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1 Introduction

Cancer is primarily a disease of the physiological control on cell population
proliferation. Tissue proliferation relies on the cell division cycle: one cell
becomes two after a sequence of molecular events that are physiologically
controlled at each step of the cycle at so-called checkpoints, in particular
at transitions between phases of the cycle [105]. Tissue proliferation is the
main physiological process occurring in development and later in maintaining
the permanence of the organism in adults, at that late stage mainly in fast
renewing tissues such as bone marrow, gut and skin.

Proliferation is normally controlled in such a way that tissue homeostasis
is preserved. By tissue homeostasis we mean permanence in the mean of tissue
in volume, mass and function to ensure satisfaction of the needs of the whole
organism. In cancer tissues, this physiological control, which also relies on the
so-called checkpoints in the division cycle of individual replicating cells, is
disrupted, leading to an overproduction of cells that eventually results in the
development of tumours.

Anticancer drugs all attack the cell division cycle, either by slowing it
down (possibly until quiescence, i.e., non proliferation, cells remaining alive),
or by blocking it at checkpoints, which in the absence of cell material repair
eventually leads to cell death.

Various mathematical models have been proposed to describe the action
of anticancer drugs in order to optimise it, that is to minimise the number
of cancer cells or a related quantity, as the growth rate of the cancer cell
population. The constraints at stake, met everyday in the clinic of cancers,
are related mainly to resistance to treatment in cancer cell populations and
to unwanted toxicity in healthy tissues.

We briefly review some of these models, namely ODE models, PDE models
with spatial structure, phase structured cellular automata and physiologically
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structured PDE models. We do not claim to be exhaustive in a field where
so much has been published in the last fifty years. However, we present the
main models used in cancer treatment in the last decades, together with the
biological phenomena that can be described by each of them.

We then present some techniques used for the identification of the param-
eters of population dynamic models used in chemotherapy. We also briefly
review theoretical therapeutic optimisation methods that can be used in the
context of different models of cell population growth, according to the clinical
problem at stake, to the available data and to the chosen model, with their
advantages and pitfalls.

We then focus on a novel method of optimisation under unwanted toxicity
constraints, presented here in the context of cancer chronotherapeutics. This
method is based on optimisation of eigenvalues in an age-structured model
of cell population dynamics, the parameters of which can be identified in cell
cultures by using recent intracellular imagery techniques relying on fluores-
cence quantification. Thanks to these fine level quantitative cell observations,
the structured cell population model, which takes the cell division cycle into
account, gives interesting results for the optimisation of the pharmacological
treatments of cancer.

Finally, bases for cell population dynamic models, with external control
targets, that ought to be used to physiologically represent the effects of differ-
ent anticancer drugs in use in the clinic, are sketched, as are possible schemes
for multitarget multidrug delivery optimisation, designed to meet present clin-
ical challenges in everyday oncology.

2 Drugs used in cancer treatments and their targets

Although these are important co-occurring phenomena in cancer and make
all its malignancy, tissue invasion and the development of distant metastases
will not be mentioned here, for the simple reason that no efficient treatments
exist against them specifically so far. For instance, matrix metalloprotease
inhibitors (anti-invasive agents) were tested in the past, even until phase II
clinical trials, but their development has been arrested in particular due to
high toxicity. We will thus stick to drugs that impact on local cancer growth,
a process which itself is initiated by growing impairment of the normal phys-
iological control on the cell division cycle in cell populations.

From this point of view, drugs used in cancer treatments may be roughly
divided into those that drive cells to their death, which we define here as cyto-
toxic, and those that just slow down the cell division cycle, letting cells alive,
but containing teumour development, which we will define here as cytostatic.
Note that ‘cytotoxic’ and ‘cytostatic’ are terms on which consensus is not so
widespread, hence this necessary precision for our purposes.
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2.1 Fate of drugs in the organism: molecular pharmacokinetics-
pharmacodynamics

Anticancer drugs are delivered into the general circulation, either directly by
intravenous infusion, or indirectly by oral route, intestinal absorption and en-
terohepatic circulation (i.e., entry in the general blood circulation from the
intestine via the portal vein towards the liver, and possibly back from the
liver to the intestine via bile ducts). Their fate, from introduction in the cir-
culation until presence of an active metabolite in the neighbourhood of their
intracellular targets, can be represented by pharmacokinetic (PK) compart-
mental ordinary differential equations (ODEs) for their concentrations. It is
also theoretically possible to represent this fate by spatial partial differential
equations (PDEs) with boundary conditions instead of exchange rules between
compartments when data on spatial diffusion of the drugs and some geometry
of their distribution domain is known - but this is seldom the case.

Then, in the cell medium, either an individual cell, or a mean intracellular
medium in a population of cells, pharmacodynamic (PD) differential equa-
tions must be used to relate local drug concentrations with molecular effects
on their targets. At this level of description, it is a priori more relevant to
describe by physiologically structured than by spatially structured models the
population of cells under pharmacological attack, since anticancer drugs act
mainly by blocking the cell division cycle, which does not give rise to a spa-
tially structured cell population (apart from the very early stages of avascular
spheroid tumour growth, little geometry is relevant to describe a tumour seen
under the microscope).

2.2 Cytotoxics and cytostatics

Driving cells to their death may be obtained either by damaging the genome,
or more indirectly by impairing essential mechanisms of the cell division cycle,
such as enzymes thymidylate synthase (an enzyme that plays an essential role
in DNA synthesis and is one of the main targets of cytotoxic drug 5-FU) or
topoisomerase I (another essential enzyme of DNA synthesis, target of cyto-
toxic drug irinotecan). The resulting damaged cell, unable to proceed until
division into two viable cells, is normally blocked at one or the other check-
point, mainly G1/S or G2/M (recall that the cell division cycle is classically
divided into 4 successive phases, G1, S for DNA synthesis, G2, and M for
mitosis).

Then, unless it may be repaired by specific enzymes - that are often over-
expressed in cancer cells -, these impaired cells, blocked at a checkpoint, are
subsequently sent to ‘clean death’ by the physiological mechanism of apop-
tosis (also possibly impaired in cancer, resulting in abnormal cells bypassing
these checkpoints). As mentioned above, we define here this class of drugs,
that have for their ultimate mission to kill cancer cells - even if their primary
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action is not to directly damage the genome, but rather to damage cell cycle
enzymes - as cytotoxics.

We reserve the term cytostatic to those non cell-killing drugs that merely
slow down proliferation, usually by maintaining cells in G1 with possible exit
to G0, that is by definition the quiescent phase, i.e., the subpopulation of
cells that are not committed in the cell division cycle. Indeed, before the
restriction point inside G1, cells may stop their progression in the cell cycle
and go back to quiescence in G0. This last category comprises all drugs that
act as antagonists of growth factors, which may be monoclonal antibodies or
tyrosine kinase inhibitors.

2.3 Drugs that act on the peritumoral environment

We might also attach to this ‘cytostatic’ category drugs that act on the tumour
environment, such as for instance anti-angiogenic drugs (that impoverish it in
oxygen and nutrients) or molecules that could be able to modify local pH in a
sense unfavorable to cancer cells, assuming that their action is not to entrain
cell death, but to indiectly slow down progression in the cell cycle, which is
possible mainly, if not only, in the G1 phase.

Acting on cancer cell populations without killing any of these cells but
only by limiting their thriving, even inducing their decay, by unfavorable en-
vironmental conditions is certainly an ideal therapy, which avoid cell killing
also in healthy cell populations, and it has been achieved in some rare cases
in monotherapy, e.g., by Imatinib (initially known as STI571) for Chronic
Myelogenous Leukaemia [53, 100]. Yet most treatments of cancer use combi-
nations of cytotoxics and cytostatics (e.g., irinotecan and cetuximab [44]), for
non cell-killing therapeutics alone are seldom sufficient in advanced stages of
cancers.

Another instance of such combination of cell-killing and non cell-killing
therapeutics is the treatment of Premyelocytic Acute Myeloblastic Leukaemia
(APL or AML3) by combining an anthracyclin and a redifferentiating agent
(for AML is characterised by a blockade of differentiation in non proliferat-
ing hematopoietic cells, and redifferentiating agents such as All-TransRetinoic
Acid (ATRA) lift such blockade in the case of APL) [66]. Here, maturation,
and not proliferation (i.e., not the cell cycle, which is not affected by them),
is the target of redifferentiating agents, which may thus by no means be con-
sidered as cytostatic.

2.4 Representation of drug targets

It is appropriate to consider anticancer drugs, cytotoxic or cytostatic, and
their targets, through their effects on the cell cycle in cell populations. This of
course assumes that a model of the cell cycle in a proliferating cell population
is given. Nevertheless we also firstly mention other models, which either do not
include the cell cycle or do not describe events at the level of a cell population.
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In a review article [75], Kimmel and Świerniak considered two possibilities
to represent in a mathematical model the action of cytotoxic drugs on their
targets in a proliferating cell population: either by a possible direct effect on
cell death, enhancing it, presumably by launching or accelerating the apoptotic
cascade in one or more phases of the cell cycle, or by a blockade of one or more
transitions between two phases, arresting the cycle at some checkpoint, most
often with the involvement of protein p53, and only secondarily launching cell
death.

This is indeed a general alternative in the representation of the effects
of cytotoxics. If no cell cycle phase structure has been put in the population
dynamic model used to represent the evolution of the cell populations at stake,
i.e., when no account is taken of cell cycle phases in these populations, then
only the first possibility exists: modulation of a death term.

As regards cytostatics (which by definition are not supposed to kill cells, at
least not directly), the representation of their action in physiological models
with age structure for the cell cycle should be somewhat different. It can be
done either by a slowdown of the progression speed in the G1 phase (or in the
proliferating phase in a one-phase model) or by an action on the exchanges
between non proliferating (G0) and proliferating phases when a G0 phase is
represented in the model.

It is also possible to combine cytostatic and cytotoxic effects in the same
model. In [69], for instance, the authors use an age-structured model with a 1-
phase proliferative subpopulation exchanging cells with a nonproliferative cell
compartment to combine a slowdown effect on proliferation for the cytostatic
effect with an increase in the cell death term for the cytotoxic effect - of the
same drug, lapatinib, a tyrosine kinase inhibitor, in their case, the variation
between these effects depending on the dose. Acting on two different targets in
a cell cycle model by two different drugs, a cytotoxic and a cytostatic one, in
the same cell population is thus possible, and such models are thus amenable
to study and optimise combination therapies, such as cetuximab+irinotecan
advocated in [44].

