, is the laminar viscous friction, t,,, is the
turbulent friction and 7 is the total friction. K and &
are the kinetic energy and the turbulent dissipation
term per mass unit respectively:

Tar=

T= Ttam =+ Tur

K=%(<u'2>+<v'2>+<w'2 % )

~ rN2 s\ 2 PN 2
(GGG ) o
W\ 8x dy dz
For closure of the three 2D transport equations in
K, 1, and &, we use the model proposed in

[9, 23, 24, 46] for the incompressible turbulent thin 2D
layers. These equations are written:

6(Tlur) _a (rwr) _a(Tlur)
+u— +w—
ot dx dz\ p

7l d
=C\'1Ka C f(rlur>+_—‘]

Jz 2K\ p gz "
0K 0K 0K [t \ou é
— +u w— = — —&+ =7 8
o ox ez ( )az oz " ®
3 88 08 _ . 6t \d
— tu—+w—=C, —
dt dx 0z K EJZ
2
1,
—cc2§+ch
K éz
Jo=Y i(m) Jo= Y K
oo, dz\ p /) oy oz
J,:=X’— i:q;-{; e = 0%
o, 0z e
O’K=i; Ge=1.3 i
C, =Qa)*C a,=015 | (0
C,=15 C,=1275 C,=L18{
2 3j2
v=Qa KWL s=C4) “;) k¥ (1D

By eliminating length [ between the two equations
{11), substituting the expression of v, thus obtained
in (9) and taking equation (1) into account, equations
(8) are written:

a (Tlur) a ("’Tlur) a (_Tlur)
+—ly— i+ —[w—
ot éx\ p dz o

2
=—1,5€(ﬂ—009K 6”)
K\ p & oz

g 0 { Tor
52(016’ 62( )) 12
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oK 8
o Z@n+ - H
ot Ox
2
m( m,)@u (009K 6K> (13)
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2
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II1,2. STEADY INCOMPRESSIBLE 2D
DEFECTIVE INTEGRAL EQUATIONS

The defective formulation and the approximated
defective integral method developed in [27, 28, 29, 30]
are used with the assumptions of an incompressibie
steady turbulent thin 2D layer for a flat wall. With
the viscous variables u, w, p, p are associated inviscid
fluid variables u, w, p, p defined in the same space
domain (here p=p)) and verifying the steady incom-
pressible 2D Euler equations (EUI). In addition,
the asymptotic conditions at infinity in direction Oz
normal to the wall were imposed on these variables.

limzw -i-uo(cp(x: z)—(T)(x, Z))=0, } (15)

oe{u, w pl

Subtracting (NSMI) from (EUI) and using the thin
layer approximation gives a first-order approximation
of the defective equations:

d - 0 _
—(pu—pu)+ —(pw—pw)=0 (16)
dx oz

P .
g (put—paH)+ —(puw—puw)
ox iz

F I )
—(p-p=——+— (W 17
+ax(p 1 az+ax(p<u > (17)

9 o= (p¢w?
— (=P = (W), (18)

Integrating equations (18), (16) and (17) in z from
0 to +oc, and using (15) gives (1) a relation between
the inviscid and viscous pressure fields, (2) the strong
coupling relation (RLCF) between the inviscid veloc-
ity field, the viscous velocity field and the displace-
ment thickness &,(x). (3) the Karman equation
(EQK). Developing the local defective equation (17)

Rech. Aérosp. — n° 1987-4

22

on the line with equation z=35(x), where d, (x) is the
thickness of the boundary Iayer, using (16) and writ-
ing the equivalent of (15) on this line for u and w
gives the entrainment equation (EQE). However, we
also use an approximated form of EQE called
(EQEA), obtained by integrating (1) in z from 0 to
8(x) and using EQE.

The inviscid fluid velocity modulus is noted g (x, z)
and, for z=0, this modulus is noted ¢ (x):

qix, 2)=(u(x, 22 +w(x, 2)))"/? }

19
Q(x)=q(x, 0). (19

The displacement thickness &, (x) and momentum
thickness 8(x) are such that:

PQ(x)8, (x)= j (Pu pu)(x nd (20)

0 (42 3, (1) +0(2) } -

-t oo
= J\ (p u2 =P gz)(x. £} dz

[}

The form parameter of the layer is conventionally
noted H (x) and «{x) such that:

8, (x)
B (x)

0, (x)
&(x) '

H (x)= ;o alx)= (22)

The friction Cp(x), entrainment Cy(x) and global
dissipation ®(x) coefficients are defined by:

Ce(x) _ 1(x, 0) 53
2 p O (x)? @)
(5?/52)(,:' & (x))

C = = (24
=) pqix, 8(x))(6/0z(u— “))(x. B (x)) )

2 o ou
Px)e= —r — dz. 25
&) pQ (x)3 .L (’5 éz )(x. z} ’ 2>

Finally, & (x) denotes the integral related to turbu-
lence such that:

F/_(X)=J w(p<u"2>—P<W"°’ D, ndz. (26)

Neglecting the external turbulence and developing
the wall boundary condition w (x, 0)=0 for x€[0, x],
the equations relating the pressures, RCLF, EQK,
EQE and EQEA, are written:

pix, z)=é(x, H+pLw?H(x, 2) 27

p(x, 2)=px, 2)+p{w?(x z)
ii—{Q(x)Eil(Jc)}=w (x, 0) (28)
dx



L (90 (5, (9 +0 0N} —p @)

—p00rEEY L 4 5y (9
2 dx

48 (x)

U £
(P i, 5cxn .

—(p W)(x, 5 (x)

=(P i, 5y X Cp(x) (30)

d
I {PQ(X)@B(x)~8; (xN=pQ (x)Cp(x). (31)

As was mentioned, EQK contains an integral term
T (x) related to the turbulent kinetic energy.

11,3, — ALGEBRAIC CLOSURE

The use of EQK. and EQE requires the introduction
of an algebraic closure since there are more unknowns
in the problem than there are equations.

