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MODELING MECHANICAL SUBSYSTEMS
BY BOUNDARY IMPEDANCE
IN THE FINITE ELEMENT
METHOD

by

F. CHABAS (*) and C. SOIZE (*)

ABSTRACT

We study the linear vibrations in the medium frequency range of a mechanical
system consisting of two coupled subsystems, the first of them being classically
modelled by the finite element method and the second one being described by a
given boundary impedance found from experimental data or numerical calculation.

Because the system may have a very high number of degrees of freedom, we
want to stay with a multiple scale algorithm, which considerably brings down the
numerical costs, compared with a direct method in which the equations are solved
frequency by frequency in the frequency domain.

To do this, we present an approximation method which consists of establishing
a system of second-order linear differential equations that governs vibrations of the
coupled system in the temporal domain, and which allows us, by introducing hidden
variables, to use the fast algorithm mentioned above.

Three numerical applications are given.

Keywords (NASA thesaurus): Vibration—Finite element analysis.

(*) ONERA, B.P. No. 72, 92322 Chatillon Cedex.
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I. — INTRODUCTION

The dynamic analysis of mechanical systems with
a linear behavior by the finite element method leads
to solving second order linear differential equations
using suitable numerical schemes. With this type of
method, the substructuring concept is widely used.

In the special case of a substructure described by
its boundary impedance, obtained experimentally or
from a numerical model, the problem can be solved
directly for the assembled system operating in the
frequency domain, frequency by frequency. For this
purpose, it is sufficient to assemble the boundary
impedance of the substructure with the impedance of
the initial mechanical system, constructed convention-
ally. However, this approach can lead to excessive
numerical costs if the number of degrees of freedom
of the complete system is high (several tens of thou-
sands) and if the analysis is to be made on a wide
band (several thousand hertz). An attempt is there-
fore made to preserve a second-order differential
equation structure after assembly of the subsystem to
allow the use of less costly numerical schemes.

In the general case, a boundary impedance cannot
be interpreted as the impedance of a mechanical
system governed by a sccond-order differential equa-
tion because of the condensation of the internal
degrees of freedom on the boundary. In other words,
the transfer function associated with this impedance
is not the transfer function of a causal second-order
linear convolution filter, i. e. associated with a second-
order differential equation with constant coefficients.
In most cases, the associated filter cannot even be
approximated by a second-order filter. It is therefore
necessary to introduce hidden variables which are
directly related to the internal degrees of freedom
eliminated from the subsystem considered and about
which all information has been lost.

In this paper, we describe an approach which can
be used io solve this problem. We first state the
problem in detail, recalling why it is desirable to
preserve an underlying second-order differential equa-
tion structure with constant coefficients for the assem-
bled system (Section III) and we introduce hy-
potheses, for reasons explained later, on the stability
of the assembled system (Section IV). We then
describe the method proposed; it is based on appro-
priate smoothing of the impedance of the subsystem
which has been coupled and the introduction of addi-
tional variables, called hidden variables.

Finally, we give three numerical examples which
validate the method developed.
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Remark. — Considering the objectives, we will
reason on discretized mechanical systems with a finite
number of observed degrees of freedom. Thus, all
the linear operators have finite dimensions and are
identified with their matrix relative to suitable bases.

I1. — NOTATIONS AND REMINDERS

To facilitate reading, we summarize below the main
notations we will use,

Let U=y, ..., U,) be a vector of C". We
will identify U with the column matrix (m, 1) of its
components U;,. We note as Matg (n, m) the set of
matrices with dimension (s, m) on body K, where K
can be R or C.

Let QeMate(n, m). We will note as Q7 the
transposed matrix of Q and @ =07

If n=m and QT=0, the complex matrix Q is said
to be symmetrical.

C™ is equipped with the usual scalar product and
associated norm:

(1)
|Ull.=(U, 1L )

We introduce the following notations and reviews.

(a) Let H,=L*(R, C™) be the Hilbert space of
mappings ¢+ U (t) defined almost everywhere on R
with values in C", with integrable square. K, is
equipped with the norm:

(U, ij= Z Ujvj
=1

m

12
[ERECTErY ®
R
and the associated scalar product
@ = [ WO VU @
B

(b) For any U in H,, we will note as o U(w)
the Fourier transform (FT) of U(Us H,,) such that
forje{l,...,m} and for almost every w in R :

r}j(m)=j e It UL () dt. (5)
R

For U and V in H,,, we have:

(U, V)= —=((T, P, (6)
2n

{c) Let B be any closed bounded interval of R. We
define subspace H,, (B) of H,, such that:

H,(B)={UeH,;supp U=B}. (M



_ We note that the restriction of the support concerns
U and not U. Under these conditions, we have:

Ivle= [ voke=- [ 100k ©
R 2n)p
(d) Let h be a function of L} (R, C} with R* as
support. We note as ki (p), pe C the Laplace transform
(unilateral) of & such that:

F(p)= J+we‘P‘h(t)dt. (9)
O

This Laplace transform is defined in the open domain
D, of C (which can be empty), such that:

D,={peC; Rép>u} (10)
where ae R. If ais finite, D, #Q and Fis holomorphic
in D,

If a<0, D, contains the imaginary axis and we
have:

h(0)=h0+im) (11)
where / is the FT of h. For instance, this is verified
if he L' (R, C) with supph = R*. In this case, £ is
then the FT of hin L and £ is obviously a continuous
function.

If heL*(R, C) with supphc R*, the Laplace
transform (LT) belongs to the Hardy class and 7 is
holomorphic in D= {peC, Rép>01.

In this case we have:

fi(w)= lim A(a+iw) in L2(R, C).

a—+0

(12)

Considering a function £+ i (¢) of R in Mat (n, m)
with supp h < R™, we define as above

{hij(p)! DJIU}’(i’j)E{l’ i '5n} X {11 o "m}!
and we have f(p)= {E,-(P) }r;: D,= mDhij'

(¢) A linear convolution filter hy, real, with an
impulse response z+— i (f) from R into Matg (m, m) is
causal if supph=R"*. Its transfer function is given
by {H(p)=h(p), D,} with D, of type (10). It is
said to be stable (exponentially) if D, contains the
imaginary axis. In this case, o A(@)=H (0+iw) is
a continuous function from R into Mat; (m, m) and
is called the frequency response function of the filter.

Below, we will consider causal and stable filters.
The poles of the transfer function H (p) will therefore
all have a strictly negative real part and the frequency
response function @ A(@)=H(0+iw) will be in
C° (R, Matg (m, m)).

The filter will be said to be regular at the (angular)
frequency ® if A(w) is reversible in this point. In
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this case, Z(w)=h"'(w)eMate(m, m) is called the
associated impedance of the filter. We will then
consider cases for which /() and therefore Z () are
complex symmetrical matrices.