3 Overview of cell population dynamics designed for

cancer treatment

In this section, we present an overview of several kinds of cell population
models that have been used in modelling anticancer treatments. Some works
we refer to do not include cancer treatment optimisation, but it is important
to mention them as they could be used as a first step towards cancer therapy
optimisation. As so much has been published in the last fifty years, we do not
claim to be exhaustive, only recollecting the main models used to describe the
fate of cell populations submitted to cancer treatments.
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3.1 ODE models for growing cell populations with drug control

The first models of tumour growth were developed to reproduce and explain
experimentally observed tumour growth curves. The most common ones are

the exponential model (
dN

dt
= λN), the logistic (

dN

dt
= λN

(

1−
N

K

)

, where

K is the maximum tumour size, or “carrying capacity” of the environment),

and the Gompertz (
dN

dt
= λN ln

(

K

N

)

, where again K is the carrying capac-

ity). Contrary to the exponential model, the logistic and the Gompertz models
take into account the possible limitation of growth due, for instance, to a lack

of space or resources, assuming that the instantaneous growth rate
dN

Ndt
de-

pends on the carrying capacity of the environment. The Gompertz model was
initially developed in the context of insurance [62] and was first used in the
nineties to fit experimental data of tumour growth [81]. A lot of studies on
drug control are based on these models [14, 15, 35, 96, 97, 98, 106, 107, 108].
For instance, Murray [106, 107] considered a two-population Gompertz growth
model with a loss term to model the effect of the cytotoxic drug. He considered
both tumour and normal cells in order to take into account possible side-effects
of the treatment on the population of normal cells. Murray’s purpose was to
minimise the size of the population of tumour cells at the end of the treat-
ment while keeping the population of normal cells above a given threshold. In
[108], Murray took into account cell resistance to chemotherapy and applied
the problem of optimising drug schedules to a two-drug chemotherapy. In [96],
Martin developed a model to determine chemotherapy schedules that would
minimize the size of the tumour at the end of the treatment, under constraints
of maximal drug doses (individual doses and cumulative dose), ensuring that
the tumour decrease might be faster than a given threshold. In further works,
Martin et al. also introduced tumour cell resistance to chemotherapy [97, 98].

More recently, one of us and his co-workers [15, 35] investigated the effects
of oxaliplatin on tumour cells and healthy cells. To model tumour growth,
they used a Gompertz model modified by a “therapeutic efficacy term” as a
death term depending on the drug concentration.

In [35], the work presented in [15] is extended by coupling this model of
tumour growth to a model of healthy cell growth and to a three-compartment
model describing the time evolution of the concentration of oxaliplatin in
plasma, healthy tissue and tumour tissue. This work was done on the ba-
sis of experimental data related to oxaliplatin PK-PD and tumour growth
curves with or without drug injection to determine the model parameters and
compared time-scheduled infusion schemes with constant ones. In the same
work, the drug infusion schedule was optimised by determining drug infu-
sion patterns that should maximise tumour cell death under the constraint of
minimising healthy cell death. Barbolosi and Iliadis [14, 70] coupled a Gom-
pertz model of tumour growth, perturbed by a cytotoxic efficacy term, to
a two-compartment model of the chemotherapy PK (plasmatic and active
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drug concentration). They investigated optimal drug delivery schedules under
constraints of maximal allowed drug (single doses and cumulative dose) and
leukopenia.

In an attempt to design a more realistic model of tumour growth under
angiogenic stimulator and inhibitor control, Hahnfeldt et al. [67] proposed a
two-variable model derived from the Gompertz model. It is based on obser-
vations made on experimental data from lung tumours in mice treated by an
antiangiogenic drug. Hahnfeldt et al. introduced as a variable the carrying
capacity of the environment, K:

dN

dt
= λN ln

(

K

N

)

(1)

dK

dt
= bN − (µ+ dN2/3)K − ηg(t)K (2)

where b is the rate of the tumour-induced vasculature formation, µ + dN2/3

represents the rate of spontaneous and tumour-induced vasculature loss,
g(t) ≥ 0 represents the antiangiogenic drug concentration.

This model enables to take into account the vasculature, that provides
nutrients and oxygen to tumour cells, and thus to study the effects of several
anti-angiogenic factors on tumour growth. D’Onofrio et al., based themselves
on this model, proposed different expressions for K, modelling for instance
endothelial cell proliferation or delayed death, to investigate the action on
tumour growth of anti-angiogenic therapies [46, 47, 48] and of combined ther-
apies [49]. In the same way, Ledzewicz et al. [83], basing themselves on [55],
considered the following model

dN

dt
= −λN ln

(

N

K

)

− ϕvN (3)

dK

dt
= bK2/3 − dK4/3 − (µ+ γu− ηv)K (4)

where u and v represent the doses of an anti-angiogenic drug and of a cytotoxic
drug, respectively, and ϕ, γ, η their effects on tumour cells and on vasculature.
The authors introduced an optimisation problem to minimise the tumour cell
mass under constraints on the quantity of drug to be delivered.

Most cancer chemotherapies are cell cycle phase-specific, which means that
they act only on cells that are in a specific phase of the cell division cycle, for
instance in S or in M . To take into account such specificities, models describ-
ing the cell cycle have been designed. Without always entering into the details
of cell cycle phases, several models distinguish between proliferating and non-
proliferating cells [114, 115, 139, 140]. They take into account two kinds of
cell populations, proliferative and quiescent, by representing time variations
of their densities, and allow exchanges of cells from one population to the
other. They are based on the fact that only proliferative cells are sensitive
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to chemotherapies and they allow to study the effect on tumour growth of
several treatment schedules and to determine the optimal ones. For instance,
in [114, 115], Panetta et al. proposed the following model

d

dt

(

x1
x2

)

=

(

α− µ− η β
µ −β − γ

)(

x1
x2

)

(5)

where x1 and x2 represent the cycling and non-cycling tumour cell mass re-
spectively, α the cycling growth rate, µ the rate at which cycling cells become
non-cycling, η the natural decay of cycling cells, β the rate at which non-
cycling cells become cycling, and γ the natural decay of non-cycling cells.
All these parameters are supposed to be constant and positive. By adding a
drug-induced death term in the equation on cycling cells, the authors investi-
gated the effects on tumour growth of two kinds of periodic chemotherapies:
a pulsed one and a piecewise continuous one. They also considered the effect
on a population of non tumour cells (or normal cells) in order to determine
optimal drug schedules. Some authors later based themselves on this model to
determine optimal chemotherapy schedules [56, 85]. Using experimental data,
Ribba et al. [124] introduced a third kind of cells, the necrotic cells, and the
carrying capacity in order to investigate the effect of an antiangiogenic treat-
ment on tumour growth dynamics and on hypoxic and necrotic tissues within
the tumour.

Kozusko et al. [80] deepened the work of Panetta et al. [114] by developing
a model of tumour growth integrating two compartments within the cell cycle:
one for cells in phasesG1 and S and another for cells in G2 andM . They based
their model on experimental data to represent the effect on tumour growth
of an antimitotic agent (curacin A), that prevents cells from dividing. They
modeled the blockade of cells in the G2/M phase of the cell cycle according to
the treatment dose, and distinguished resistant cells from sensitive ones. This
model was able to predict a minimum dose of treatment able to stop growth
of both kinds of cells. To analyse the effect on tumour growth of another
anticancer treatment (mercaptopurine) according to varying degrees of cell
resistance, Panetta et al. [116] modified the model introduced by Kozusko et
al. [80] by distinguishing phases G0/G1, S and G2/M .

3.2 PDE models with spatial dynamics for tumour growth and
drug effects

ODE models presented above do not integrate any spatial dimension. They
were historically developed to explain in vitro tumour growth curves. Obvi-
ously in vivo tumour growth depends on its environment. For instance, it
depends on the mechanical properties of the supporting tissue, on the local
quantity of nutrients and oxygen, on the local concentrations of pro and anti-
growth chemical factors, etc. PDE models integrating spatial dynamics are
thus better suited than ODE models for the design of realistic models of tu-
mour growth. Greenspan [63] was the first author to take into account the
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spatial dynamics of tumour cells and oxygen through the simplifying hypoth-
esis of a spherical symmetry of the diseased tissue (tumour spheroid). Several
models are based on his [33, 34, 43, 45, 101, 127].

Reaction-diffusion PDEs are best suited to describe the space and time
evolution of the concentrations of chemical substances and of cell densities.
Such equations allow to take into account the interactions of a diffusing chem-
ical molecule or of a population of cells with its environment.

Thus Swanson et al. [131, 132, 133] used the classical KPP-Fisher model
that is frequently used to represent the spatial progression of so-called “travel-
ling waves” (see [103] for details), to develop a model of brain tumour growth
that takes into account tumour cell proliferation and diffusion

∂p

∂t
= ∇.(D(x)∇p) + ρp(1− p) (6)

where p is the tumour cell density (that depends on space and time), D(x)
the diffusion rate (that depends on space), ρ the net proliferation rate. In fact,
its linearised form around the origin

∂p

∂t
= ∇.(D(x)∇p) + ρp (7)

is sufficient to describe tumour progression (and it has an analytic solution
if D(x) is constant). The difficulty here resides in the identification of the
diffusion coefficient D(x), which is in fact far from constant, since it depends
on the nature of cerebral matter, grey or white, and the brain is not known
to posses a simple spatial structure.

In [132], Swanson et al. modelled the action of a chemotherapy by intro-
ducing in Equation (6) a linear death term that also depends on space and
time. They investigated drug delivery according to the tissue heterogeneities
of the brain (white or grey matter).

Competition between cells for the gain of space and nutrients influences
tumour growth. Thus, on the basis of a Lotka-Volterra type model [109, 110],
Gatenby et al. [59, 60] modelled competition between healthy and tumour
cells to phenomenologically represent the mutual negative influences of the
populations on each other. They highlighted the limitations of the clinical
cytotoxic strategies that solely focus on killing tumour cells and not on pre-
serving healthy cell populations from toxic side effects of the anticancer drugs.

Cell proliferation and cell death induce changes in the tumour volume.
This phenomenon has to be taken into account to model tumour cell growth
in a more mechanistic way. It is usually done by adding a transport term in
the left-hand side of the reaction-diffusion equation

∂p

∂t
+∇.(vp) = ∇.(D∇p) + f(p) (8)
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where f represents the reaction term, and v the velocity of the transport
movement. The velocity v can be determined by using Darcy’s law and, for
instance, assumptions on the total amount of cells.