131, — Profile of the mean velocity and friction
coefficient

We use the model proposed in [28] for attached or
separated, incompressible or compressible turbulent
2D boundary layers. This model covers the complete
domain 1<H< +o¢ and models the profiles with
reverse flow, In the incompressible case, this model
leads to the following formulation in which all the
valies depend on x, but we have omitted x to simplify
the expression. We note as 1} the dimensionless ordi-
nate, as %;, and %; the Reynolds numbers associated
with 8, and &

1

Z
n=-6-’ '@E;=%Q61! '%Sza‘%sl' (32)

Denoting as Sg(x) the “sign of x” function, the
mean velocity profile and Cp are written:

w‘?_%’l —1-C,Fm+C, Logn (39
Cr=2(0,41 Cl)z(Sg Co 34

where:

Y
F(” ”) i o <ns<t
l—m*
1 if 0=En=n*

F(n)=(1-n*?%7

F(m)=

Function a+»n*{a) is such that:
n*=0 if O<a=s0,44
(boundary layer attached in x)
n*=4,598 (x—0,44) if 0,44 <0x0,69)(36)
n*=2,299(a-0,565) if 0,69<a<l

{boundary layer separatedin x).

Constant C, (x) is obtained by solving the equation:

_ 1—Cyx
Log(0,41 &, | C, /o) +5,25% 0,41 - C,

(37)

¢y

where:

2,22

= 38
1+1,22n* 38)

3

and constant C, is given by:
C,=1-C, { 5,25 x 0,41

+Log (0,41 Rs, ~|~£~1-~|—) } . (39)
o

We will use these closure equations described
below. Z; and o are fixed in a point x.

We compute n* by (36), C, by (38), C, by solving
(37, C, by (39). We determine g and C; by (33)
and (34).

I11,3,2. — Expression of the form parameter H

Using the thin layer approximation, we have, start-
ing from (21} in x fixed:

Q2(51+9)=Q2r(u—2—ﬁ)dz

o \Q? 07
. 5(]_a<z>2)d
~Q L QZ z.

Considering the definition {22) of H, this gives:

L ()

Substituting the expression of the mean profile (33)
gives, after making all the calculations:

a(%_;>=_c§[q*+2f16(i—n*)]——2Cf

+2C, Cn*(Log n*— 1 +2(1-—m*A(n*)] (40)
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where:

1
A(M*)= ~-2-|:AIB*+A2+A37L*+A4ki

+A; Ay By Log n* + 45 A3/% Arctan

7

he=n*(1—m*)"Y Bi=4—1A3;
A,=025  A,=—02575  A,=0.45;
Ay=—1475  A,=16  Ag=0.1578.

I11,3,3. — Modeling of the entrainment coefficient and
total dissipation for an equilibrium turbulent boundary
layer at a high Reynolds number

For an equilibrium turbulent boundary layer, coef-
ficient Cp{(x) defined by (24) is noted C;_(x) and the

dissipation ® (x) defined by (25) is noted ., (x). For

high Reynolds numbers, we use the model proposed
in [28] which is adapted to separation. This model is
constructed with the profile equation {33) and a mix-
ing length model for T based on the scale § such that:

3, (x
3()=(1-n* () =(-n* N2 (@
o (x)

For a flat wall boundary layer in the incompressible
case without correction factor for external turbulence
effects, this model is written:

CEcqu,053 Cy0—0,182x 0,41 x \/i xC; (42

Oy =|u,||Cr] +0,018 (1 —ul)? (43)

ol
where:

u,=1—Cyo {44)
[I1,3,4. — Modeling for a turbulent boundary layer
out of equilibrium

To use EQK and EQEA, it is necessary to intro-
duce a model of F (x) and Cz(x) which differ from
the equilibrium values for boundary layers which are
not in equilibrivm. We again use hypotheses (H2)
and (H3).

A. Model construction assumptions

In the turbulent part of the boundary layer, we
have T~1,,,= —p{u’ w ) and we can neglect the cor-
rections which would have to be made for the region
located in the vicinity of the wall. Taking f(x, z)
such that:

[ x, z)e{irm,(x, z), K(x, z), & (x, z)} {(45)

P
for a turbulence not in equilibrium and f,, (x, z) as the
corresponding value for an equilibrium turbulence:

f;q {x: Z) € { i Ttur. eq (xa Z): Keq (x, Z), c}:’aeq (X, Z) } '
(46)
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we can always define g (x, z) such that:

Jx, 2)=Foq (x. 2) g (%, 2). (47)

We then use the one-dimensional approximation of
g (x, z) proposed in [28] which consists of writing for
ze (0, d(x)):

S, 2) —g(x, 2)~E ()= )

48
feq(x: 2) Jea () 9

the one-dimensional model fcq(x) of fiq(x, z) being
defined by:

8 (x)

Jeq(x, D dz

0

&(x)
=7 s D=5 @ Tat0 9
(1" 8} () ' C '

with 8(x) defined by (41). Using (48) and (49) yields:

8 (x)

fx, z)dz

[}

5 {x)
Zj fx 2)dz=f (x)8(x) (50)
(1*3) (x}

where f (x) is the 1D approximation of [ (x, z). We
set:

~ I~ -~ I~
T(x)= _Tlur(x); ch (x): ﬁtlur. eq (x)
P p

T(x) T ()
= = 51
-C(X) %eq (x) :Etur. eq (x) | ( )
R(x) & (x)
k = N = = .
e YT E®
which gives the following model:
Ce(0)=1(x) C, (%) (52)
O (x) =7 () Bpq (). (53)

To close the model it is necessary: (1) to have a
model of the equilibrium values Toq (%), Kg(x) and
&.q(x); (2) to determine equations for t(x), k (x) and
£(x) from the local transport equations (12)-(14); {3)
to construct a model of & (x) defined by (26).

B. ID Approximation of the Mean Profile and Its
Gradient

Applying definition (50) of the 1D approximation
to u and %, writing 4 (n)/@ ~q (n)/Q and using (33)
Z



gives, considering the fact that
1
JF(u)du=9/20~1,’2.
a
T — 1,22+1_C2
ulx, 2N (xX)=0 (x)| =%
{ulx, 2))(x) Q()[ 57
—Ci— St Log n*]
fn®

du(x, z) C, Logn*
( P )() Q()(wwww )

Using the closure equations (37)-(39) gives:

limg, -+ (105, DR =Q A (54)
. 0i (x, 2) 1—u,(x)
1 = e B
i, m( b )(x) ( 5 .)Q(x)(SSI)
with u, (x) given by (44) and u(x) such that:
u(x)=(1.22+u, (x))/2.22. (56)

C. Modeling of equilibrium values for high Reynolds
numbers

First of all, it can be seen that from definition (25)
of d(x), we infer:

J ' 11:% (. 2) Ou (x, ) dz =D, (x) Q) (57)
P oz 2

0

The expression of é"cq {x) is determined from the
above model. To obtain the model of K, a(x) and
eq(:vc), we take the model developed in [28] which

1

consists of introducing two models of —1,,, .,(x, 2)..
P

The first is 2 model of eddy viscosity:

K_{x, )

1
5 Tour, eq i X% 2)= 009 - (58)

- (x’ Z)

& oy (X, 2) a

and the second is a mixing length model constructed
on scale & (x):

1 Tour, oq (% 2)=(0.095 (x))? (53-‘-7—("’—2) )2. (59)
P dz

Applying the ID approximation (50} to (58) and
(59) gives two expressions of Tr'eq (x) which are com-
puted using (55) for 42; high. As model of 1 (x) we
usc that constructed from (59), and the model of

K., (x) is obtained by eliminating T, 4(X) between the
two expressions of r,_,q {x). This yae!ds

Teq (x) =Ieq (x)Q (x)z; } (60)
Teg () =[0.09 (1 —u, (x))]*
K (0)=Ke (x) Q (x)% (61)

25

‘_ch (X) = [0-09 (1 —_ up (x))&;—gﬁ :111'2 }
D,(x)

Eg()=8, ()0 ()%  &,(x)= 2309

(62)

where 3 (x) is defined by (41), u,(x) is defined by (44)
and @, (x) is defined by (42).

I1,3,5. — Modeling of the integral rurbulence term %

The term 7 (x) defined by (26) could be expressed
directly by adding two transport equations to equa-
tions (12)-(14), one for (w'?)> and the other for
{w*>. But in this case, it would be necessary to
proceed to modeling to ensure closure. Under these

conditions, we preferred to directly model 7 (x). We
therefore write:
< u’2> (W2 D), -;—h(x Z)K(x 2) (63)

It should be noted that if the turbulence were iso-
tropic, we would have h=0, and if it were orthotropic
with, for instance, vES=(0.8)2 Cu?y,
{w?>=(0.5*¢(u?>, we would have h=0.8, Here,
this is not the case. Substituting (63) in (26} and
using (48) and (50) gives:

T (x)=ph(x)3 (x) K(x)
as well as, with (51), (61) and (41):
T (x)=pQ (x)?8, (x) H (x) k (x) (64)
A=A 1-n* (D Ku(da(x)™" (65
We developed the following model of  (x):
h)=Cpun* (%), Cy=5. (66)

It can be seen that the model used gives A(x)=0
and therefore 7 (x)=0] in the reattached region.

However, 7 (x} is nonzero in the upstream separ-
ated region. The value of the numerical constant
C,,. was numerically identified from the experimental
base {3].

1,4, — TRANSPORT EQUATIONS FOR THE
SEPARATED-REATTACHED CASE

These equations are established here for the incom-
pressible steady case at a high Reynolds number:

(1) The equation for K is obtained by integrating
{13} in z from 0 to 6(x), vsing (50) and (54) as well
as equations (48), (51), (57) and EQE (30). The wall
boundary conditions are explicitly inserted and the
contribution of external turbulence is neglected.

{2) For the equation in T, the second member of
{12} is transformed using model (58) of t then

tur. eq’
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the transformed equation is integrated in z from 0 to
8(x). We then proceed as for the equation in K.

(3) The equation in & is obtained like the equation
in K, starting from (14).
When the computations are conducted as indicated,

we obtain (see [1]) the three transport equations
sought for K, 7 and &;

4 siko)= "0
dx

eq

quj &3 (67)

. . RV
(8] -

I 5& T 0?
E(Bué"Q} 15K[12g 0,85 %— cq?] (69)

%(55@):@,5%[‘%—

fall

with 3 given by (41) and u by (56).
Equation {69) does not have an equilibrium sol-
ution such as i(S ué Q)=0. We will therefore pre-

serve, as is suggested in [32], a model with two equa-
tions in K and 7, equation (69) being replaced by a
closure equation constructed on the second equation
(11) which gives:

&(x) =(1 )( )( R(x) )
geq(x) Keq( )

In [28, 32],
gv“fl(x) =1

(70)

the authors use equation {70) with

In the case at hand of a separated-

reattached boundary layer, the work we did on the
flat plate led us to construct another model and write:

& (x) R(x) \**
Pt )(ch(x)) 7
where:
Alx)=1—n*(x). (72)

Thus, in the region where the boundary layer is
attached, A{x)=1 since n* (x} =0, but in the upstream
separated region, we have A(x)<1 since in this case
N*(x)>0. Eliminating & from equations {67) and
{68) using (71) and using notations (51) and the
equilibrium equation (62) gives a model with two
equations in & and T

—{Q(X)SS(X)u(x)_eq(X)k(x)}

- %‘I’eq ()2 (x)° (1 () =2 () k (x)>%) (73)
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IO ICHICIMEREY
X

=-15x 30, (90 09 21

k(@ () 1) —k ()7 (74)

With §, u, K., 1., P, and A given by (41), (56),
(61), (60}, (43) and (72) respectively,

IIL,5. — MODELING OF THE REGION NEAR
THE LEADING EDGE

When developing the model for the upper surface
boundary layer with separation on the leading edge
and reattachment on the airfoil, we were led to drop
the boundary layer equations for the first percentages
of the upper surface [0, x,] and to use a so-called
“geometric”” model for this region. In effect, analysis
of the experimental results [3] shows that for x, on
the order of 0.05 x; (the first 5 percent), the pressure
p(x, 0) is quasi-constant. In addition, the rotational
nature of the flow in this region means that the
potential inviscid fluid predictor cannot be legit-
imately extended to compute the pressure in this
region x [0, x,]. The model used for the region near
the leading edge is based on the following hypotheses:

(H6) The choice of the curvilinear abscissa x, for
a given problem must be such that:

(@) For xe(x,, x;] we have |w(x, 0)u(x, 0)| <!
which implies:

u(x, 0~glx, 0=0(x), xe[xy x7 (75

(b) For xe[0, x,]I, the pressure on the airfoil is
nearly constant.

For instance, in the case of the plate [3], these two
hypotheses are verified for x,~0.05 xj.