OI. — REVIEWS
OF A MODEL EQUATION
OF MF VIBRATIONS
AND SOLVING METHODS

I, 1. — MODEL EQUATION OF MF VIBRA-
TIONS

Let us consider an elastic structure § occupying an
open domain £, bounded by R?, with boundary &Q,
located in a vacuum. The structure is heterogeneous,
anisotropic, dissipative, with a linear constitutive law.
It is modeled by finite elments and discretized for this
purpose into a finite number m of degrees of freedom.

For o fixed in R, we will note as U (o) the vector
of C™ representing the discretized displacement field
of S, as & (@) the vector of C™ representing the
system of external forces applied to § and as
A (w), F{w) and A (m) respectively the positive-
defined real, symmetrical mass, damping and stiffness
matrices (m, m) of §. It is noted that these matrices
depend a priori on ®, which is the case for instance
if § contains linear viscoelastic materials [5, 32] or
if its model involves structural fuzzy finite elements
[6, 31].

The MF vibrations of the system are then governed
in the Fourier domain by the following linear equa-
tion of C™

() U(@=F(0), ok (13)

where

Z()=—-0* H(@)+iob®+H (o) (14
is the complex, symmetrical mechanical impedance
matrix (m, m) of the structure.

We will assume below that the mappings .#, %, A
are continuous on R and therefore that mapping
o %2 (w) is continuous on R Considering the
assumptions, # (w) is reversible for any @ in R and
the mapping that defines the frequency response func-
tion of the system is written:

o h(@)=% ()" (15)
For any weR, /i (®) e Mat (m, m) and is symmetri-
cal. As function / is continuous on B, it is bounded
on B,
If we also assume that # e H, (B), the solution of
(13) is then written U(w)=h(0) # (®) for almost
every we R and is such that Ue H,,(B).
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Remark 1. —If the structure is not in a vacuum
but is placed in a compressible, inviscid, unbounded
fluid, it is known that the effects of the fluid on S
can be introduced by the matrices of the operators
of added mass and dissipation by radiation at infinity
of the fluid, applied to the trace of the displacement
field of S on the surface in contact with the fluid. If
such is the case, we will assume herein that these
matrices are included in .# () and € (w) respectively,
with (13) then representing the vibration equation of
the elastic structure coupled with the external
fluid {32].

Similarly, any internal compressible inviscid fluids
which occupy bounded domains are included im-
plicitly with the structure [11, 32].

Remark 2. — When the model of § includes structu-
ral fuzzy finite elements, & (w) is modeled, for @
fixed, by a random variable defined on a suitably
probabilistic space, with values in the complex sym-
metrical matrices {(m, m); equation (13} is in this case
a random operator equation.

Similarly, considering the case in which the excita-
tion t+— & (t) is a stochastic vector process stationary
in time, we are led to seek the stationary solution.

However, we have shown in [31] and [32] that for
the two above cases, the solution of the random
problemm amounts to solving several deterministic
problems of type (13). Therefore, without losing the
general character and to simplify presentation, we can
restrict ourselves to the case in which all the values
introduced are deterministic.

111, 2. — SOLVING OF THE MODEL EQUATION
IN THE MF DOMAIN

Let B=[w,, w,] be any closed bounded interval of
R* with width Aw, and let # e H,,(B). When Ao is
large, which is the case for instance for wideband
dynamic structure identification problems, we must a
priori solve (13) for a high number of values of .
However, the cost of constructing w— U(w) by
directly solving (13) for a large number of @ becomes
prohibitive when m is large. To decrease this cost,
we can use a special solving method [28] outlined
below in order to show why it is desirable to preserve
an underlying second-order differential equation
structure with constant coefficients.

N
Let B= | B, be a finite partition of B where for

n=1
ne{l,...,N}, B,= [Qn—%o; Q.+ %ﬂ] are com-

pact intervals of R* called MF narrow bands with

Rech. Aérosp. — n° 1987-5
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center frequency Q,>0, width 8w, verifying i—m «1

n
N

and such that N B, is a set of R™ with measure
n=1
Zero.
Let w—1; (®) be the indicator function of interval
B,(1; (@)=11if weB, 1 (@}=0if w¢h,).
Then, for # € H,,(B), the solution of (13) is written:

1 [@n*8wi2

Q. Q (w)do. (18)

dw Q) — ey 2

where cm—-»_[_?n (w) are solutions of the N independent
problems;

[—@? (o) +ia% (o) +H (@) 0, (@)=%,) (17)

where .9""',,((9)=13" (0) % (w) for any nin {1,...,N}.
We note that &% eH_,(B,) and therefore
U,eH,(8,).

Let O (w)e{ A (w), €(w), A (w)}; for n fixed in
{1,....N}, we set:

R(p)= j+we“"’h(t)dr. 9)

Then, considering the assumptions, it is shown that
we can always choose N (or, which amounts to the
same thing, dw) such that the solution U,, belonging
to H,,(B,) of

Z,(0) U, (@)=, () (1%)

where:

Z (0)=—? M, +iol,+H, {20)
approaches the solution U, of {17) within & fixed
positive, as small as desired, i, e. such that the follow-
ing is true:

10,- U, <e. @

We will note that considering the hypotheses on
M, % and X, matrices 4, ¥, and 4", are real,
symmetrical, positive-defined,

From a numerical standpoint, it is obvious that the
approximation is interesting insofar as 8w is not too
small, 1. e. when the number N of subbands of the
partition of B is not too large. This condition is
satisfied if mappings o~ .4 {(0), ¥(®), # (©) have
“slow variations” on R, which is the case for the
various situations described in [32].

In the time domain, the equation associated with
(19} is a second-order linear differential equation on
C™ with constant coefficients, which is written;

M,U0,0+€,U,0+4,U,0=F (1 (22)

2
where U, () = E{%L(Q and U, ()= %
t



By a special multiple scale technique [29], this is
reduced to a linear differential equation on C™ relative
to the low frequency part of the solution; for given
initial conditions, this equation is then solved by
direct integration over time using an implicit, uncon-
ditionally stable numerical scheme.

This multiple scale method which uses the structure
of differential equation (22) allows U, (») to be com-
puted for any we B, for a numerical cost equivalent
to that for solving (13) for a single value of ®. The
cost ratio is therefore equal to the number of fre-
quency points selected in B, to construct U,{(w),
generally high (around a hundred). It is for this
reason that we wish to preserve this type of MF
algorithm, even when coupling a system described by
its boundary impedance on a system modeled as finite
elements.

The aim of this paper is to develop a method to
achieve this objective,

IV. — STATEMENT OF THE PROBLEM
AND GENERAL HYPOTHESES

IV, 1. — THE GIVENS

(a) As we will use the method mentioned in Section
II1, 2, we will assume that the excitation belongs to
H,, (B,) with » fixed and we will eliminate once and
for ail all subscripts » when there is no ambiguity.