Authors generally consider that the population of tumour cells is submitted
to a growth signal representing all growth signals (inhibitors or promoters).
The equations governing the evolution of the density (or mass) of tumour cells
and of the concentration of chemicals are derived by applying the principle of
mass conservation to each species. The common form of such equations is

∂p

∂t
+∇.(vp) = ∇.(Dp∇p) + αp(c, p)− δp(c, p) (9)

∂c

∂t
= ∇.(Dc∇c) + αc(c)− δc(c, p) (10)

where p is the density of tumour cells, c the concentration of the chemical
(nutrients, oxygen, ...), Dp the diffusion rate of tumour cells, αp represents
their proliferation rate, δp their spontaneous death rate, Dc is the diffusion
rate of the chemical, αc represents its production rate, δc its degradation
rate. Because tumour cell proliferation and death depend on the concentration
of the chemical, functions αp and δp depend, for instance linearly, on the
concentration of the chemical and on the tumour cell density. The function αc

depends, for instance linearly, on the concentration of the chemical and the
function δc depends both on the chemical concentration and on the density of
tumour cells to model, for instance, the consumption of the chemical substance
by tumour cells. The same kind of equation as Equation (10) can be used to
describe the evolution of the concentration of drug u.

As already mentioned in Section 2, cancer therapies can have different
effects on tumour growth. To model the effect of a drug inducing tumour cell
death (cytotoxic), one can add in the right-hand term of Equation (9) a death
term; thus the equation governing the density of tumour cells submitted to
the effect of a cytotoxic drug may be given by

∂p

∂t
+∇.(vp) = ∇.(Dp∇p) + αp(c, p)− δp(c, p)−Kcyto(u, p) (11)

whereKcyto is a positive function that depends on the drug concentration and
on the tumour cell density, Equation (10) remaining unchanged.

Instead, to model the effect on tumour growth of an anti-angiogenic ther-
apy that will reduce oxygen supply, one can add such a decay term in the
right-hand term of Equation (10), which then becomes

∂c

∂t
= ∇.(Dc∇c) + αc(c)− δc(c, p)−Kangio(u, c) (12)

whereKangio is a positive function that depends on the drug concentration and
on the chemical concentration; in this case, Equation (9) remains unchanged.

Thus, in [73], Jackson et al. considered a model with two kinds of cells
differing by their sensitivity to a cytotoxic treatment: one cell type was less
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sensitive than the other one. They assumed that the tumour was a spheroid,
thus reducing the dimension from three to one, using radial symmetry. The
drug fate was modelled through the variations of its tissue concentration,
via a term of blood-to-tissue transfer (the drug concentration in blood be-
ing prescribed by the therapy scheduling). The authors compared the tumour
response to an equal amount of drug administered either by bolus injection
or by continuous infusion. Jackson based herself on this work to develop a
model of the action of an anti-cancer agent (doxorubicin) on tumour growth
[72]. This model is composed of a submodel of tumour growth coupled to a
three-compartment submodel of intratumour drug concentration (extracellu-
lar space, intracellular fluid space, nucleus space) and to a submodel of the
plasma concentration of the drug. The intracellular action of the drug on
tumour cells is modelled through a Hill-type function. This model allows to
study the tumour response to repeated rounds of chemotherapy.

In [112], Norris et al. investigated the effects of different drug kinetics (lin-
ear vs. Michaelis-Menten kinetics) and different drug schedules (single infusion
vs. repeated infusions) on tumour growth.

Frieboes et al. [57] developed a mathematical model of tumour drug re-
sponse that takes into account the local concentration of drug and nutrients.
The authors considered two cell phenotypes, viable and dead tumour cells,
and supposed that their mitosis and apoptosis rates depended on the nutri-
ents and drug concentration. This model was calibrated on in vitro cultures
of breast cancer cells.

More mechanistic (i.e., more molecular than purely phenomenological)
models have been used to take into account details of the angiogenic pro-
cess. Endothelial cells, that constitute the blood vessel wall migrate towards
a gradient of a chemoattractant substance secreted by quiescent (or hypoxic)
tumour cells (this movement is termed chemotaxis). Continuous models of
angiogenesis usually take into account the density of endothelial cells and the
tissue concentration of the chemoattractant substance. They are based on the
following equations

∂m

∂t
= ∇.(Dm∇m) + αmm− χm∇.(m∇w) − δmm (13)

∂w

∂t
= ∇.(Dw∇w) + αw(q)w − δww (14)

where m denotes the density of endothelial cells, Dm their diffusion rate, αm

their proliferation rate, χm their chemotaxis rate, δm their death rate, w the
concentration of the chemoattractant substance, Dw its diffusion rate, δw its
production rate that depends on the density of quiescent tumour cells q, δw its
degradation rate. Such models can also include other kinds of cells or chemical
substances, see for instance [32] for a review of angiogenesis models.

The coupling of angiogenesis models to tumour growth models is usually
done via the concentration in oxygen (or nutrients), the time and space evo-
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lution of which is given by a reaction-diffusion PDE based on the fact that
oxygen is delivered by the vasculature and mostly consumed by tumour cells.
This coupling enables to describe in a more realistic way the effects of anti-
angiogenic therapies on tumour vasculature and thus on tumour growth.

Thus, Sinek et al. [128] based on the model of vascular tumour growth
developed by Zheng et al. [141] and on experimental data to develop a model
of tumour growth and vascular network coupled to a multi-compartment
pharmacokinetic-pharmacodynamic (PK-PD) model. Their purpose was to
analyse the effect on tumour growth of two anti-cancer drugs, doxorubicin
and cisplatin (compartments of the PK-PD model were drug-specific). They
concluded that drug and oxygen heterogeneities, possibly due to irregularities
of the vasculature, can impact drug efficacy on tumour cells. Kohandel et al.
[79] proposed a model that also takes into account tumour cells, the tumour
vascular network and oxygen to investigate the effect on tumour growth of
different schedules of single and combined radiotherapy and anti-angiogenic
therapy.

3.3 Phase-structured cellular automata for the cell division cycle
and drug effects

Drug effects on tumour growth can also be investigated by means of phase-
structured cellular automata to represent the cell division cycle. Cellular au-
tomata enable to describe individual cancer cell evolution within a population
of cells. Thus Altinok et al. developed a cellular automaton for the cell cy-
cle [3, 4, 5, 6]. This automaton does not take into account molecular events
but phenomenologically describes cell cycle progression. The states of this au-
tomaton correspond to the phases of the cell cycle. Transition between two
states of the automaton correspond to cell progression through the cell cycle,
or exit from the cell cycle, and are supposed to respect some prescribed rules.
For instance each phase of the cell cycle is supposed to be characterised by a
mean duration and a variability in order to take into account inter-cell vari-
ability that can appear within a population. This model enables to study, on
a whole population of cells, the impact of the variability in the duration of
the cell cycle phases on cell desynchronisation through the cell cycle.

Such modelling is motivated by the fact that one way to optimise phar-
macological treatments in cancer, taking into account of the cell division cy-
cle on which tissue proliferation relies, is to take advantage of the control
that circadian clocks are known to exert on it. Such treatments are termed
chronotherapies of cancer [87, 88, 89, 90, 91, 92]. In order to investigate the
effects of chronotherapy on the growth of a tumour cell population, Altinok et
al. coupled this cellular automaton with a model of the circadian clock through
kinases known to induce or inhibit the transition from G2 to M . For instance,
in [4, 5], the authors were interested in the action of 5-fluorouracil (5-FU),
an anticancer drug known to block cells in the S phase. They modelled the
effects of this drug by increasing the probability that cells submitted to 5-FU
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while in S phase exit from the cell cycle at the next G2/M transition. They
compared the cytotoxic efficacy of continuous administration of 5-FU and
of several chronomodulated therapies that differed from their administration
peak time. Later, in [6], Altinok et al. analysed the cytotoxic effects of 5-FU
chronotherapies according to their administration peak time and to the cell
cycle mean duration. As they did for 5-FU, Altinok et al. also investigated the
effects of oxaliplatin chronomodulated therapies on tumour cells. Contrary to
5-FU, oxaliplatin is an anticancer agent that is not phase-specific. Therefore
the authors modelled the effects of oxaliplatin in a non phase-specific way, by
increasing the probability for exposed cells of exiting the cell cycle at the next
checkpoint (G1/S or G2/M transitions).

3.4 Physiologically structured PDE models for the cell cycle and
drug effects

Time and space are not the only two variables on which tumour growth de-
pends. In fact, tumour growth also depends on the physiological properties of
cancer cells, that can be for instance age of the cells (i.e., time since the last
cell division), mass or volume of the cells, or their DNA content. To take this
phenomenon into account, the McKendrick PDE framework is the best suited
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(15)

where n(a, t) is the density of tumour cells with the characteristic a (age,
mass, volume, DNA content, etc) at time t, g is the tumour growth rate, d
is the death rate, β is the tumour cell birth rate, amin ≥ 0 is the minimum
value of a. Note that g, d, β depend on a.

Physiologically structured cell population dynamics models have been ex-
tensively studied in the last 25 years, see e.g. [7, 8, 9, 13, 16, 20, 26, 39, 40, 65,
69, 71, 74, 103, 123, 138]. For instance, Iwata et al. [71] developed a model of
the dynamics of the colony size distribution of metastatic tumours, assuming
that both primary and metastatic tumour growth depended on the size of
the tumour. The authors proposed a Gompertz equation to model the pri-
mary tumour growth and a McKendrick type equation to model the evolution
of the colony size distribution of metastases. Kheifetz et al. [74] proposed a
model for tumour cell age distribution to investigate tumour cell dynamics
under periodic age-specific chemotherapy. Hinow et al. [69] developed an age-
structured PDE model to investigate the cytotoxic and cytostatic effects on
tumour growth of a cancer drug, lapatinib, on the basis of biological experi-
ments. The authors distinguished between proliferative and non-proliferative
cells and assumed that only proliferative cells were ageing.
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One of us with his co-workers [26, 39, 40] considered a multiphase age-
structured PDE model in which they introduced time dependency of the pa-
rameters (death rate, transition rate from one phase of the cell cycle to the
next one). They investigated the effects of a circadian control on the tumour
growth rate with and without a periodic cell cycle phase specific chronother-
apy. More details about [26] can be found in Section 7.