(H7) With abscissa x, fixed, the pressure on the
airfoil is modeled in region xe[0, x,] by constant
extension with slope continuity. Thus, we write:

px, O=p(x, 0),
dp

xef0, x,[ (76)

(XA, =0 at point x=x,. an

(H8) In region xefx,, xg], the inviscid fluid is as-
sumed irrotational. Bernoulli’s theorem gives for
XE[X 4 Xg]:

cp(x)=(%pn lelz)_ (% 0)—p.)

=1—-0(x)P=1—u(x, 00 (78)



since |V ||=1 and for xelx,, xz], we have (35).
Conditions (77) and (76) applied to {78) therefore

imply:
(du (x, 0)) ~0 (79)
dx X=X4
C,(x)=C,(x 1), €f0, x,[ (80)
u(x, O)=u(x, 0), xe[0, x,[. 81)

Under these conditions, {H6) and (H7) imply a
constant extension of u{x, 0} to the value u(x,, 0) for
x &[0, x,[ for the inviscid fluid predictor.

(H9) The boundary layer equations are valid for
xe[x,, xg]. Therefore, for xe[x,, xg), u{x, 0) is com-
puted by solving the boundary layer equations in
inverse mode.

(H10) For xe[x,, xz], equation (28) is written as
follows, considering (75):

w{x, 0) = di (uix, 03, (x)), xelx,, xg. (82)
X

In the geometric region xe[0, x4, hypothesis (H6)
no longer applies, since w(x, 0) obtained by the invis-
cid fluid predictor is no longer small compared with
uix, 0)=u(x, 0). In this region, Q (x) differs from
u{x, 0). We therefore opted to model the displace-
ment thickness 8, {x) geometrically for xe[0, x,[, by
extension of {82). Since w(0,0} =48, (0)=0, we obtain:

B, (x)=u(x, 0)"1Jx\v(§, 0) dx,

0

xel0, x,]

It should be noted that it is unnecessary to know
&, in region x€[0, x [, since the boundary layer equa-
tions are solved for xe[x,, x However, (83) sup-

plies the boundary conditions 3, (x,) and -‘%j—‘(x Ny
x

1I1,6. — UPPER SURFACE BOUNDARY LAYER
EQUATION SOLVING METHOD

The upper surface boundary layer equations with
the model introduced in Section III,5 are solved in
inverse mode. To simplify the expression, the follow-
ing notations are introduced:

at(x)=0t(X)"l=~3 (x)8; ()7 } (84)
xe]0,1], cefl, +oof
Ay=Hx) '=0(x)8,(x)"" (85)
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I11,6,1. - New form of the boundary layer equations

The EQEA equation (31) is written using (52) and
(84), for xe[x, xg)

5, (a— l)dQ-%-Q——{S(a«»l)} Q1Ce,, (86)

Starting from (29), using (75), substituting the
expression of w(x, 0) given by (28) and the expression
of & given by (64), and considering notation (85), the
EQK equation is written as follows for xe[x,, xg]:

N 2
—{st FIk)}+QdQ61—%cF @7

By differentiating the first member of (73) and
(74) and dividing each member by 03, the transport
equations in k and 1 are written as follows for
x€e[x,, Xgk

—(Gk)m— (t—hk¥%)— 3(1 dQ)Gk (88)
Q dx

!

;?-(F’t)= —1,5 (Deq%("—i(lr k12— k)
X

eg

where we set:
G (x)=8(x) u(x) Kq (%)
=(1—n* () (x)
F(x)=8(x) 1 (x) Teq (%)
= (1 =¥ (1)) 1 (%) Leq (%) (%) 8, (%).

K, (x)a(0)8,(x) (90)

(91)

111,6,2. — Equations and boundary conditions for com-
putation of «, k and 1

In inverse mode, for 8, and #&;, given, functions
a, k and t must be computed for xe[x,, x;] using
three equations independent of Q. These equations

are obtained by computing -ém %Q— from equation (86)
X

and substituting this expression in {87)-(89). We thus
obtain for xefx,, xzl:

1
[L+2(A— Hk)]d_{ W(#-Fb)

d -
—3—_1 a{5l(d—1)}

21+ 2(H-H k)

Ciyy

2
| 2
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d 1
L (Gly= -, (1— 1k
dx( ) 5 ealT )

3GC,
__T_‘ﬂ_k-r
5, (@~1)

[ 3G

+ —_—

8, (a—1) dx
Zea (hok2—k
i )

eq

3FC,,
3y (a—1)

+[——3:F— i{651
d{o—1) dx

{ 1(a—1)}]k (93)
—(F‘C)——l S5x 2CIJ

2

(a—1) }]c. (94)

Since u{x, 0) will be computed for xe{x; xz] by
the boundary layer equations and since condition (79)
must be verified, a zero gradient must be imposed on
parameter o at point x:

W) o xmx, (95)
dx
Let g;e{n* Cs, U, oo u A RY, and g,e{C,,

Cz, CF’ Hs ga CEeq’ (I)eqﬁ Keqi

Algebraic closure shows that g, is a function of

~ 1 . . ~
o=~ and g, is a function of « and Log &; . To
o

construct the boundary conditions on point x,, we
introduce the following assumption:

d .
- log R, =0, In X=X, (56)
dx
In this case, condition {95) implies;
(ﬁ) -0, (5‘{33) ~0.  (97)
dx x=x4 dx xX=x4

Equations {75), (79), (81)-(83), (95) and (97) allow
us to write the following equations, determined from
(B6)-(88), at point x=x,:

~ .. dB,
(@=1)— " =tCyy (98)

ﬁ-‘i—a——ﬁ—(ksl)nuﬁ (99)
dx

B =T K. (k5= L, (=2 k2).(100)
dx 2

Eliminating di(k 8,) between (99) and (100) and sub-
X
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stituting for t its expression computed from (98) gives:

d5 (xA):l
’ x)—1 101
T(xa)= CEeq( A)[( #e =D o
1 EUICHES
kix)= k2’3(xA)]:T(xA) ]'{(xd)‘bcq(x'*)
5 (ﬁ (x.) dd, (x4) _ Cr(x,) ):lm, {102)
dx 2

In inverse mode, considering the closure algebra,
it can be seen that the only independent boundary
condition which must be supplied to the model is the
value a(x,) of @ at point x,, or, which amounts to
the same thing, the value of the form parameter
H(x,). As there is a strong separation at this point,
an asymptotic value is introduced. In the case of the
plate and PFSU, we verified that the solution ob-
tained was relatively independent of this asymptotic
value.