(b) The initial mechanical system is modeled by m
degrees of freedom and is described by the impedance
Z (o) eMatg (m, m), symmetrical, defined by (20).
For an excitation & e H, (B,), the vibrations of this
system are governed by equation (19).

As function Z is defined by (20) and as &, %,
and 2, are three positive-defined symmetrical real
constant matrices, we infer that o 2 (®) is continu-
ous from R into Mat.(m, m), that VeeR,
h(w)=2 ()" exists, that function o /() is con-
tinuous and integrable from R into Matg (m, m) and
that the impulse response h of R into Matg(m, m)
has R as support and is integrable on R. The linear
convolution filter k4 is therefore stable and causal
and all the poles of its transfer function
H(@p)=@* H#,+p€,+# )", peC have a strictly
negative real part.

(¢) Among the m degrees of freedom, we will distin-
guish g degrees of freedom, called the boundary
degrees, on which will be coupled the subsystem
described by its boundary impedance Z. (w). We set
r=m—g. We then naturally introduce the following
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breakdown of (19) into blocks:

(gn(m) qu{w))(UﬂW)):(gl(Q)) (23)
Zy1(@) | Zyp(o) /\U, () Fy{w)

where U, (o) and & (@) in €, U, (o) and & 5 (@) in

Cs, Z'14 (o) eMate(r, 1), 25z (w) eMate (g, 9),

Zi(0yeMat:(r, ), Z,,(0) and &,,(w) symmetri-

cal and Z,, (w) =27, (w)..

(d) The boundary impedance Z,(®) of the subsys-
tem is relative to the g degrees of freedom. We
introduce the following hypotheses on Zg: the func-
tion w— Z (o) is continuous from B, into Mat (g, q)
and VoeB, Z.(0)=ZT ().

The function Z; on B, is therefore assumed given.
However, we generally only have a finite sequence
of matrices { Zp(w), fe{l,...,L}} with w,eB,
which is the basic given. This will be the case when
Z(w) is supplied by experiment or constructed by a
numerical model {6]. It should be noted, and this is
the practical sifuation, that Z;(®) is not assumed
known on R, but only on a compact interval of B. No
conclusion can therefore be drawn on the siructure of

the associated filter from the omnly given on
o> Z(m), oeB,.

v,2. —
SYSTEM

EQUATION FOR THE COUPLED

The vibration equation for the coupled system in
the frequency domain for & e H,, (B,) is written;

Z (@) U(0)=% (o) (24)
where
Z 1 (w) Z () )
x = . 25
r@ (ff @ Zu@iz:@) O

Considering the explanations given above, the
impedance £, (o) is not associated with a differential
equation of type (22) owing to the presence of Z. ().
Obviously, we could write Z;(®) in a form similar
to (14) then use approximation (18). In the general
case, such an approach would however lead to choos-
ing very small bandwidths 3w since function
W Z.(w) can exhibit large fluctuations due to the
internal dynamics of the subsystem considered. As
we wish to preserve sufficiently large bandwidths dw
for the method to remain efficient, we must forego
this type of solution.

IV,3. — GENERAL STABILITY HYPOTHESES

{a) Considering the hypotheses introduced on &
and Zp, no conclusion can be drawn as to the exis-
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tence of a solution UeH,, (B,) such that U verifies
(24). However, we are concerned here only with
stable physical systems. This leads us to introduce
the following hypothesis for the coupled system; for
any o in B, Air(0)=27" (o) exists. Considering the
hypotheses of Section I, this means that o fiy () is
continuous on the compact interval B,. Under these
conditions, there exists a unique solution Ue H,, (B,)
such that U verifies (24). It should however be
noted that at this level, there is no knowledge on
the frequency response function /,,, but only on its
restriction to interval B,.

(b} In the method which will be described, we will
construct an  approximation UeH_ (B, of
Ue H ,(B,), this approximation U being a solution of
the following problem associated with (24):

21 (0) U()=F (o) (26)
with )
_ Z (o) &5 (w)

Fr(0)= (ﬂ"u (@) Z5(0)+Zs (co)) @D

where w+— Zp(w) is a continucus function of R in
Matg (g, q) such that YoeR, Z(w)=Z5 (o), Z; (o)
being an approximation of Z;{w) on band B, (and
not on R since Z, (w) is known only on B,). Further-
more, Zy also has certain algebraic properties which
will be described below. However, it is necessary to
introduce a hypothesis which is similar to {but dif-
ferent from) that introduced above in (a), i.e. that
VaeR [and not YoeB, as in (a)], fir(0)=Z;!(v)
exists and function ww fi, (w), which is continuous
on R, approaches O, ,,+i0, ., when jm| ~ - 00.
As, by the construction of Z, the frequency response
filter @+ jir (©) is causal (because the equations will
be differential), the hypothesis introduced implies the
stability of this filter.

V. — CONSTRUCTION
OF AN APPROXIMATION
OF THE BOUNDARY IMPEDANCE

V,1. — ALGEBRAIC STRUCTURE OF THE
APPROXIMATION

As we indicated in the introduction, the basic prin-
ciple of the method proposed consists of initially
smoothing the boundary impedance of the mechanical
subsystem, 1. e. of constructing a mapping ©+ Z(®)
from R into Matc (g, g), continuous on R and such
that the matrix series { Zp(w,) };,, (where for any
le{1,...,L}, o,eB,) approaches, in the sense of a
certain metric, series { Zp(w,) }; which is the given of
the problem.

Rech. Aérosp. — n® 1987-5
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Obviously, the choice of the smoothing function,
i.e. the choice of the algebraic function of mapping
wi— Z-(w) must be made carefully. First of all,
this choice must lead to an appropriate underlying
differential equation structure for the vibration equa-
tion of the coupled system and it must also allow the
fluctuations of mapping @+ Z (®) on band B, to be
restored with sufficient accuracy.

In this section, we describe the basic algebraic struc-
ture of mapping ©+— Z; (@) which will be systemati-
cally used herein to construct an approximation of
any boundary impedance. In the case at hand, we
have chosen the algebraic structure of the boundary
impedance of a mechanical system whose vibrations
in the time domain are governed by a second-order
differential equation with constant coefficients. It is
clear that this structure is generally not that of the
real boundary impedance of a mechanical system, but
simply corresponds to a computation support for the
approximation. We will however see that this struc-
ture is interesting because it satisfies the two criteria
mentioned above; in addition, it is normal to use a
model mechanical system with a physical reality.

Therefore, let us take a mechanical system whose
dynamics are governed by a second-order differential
equation with constant coefficients (for instance, a
medium with a linear elastic constitutive law, weakly
dissipative, placed in a vacuum). This system is
discretized in ¢” degrees of freedom. We set
¢ =q+4q’, where g designates the number of degrees
of freedom which discretize the part of the boundary
relative to which we wish to determine the impedance
Z of the subsystem.