Basse et al. [17, 18, 19] developed a phase- and size-structured model of
a cell population submitted to paclitaxel, a cancer agent that induces mitotic
arrest of the cell cycle and cell death. The size of the cell was considered as
determined by its DNA content and some of the model parameters were deter-
mined by fitting experimental flow cytometry data. On the basis of the work
of Spinelli et al. [130], Basse et al. [20] developed a phase- and age-structured
model of a cell population submitted to a chemotherapy. They considered sev-
eral cancer agents and assumed that these chemotherapies affected tumour cell
population dynamics by modifying cell cycle phase transition functions or by
killing cells in the mitotic phase.

Webb [138] proposed a both age- and size-structured model for normal and
tumour cell dynamics under chemotherapy, on the basis of the McKendrick
model with an additional transport term. He supposed that the two popu-
lation differed by their mean cell cycle duration, that was longer for tumour
cells, and modelled the effects of the chemotherapy by a time periodic death
term. His aim was to take the resonance phenomenon into account to deter-
mine optimal period of the cancer treatment in order to induce the lowest
tumour growth rate and the highest normal cell population growth rate.

Finally, we present some examples of models that are not actually physi-
ologically structured PDE models but that derive from them.

Ubezio and co-workers [94, 95, 104, 135] based themselves on an age and
phase structured PDE model to develop a discrete age-structured model of
cell cycle describing the time evolution of the number of cells of age a at
time t in the phases G1, S and G2/M of the cell cycle. This model also takes
into account the inter-cell variability in phase duration. The potential effects
of drug (blocking cells in G1 or in G2, etc) were modelled through separate
parameters. Thanks to this model and experimental data, Montalenti et al.
[104] investigated the effects of several doses of cisplatin on ovarian carcinoma
cells. Although cisplatin is known to block cells mostly (but not only, since as
an alkylating agent inducing double strand breaks throughout the cell cycle, it
is not phase-specific) in G2, they also analysed the effects of cisplatin on cells
in G1. In [94, 95], based on experimental data, Lupi et al. investigated the
effects of topotecan and melphalan respectively, on ovarian cells. Later, Ubezio
et al. [135] deepened the previous works of their team by examining the effects
of five drugs (doxorubicin, cisplatin, topotecan, paclitaxel and melphalan) on
ovarian cancer cells using several doses.

Delay differential models can also be viewed as deriving from age-struc-
tured PDE models since they can be obtained by integrating PDEs along char-



Optimisation of cancer drug treatments using cell population dynamics 15

acteristics. Thus Bernard et al. [23] proposed a model composed of delayed
differential equations to model tumour and normal cell population dynam-
ics in the phases of the cell cycle under circadian control and chemotherapy.
They compared the efficacy and toxicity of constant and chronomodulated
schedules of 5-FU, a phase-specific drug used in the treatment of colorectal
cancer.

3.5 Mixed models, both spatially and physiologically structured

We call “mixed models”, models that include both spatial and physiological
dynamics. Such models are useful to investigate spatial changes induced by a
phase-specific chemotherapy combined or not with an antiangiogenic agent.
This kind of models has not been highly developed. Bresch and co-workers
[27, 30, 31] developed a multiscale model of tumour growth that includes cell
age in the proliferative phases of the cell cycle and tissue motion of tumour
cells. On the basis of the model developed by Bresch et al., coupled with an
angiogenesis model, one of us et her co-wokers [27] investigated the effects
of an innovative antiangiogenic drug on tumour vasculature and hence on
tumour growth. This multiscale model takes into account some molecular
events such as cell cycle dynamics and cell receptor binding. This model could
be coupled to a model of phase-specific drug, such as 5-FU, to analyse tumour
and endothelial cell dynamics under drug infusion. It could also be interesting
to determine optimal drug schedules that would maximise tumour cell death
under constraints of minimising endothelial cell death to ensure drug delivery
to tumour cells (remember that endothelial cells are cells that constitute the
vessel wall, see Section 3.4 for details).

Alarcón et al. [2] proposed a more complex multiscale model of vascular tu-
mour growth that integrates tissue, cell and intracellular scales. For instance,
this model accounts for vascular network, blood flow, cell-cell interaction, cell-
cycle, VEGF production and integrates several kinds of models (ODE models,
cellular automata, etc). The authors investigated the effects of low and high
concentrations of protein p27 on the dynamics of tumour and normal cell
populations.

4 The control and its missions: representing the action

of drugs

In the previous section, we have described some dynamic models for cell pop-
ulations frequently used in the study of cancer growth and treatments. These
models can thus be seen as controlled dynamic systems with drug effects as
their control functions. Various examples of such drug effects have been given
in Section 2. Introducing pharmacokinetics (i.e., evolution of concentrations)
for the drugs chosen produces additional equations to the cell population dy-
namic model, and their pharmacodynamics (i.e., actual drug actions) modify
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this cell dynamics according to the target and to the effect of the drugs. Then,
optimisation of cancer treatments can be represented as an optimal control
problem on this controlled dynamic system. In this section, we first discuss
how the drug infusions are taken into account in the model, then we give ex-
amples of objective functions and constraints considered in the literature on
the treatment of cancers.

4.1 Classes of control functions: what is fixed and what may be
optimised

We introduce a vector space X , called the state space. At each time t ∈ R+,
the state of the system is x(t) ∈ X . This variable lists all the data necessary
to represent the system. It should at least contain the number (or density)
of cells for each type considered. The state may have coordinates for healthy
and cancer cells and for each phase considered. In a PDE model, the state
may also distinguish between ages or between locations of cells. In the PDE
case, X has infinite dimension. The state should also contain concentrations
of drugs in each compartment of the pharmacokinetic model.

We denote by u the control function, u : R+ → U . It represents the
(multi)drug infusion schedule time by time, one coordinate per drug. The
dynamics of the biological system can thus be written as

ẋ(t) = f(t, x(t), u(t)) ,

where f : R+ ×X ×U → X . Given a control u(·), under standard hypothesis
on the dynamics f , the state is uniquely defined and we will denote the state
variable associated to the control u(·) by xu(·). Examples of such functions
are given in Section 3, for instance in Equations (1)–(4), (11)–(12) and (15).

Alternatively, instead of a control function, one may consider simpler pre-
defined infusion schemes with only a small number of control parameters. Such
infusion schemes may represent either a simple model for an early study or a
consequence of technical constraints such as the fact that oral drugs can only
be administered at fixed hours (at meal time for instance). Then u ∈ R

m is
a set of parameters and the dynamics is ẋ(t) = fu(t, x(t)). Examples of such
parameters are the period of a periodic scheme [115, 138] or the phase dif-
ference between a circadian clock and the time of drug infusion initiation [6]
(see also Section 3).

4.2 Objective functions: measuring the output

An optimisation problem consists in maximising or minimising a given real-
valued objective function, that models the objective we want to reach.

The main purpose of a cancer treatment is to minimise the number of
cancer cells. When the model takes into account the number of cancer cells
directly [6, 15, 49, 56, 75, 84, 118, 136], the objective function is simply the
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value of the coordinate of the state variable corresponding to the number
of cancer cells at a time T , T being either fixed or controlled. To take into
account the drug effects, Swierniak et al. [75, 134] defined a performance index
to minimise the number of tumour cells at the end of the treatment while
minimising the cumulated drug dose (viewed as a measure of the cumulated
drug effects on healthy cells).

The optimisation problem can also be formalised as the minimisation of the
asymptotic growth rate of the cancer cell population [26, 114, 138]. Hence, the
number of cancer cells will increase more slowly, or even eventually decrease.
We will present this approach in a linear frame (hence controlling eigenvalues)
in Section 7.

Alternatively, in [134], Swierniak et al. discussed the problem of maximis-
ing both the final number of normal cells and the cumulated drug effects on
tumour cells. They concluded that this approach led to optimisation princi-
ples similar to those developed to solve the problem of minimising both the
final number of tumour cells and the cumulated drug effects on healthy cells.

4.3 Constraints, technological and biological, static or dynamic

Toxicity constraints

A critical issue in cancer treatment is due to the fact that drugs usually exert
their effects not only on cancer cells but also on healthy cells. A simple way
to minimise the number of cancer cells is to deliver a huge quantity of drug to
the patient, who is however then certainly exposed at high lethal risk. In order
to avoid such “toxic solutions”, one may set constraints in the optimisation
problem, which thus becomes an optimisation problem under constraints.

Putting an upper bound on the drug instantaneous flow [56] and/or on the
total drug dose is a simple way to prevent too high a toxicity for a given treat-
ment. A bound on total dose may also represent a budget limit for expensive
drugs [84].

However, fixed bounds on drug doses are not dynamic, i.e., they do not
take into account specificities of the patient’s metabolism and response to the
treatment, other than by adapting daily doses to fixed coarse parameters such
as body surface or weight (as is most often the case in the clinic so far). In
order to get closer to actual toxicity limits, and hoping for a better result, it
is possible to consider instead a lower bound on the number of healthy cells,
as in [15]. In the same way, using a Malthusian growth model, where growth
exponents are the targets of control, such a constraint becomes a lower bound
on the asymptotic growth rate of the healthy cell population [138].

In the same way, a drug used in a treatment must reach a minimal concen-
tration at the level of its target (which blood levels reflect only very indirectly)
to produce therapeutic effects. Classically, clinical pharmacologists are accus-
tomed to appreciating such efficacy levels by lower threshold blood levels, that
are themselves estimated as functions of pharmacokinetic parameters such as
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first and second half-life times and distribution volume of the drug, with con-
fidence interval estimates for a general population of patients. As in the case
of toxicity, a more dynamic view is possible, by considering drug levels that
decrease the number of cancer cells, that is, which yield a negative growth
rate in the cancer cell population.

This leads to the definition of admissible sets for drug infusion flows, the
union of {0} and of a therapeutic range containing the infusion levels that
are at the same time efficient and not too toxic (such a constraint is consid-
ered in [136]). Those admissible sets are rather difficult to take into account,
however, as they lead to complex combinatorial problems.

An approach that is consequently often chosen (see [84] for instance) is to
forget this constraint in the model and to a posteriori check that the optimal
drug infusion schedules found are high enough to be efficient when they are
nonzero.

That may be an elementary reason why so called bang-bang controls (i.e.,
all-or-none) are of major interest in chemotherapy optimisation: they are de-
fined as controls such that at each time, either the drug infusion flow is the
smallest possible (i.e., 0), or it is the highest possible. Even though it is now
easy to use in the clinic (and also in ambulatory conditions) programmable
pumps that may deliver drug flows according to any predefined schedule with
long-lasting autonomy, solutions to optimisation problems often turn out to
be bang-bang (tap open-tap closed).