II1,6,3. — Equation for computation of u(x, 0)

For 8, and A5, given, the solution of (92) (94) with
boundary condltlons (101), (102), and af{x,) given,
allows &, 7 and k to be determined for xe&[x,, xg)-
As these three functions are known, what must be
done is to compute the velocity u(x, 0} which will be
used as given in the inviscid fluid predictor for strong
coupling. Considering (75), u{x, 0) must verify equa-
tion {86) which is written for xe[x,, xz}:

du(x, 0) |
dx  a(x)—1

d -
e {8 (%) (@ ()~ 1) Hue (x, 0).
dx

8,(x) [t (%) Cr, (%)

As this equation is homogeneous, a solufion u(x) is
constructed for xe[x, xz] with the normalization
condition (which may be arbitrary) u{xz;)=1. Then
model (81) is used for region x {0, x,]. Under these
conditions, y{x), x€[x, x;] is the solution of:

&, E;u l}[cheq“ﬁ{Si(&‘l)}]k‘ (103)
u(xp)=1
and
w()=p(xy) for xe0,x]  (104)
then u (x, 0) is written:
u(x, 0)=yqu(x) for xef0, xzl. (105

Constant vy, is determined when solving the strong



coupling by a trailing edge boundary condition
(see Section 1V).

IV. —STRONG COUPLING
BETWEEN BOUNDARY LAYER
AND INVISCID FLUID

IV,1. — NOTATIONS AND BOUNDARY CON-
DITIONS

To establish the strong coupling equations, a
distinction is made between the upper surface variab-
les (exponent +) and the lower surface variables
(exponent —) and we set: o '

ut (x)=u(x, 0), w¥ (x)=wix, 0), xe& (0, xg),

u” (X)= —u (xs O)s w’ (X)= *—‘W(W, 0), xe(xF! xT)
Considering (H4) and (H10), we have:

w” (x)=0, X€[xp, Xy

w* (0)=38,(0)=0,

(107)

W= (08,6, xel X

On the trailing edge (point F}, we must write
C,y (xp)—C, (x)=0. In the case where the lower
surface and upper surface normals are different at
point F, the formulation we used (see below) to con-
struct the inviscid fluid predictor leads to taking a
pseudonormal on point F defined as the normal to
the bisector of the angle formed by the lower surface
and upper surface normals. The trailing edge bound-
ary condition is then equivalent to:

w? (xpy=w" (xp)

(109)
(110)

u” (xp)=u" {xg).

Actually, we will not use (109) which will be a
computation result.

IV,2. — CONSTRUCTION OF THE INVISCID
FLUID PREDICTOR

As the upper surface boundary layer conditions are
solved in inverse mode and since w™ =0 is known,
the predictor must compute values {u”~, w* } for {u*,
w™ } given.

29

Construction of the predictor is based on the hy-
potheses of an incompressible, steady, irrotational
flow. Tt is written (see [1]:

[ N™F lm+Q" 7 [w*
Q| —N*“] [17:]
QT INTT]fuf
| S la=l )
-i-|:~§¥fﬂ:| (111
where: -

Fi(x)=2n(B,(x)sina, +P, (x) cos o,
xeOF,
Fo(x)==2m(B,(x)cos a;— B, (x) sin o),
xeFO_

where B,{x) and [;(x) are the components of the
external normal in OXZ, N* and Q¢ are the kernel
and solid angle operators such that:

S=(N* 1) (X)

=J 6% LogR(x, x)dx,  (113)
xelyg dx

xeC,
S Q7 f)(x)
=JA f(x’)i © (x, x)dx', (114)
xeCq dx
xe(;
where se{+, — }, ce{+, — }

C+=’(')_‘-F‘+={xix€[09 xF]}’

C_=TF0_={x|xe[xs x;]}, and where the integrals
are taken in the sense of Cauchy for s=o and in the
ordinary sense for s# o.

Functions @ and R are such that:

Rx, x)=((X ()= X () +(Z ()= Z (xnH)'*
Z(x)—Z (X)}

X (x)—X(x)

where (X (x), Z(x)) are the cartesian coordinates in

0O XZ of a point of the airfeil with abscissa x.

@ (x, x)=Arctan |:

Iv,3.
METHODS

STRONG COUPLING SOLVING

The problem is globally nonlinear and is solved by
the fixed point method.

The predictor operator does not cause contraction.
This is easily verified in the case in which the profile
is an infinitely thin flat plate, when the eigenvalues
of this operator have a modulus of 1. To make the
fixed point convergent, we therefore introduced a
relaxation on the predictor.

{1) The upper surface boundary layer is solved in
inverse mode with the model developed in Section IiL

Rech. Aérosp, — n° 1987-4



The value of parameter H (x,) at point x, is fixed.
At the nth iteration of the fixed point, 87, 2¢, k™
and ©™ are known on the upper surface for
x&[x,, xg. Equations (92)-(%4), with boundary con-

ditions (101), (102) are used to compute " 1), e+ 1V

and t*1 for xe[x,, x;. Knowing a®*?), 1®*1 for
xelx,, xg, equations {103) and (104} are used to
compute #* ®*1 for xe[0, x;l. Under these condi-
tions, the model can be used to make transformation
CL*.

{8({!), gg%ni)’ k("), .rtni}

cLt -
{H+ (n+1)’ (I("+1), k(n+1), .L,(n+1)}' (115)

(2} A relaxation with coefficient 1/8t is introduced
in the predictor (111). The function «™®*1 is given
by (105} u™ "V =y u™™" 1, _constant y, being com-
puted by.the boundary condition (110). . Developing
the boundary condition (107) and introducing:

E+(n+1) Q—+E+(n-§-1) .
Fratn T —NTrytatD ?
n

_(n) _—
—y W+ F
(F'i-(n‘i‘l] _ SI ]
prat1) T, .
—wre L Fr

t
1
_______________________ :

1 |
n(1+ —~>+Q++ }

ot :
solution { w*@*1) =0+ i5 then written (see [1]):

Wt D G+ Gt D)
( u—(n+1))=YQ( G-+ I))+(G—(n+1]) (118)

A e S N L)

(117)

(119)
where:
Q-i-(n-i-l) - E+(n+1) .
(Q—(wn):'ﬂ (F“(n+1))’
Gta+n . FE+L
(G—(n+£})=°d (F—-(n+1))
—{n+1) -
Yo= G P 0xr) (121)