By breaking the total impedance matrix of the
system down into blocks in the normal manner and
reducing this matrix on the g degrees of freedom on
the boundary by conventional substructuring
methods, for any @ of R we obtain an expression of
Z (@) with the form:

Zr(@)=Zp (@)~ Z1, (@) Z7 (@) Z,,(0) (28)
where, considering the hypotheses

Zy(@)=—0’My+ioCy+Ky, (29)
jandke{1,2},

where M,,, C,,, K,;eMat (¢, q); M, Cis

Ki;eMatg (¢, ¢) and M,,, C,, Kj,eMate(y, ),
M, C,y, Kiy, My, Cy; and K, are in addition
positive-defined matrices.

Let {y},, ke{l,...,¢'} be the eigenvectors
which are solutions of the generalized eigenvalues
problem:

K11‘|"*?VMru‘fJ



{M}w ke{l,...,q'} are the associated eigenvalues.
From a mechanical standpoint, the { ¥, }, correspond
to the natural modes of vibration of the associated
conservative discretized system and the g degrees of
freedom on the boundary are blocked.

Assuming, as is usunally the case, that damping
matrix C,, is diagonalized by eigenvectors { {, }, and
introducing the generalized masses, dampings and
stiffnesses associated with eigenmode \,, k& being
fixed, such that:

m= MV,
Ci= ‘1’1? Ciy
k= ‘4’:’{ K ¥
the admittance relative to eigenmode v, is then repre-

sented by the function ®+— H, (w) continuous from R
into C, defined for every @ in R by;

(31)

I
—@?m+ioCyt+k,

Hy(w)= (32)

Under these conditions, Z7!(®) is written, for
every o in R:

7
thl (@)= Z Hk(m)‘l!k‘b{' (33
k=1

It can be noted that mapping @ H, (o) represents
the frequency response function of a stable second-
order linear filter.

Setting, for any ke{l,...,q'} and any o in
R, Ay (@)=ZT, () ¥,, and using (33), (28) is then writ-
ten:

Zp(@y=Zp (@)= ) Hy(0) A (0) AL (@). (34)
k=1

By reducing (34) to the same denominator, we
then observe from equations (29) that the boundary
impedance of the subsystem considered has an alge-
braic rational fraction structure of the type:

Zp (@)= «";’((—0“}’))

(35)
where N(w) is a polynomial whose coefficients are
complex matrices, symmetrical by construction, and
d (w) is a polynomial with scalar, complex coefficients.
Both polynomials have positive degrees such that
degrec (N)=degree (d)+2. In the case at hand, we
have degree (N)=2¢"+2 and degree (d)=2¢",

It is this algebraic structure that we will use below,

[t can be remarked that the degree of 4 is systemati-
cally even. Furthermore, its term of the lowest degree
is a positive real number or zero. Below, we will
assume it to be strictly positive.
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V.2. — SMOOTHING PROCEDURES

In order to simplify the expression, we will elimi-
nate subscripts “F” which were used until now to
characterize the boundary impedances.

Let { Z (w)) }; be the matrix series forming the given
of problem (4.14d), where, for any le{l,...,L},
weB,. For o fixed, Z (w) is 2 complex, symmetrical
matrix a priori undefined, i.e. it does not necessarily
have the algebraic structure defined by (33).

From the above, we wish to construct a fractional
approximation Z of the boundary impedance
N

represented by mapping ml—»:{(g%)-, from R into
[0

Mat. (g, q), where N(w) and d(w) are two complex

polynomials, of the matrix and scalar type respectively
such that degree (N)=degree (d)+2.

To construct this approximation, we naturally
introduce distance 8(Z, Z) of mappings Z and Z
relative to B, and defined by;

L

S(ZsZ)=( Z

=1

1/2
1 Z (09— Z (@) I;'i) (36)

where | . |, represents the matrix norm on Mat, (g, g)
such that for any @ in Mat. (g, g), we have:

q q
10=5% % 0wl

k=1 k'=1

(37)

Under these conditions, to construct Z, we are led
to determine polynomials N and d of variable o which
minimize the quantity:

3z, =3 ¥

k=1 =1
L

x( >

=1

As the guantity in parentheses in (38} is positive, it
is therefore sufficient to minimize each term of the
double sum, i.e. finally to construct a rational appro-
ximation Z,,. of Z,,. separately for each term of the
initial matrix.

_ Ny () |?
Ziy- (o) ““““—"”d (@) ) (38)

However, we will not use the smoothing approach
defined by (38) directly. In effect, this equation shows
that polynomial d (») is common to all the terms Z,,.
of the approximation for k and k"€ {1,...,¢}. And
it is this polynomial which is used to represent the
fluctuations of the boundary impedance on band B,.

As the fluctuations of each term of the initial
impedance matrix are a priori independent and as we
are working on subsystems which can have a high
number g of degrees of freedom on the boundary
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(several hundred), it is clear that such a methodology
would lead us to choose polynomials d(w) of a very
high degree, which would raise serious difficulties
from a numerical standpoint.

We have therefore chosen to replace the smoothing
technique based on the algebraic structure (35), which
could be called global smoothing, by local smoothing
consisting of constructing an approximated boundary
impedance matrix, each term of which is a rational
fraction of variable @ with its own denominator. We
are thus led to determine g? pairs of polynomials
(Nyy (@), Dy {@)), k and k'e{1, ..., q} which mini-
mize the quantity:

3z, 2=% X

k=1 k'=1

x(z 2) (39)
I=1

where, for any k and k¥’ in {1, ..., g}, Ny and Dy,
are polynomials in o with scalar, complex coefficients
such that degree (N,,.)=degree(D,,.)+2.

Of course, for reasons of symmetry, we will con-
struct only g (g+1)/2 pairs (N, (@), D, (w)) and, for
any k and k' in {1,...,¢} and any © in R, we will
have Ny, (0) =N, (0} and Dy (0)=D,., ().

Under these conditions, it is clear that the numeri-
cal problems raised above do not appear since now,
each polynomial D, (w) represents the fluctuations
on B, of a single term of the initial boundary imped-
ance matrix and can therefore be chosen with a
moderate degree (a few units). Furthermore, we do
not first have to compute the series of determinants
{ det Z (w,) }, Obviously, we thereby lose the initial
properties of the boundary impedance operator, but
this is unimportant since we have not used any

property of this type except the symmetry, which is
recovered by construction.

Ly (00) — %ﬁ“%
ki LGy

V,3. — CONSTRUCTION OF THE APPROXI-
MATION

In this section, we will initially reason on any given
term of the boundary impedance matrix, i.e. for k
and k' fixed in {1,...,g9}.