But solutions to optimisation problems in cancer chemotherapy are not
always bang-bang, when considerations other than on simple parallel growth
of the two populations are taken into account, and this includes competition,
when the two populations are in contact, e.g. in the bone marrow normal
haematopoietic and leukaemic cells, or when both populations are submit-
ted to a common - but differently exerted - physiological control, such as by
circadian clocks [15].

Another interesting approach, relying on two models, one of them including
the cell division cycle [114], and putting the optimal control problem with
toxicity constraints, is developed in [54]. The optimal control problem is solved
by using the industrial software gPROMS R©.

Drug resistance

Whereas therapeutic efficacy and limitation of toxic adverse effects are the
first concern when dealing with chemotherapy, the frequent development of
drug resistances in the target cancer cell populations is certainly the second
bigger issue in the clinic. The development of such resistances may come from
overexpression in individual cells of defence mechanisms as an exaggeration
of physiological phenomena, such as are ABC transporters (the P-gp, or P-
glycoprotein, being its most known representant), but they may also result, at
least as likely, in proliferative populations encompassing mitoses, from muta-
tions yielding more fit, i.e., resistant in the presence of drug, subpopulations.
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A classical solution to this problem is to forbid too low drug concentra-
tions, that are supposed to create environmental conditions favourable to the
development of more fit drug resistant cell populations without killing them,
as is also the case, for instance, in antibiotherapy with bacteria. Nevertheless,
other, more recent, arguments to support an opposite view, have been put
forth: assuming that there exists a resistant cell population at the beginning
of the treatment, or that it may emerge during the treatment, then deliver-
ing high drug doses often produces the effect to kill all sensitive cells, giving
a comparative fitness advantage to resistant cells, that subsequently become
very hard to eradicate. Thus a paradoxical solution has been proposed, at least
in slowly developing cancers: killing just enough cancer cells to limit tumour
growth, but letting enough of these drug sensitive cancer cells to oppose by
competition for space the thriving of resistant cells, that are supposed to be
less fit, but just the same, usually slowly, will invade all the tumour territory
if no opponents are present [58, 61]. Indeed, such free space left for resistant
tumour cells to thrive, when high drug doses have been administered with
the naive hope to eradicate all cancer cells, may result in the rise of tumours
that escape all known therapeutics, a nightmare for physicians which is un-
fortunately too often a clinical reality. Hence the proposed strategy to avoid
high doses, that are able to kill all sensitive cells, and to only contain tumour
growth by keeping alive a minimal population of drug-sensitive tumour cells.

Both those constraints, toxicity and resistance, can be considered as part
of the objective function by setting the objective to be a balance between two
objectives. For instance, Kimmel and Swierniak in [75] proposed to minimise
a linear combination of the number of cancer cells and of the total drug
dose. This yields an unconstrained optimisation problem, that has a simpler
resolution, while still taking into account the diverging goals of minimising the
number of cancer cells and keeping the number of healthy cells high enough.

But whereas cancer and healthy cells are two quite distinct populations,
with growth models that may easily be distinguished and experimentally iden-
tified by their parameters, it is more difficult to take into account the evolu-
tionary lability (i.e., the genomic instability) and heterogeneity of cancer cell
populations with respect to mutation-selection towards drug resistance, .ac-
cording to evolution mechanisms that are not completely elicited. Note that
acquired (as opposed to intrinsic, i.e., genetically constitutive) drug resistance
may result as well from individual cell adaptation (enhancement of physio-
logical mechanisms) as from genetic mutations, both under the pressure of
a drug-enriched environment, as discussed in [41]. In this respect, acquired
resistance may be reversible, if no mutation has initiated the mechanism, or
irreversible, and it is likely irreversible in the case of intrinsic resistance.

Ideally, the optimal solution of a therapeutic control problem should take
into account both the drug resistance (using evolutionary cell population dy-
namics) and the toxicity constraints, but these constraints have usually been
treated separately so far. Whereas the difficult problem of drug resistance
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control is certainly one of our concerns in a cell Darwinian perspective, in the
sequel we shall present only results for the (easier) toxicity control problem.

5 Identification of parameters: the target model and

drug effects

5.1 Methods of parameter identification

In the many works dedicated to modelling pharmacological control of tumour
growth and its optimisation that have been published in the last forty years,
when the issue of confronting a theoretical optimisation method with actual
data has been tackled, quite different attitudes have been displayed. When
identifying parameters of a biological model, one may use different methods,
according to the nature of considered experimental data, their precision and
reliability, and, also of course according to the scientific background of people
in charge of identification. One may distinguish between at least three types of
methods, all of which, to yield the best estimation of the parameters at stake
usually rely on least squares minimisation, otherwise said minimisation of a
L2 distance between experimental quantitative observations and numerical
features of the model, either direct outputs, such as, e.g., cell numbers, or
computed statistical parameters, such as, e.g., mean cell cycle times.

Probabilistic methods

The first method is based on the theory of parameter estimation in statisti-
cal models, and supposes that a probability measure, depending on a set of
statistical parameters, e.g., mean and variance of a probability density func-
tion (p.d.f.), is a priori given in a space of constitutive parameters of the
model, e.g., coefficients in a set of differential equations. In its simplest form,
estimation will result from the minimisation of the L2 distance between a
model p.d.f. and ancorresponding observed histogram, yielding with precision
a best set of parameters for the p.d.f.. It may also result from more elabo-
rated principles, such as maximum likelihood estimation (including the use of
computational algorithms of the Expectation-Maximisation (EM) type, with
or without the assumption of an underlying Markov chain), see the statistical
literature on the subject, e.g., [86, 137] for a general presentation. (To this
class of methods may also be related attempts to characterise by its statistical
properties a chaotic deterministic system, as studied for instance in [82], when
no actual model is given of the system, which is only supposed to have trajec-
tories converging towards a chaotic attractor - on which they are dense -, an
attractor which by definition is endowed with an invariant ergodic measure.)
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Control science and dynamical systems

The second method comes from signal processing and control science. It is
applied to the representation of dynamic systems by state-space models and
it relies on the fact that the system is given by a set of ordinary differential
equations, which may be converted by Laplace transform to the study of
transfer functions, i.e., the system in the frequency domain. Such systems
may be studied by their responses to input excitations to better characterise
them. Presentations of such identification methods may be found in [93, 137].

Inverse problems

The third method, inverse problem solving, belongs to the domain of partial
differential equations (PDEs). The models under consideration are close to
the physical world and the method can comprise almost all situations, but re-
quires specific studies for each case and nontrivial mathematics. The general
principle is that observations of the real system represented by a PDE model
correspond to an ill-posed problem, i.e., that the system of PDEs as it is given
cannot be identified in a unique manner from the observations. Nevertheless,
small regularisations (such as Tikhonov’s), i.e., small modifications of the un-
derlying differential operator, make the problem well-posed, i.e., amenable to
the identification of its parameters in a unique manner. For a general pre-
sentation, see [76]. Recent developments on physiologically structured models
may also be found in [50, 51, 52, 64, 120].

5.2 Parameters in macroscopic models of tumour growth

In macroscopic models of tumour growth, parameter identification most of-
ten relies on imagery techniques, mainly radiological or MRI, as in [131] for
brain tumour growth. But it is also possible to obtain tumour growth curves
representing three-dimensional growth by using a method which may seem
very coarse, but which has not found any really better competitor so far. It
consists in growing a tumour (homograft or xenograft, i.e., of the same an-
imal species, or of another) under the skin or on the skin of a laboratory
rodent and measuring everyday by using a caliper diameters in three dimen-
sions (one longitudinal and two orthogonal transverse) of the tumour, which
is protected by the skin coating when the tumour is subcutaneous. It is possi-
ble only when the tumour is already palpable under the skin (or visible when
it is on the skin), which excludes avascular tumours and generally involves
histologically heterogeneous, but physically (i.e., in density with respect to
water) homogeneous tumours. This allows an approximate estimation of the
tumour mass, assumed to be proportional to the number of tumour cells,
from its approximate volume and keeps the animal alive (until tumour weight
reaches 10% of the animal body weight, at which point the animal is sacri-
ficed for obvious ethical reasons). Coarse as it may seem, this method is still
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widely used because of its simplicity, see e.g., [35, 61, 124]. In a macroscopic
(whole body) perspective, it should in principle also be possible to relate tu-
mour growth with blood concentrations of biomarkers such as ACE, CA19.9
or PSA, known to be elevated in cancer or even only in tissue hyperplasia but
they are not very specific; even for more specific antigenic biomarkers, models
relating these quantities to actual cell population increase, to our knowledge,
are still wanted. A recent review on this topic may be found in [113].

5.3 Parameters in cell and molecular-based models of tissue
growth

At the cell population level, more easily quantifiable data have been recorded
to identify model parameters in structured PDE models. They are linked to
cell population samples, either with observation on a global population, such
as given by flow cytometry (or FACS, for fluorescence activated cell sorting)
[16, 17, 18, 19, 20, 95, 135], or by observations on individual cells and statistics
performed on the sampled population of individual cells marked with fluores-
cent proteins, such as FUCCI [125] in [25, 26]. These methods require previous
cell staining, e.g. with propidium iodide (for flow cytometry), or hybridisation
of intracellular proteins with external fluorescent proteins (for FUCCI). In all
cases, in the presence of a stationary (i.e., asymptotic) distribution of cells
may constitute the basis for applying an inverse problem method, as shown
in [12, 51]. A difference between these two sorts of experimental data (direct
cell population or reconstruction of population with previous individual cell
recordings) is that flow cytometry is a snapshot on a population of cells that
are destroyed by the sorting process, whereas FUCCI investigates individual
living cells without destroying them, a richer experimental situation.

5.4 Measurement of pharmacodynamic effects

Evaluation of the effects of a treatment using an anticancer drug involves
measurements with and without treatment, which obviously is not ethically
possible in most clinical situations. Nevertheless, in the case of low grade
gliomas [132, 133], where tumours can evolve very slowly during many years,
and for which it is known that no actually efficient therapy exists (in particular
neurosurgery may be more detrimental than beneficial to the patient) thera-
peutists may unfortunately, but non unethically, find themselves in a situation
of mere observers. In this case, macroscopic images of tumours may be used,
providing parameter estimation without treatment, which may then serve as
a basis for comparisons with treated gliomas. The observations are always
radiological or MRI. But in cell cultures and in animals, such experimental
observations are of course much easier and may allow comparing parameters
of interest evaluated by using any of the methods mentioned above in differ-
ent situations: cell cultures, fresh blood samples from patients, tumour growth
curves [11, 18, 19, 20, 35, 117] and it is then possible to propose optimised
treatments based on these estimations [10, 15, 35].
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6 Therapeutic optimisation procedures

In the previous sections we have described the drugs used in chemotherapy,
various cell population dynamic models and the objectives and constraints
considered in chemotherapy optimisation problems that have been published.
Those three topics can be seen as components of an optimisation model. In
order to get quantitative results, the parameters of this model should be esti-
mated by using the techniques presented in Section 5. Then, one has to choose
an optimisation procedure to solve the optimisation problem considered.