- G-h+thH (x;)_u+(n+1) (x;f) :

since of is independent of (n), we constructed its
inverse outside the iterations. The predictor thus
allows transformation FP;, to be made:

{u_("}, w+(n), EHH 1)}

FPg,
— {u—(n-i-l), }V+("+1), u+(n+1)}. (122)
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(3) Knowing u*®*! and w*“*! for xe[0, xg],
solving (108) allows &%*" to be computed for
x€[0, xzl, then @ZLTV=RuTOTUEITY for
x€[x 4 Xg), i. €. to construct transformation ED™:

EDY
{whort ) s 0} 27, (5E+0 g DY (123)

(4) In this algorithm for the fixed point, state
(n+1) is determined from state (n) by successively
applying CL*, FP;, and ED". The initialization is
made on u~ (%, w*©, 30 20 kO 1 We still have
w~ =0 and H{x,) fixed. For the convergence test,
see Scc. V.

V. —NUMERICAL ANALYSIS

V.l. — MESH OF THE AIRFOIL

The upper surface (or lower surface) is meshed with
M mesh cells of equal length, with step Ax™ =x /M
(or Ax™ ={xp—xp)/M)). Mesh cell Js
je{l, 2, ..., 2 M} has as origin node the point noted
m; and as end node m;,,, the center of the mesh
being the point noted P; and the unit normal external
to point P; being noted n;. The numbering increases

with the curvilinear abscissa x &[0, x;] such that m,
isin O, My, 1sin F and m, 4, 1sin O.

V.2,
FPg,

— NUMERICAIL APPROXIMATION OF

The numerical approximation of mapping FP,
defined by (122) is obtained conventionally by
approximating functions u*, u~, w*, w™ by functions
constant per mesh.

Matrices [N**]eMat(M, M), s, ce{+, —} corre-
spond to breaking down matrix [N]e Mat(2 M, 2 M)
into blocks such that for any j and any j in
{1, ...,2M}

{124)

[]\f] =8 .. Log (M)
4 S

” P; mj”

where ;=1 forjand jin {1, ..., M} orjand

in {M+1, ..., 2M}; S;p=Ax"[Ax™ for
je{l, ..., M} and je{M+1, ...,2M};
S;y;=Ax%jAx~ for je{M+1,...,2M} and
ief{l, ..., M}

Similarly, matrices
[°] e Mat (M, M), s, 0e{+, —}

correspond to breaking matrix [QJeMat(2M, 2 M)
into blocks such that foranyjandj in{1, ..., 2M},



[Q];=0 and for j # j"

P,m;. Pym;, )\
|2y my |l || Py ||
xSg{(P; m;+P,m;. ). n;} (125)

[Q),=—S,;

iy =

Arc cos(

where Sg is the function “sign of”".

V,3. — NUMERICAL APPROXIMATION OF
CL*

Let j, be the index of node m;, with the value x,
introduced in 1,5 as curvilinear abscissa.

We have 1 <j, < M. All the parameters involved
are represented by their values at the nodes m; of the
upper surface mesh with curvilinear abscissa x,
j€{ja s M+1}

" " The inverse §6lving mode leads o progressing from
upsiream to downstream. The derivatives with
respect to x are therefore off-centered to the left.

(a) Let us set forje{j,+1, ..., M+1}

[D,—(1/2) Cs)

FONC,; (., k;, T)= o
3@ Ky 1) [14+2(H—Hk);]

l Ty Cseqf -

1]

D]

D,=(Ax") "' [{8, (H-FA L)},
— {8, (A-Hi)};_]
Dj=(Ax*") T {8, G— D} {8, @1 };-1)

The numerical approximation of equation (92) is
then written:

FONC;(a;, kj, 1)=0.

J

(126)

Equation (126) is used as follows. With the values
k;- 15 Tj—1s (61)_;'—1: Hj—ls Hj—j_s Bj—1s (@Sl)j—ls kjs T;
and (2;,); given, the solution in a; is computed by a
dichotomy method using the closure algebra.

{b) We set:

I _ T
A=-Ax"®,.;; A=-Ax"0, .1,5(‘“‘“‘)
J 2 q ) J 2 q J Eeq ;

3GC - 3FC
BJ#Ax‘F{'—,_—Eeq}; Bj=Ax+{—,_“E‘fq_}
61(5(—1) i al(d—l) j

3G . . _
c,= {m}j[{al G1)},— (8, G—1}- 1)

~ 3F ~ a
¢ {m}j{{ 5. G—1)},— {5, E=1)};-]

E; =G kg Ej—1=Fj—ltj-i

gf 0k, y=F;1—E;_,+ A,(1kV*—k)+ B;P = Cyn.

3

The numerical approximation of (93) and (94} is
then written as follows for je{j,+1, ..., M+1}:

g‘(if) (k_;b Tj)205 ng (kj’ Tj)zo' (127)
These two equations are used as follows. With

values 4, B;, Cj, Ej_l_, A, B, Cp Ejoy, My %cj_l,
7;_; known, the solution (k; t;) of the nonlinear
system (127) is computed by a Newton method.

(¢) Finally, the numerical approximation of equa-

tion (103) is written for je{j, ..., M+1}

tCg 1 -
ui8,),—AxTd 8% + — 5, (w11,
s [ 4 (10

= {8, @=D}-=0G)u~, (128)

We take u;, =1. 4}, 41, . - -» Urr+ 1, is then obtained
directly by recurrence with (128) then this solution is
normalized to have the condition introduced in (103):

E;\:’+1=1"
Finally, ~ comsidering™ ~ (104), " =y,
jell, .o ja—1}

(d). We can then construct the numerical approxim-
ation of transformation CL* defined by (115).

Equation (126) in & is coupled with the two equa-
tions (127) in k and 1. The three nonlinear equations
(126)-(127) are solved from upstream to downstream.
They are used to construct mappings {&j_ 0 Koy
1o} = {8, k, 1) for jef{i,+1, ..., M+1} by
recurrence, with the initial condition (w;,, k4, T;,) -
To compute the state at node j knowing the state at
node j—1, {126)-(127) are solved by a local fixed
point method. Convergence occurs rapidly and does
not require relaxation, since the mapping causes con-
traction. Knowing & k and t in all nodes
{jo. ., M+1}, wecompute y,je{l, ..., M+1}
as indicated in point {c) above.