Let { Z,.- (@) }; be the complex series representing

. . N (©
the given of this term and (ﬂl—bw’i'f—(—)
ke @

be a rational

approximation of Z,,. on B,.

By hypothesis, Ny, (®) and D,;. (@) are polynomials
on € such that degree (N,.)=degree (D,.)+2.
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Obviously, the choice of degrees, arbitrary a priori,
will condition the accuracy of the smoothing and
must be carefully made so that the fluctuations of
mapping o Z,,. {w)} on B, are correctly restored. It
can be noted that, according to Section V, 1, and also
for reason. which will appear below, an even degree
is systematically chosen for D,.. It will be noted
2. To construct the approximation Zu of Z,.,
we introduce polynomials with real coefficients
Ny (p) and D, (p) such that for any o in R, we have:

Ny (@) =Ny (i), Dy (@)=Dy (iw). (40)

Obviously, we have degree (N,.)=degree(N,,) and
degree (D,,.)=degree(D,,.).

Furthermore, we will normalize the rational
approximation of Z,,. such that the constant term of
D ;. {and therefore of D,..), which is a strictly positive
real number according to Section V, 1 is equal to 1.

The smoothing thus made is a smoothing by norm
which consists, for g,,. real, positive and fixed, chosen
arbitarily and which defines the desired proximity on
B, of mappings Z,,. and Z,,., of determining the real
polynomials N, and D,,. such that:

L L
N (iw)}]?
S 1 Zy (o) - TN 2512 @2
Dy i) I=1

=1

(41)

For this purpose we use an iterative algorithm
developed for smoothing the admittance measures of
linear system [10]. This algorithm consists of minimiz-
ing the following quantity by a conventional least
squares method on each iteration:

2

) (42)

P (lo)) [ Zy ()~ MJ

DY (o)

where, for the jth iteration, N¥. (i) and DY) (i)
are the approximated solutions of N, (iw) and
Dy (iw), and 2. (iw;) are the weights assigned to
each frequency point o, of B,. Taking Z{(iwm)=1,
forany le{1,...,L} we can show [10] that the opti-
mum weights are obtained on the jth iteration by
taking #{) (o) =D (iw) !

For reasons which will appear below, we have
imposed the condition that, for the smoothing algo-
rithm, all the roots (complex in the general case) of
polynomial D, (p) have a strictly negative real part.

Furhermore, from the standpoint of convergence
of the algorithm, the iteration stop test is given by
(41).

N (i)
Dy (i)
the above smoothing. Taking the integer part of the

Let @ be the mapping resulting from



division of N, by D, we obtain an expression of
the following type for any o in R:

Nkk (i 0))
Dy (iw)

N (@)
Dy (i 0)
where N, (p) is a real polynomial such that degreee

(N )=degree(D,,.)—1 and P,.(p) is a real polyno-
mial of the second degree which we will note:

=Py (fo)+ ——— (43)

Py (i0) =M (10)* + Cyo (f 0) + Ky (44)
where M, Cu and K. eR.

D, (p} is a real polynomial with an even degree
2fi,.. Therefore, in the general case, it has 27y,
mutually conjugate complex roots. By breaking down
the residual fraction of (43) into simple elements and
grouping the simple elements associated with conju-
gate poles in pairs, we readily obtain, using
equation (44), the expression of the approximation:

Zuw (@)= — 0> Myge+i0 Cyo + Ky

LTy

+ 2

s=1 — @

f o, + B
2+iov +85.

where, for any s in {1,.. ., 7}, o, B, vid and
8, are finite real constants,

In addition, we have v\ >0 and 8% >0 by con-
struction.

Let us now consider the set of approximations
defined by (45) when k and &k’ describe {1,...,4}.

To condense the expression, we set fi= supfi,. and,
k. k'

for k and k' fixed in {1,..., g}, by convention we
will take of.=0 and B). =0 if A, <s<A. Then, in
matrix form, approximation @ Z{®) of the initial
boundary impedance w— Z (®) is written, for any ©
in R:

Z(@)=—o*M+ioC+K+ Y, R¥(w)

5=1

(46)

where M, C and K are real, constant, symmetrical
matrices {g, ¢) with generic terms M,,., C,, and K.
respectively, given by (44) and where, for any s in
{1,...,A} and any o in R, R¥(w) is a complex,
symmetrical matrix (g, g) with generic terms given by:

i wels) + B,

RE) ()= .
H —o* +iays + 85

(47)

Under these conditions, we can see that for any k
and k" in {1,...,9} and any s in {1,...,7},
o+— RY. (w) is continuous on R and bounded.

The advantage of the smoothing technique is now
obvious. The polynomial part of the right member
of (46) is similar to (20) and therefore directly fits in
the framework of the hypotheses of 111, 2. As for the
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fractional part, equation (47) shows that for any k
and k" in {1,...,q} and any s in {1,...,7A},

R{Y. (w) is the frequency response function of a stable
and causal second-order linear (monovariable) convo-
lution filter, i.e. associated with a second-order dif-
ferential equation with constant coefficients. By
introducing hidden variables, we can therefore use the
appropriate conventional numerical schemes to solve
the vibration equation of the coupled system.

Remark

It can be noted that, considering the smoothing
method used, nothing can be said about the positive-
ness of matrices M, C, K. Along the lines of the
general  stability  hypotheses introduced in
Section IV, 3 for the coupled system, we can possibly
replace these matrices by their closest positive approx-
imation (in the sense of the matrices). Thus, for
instance, in the case where i=0, i e. if an approxima-
tion of the boundary impedance is sought directly
with form (20), we will be sure of satisfying the
hypotheses of Section IV, 3.

We will use the method described below to compute
these new approximations.

Let 4 be a-real, symmetrical matrix (g, g).
note as {M i ke{l,...,q} the real series of its
cigenvalues ordered by  decrcasing  values
(A, >lq (2...2h) and as {0y}, ke{l,...,q}
the series of associated eigenvectors. It is then known
that A is expressed uniquely with the form:

Ly
A= T P GH
=1 ol
Let A, be the smallest eigenvalue of A, positive or
zero, and let A* be the real, symmetrical matrix (g, g)
defined by:

We

(48)

(p(p
a4k
” k”q

3

k=kp

At = (49)

Then, A" is a positive matrix by construction and it
is casily verified that it is the closest to A for the
metric with norm 2.

From an algorithmic standpoint, the eigenvalues of
A are computed by a Jacobi method.

VL. — SOLVING
THE VIBRATION EQUATION
FOR THE COUPLED SYSTEM

VI, 1. — BASIC VIBRATION EQUATION FOR
THE COUPLED SYSTEM

The vibration equation (approximated) of the
coupled system is given by (26) and‘(27). To simplify

the expression, we will note as (l{(m)) the break-
V()
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down into blocks of the discretized displacement field
of the structure, where, for o fixed, U(co)e@’ and
V(w)eC? r and g being defined in Section IV, t¢. Tt
is noted that, considering the hypotheses, Uc H,(B,)
and Ve H (B,).