When choosing an optimisation procedure, one first needs to identify what
are the optimisation variables. For chemotherapy optimisation, there are two
main situations: either the optimisation variables are some parameters of a
predefined infusion scheme or they are the infusion scheme itself, represented
by a time-dependent control function u(t) (cf. Section 4.1).

6.1 Graphic optimisation

“Graphic optimisation” simply consists in plotting the value of the objective
for all admissible points. It is a very simple scheme and the only requirement
for its success is that the admissible set must have a nonempty interior. It
also provides graphics to present the result.

Graphic optimisation suits particularly the case of a predefined infusion
scheme with only a few parameters. For instance, this technique was used by
Webb [138] and Panetta and Adam [114]. These authors considered models
of the McKendrick type (see Section 3) and they searched for the best period
of periodic drug infusions, i.e., the period of predefined drug infusion schemes
that minimises the growth rate of cancer cells. Altinok et al. [6] proposed a
cellular automaton model controlled by two predefined infusion schedules of
drugs where the parameter is the phase difference between a circadian clock
and the drug infusion.

The drawback of this method is that when the number of parameters
grow, the time necessary for the resolution of the problem grows exponen-
tially. Moreover, graphics are less practical when the dimension exceeds 3.
The classical solution is, rather, to make use of a more evolved optimisation
algorithm. However, if one needs an evolved optimisation algorithm anyway,
one might as well consider an optimal control problem, in which the whole
infusion schedule is the optimisation variable.

6.2 Pontryagin’s maximum principle

An optimal control problem is an optimisation problem where the objective is
a function of the state variables x(·) : R+ → R

n of a dynamical system and of
the controlled variables u(·) : R+ → R

m that control the dynamical system.
It can be written formally as
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min
u(·),T

∫ T

0

f0(t, x(t), u(t))dt + g0(T, x(T ))

ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ]

u(t) ∈ Ut, ∀t ∈ [0, T ]

x(0) = x0 , x(T ) ∈M1

(16)

Here, f0 is the cost function and g0 is the final cost. The final time T can be
either fixed or be part of the control. The dynamical system is represented
by function f , which gives the evolution of x and is controlled by u. At each
time, the control may be subject to constraints represented by the set Ut and
the set M1 is a subset of R

n representing conditions on the final state. If
we replace the constraints x(0) = x0 and x(T ) ∈ M1 by x(T ) = x(0), we
have a T -periodic optimal control problem (see [28] for more precision on the
consequences of this model).

A major tool of optimal control is Pontryagin’s maximum principle [121]. It
gives necessary optimality conditions for the optimal trajectories. We denote
the Hamiltonian of the system by

H(t, x, p, p0, u) =
n
∑

i=1

pifi(t, x, u)〉+ p0f0(t, x, u) ,

where p = (p1, . . . , pn) ∈ R
n and p0 ∈ R. If u(·) associated to the trajectory

x(·) is an optimal control on [0, T ], then there exists a continuous application
p(·) called the adjoint vector and a nonpositive number p0 such that for almost
all t ∈ [0, T ],

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)) , ṗ(t) = −

∂H

∂x
(t, x(t), p(t), p0, u(t)) (17)

and we have the maximisation condition for almost all t ∈ [0, T ],

H(t, x(t), p(t), p0, u(t)) = max
v∈Ut

H(t, x(t), p(t), p0, v) . (18)

If in addition, the final time to reach the target M1 is not fixed, we have the
condition

max
v∈UT

H(T, x(T ), p(T ), p0, v) = −p0
∂g0

∂t
(T, x(T ))

and if M1 is manifold of Rn with a tangent space TxM1 at x, we have

p(T )− p0
∂g

∂t
(T, x(T )) ⊥ Tx(T )M1 .

Under the conditions of the Pontryagin’s maximum principle given in
Equations (17), (18), we have

d

dt
H(t, x(t), p(t), p0, u(t)) =

∂H

∂t
(t, x(t), p(t), p0, u(t))
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and thus if f , f0 and Ut do not depend on t, then H does not depend on t
and maxv∈Ut

H(t, x(t), p(t), p0, v) is constant.
Thanks to Pontryagin’s maximum principle one is often able to determine

the optimal control as a function of the adjoint vector. Nevertheless, the ad-
joint vector is not easy to compute. It is defined through its value at the
terminal point, p(T ), and solutions to the associated boundary value problem
are difficult to compute, nor need they be unique.

For Pontryagin’s maximum principle to be applicable, the cell population
model must be a set of ODEs controlled by drug infusions, as presented in
Section 3.1. The authors generally minimise the number of cancer cells at final
time with a bound on the instantaneous drug flow. The total dose is either
constrained to be bounded or is part of the objective, a smaller dose improv-
ing the objective. When the information provided by Pontryagin’s maximum
principle is enough to know the optimal control, as in [49, 56, 75, 84], it gives
the control, i.e., the solution to the problem, in an explicit formula, without
any discretisation. This is then a very valuable information. Unfortunately, for
most optimal control problems, and optimal control arising from chemother-
apy problems are not an exception, we do not have enough information and
we have to use a numerical algorithm to solve the problem.

6.3 Numerical methods for optimal control problems

Two classes of numerical methods exist for optimal control problems, namely
indirect methods, also called shooting methods, and direct methods.

Shooting method

The shooting method is based on the observation that, if ever we knew the
value p0 = (p00, p

1
0, . . . , p

n
0 ) of the adjoint state at the initial point, we could get

the optimal controls time by time. Thus we define the shooting function G(p0)
such that G(p0) = 0 if and only if p(T ) satisfies the final conditions (recall
that T is the final time). The shooting method simply consists in solving the
equation G(p0) = 0, with variable p0, for instance by a Newton method.

A variant of the shooting method was used in [84] for chemotherapy op-
timisation. Ledzewicz et al. considered two drugs that act on a Gompertzian
model: one is an anti-angiogenic, which controls the carrying capacity of the
tumour and the other is a cytotoxic drug, which controls a death term. The
pharmacodynamics of the drugs was modelled by linear differential equations.
The authors apply Pontryagin’s maximum principle on this model with the
objective of minimising the quantity of tumour cells and as constraints an up-
per bound on the drug instantaneous flow and an upper bound on drug total
dose. The authors obtained the optimal control as a function of the adjoint
vector. The optimal control reaches the dose bound when a function related to
the adjoint is nonzero and it follows a singular curve when this function van-
ishesd along an interval. They then used a shooting method to construct the
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optimal control as a feedback function from these adjoint-vector dependent
singular curves. Algorithmic details are given in [99].

In general, shooting methods give very precise results but the structure of
commutations, given by studying Pontryagin’s maximum principle, must be
known in advance for them to be efficient. When this structure is unknown,
one can still perform direct methods, which we describe next.

Direct methods

Direct methods consist of a total discretisation of the control problem and
then of solving the finite dimensional optimisation problem obtained. The
discretisation of an optimal control problem results in an optimisation problem
with a large number of variables. The theory of differentiable optimisation
is the classical tool for such problems [24, 29, 111]. However, in order to
overcome the limits of differentiable optimisation, some authors use stochastic
algorithms to solve the discretised problem. We next give some examples of
these techniques in the context of chemotherapy.

Gradient algorithm

When the problem is formulated without any state constraint, one can use
the gradient algorithm, as in [118]. The authors proposed a cell-cycle de-
pendent model written with one ODE by cell-cycle phase. They controlled
the transition and death rates and optimised a linear combination of the
number of cancer cells and of the total dose of drugs. The gradient algo-
rithm starts here with an initial control strategy u0 and the associated tra-
jectory xu0 . It consists in successive improvements of the discretised objective

F 0(u) =
∑N

l=0 f
0(tl, xu(tl), u(tl)) + g0(T, xu(T )) by

uk+1 = PU (uk − α∇F 0(uk))

where U is the set of admissible controls and α is a length step chosen in order
to guarantee a sufficient decrease of the objective, for instance with an Armijo
or Wolfe line search rule. When computing the gradient of the objective with
respect to the control, there appears an adjoint vector which is a discrete
version of the adjoint vector in Pontryagin’s maximum principle.

Uzawa algorithm

An optimal control problem with K constraints is a problem of the form of

problem (16) where we add constraints
∫ T

0
f i(t, x(t), u(t))dt+ gi(T, x(T )) ≤ 0

for i = 1, . . . ,K. For such problems, direct methods are particularly suited and
the discretised optimal control problem can be solved by the Uzawa algorithm.

We denote F i(u) =
∑N

l=0 f
i(tl, xu(tl), u(tl)) + gi(T, xu(T )) and we intro-

duce the Lagrangian
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L(u, λ) = F 0(u) +

K
∑

i=1

λiF i(u)

where λ is a vector with one coordinate by state constraint called a Lagrange
multiplier. At a given iterate (uk, λk), we solve

uk+1 = argmin
u
L(u, λk)

by a nonconstrained optimisation algorithm, as is the gradient algorithm, and
then we compute

λik+1 = max(0, λik + αF i(uk+1)), ∀i ∈ {1, . . . ,K} .

where α is an appropriate step size. If the constraint is an equality constraint
instead of an inequality constraint, we accept nonpositive values for λ and we
do not perform the maximum against 0.

Basdevant et al. used the Uzawa algorithm in [15] to solve the problem
of minimising the number of cancer cells while maintaining the number of
healthy cells over a tolerability threshold. They modelled the cell population
dynamics and the action of the drug by a set of coupled differential equations.

In [26], we solved the problem of minimising the asymptotic growth rate
of the cancer cell population while keeping the asymptotic growth rate of
the healthy cell population over a prescribed threshold; see a sketch of the
method and of its results below in Section 7. We modelled the cell population
dynamics by a McKendrick model physiologically controlled by a circadian
clock, considering a phase-dependent drug acting on transitions. We firstly
discretised the problem and then solved it by using a Uzawa algorithm with
augmented Lagrangian. That is to say, we replaced the Lagrangian by

Lc(u, λ) = F 0(u) +
1

2c

K
∑

i=1

(max(0, λi + cF i(u))2 − (λi)2) .