V.4, — NUMERICAL APPROXIMATION OF
ED*

The discretization of (108} with centered derivative
directly gives the scheme from upstream to down-
stream. We have the following recurrence:

(“+51)j+x=(u+ 51)1"*‘A-’CJr ‘1’; (129)

for je{l, ..., M}, where (u”8,);=0 and where
w; =w" (P) is the value of the mesh cell center of
w'.

Recurrence (129) is solved in (u" 8,).

determine (8,);=(u" 8,);u .

We then

V,5. — RELAXATION AND CONVERGENCE
TESTS

(@) Let f=(f1, ..

1
e 5

o fars )€ RMTL We set:

1/2
M+1 p2
b2l b .
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The global fixed point convergence test we selected
is an absolute test and is written:

Sup {[| 80+ V=80 | [ "+ D —u* e,
|u=*r P —y= ]|, )} <e,. (131)

(b) For each global iteration (n+1), each node j
and each local iteration (/) of the local fixed point
defined in V,3-(d):

— the solution &"%" of the nonlincar algebraic
equation (126) constructed by dichotomy is computed
with a relative tolerance constant g,;

— the solution { kV"} Y, 1011} of (127) constructed
by the Newton method is computed with a relative
tolerance constant g,.

{c) For each global iteration (n+ 1) and each node
Jj, the convergence test of the fixed local point () is:

g"’(n-?-l) ~lrt 1) (132)

a1
o T — o ) S e 0L

32

-From this we infer that k; and 1; -are determined -

in node j within &, {in relative value).

(d) We calibrated constants g,, &, and ¢; in the
framework of a parametric numerical analysis con-
ducted on three airfoils: the flat plate [3]
{see Section VI), the PFSU [43] and a bis-parabolic.
Ali the processing was performed with M =100
(200 mesh cells on the upper surface and lower sur-
face). We found ¢,=107%¢,=107%8,=10"", The
value g, established corresponds to the smallest value
which measures convergence outside the numerical
background noise.

To decrease g, it would be necessary to substan-
tially increase M and decrease £, and g.

(¢) The parametric numerical analysis mentioned
in point (d) above also allowed us to calibrate the

relaxation coefficient. We obtained ~6~I~t~ =3, which

value ensures rapid convergence of the global fixed
point and is independent of the Reynolds number and
the angle of attack for all the cases studied.

VL —ANALYSIS OF THE FLAT PLATE
AND
COMPARISONS WITH EXPERIMENT

The flat plate considered is the one which was used
for wind tunnel measurements [3].

Its geometry is defined by the diagram below with
L=0.200, ¢=0.00635. The angle of attack o,=4
degrees and ||V, || ~ 30 m/s.

10°

r

i"‘ > S i
T ] |

| L !

oy
e ]

V><’
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For the numerical model, we considered this plate
to have zero thickness, i.e. a model equivalent to a
cut. We used M=100 (200 mesh cells), x,==0.05,
H(x,)=309, ie a(x)=0741, a(x,)=1.35 at
1/6t=35.

VL1 — RESULTS ON CONVERGENCE AND
CPU TIMES

Let E, = —log,o (]| f®—F®"1||,), where (n) is the
number of the iteration of the global fixed point. Let
N be the number of the last iteration such that the
fixed point is  converged. We  note
Max f= Supne{l. vers N}En'

Figure 1 shows the convergence statistic for the
three values fe{&,, u™, u*}.

vemem-e-e Max §; 6,624
CEpfMaxf _____'Maxu 6,011
10- Max u 5,885
0.8
0.6
0.4
0.2+
O T T T T T L
1.0 60 110 160 210 26.0 n

Fig. 1. — Statistic for fe{8s, v, u*}. Abscissa: n=global
fixed point iteration number,  Ordinate: £n/Maxf with
En=~logio (||£ (" —f =N}, Max f=Supne{t, ....N)En
N=29: number of iterations to convergence.

n is read on the abscissa and in this case, N=29.
E, /(Max f) is read on the ordinate and the values of
Max f are indicated. It can be seen that the conver-
gence, obtained in 29 iterations, is relatively rapid.

For this computation configuration, the CPU time
on the CYBER 855 is 4 seconds per iteration.

The CPU time spent for the initializations and
preliminary computations is 24 seconds. The total
CPU processing time is 140 seconds.

VI,2. — ANALYSIS OF THE RESULTS AND
COMPARISONS WITH EXPERIMENT

The experimental results are those of publication
[3]. Figure 2 is relative to C; and C,. (positive and
negative pressure coefficients).



Numerical Measurements

[teration 29
~Cp | e
1.0430 s~ Cp

0.6422 -

0.2413 4 ’

0,0
— 0.15861

—~ 0.560647

+

*x

- 0.961 5 T T T T ] L3 T T T 1 -
0 0.2 0.4 0.6 0.8 (R
Fig. 2. = Comparison of numerical results
and measurements for Co* and Cp™.

However, the C,; were not measured, which is why
they are not shown. The good accuracy obtained for
the model developed can be seen. The reattachment
point found by the numerical method is at x=0.31
(31 percent). Figure 3 shows the comparisons
between numerical predictions and measurements for
the displacement thickness 3§, and momentum thick-
ness 6. Figure 4 is relative to the form parameter H.

We did not show the experimental point H for

Numerical Measurements
[teration 29
. » 61
0.0328-7 * e 8 s
0.0262 4
0.0137
0.0131+
0.0656+ i
..-..
0 '@.‘-5* 2 ¥ T T T T T T T 3 X

Fig. 3. — Comparison of the numerical results
and measurements for 81 and 8.

Numerical Measurements
Iteration 29
H .
30.91 4
24.73A
18.554
12.37 1
6.18~
0 T F 1 3 T T T 3 ¥ 1 X
0.2 04 0.6 0.8 ]

Fig. 4, — Comparison of the numerical results
and measurements for H.

x=0.15 since, with a value of approximately 42, it is
outside the graph.

Figure 5 shows the comparison for the turbulent
integral friction. Figure 6 is relative to integral turbu-
lence. Unfortunately, the direct comparison between
the computations and measurements is not possible

Numerical Measurements
Iteration 29
. 1 &
Friction —, [ —<u'w’'>dz .
Q" o
x 1072
0.8069
0.6455-
0.4841 .
0.3387 1
0.1614 4
0

U 1 13 1 T 4 T T 1 i

0 0.2 0.4 06 0.8 1
Fig. 5. — Comparison of the numerical results
and measurements for integrat turbulent friction.