Thus, for #eH,(B,), we are led to solving the
following matrix equation:

(3011(03) Z 15 (w) )
Zy (@) | (o) +Z(0)

(l:f(m)) _ (3’2 (w)) (50)
V(w) 7, (w)

in which the dimensions and properties of the blocks
of the matrix have already been specified.

the

By hypothesis [equation (20)],
o+ % () is written, for any w in B,;

impedance

Flo)=—o> HA+inC+H (51D
where matrices .#, ¥ and #, constant on B,, have a
block structure induced by that of & {®).

Grouping the polynomial part of approximation Z
given by (46) with equation (51} and substituting these
two equations in (50) yields the basic explicit form
for the vibration equation of the coupled system:

ﬁ(m))

[—m2M+ico[D+[K]( ’ )

+Y (—0""’ s )((f("”))zﬁ(m) (52
=1 O(q,r) R ((D) V((D)
with
M=(/{“ /o )
Aoy | Mo+ M
D:(@ %12 ), (53)
$211€22+C
K=(f11 ‘%/‘12 )
‘%/‘21 9{22+K

where M, C, K and R®(w) for se{l,...,A} and
we B, are the symmetrical matrices (g, g} defined by
(46).

The term in brackets in (52) is conventional, i. e. has
form (20). It therefore does not raise any particular
problems. It is recalled that, considering the hy-
potheses and the remark of Section V.6, the three
matrices comprising it, which are given by (53), are
positive-defined symmetrical real matrices (m, m).

However, the terms of the sum do not have a
structure similar to (20) and therefore require special
processing. This is what we will now examine, intro-
ducing hidden variables for the problem considered.
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VI, 2. — ADDITIONAL VARIABLES

We will reason here for s fixed in {1,...,7}.
Let o #% (®) be the mapping from R into C?
such that, for any @ in B,, we have:

F9(0) =R (@) V (0). (54)
For k fixed in {1, ...,q} and o fixed in B,, the kth
component of #%(w) is therefore written:

q
F(wy= Y. 45 (0)

(55)
k=1
with
35 ©) =R @) V(@) (56)
where R (o) is given by (47).
We note that since VeH_(B,) and since
o+ R® (@) is bounded on B,, %SE-EH ((B,). When

k and k' describe {1,...,4}, and for s fixed in
{1,...,ii}, relation (56) defines ¢* mappings
o+— %Y. (v) from R into C. These g> mappings are
called the hidden, or additional, variables associated
with mapping w— RY (@) from R into Matg{g, g).

Considering {47) and since, for k and %’ fixed in
{1,...,9}, vi3 and 8 are strictly positive, relation
(56) shows that %{. results from second-order linear
convolution filtering, the filter involved being stable
and causal. In the time domain, the equation associ-
ated with this filter is a second-order differential equa-
tion with constant coefficients. To solve it, we can
therefore use the integration scheme mentioned in
Section III, 2 for solving (22).

VL, 3. — VIBRATION EQUATION OF THE
COUPLED SYSTEM IN THE FREQUENCY
DOMAIN

Considering (47), (52), (53), (54) and (53), the vibra-
tion equation of the coupled system in the frequency
domain is written:

(—w2M+imD~§-K)([{(m)>

n O .
+ . =% (@) (57a)
sgl (f(” (0))>
q
F @)=Y 95 (), (57b)
k=1
ke{1,...,q}, se{l,...,n}

(—@®+ioyd + 85 G (@)

= (i 0us) + BE) Vi (@), (57¢)

kke{l,...,q}, se{l,...,A}



VI, 4. —~ VIBRATION EQUATION OF THE
COUPLED SYSTEM IN THE TIME DOMAIN

In the time domain, the equation associated with
{57) is written;

M(?®)+D(Qm)
|4 6)) V()

veYy | . L
+K(V(t)) ;(fm())w"(r) (58 a)

0= Z %3 ), (585)
k=1
ke{l,....q}, se{l,...,A}
G O+1 IR O+ 98 (1)
=0 Vi 0+ BE Vi (0, (58¢)

kK'e{l,....,q}, se{l, ..., A}

VI, 5. — SOLVING THE VIBRATION EQUA-
TION OF THE COUPLED SYSTEM

As was indicated in Section III, 2, we will use a
special multiple scale technique so that the process
amounts to solving a system of differential equations
similar to (58) but relative to the low frequency
domain.

For this purpose, we introduce the mappings
defined by the following relations for any ¢ in R:

U=U()e ! (59}

V)=V (t)e %t (60)

F(O)=F (t)e ! (61)

J9 ()= F9 () e 0 (62)
foranysin {1, ..., n}

Q, as defined in Sectlon 11L,2.
For s fixed, relation (62) is equivalent to defining
g* mappings G, for k and k’e{1,...,q} such that

G =9 (e o

(63)

Substituting relations (59)-(62) in (58) gives the new
system of differential equations

(@) M(P(t)) -i—(2iQnM+ID)(U:J(I))
WV (7) V(D)

(MO, D+K)(Um)
V()

0
2 (Jm (t)) =F®

(64)
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q
o= ) 6RO,

k'=1

(b)

ke{l,..
(¢) G ()+c G

. d}, se{l,..., i}

GRO+dR GR (1)

=af Vi (b3 Vi (1),
se{l, ..., i}

Kell,....q},

where, for any k and k" in {1,...,¢} and any s in

{1,...,7}, we set:
aff=ol
b(S)-= (s) +IQ ct(s} (65)
B=2i0 +v5
dil=iQ, v —QF + 8.
Since UeH,(B,), VeH,(B). #eH,(B,) and

@S eH, (B,), for any s in {1,...,A}, it is easily
verified that Ue H, (B,), Ve H (B,), Fe H,(B,) and
GEeH, (By) for any s in {1,...,A}, where B, is
the “low frequency” bounded closed interval of R
associated with B which is written

BO=[—§9; %]
22

Accordingly, for given initial conditions, we can
now solve equation (64) by direct numerical integra-
tion over time, step by step. For this purpose, we

n

use Newmark’s algorithm with parameters o= 31 and

It is a centered, implicit, unconditionally stable

1
[3=:,Z"-

numerical scheme whose equations are given by:
. 4
Ul )= ——5 Ut ) — Ut}
At
4 . ..
— Ut~ U(t,) (66)
At

Ultys1)= U(tm)+ 5 LU, )+ 5 LU ()

where At=t, , —t, is the integration time step,
Using (66) to solve (64¢) at time ¢, we obtain the

following equations for hidden variables G, k and

k'e{l,...,q}and se{l,... i}

e 6. (1,)=HE. (4 ,)
+ a(s} + —_— b(s) vk' (tm) —_ ibg{sk)' vk' (tm* 1)
. Al At
B Vi (1)
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HE (tr-1)= ( u 2453) G (tm-1) (67)