Compared to the classical Lagrangian, the augmented Lagrangian has better
convergence and stability properties for a small computational cost.

Other differentiable optimisation algorithms may also be used, depending
on the properties of the problem at stake. In general, all these algorithms
give a local optimal solution quickly but they do not give any guarantee that
the control solution produced is a global optimum. In order to overcome this
drawback, some authors chose to use stochastic algorithms instead.

Stochastic algorithms

Stochastic algorithms are algorithms that use a random number generator to
find the optimal solutions of a given problem. These random numbers are used
to explore the admissible control set with the hope that the optimal controls
will eventually be hit. Each stochastic optimisation algorithm is a compromise
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between focusing on good solutions and letting enough freedom to exploration
in order not to miss the global optimum. See [68, 129] for more details on this
subject.

In [1], Agur et al. considered an age-structured cell cycle model with de-
terministic cycle phase lengths. The drug under consideration is toxic for cells
in one of the phases only. They considered a composite objective function that
takes into account the number of cancer and healthy cells in the end and a
measure of the survival of the patient. They assumed that a patient survives
if at no time the number of healthy cells falls below a threshold. The au-
thors compared three versions of simulated annealing. They first defined the
neighbourhood of every point of the admissible set, that is, at every point,
they defined the possible ways to go to another point. This neighbourhood
should be large enough to give freedom to the algorithm but not too large be-
cause otherwise the computational cost of searching the neighbourhood would
be dissuasive. Then simulated annealing gives the rule for the acceptance or
rejection of a neighbour, which gets stricter when a parameter, call the tem-
perature, decreases. In theory, if the temperature is decreased properly, the
iterates converge to an optimum of the problem. In practice, convergence may
be desperately slow. The other two heuristics presented in the paper do the
same work but with simplified rules, that do not guarantee convergence to an
optimum but have smaller computational costs.

Villasana et al. proposed in [136] an ODE model with three types of cells:
cancer cells in interphase (i.e., G1, S and G2), cancer cells in mitosis phase
(M) and healthy cells. Each type of cells has a particular dynamic and there
are interactions between them. They considered a combination of a cytotoxic
and of a cytostatic drug and they wanted to minimise the number of cancer
cells while keeping the number of healthy cells above a threshold. They used
the covariance matrix adaptation evolutionary strategy (CMA-ES) to solve
this problem. This is an algorithm based on probabilistic mutations of the
current iterates and on a selection of the best ones [68]. The covariance matrix
adaptation is a way to give the mutations directions for them to be more
effective.

7 Focus: cancer therapeutics to control long-term cell

population behaviour in structured cell population

models

7.1 Linear and nonlinear models

We have presented in [25, 26] a method based on the control of eigenvalues
in an age-structured model, yielding the numerical solution of an optimal
control problem in the context of cancer chronotherapeutics, and we sum
up below some of its results as regards system modelling, identification, and
theoretical therapeutic optimisation. To this goal, we used an age-structured
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cell population model, since our aim was to represent the action of cytotoxic
anticancer drugs, which always act onto the cell division cycle in a proliferating
cell population. The model chosen, of the McKendrick type [102], is linear.
This may be considered as a harsh simplification to describe biological reality,
which involves nonlinear feedbacks to represent actual growth conditions such
as population size limitation due to space scarcity. Nonetheless, having in mind
that linear models in biology are just linearisations of more complex models
(for instance considering the fact a first course of chemotherapy will most
often kill enough cells to make room for a non space-limited cell population to
thrive in the beginning) we think that it is worth studying population growth
and its asymptotic behaviour in linear conditions and thus analyse it using its
growth (or Malthus) exponent. This first eigenvalue of the linear system may
be considered as governing the asymptotic behaviour, at each point where
it has been linearised, of a more complex nonlinear system, as described in
[21, 22].

7.2 Age-structured models for tissue proliferation and its control

We know that circadian clocks [87, 88, 89, 90, 91, 92] normally control cell pro-
liferation, by gating at checkpoints between cell cycle phases (i.e., by letting
cells pass to the next phase only conditionally). We also know that circadian
clock disruption has been reported to be a possible cause of lack of physiologi-
cally control on tissue proliferation in cancer [91], a fact that we will represent
in our model to distinguish between cancer and healthy cell populations.

The representation of the dynamics of the division cycle in proliferating
cell proliferations by physiologically structured partial differential equations
(PDEs) is thus a natural frame to model proliferation in cell populations,
healthy or tumour. The inclusion in such proliferation models of targets for
its control, physiological (circadian) and pharmacological (by drugs supposed
to act directly on checkpoints), allows to develop mathematical methods of
their analysis and therapeutic control [25, 26, 36], in particular for cancer
chronotherapeutics, i.e., when the drug control is made 24h-periodic to take
advantage of favourable circadian times.

Physiologically structured cell population dynamics models have been ex-
tensively studied in the last 20 years, see Section 3.4 for some examples. We
consider here typically age-structured cell cycle models, in which the cell di-
vision cycle is divided into I phases (classically 4: G1, S,G2 and M), and the
variables are the densities ni(t, x) of cells having age x at time t in phase i.
Equations read































∂ni(t, x)

∂t
+
∂ni(t, x)

∂x
+ di(t, x)ni(t, x) +Ki→i+1(t, x)ni(t, x) = 0,

ni+1(t, 0) =

∫ ∞

0

Ki→i+1(t, x)ni(t, x)dx,

n1(t, 0) = 2

∫ ∞

0

KI→1(t, x)nI(t, x)dx,

(19)
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together with an initial condition (ni(t = 0, .))1≤i≤I . This model was first
introduced in [42] and further studied in other publications, among which
[39, 40]. In this model, in each phase i, cells are ageing with constant speed 1
(transport term), they die with rate di or with rate Ki→i+1 go to next phase,
in which they start with age 0. To represent the effect of circadian clocks
on phase transitions [91], one may consider time-periodic coefficients di and
Ki→i+1, the period being in this case 24 hours.

7.3 Basic facts about age-structured linear models

One of the most important facts about linear models is the trend of their solu-
tions to exponential growth. The study of the growth exponent, first eigenvalue
of the system, is therefore crucial. Solutions to sytem (19) satisfy (if the coef-
ficients are time-periodic, or stationary) ni(t, x) ∼ C0Ni(t, x)e

λt [119], where
Ni are defined by






















































∂Ni(t, x)

∂t
+
∂Ni(t, x)

∂x
+
(

λ+ di(t, x) +Ki→i+1(t, x)
)

Ni(t, x) = 0,

Ni+1(t, 0) =

∫ ∞

0

Ki→i+1(t, x)Ni(t, x)dx,

N1(t, 0) = 2

∫ ∞

0

KI→1(t, x)NI(t, x)dx,

Ni > 0, Ni(t+ T, .) = Ni(t, .),
∑

i

∫ T

0

∫ ∞

0

Ni(t, x)dxdt = 1

(20)

with T−periodic coefficients.
We focus now on the case of stationary phase transition coefficients

(Ki→i+1(t, x) = Ki→i+1(x)) and we do not consider death rates (di = 0).
Note that if one considers constant nonzero death rates, the problem does not
change, only the eigenvalue λ is then in fact λ+ d, as one can see in the equa-
tions of system (20). As shown in [42], the first eigenvalue λ is then solution
of the following equation, which in population dynamics is referred to, in the
1-phase case (I = 1) with no death term, as Euler-Lotka’s equation

1

2
=

I
∏

i=1

∫ +∞

0

Ki→i+1(x)e
−

∫
x

0
Ki→i+1(ξ)dξe−λx dx. (21)

Integrating the first equation of System (19) along its characteristics [119], we
can in the stationary case with no death rate derive the formula

ni(t+ x, x) = ni(t, 0)e
−

∫
x

0
Ki→i+1(ξ)dξ.

This can be interpreted in the following way: the probability for a cell which
entered phase i at time t to stay for at least an age duration x in phase i is
given by
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P (τi ≥ x) = e−
∫

x

0
Ki→i+1(ξ)dξ.

The time τi spent in phase i is thus a random variable on R+, with probability
density function fi given by

dPτi(x) = fi(x)dx = Ki→i+1(x).e
−

∫
x

0
Ki→i+1(ξ)dξdx,

or equivalently:

Ki→i+1(x) =
fi(x)

1−
∫ x

0
fi(ξ)dξ

(22)

7.4 FUCCI (cell cycle) reporters to identify model parameters

FUCCI (for fluorescence ubiquitination-based cell cycle indicator) is a recent
cell imaging technique that allows tracking progression within the cell cy-
cle of an individual cell [125] after hybridisation with fluorescent proteins of
cell cycle phase characteristic indicators (geminin and Cdt1) involved in the
ubiquitination, i.e., natural degradation, of the actual proteic determinants of
evolution in the cell cycle. We used FUCCI data, that consisted in time series
of the intensity of red and green fluorescence emitted by individual NIH 3T3
cells (mouse embryonic fibroblasts) within an in vitro homogeneous popula-
tion proliferating without any control in a liquid medium. This allowed us to
measure the time an individual cell spent in the G1 phase and in the phases
S/G2/M of the cell cycle. Our data consisted of cell cycle phase durations
from 55 proliferating cells. Note that is fully justified in our case to assume
Ki→i+1(t, x) = Ki→i+1(x) since these experimental conditions correspond to
cells proliferating in a completely independent manner, without any commu-
nication nor external control on their proliferation. It is noteworthy that,
though we deal with PDEs, our method is simpler than methods involving
inverse problem solving (which nevertheless have been used on comparable
situations, for instance in [51]), and this is due to the fact that using the
FUCCI reporter technique we have access to precisely defined data in indi-
vidual cells, with the counterpart that quite few individual proliferating cells
have been recorded. A graph representing a time series from an individual cell
and the method used to record phase durations is presented on Figure 1.