Rech. Aérosp. — n® 1987-4



Numerical Measurements

1 5
1 8 A —, [ Kydz
Turbuience:azfo K dz o’ %

1 B
* 2% _ Kyd
K=%(<u'z>+<v'2>+<w'z>) g | Kue

Ky = 1< 2>
u= g u
x 107
0.2894
0.23151
0.17374
0.1158-
0.05788+
rF'y
0 Ll 1 ¥ I ¥ i x+
0 0.2 0.4 06 0.8 1
Fig. 6. — Integral turbulence. Numerical: total turbulence.

Measurements: longitudinal turbulence.

for the following reasons.
total

For the model, only the

turbulence, ie.
L3¢

T (x)=0 (x)7*

0
with K=0.5 (<w?)+<{v?*>+{w?)), whereas
report [3] gives the integral turbulence relative to the
longitudinal component, i.e

T, (x)=0 (x)"? F {x) K, (x, z)dz with K, =0,5¢u?).
0

Figure 6 shows the measurements for T,.(x), which
cannot be compared with the numerical results plotted
for T, (x). In addition, we plotted the measurements
for 2T, (x). The factor 2 corresponds approximately
to the factor we would have for a conventional ortho-
tropic turbulence constant on the entire airfoil. This
allows the levels to be displayed. We checked that
the results on the whole depended very little on the
values of x, and H(x,). Table I illustrates this low
dependency on two global values: (1) the lift normal-
ized to the reference lift (x,=0.05, H {x,)=30.9, ref-
erence lift=0.464 88) and (2) the abscissa of the reat-
tachment point.

x)
K(x, 2)dz, can be computed

VII. — ANALYSIS OF THE PFSU
AND
COMPARISONS WITH EXPERIMENT

The PFSU is a Pflenminger-Sulzer blade profile
used for steady and unsteady wind tunnel

Rech. Aérasp. — n°® 1887-4
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TABLE |
Sensitivity of the results to parameters xa and H (xa) for the plate.
Abscissa
Life of the
xa H(xa) Tefarence Iift reattachment
eference li point
0.02 308 0.2952 0.30
0.03 30.8 0.8946 0.30
0.04 30.9 0.9965 0.30
0.05 30.8 1.0000 0.31
0.05 232 0.9934 0.31
0.05 251 0.89952 0.31
0.05 28.4 0.9980 0.31
0.05 30.9 1.0000 0.31
0.05 33.8 1.0019 0.31
0.05 39.0 1.0048 0.31
0.05 432 1.0068 0.31

measurements [43]. As was indicated, these measure-
ments concern only the pressure coefficients
{see Introduction).

The geometry of the PFSU normalized on the
chord is defined by the diagram below. It is a sym-
metrical airfoil.

Leading 0.01341 0.01341
edge ‘%Trailing
v ¢ f,_.....___/i edge .—;
e 08665 ! |
or 1 - !

The analysis was made in the steady case for angles
of attack of o; =4 degrees and o, =5 degrees, a Mach
neumber of 0300 and a Reynolds number
A=2470000. We used M =100 (200 mesh cells),
1./8t=3. We did not attempt to adjust the value
of H(x,). We took the raw values of the plate,
i.e. x,=0.05, a(x,)=1,35 which give, considering the
Reynolds number, H(x,)=31.2 for the two angles.
The comparison of the pressure coefficients obtained
with the measurements is given in Figures 7 and 8
for a;=4 degrees and o,=35 degrees, respectively,
curves (2). On the same graphs, we also showed the
results obtained by preserving a(x,)=1.35 but taking
x,=0.02. Here again, as for the plate, the value of
this parameter is not very sensitive. It sets the length
of the plateau [curves (1) on Figures 7 and §].

Globally, the prediction is correct, but it is not as
good as in the case of the plate {(which was analyzed
as a cut, i e. infinitely thin) whereas for the PFSU,
we introduced the exact profile. This divergence is
relatively easy to explain in our opinion. It is due to
the fact that on the last 10 percent of the PFSU, the
lower surface boundary layer has a nonnegligible role
and is not taken into account in the present model
(see the conclusion below on this subject).



B Numerical Measurements
L] ‘1)_.—“" + g
PN {2) -Cp
1.082 4
M g | "
2) Co
0.6673
0.2627 -
—0.1618 1 Pt
t'r
-'i’
— 05765/
P R TR T E e,
0 0.2 04 0.6 0.8 1

Fig, 7. — PFSU, angle of attack 4 degrees, Mach number 0.300,
R=2470000. (1) xa=0.02, Hxa)=31.2, &{xs)=1,35.
(2) xa=0.05, H(x4)=31.2, @(xa)=1.35. Abscissa of reat-
tachment point (1) and (2)=0.22.

Numerical Measurements

() ==~=

1183,

0.699 1

0.274 +

— 0.150 4

— 0.574 +

——

- 0.999 T T 1 T T T T T 1
0 0.2 0.4 0.6 0.8 1

Fig. 8. — PFSU, angle of attack 5 degrees, Mach number 0.300,
A=2470000. (1) xa=002, H{xa)=31.2, a(xa}=1,35.
(2} xa=0.05, H (xa)=31.2, a(xa)=1.35. Abcissa of reat-
tachment point {1} and {2)=0.33.

VIII. — CONCLUSION

The comparisons between the predictions supplied
by the model developed and the measurements are
satisfactory for the flat plate and the PFSU for the
incompressible steady case. We effectively verified
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that the model was relatively insensitive to the value
of parameters x, and H (x,) introduced in the model.
The small divergences obtained for the pressure coeffi-
cients of the PFSU are probably related to the fact
that the lower surface boundary layer was not taken
into account, Introduction of this boundary layer
does not raise any problems, since it can be handled
by conventional models and will be included in the
second phase of development for the unsteady model
which is the ultimate aim of this work.

This first phase allowed us to develop an upper
surface boundary layer model for strong coupling
between boundary layer and inviscid fluid in the case
of leading edge separation with reattachment on the
airfoil. Keeping in mind that the model will later be
used for the unsteady case, we privileged computation
efficiency and speed in developing it.

Manusciipt submitted on April 23, 1987.
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