RERw

(S) (tm 1)

where

4 2
e = A2 + Atcﬁz +di- (68)

Applying the scheme in parallel to equation (64 )
and using (67) gives the final recurrent solution equa-
tions which are written:

éU (f,m)ﬂﬂ (tm)+§ U (Im—l)
+CU - )+D U,y (69)
where, forany kin {1,...,q}
Hk (tm)=|1:k(tm)_ z Z H;‘i}' (tm—l) (70)
k=1

s=1

and where 4, B, C and D are complex, symmetrical
matrices (m, m) which accept the following break-
downs by blocks:

=(_Q3+ii_,gmﬂ+i)('//{“ il_z__)
At A2\ My | Mt M
+(iQ,,+4iQ")(ﬁi b2 )
At J\%,, | €,,+C
(‘j{ll ‘%‘12 )
4

i 0 2/0] 0
+Z[(5179) 4 25 0) o0

+

(4 4iQn)(qu ym )
B=(-—+
A At Moy | My + M
+3,_(ﬁ L)
A\ b, | €42+ C
d 0
2 r( b“) 2
g;(i_{_zlgn)("{[ll "/{12 )
At Moy | Moyt M

+(@ % >+ Z(o 0) (73)
%, C+C/) S\0|o@

12:(‘//{11 '/{{12 ) (74)
My | Mgt M

where, for any s in {1,...,7}, 7 and £ are
complex, symmetricai matrices (g, g) with generic
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terms 75 and &%, given respectively by:

. a(S),
7=k (75)

Ek’

(s
o= i (76)

el9
kk'

where af, b and ¢ are given by (65) and (68).
Equations (69)-(76) are the new equations of the
scheme to be used in the MF algorithm to solve our
problem. As the remainder of the algorithm is not
modified, we refer the reader to [29] for the additional
detailed developments of the solution (choice of the
integration time step, the initial time, the final time,
etc.). We will not come back either on computation

of the solution ( [Ii) or ( g) from the low frequency

solution (i‘l/) which is also described in [29].

VII. — NUMERICAL APPLICATIONS

VIL, 1. — ELEMENTARY EXAMPLE

In this section, we consider two simple linear oscil-
lators respectively subscripted 1 and 2. Their me-
chanical characteristics are point masses m, and m,,
the viscous dissipation constants are ¢, ¢, and the
stiffness constants are k, and k,. We will note as o,
and ®, (®, >0, ©,>0) the natural vibration frequen-
cies of the associated conservative systems with fixed
support; in this case, we have k, =m, 0f, k,=m, @3,
and by introducing the critical damping rates £; and
&, (with 0<&, <1 and O0<§, <1 by hypothesis), we
also have ¢; =2m, £, 0, and ¢,=2m, §; a,.

We will investigate the coupled mechanical system
consisting of two oscillators in series in a reference
frame, with the support of oscillator 1 taken as sup-
port of the coupled system and assumed fixed.

With the mechanical excitation force F applied to
mass m,, the displacement @— X(w) of this mass,

taken as reference solution, is expressed for any
and R

""‘"mz m2+i(DC2+k2
(—w*m;+ivc, +k,)
X{—o?my+tiwcy,+ky)—@m,(iwe,+k,)]

X(w)=F(w)

77

We now assume that oscillator 2 is represented,
with respect to oscillator 1, by its boundary im-
pedance relative to the connection point of the
two oscillators and we compute the displacement
w— X (w) of mass m; by the method proposed.
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For this simple example, we can obtain the explicit 3.8 1 {dB}
algebraic expression of this boundary impedance. In
the case at hand, we have, for any © in R:

Frequency response of
two oscillators in series
F, =2034 Hz

2702y 2 - 4 F,; =2160H
Z0)= —m, o (@30 —1+4ED 1.83 - z

2 (@30d) — 12 + 4 £3 (0}fw?)

; 2my €y,
. (78
+1m((m§/m2)—1)2+4¢§ (02 /0?) (78) — 7.514

Here we can note that the boundary impedance
initially exhibits a rational fraction algebraic struc-

ture, - 13.24
The computations were made for wef2nx 2,000, — Analytic
27 x 2,100] with the following mechanical constants: ---- Numerical
m; =100, m,=0.1, £, =0.003, E,=0.002, R
o, =2nx2,034. Concerning the substructure, we  _ 1g8.8g : , : fiHz)
considered three cases: w,=27mx1,700 (static), 2000 2020 2040 2060 2080 2100
@, =21 x 2,068 (dynamic) and w,=2nr x 2,150 (vibra- Fig. 2. — Elementary system.
tional isolation).
For smoothing the impedance, we used 101 fre- 1.76 1 {dB}

quency points in the band.
The results are given in Figures 1 to 3 which illus-

2
(solid line) and

Frequency response of
two oscillators in series
F, =2034 Hz

1

py

2

240 {dashed line) for the three above

o+ 10log,,

cases. These results are satisfactory. —1163-
Frequency response of
two oscillators in series

Fl = 2034 Hz ~18.32

Fy = 1700 Hz

e Analytic

4.35- ---- Numerical

—25.02 T T ; v f {He) )
2000 2020 2040 2060 2080 2100

Fig. 3. — Elementary system.

— 7.337

582 VIL 2. — ONE-DIMENSIONAL SYSTEM

The second mechanical system investigated is a
straight beam located in plane Oxy, with axis Ox,
origin x=0, length 2 L, clamped in x=0 and free in
- 10857 —— Analytic x=2L. . . .

) The beam is homogeneous, isotropic, with length
-~=- Numerical N 2L=2, density p=31,400, Young's modulus
N E=2.1x10'!, Poisson ratio v=0.3 and structural

f (Hz) \ damping £=0.003.
—1 ’592000 2020 2040 20860 2080 2100 It is modeled by 150 straight beam finite elements
with two nodes, each node with 2 degrees of freedom
Fig. 1. — Elementary system. (a translation on Oy and a rotation around 0z). To
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complexify this beam, we added finite lineal elements
with two structural fuzzy nodes, homogeneous, ortho-
tropic, the mean lineal mass of the fuzzy being
m=>52%10"% and its mean modal density being
n=2.75.

The analysis band chosen is we{2nx 100,
2nx1000]. It is divided into ten subbands for the
MF method. For this analysis band, we chose a point
mechanical excitation @ F(®), with unit amplitude,
applied to peoint x=1 in direction Oy.

First the response of the complexified mechanical
system was computed. This response was the refe-
rence solution.

Then the beam was truncated in the middle and
the truncated part x=1 was modeled by a boundary
impedance applied to node x=1, We therefore
replaced the initial mechanical system by a master
system (the part of the beam 0 < x < 1) plus a substruc-
ture represented by its boundary impedance
(diagram 1). It should be noted that in this operation,
the structural fuzzy was left present in the master
system and the substructure,

Reference system

s F
%l l

f

L=1 [ L=1
et —|4 -
|
I
F
y Master system l e Boundary
ﬁ - impedance
o~ =1
[

]
Diagram 1. — One-dimensional system.

The boundary impedance of the substructure is
computed numerically by the finite element method
(6] For o fixed, Z(w) is a {2,2) matrix. Figure 4
shows the (1,1} term on the analysis band.

For computations with the method proposed, the
boundary impedance was smoothed on each MF nar-
row band (with width 27nx 100) using twenty fre-
quency points in each band. For each term of the
matrix, the degree of the denominator was taken
equal to 2 and the sequence mentioned in the remark
of Section V, 6 was used.

The results are given in Figures 5 and 6 which
represent the transverse acceleration energy in decibels
computed on the elementary bands with width 2 x 5.
The response of the initial structure (complete)
without fuzzy is also shown for reference.

Globally, it can be said that the results are very
good. It can however be noted that the situation was
relatively unfavorable insofar as, for the analysis band
chosen, the response of the complete pure structure
is more of the modal type.
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29.95 -
19.814
9.68 -
—0.43
— 10.5 -
—20.6+
—30.84
—40.9 4
- —51-
- = 61 g
—-71.2

Beam impedance
Diagonal term of transverse
diplacement

Re{Z)/10°

f (Hz)
800 1000

T T T

200 400 600

98.1-
84.41
70.7 |
57
43.3
29.6-
1591
2.28 g\/
—11.41

—25.1 -
—38.8

Beam impedance
Diagonal term of transverse
diplacement

M (z)/10°

f (Hz}
200 400 600 800 1000

Fig. 4. — Example of boundary impedance.

--~ Beam without fuzzy
—-— Beam with fuzzy
—— Truncated beam with fuzzy substructure

39.85710 x A Log, 4 (E)

— 22,52 et fH?)
200 400 600 800 1000

Fig. 5. — One-dimensional system.
Excitation point.
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--- Beam withaut fuzzy ted at abscissa z=L, by a plane perpendicular to 0z
—— Beam with fuzzy and part 0£z<L was taken as substructure of the
— Truncated beam with fuzzy substructure  initial system (diagram 2). It can be noted that here,
10 x A Log; ¢ (E} the substructure contains the boundary condition of
35,74, 5 the clamped end.
29.744 & p
i B i Reference system
23.74 A P
waaly i ; : |
: i vy
11744 ' 7 /2//2/ /////
5.734; é/ 42 LA
— 0.26 1 iy :
~6.274 | 4 i
1227, L=1,26 Ir L=1,26
- 18.271 f {Hz) :
- 24.28 T T T ::" T T T T T ( z 1 F
200 400 600 800 1000 Master system
L
v
Fig. 6. ~ One-dimensional system. Boundary \// / i /__
Point x - impedance ~// //
2 yd
L=1,26
In effect, it is known that a certain “organization” Diagram 2. — Three-dimensional system.
of the vibrations occurs which it is difficult to restore
when the system is truncated. For a given ® in the analysis band, the boundary

impedance was a complex (61,61) matrix (37 degrees

of freedom in translation and 24 in rotation) which
VII, 3. — THREE-DIMENSIONAL SYSTEM was numerically computed by the finite element
method as in Section VII, 2. The smoothing was then
carried out separately on each MF narrow band with
20 frequency points in each band. For each term of
the impedance matrix, the degree of the denominator
was taken equal to 8.

The results are given in Figures 7 to 9. They show
the energy in decibels of the radial acceleration

The third numerical application concerns a smooth
cylindrical shell, with axis Oz in a cylindrical reference
system (r, 6, z), clamped at end z=0 and free at the
other end. It is open at the ends.

The shell is homogenecous, isotropic, with total
length 2 L=2.52, mean radius R=0.619, thickness

e=0.045, Youngs’s modulus E=4.5x10'°, density ——~ Cylinder without fuzzy
p=1,920, Poisson ratio v=0.3 and structural damp- — — Cylinder with fuzzy
ing £=0.003 constant on the analysis band. — Truncated cylinder with fuzzy substructure

Considering the plans of geometric symmetry, only

11,69710 x A Log; o {E)
a quarter of the shell (ogeg g) was modeled by 96 7,151 ;
finite thin shell elements with eight nodes. The cylin- 2,61 ion : i i
der was also complexified with a homogeneous, ortho- —-1,921 b T
tropic structural fuzzy (96 finite surface fuzzy ele- — 6,461 H ,‘ E ' :'-'j,
ments with eight nodes), the mean surface mass of 11 ¢ f ;'E :
the fuzzy being m =0.326 and its mean modal density YN LR
being n=0.03. — 15641 o -
The analysis band is oe[2 % x 200, 27 x 1,200] and —20,08; E
is divided into ten narrow bands for the MF method. — 24,624
The excitation is a point force with unit amplitude —29,15 5_"
applied in the radial direction to point —aseod f. (HZ).
(r=R, 8=0, z=1). 200 400 600 800 1000 1200

The principle of the computations is strictly iden-

. A Fig. 7. — 3D system.
tical to that of VII, 2. The initial system was trunca-

Excitation point.
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— — - Cylinder without fuzzy
—-— Cylinder with fuzzy
— . Truncated cylinder with fuzzy substructure

VIII. ~ CONCLUSION

This paper describes a2 method used to introduce

10.73710 x A Log;o (E) i )\ mechanical substructures characterized by a boundary
4.92+ AN AVN I R impedance in finite element computations. We des-
_ 0.894 , Eooropd g gt cribed the technique used to systematically reduce the
5 i SR R A T problem to second-order differential equations with
— 6.7 P PlA e S | ,‘ i constant coefficients. This technique allows the direct
— 12,52 LR WA s bt integration methods already developed in the time
—18.33. AL (O R Y P, domain to be used to solve the problem.
— 2414 A ‘: ¥ For the dynamic analysis of complex mechanical
— 20.96- ©y g systems, this method should make it possible to con-
35.77 template systematic parametric studies at lower cost,
o oy for instance in view of an optimum definition of the
— 41684 main parts of the system. Another interesting aspect
:5'- f{Hz) . iy eys . . .
— 4739+, : : : : ; , ; , . is the possibility of using an experimental characteri-
200 400 600 800 1000 1200 zation of certain parts of a mechanical system to
Fig. 8. — 3D system. predict the vibrational behavior of such a system by
computation.
6
Point (r:F?, 8=0, z= g[_)
Manuscript submitted on July 2, 1987.
- — — Cylinder without fuzzy
—-— Culinder with fuzzy
Truncated cylinder with fuzzy substructure
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