We used these experimental data to identify the parameters of our model

by fitting shifted Gamma distributions f(x) = ρ−k(Γ (k))−1(x−a)k−1e−
(x−a)

ρ

on [a,+∞[ to frequencies of appearance of G1 and S/G2/M durations within
the population (recall that variable x stands for age in each one of the two
phases). These Gamma distributions were approximations of the probability
density functions of the random variable corresponding to the time spent in
G1 and S/G2/M . This enabled us to determine the expression of the transi-
tions rate according to the formula (22). We then compared the solutions of
the system with cell recordings, that had previously been synchronised “by
hand”, i.e., all recordings were artificially made to start simultaneously at the
beginning of G1 phase. The result is shown on Figure 2. Note that using an
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Fig. 1. Graphic method used to determine the durations of the whole cell cycle
and of G1 phase. The duration of phase S/G2/M was deduced by subtracting the
duration of phase G1 from the duration of the cell cycle.

inverse problem method - see Section 5 - instead of ours could have consisted
here in determining the parameters of the model, i.e., Ki→i+1 transition func-
tions, by minimising a L2 distance between this experimental data curve and
a theoretical, parameter-dependent curve representing these data.
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Fig. 2. Time evolution of the percentages of cells in the phases G1 (red or deep
grey) and S/G2/M (green or light grey) from biological data (dashed line) and from
numerical simulations (solid line). Our model results in a reasonably good fit to
biological data.
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7.5 Optimising eigenvalues as objective and constraint functions

Fig. 3. Drug and circadian controls, healthy cell population case. Cosine-like func-
tions modelling the drug and circadian controls for transition from G1 to S/G2/M
(dash-dotted line) and for transition from S/G2/M to G1 in healthy cells. The “nat-
ural” (drug-free) control for S/G2/M to G1 transition corresponds to the solid line,
the drug-induced one to the dashed line.

Fig. 4. Drug and circadian controls, cancer cell population case. Cosine-like func-
tions modelling the drug and circadian controls for transition from G1 to S/G2/M
(dash-dotted line) and for transition from S/G2/M to G1 in cancer cells. The “nat-
ural” (drug-free) control for S/G2/M to G1 transition corresponds to the solid line,
the drug-induced one to the dashed line.

We then used combined time-independent data on phase transition func-
tions, obtained from experimental identification of the parameter functions
Ki→i+1(t, x) = κi(x) in the uncontrolled model, with cosine-like functions
representing the periodic control on these transitions by circadian clocks,
together with free-running drug infusion regimens. The drug infusion regi-
mens were optimised using a Uzawa method with an augmented Lagrangian
(see Section 6.3 or [29] for algorithmical details), aiming at decreasing the
growth rate in a cancer cell population (objective) while preserving the same
in a healthy cell population (constraint) by maintaining it over a prescribed
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threshold. The idea is the same as in [15], except that we deal here with cell
population growth exponents instead of cell numbers.

We considered two cell populations, that we called cancer cells and healthy
cells. In these simulations, we took into account cell death via a constant death
rate, the same for both populations. We made the two cell populations only
differ by their circadian control function ψ and we assumed that there was
no interaction between the two populations, healthy and cancer. We took
for this circadian control a continuous piecewise cosine-like function for each
phase (Figure 3). We assumed that cancer cell populations still obey circadian
control at these main checkpoints but less faithfully, and we modelled their
behaviour by a looser answer to the circadian control signal (Figure 4).

Transitions from one phase to the other are described by the transition
rates Ki→i+1(t, x). We took them with the form

Ki→i+1(t, x) = κi(x)ψi(t)(1 − gi(t))

where κ(x) is the transition rate of the cell without circadian control identified
from FUCCI data, ψi(t) is the natural circadian control modelled by a cosine-
like function and gi(t) is the effect at the cell level of the drug infusion at time
t on the transition rate from phase i to phase i + 1. No drug corresponds to
gi(t) = 0, a transition-blocking infusion corresponds to gi(t) = 1. We assumed
that the drug has the same effect on both populations, which couples their
behaviours through the drug infusions.

We solved the constrained optimisation problem [25, 26] with Uzawa algo-
rithm. After convergence of the algorithm, we get the locally optimal strategy,
shown in our case on Figure 5, defining on [0; 24] the 24h-periodic function
g2 (assuming that g1 = 0, that is here mimicking the action of an anticancer
drug - as 5-fluorouracil - active in S phase only). It can be seen that it mainly
consists in forbidding transitions when healthy cells do no change phase, thus
harming cancer cells only.

Fig. 5. Locally optimal periodic drug infusion strategy (function g2, see text for
details) found by the optimisation algorithm.
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The result of the optimised drug infusion regimen rates is shown on Fig-
ure 6, where it can be seen that the asymptotic growth rate of cancer cells,
initially positive and higher than the one of healthy cells, has been rendered
negative by the periodic treatment exerted on transition rates while the new
growth rate of healthy cells, though moderately affected by the treatment,
remains positive.

Fig. 6. Daily mean growth rates for cancer (solid line) and healthy cells (dashed
line) when starting drug infusion at time 0. After a 10-day transient phase, the drug-
forced biological system stabilizes towards the expected asymptotic growth rate

Note that the FUCCI technology only enables us to distinguish between
cells in G1 and S/G2/M , without distinction between S, G2 andM . However,
we may note that the method used in [26] to identify phase transitions relies in
fact on the probability distribution of durations of phases. Since the duration
of the phase M is known to be most of the time very short, with almost
zero variability within cell populations, it would be legitimate to considered
it as fixed, as 1 hour, say, and that the recorded variability of S/G2/M is
in fact the variability of S/G2. Thus, we could have considered that we were
dealing in this identification process with a transition function from S/G2

to M instead of the one from S/G2/M to G1. In this case, the transition
function from M to G1 could have been modelled by an indicator function,
representing the fact that mitotic cells divide and enter the G1 phase once
they are old enough. Under these assumptions, we could have applied our
optimisation problem to an age-structured model accounting for 3 phases of
the cell cycle, G1, S/G2 and M . As a first step in our analysis, we preferred
keeping the model as simple as possible, in the absence of actual knowledge of
the duration of M phase, but taking it as fixed, for instance to 1 hour, such
considerations might be developed in future works to assume that we have,
thanks to FUCCI reporters, accessed the main two checkpoints, G1/S and
G2/M .
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8 Future prospects: multitarget multidrug delivery

optimisation in physiologically structured cell population

models

From a therapeutic point of view, we have only represented the action of one
drug acting on cell cycle phase transitions (on only one transition, G2/M , if it
acts on S phase). We know indeed that, in particular via p53, drugs that create
DNA damage ultimately act by blocking the cell cycle at checkpoints, mainly
G1/S and G2/M , and this only subsequently sends the cell into apoptosis,
therefore cell cycle transition checkpoints are the most accurate targets to
represent the effect of most cytotoxic drugs. The action of spindle poisons, such
as taxans and vinca alcaloids, that block the cell cycle in M phase (but not
at G1/S or G2/M), might also be represented by using the same formalism.

Now, in everyday oncology, most treatments use combinations of drugs
that exert their action in synergy on different targets. These drugs may act
on phase transitions only, but they may also act by inhibition of growth factor
receptors (such as cetuximab, or tyrosine kinase inhibitors), impinging on the
speed v1, depending on age x at which G1 phase is run through. In this case,
one may use, as in [69], an extended version of model (19), where

∂

∂t
n1(t, x) +

∂

∂x
(v1(x)n1(t, x)) + d1(t, x)n1(t, x) +K1→2(t, x)n1(t, x) = 0.

(23)
Another possibility would be to introduce a non proliferating, or quiescent,

phase G0 exchanging cells with G1 and to represent the action of growth
inhibitors by a control of these exchanges.

In Section 7, summing up [26], and following [15], we have focused on math-
ematical models of tissue growth having in mind only the problem of limiting
drug toxicity to healthy cell populations to optimise cancer treatments. In
the future, making available models of the emergence of drug-resistant cell
subpopulations under drug pressure in a cell Darwinian perspective, we will
simultaneously tackle at the cell population level the constraints of drug re-
sistance in tumour cells and of toxicity to healthy tissues, to propose globally
efficient combined therapies using at least two complementary drugs.

In a multiscale perspective, integrating a representation of the vasculature
around a cancer cell population will also allow us to represent and optimise the
action of combined therapies associating cytotoxic and antiangiogenic drugs,
as in [49, 83].

To be relevant for actual clinical applications, models based on the repre-
sentation of evolving structured populations will also need to be integrated in
a whole-body level, from the infusion of drugs into the central compartment
of general blood circulation until the actions they exert at the peripheral sites
on proliferating cell populations. This has partly been done, but still without
control, and in the case of an avascular tumour, in [31]. Moreover, to take
into account in a dynamic way the constraint of limiting unwanted toxicity
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to healthy tissues, cell population growth models will have to separately rep-
resent both tumour and healthy cell populations, with therapeutic control,
wanted or not, exerted on both, and possibly with competition between the
two populations, as is the case for space in the bone marrow between leukaemic
and normal haematopoietic cells at different stages of their maturation.

Whole-body integration of different spatial scales of description of pharma-
cological control on tumour and on healthy cell populations should certainly
go as down as possible at the single cell level, including for instance nucleo-
cytoplasmic transport to model the control by p53 of the cell cycle in case of
damage to the DNA, as produced by cytotoxic drugs, and it must necessarily
contain an intermediate tissue level as the main level of description, for cancer
is certainly a tissue disease, which may be controlled only at the tissue, i.e., at
the cell population level. Then higher levels of integration: whole-body, and
for the individualisation of treatments (in particular adaptation of whole-body
model parameters to clusters of patients), population of individuals, must be
considered, as sketched in [38].

Apart from toxicity issues, at this intermediate level (the tissue), will also
be considered in models presently under construction [41] the possible evo-
lution of cells towards drug resistance, which is the other main problem en-
countered in cancer therapeutics. To prevent or overcome the emergence of
resistant cell subpopulations, it is usually better to make use of several anti-
cancer drugs acting on different targets, to avoid as much as possible strategies
used by cancer cells, which, due to their genomic instability, easily adapt by
mutations to single-drug therapies. This has been the case for instance with
imatinib, a drug that has completely changed the prognosis of Chronic Myel-
ogenous Leukaemia (CML), but has nevertheless, after being considered as a
miracle drug, also be confronted to the issue of resistance in CML cells [126].
Future optimisation problems in cancer therapeutics will have to take into ac-
count as a constraint, given the possibility to induce drug resistance, to limit
it, as much as possible, not necessarily by a complete eradication of tumour
cells, but, as sketched in [58, 61], more realistically by its containment, and
this will likely more easily done by using combinations of therapies than by
using monotherapies.

9 Discussion and conclusion

We have presented in this chapter firstly a brief review of models of cancer
that have been used or may be used to tackle the general problem of thera-
peutic optimisation in oncology. As sketched elsewhere [37, 38], theoretic drug
delivery optimisation is the last step of therapeutic optimisation, which must
rely firstly on an accurate representation of the behaviour of targets (wanted
and unwanted) without treatment and on the changes the means of action of
the physician - drugs - exert on them.
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The point of view we have adopted here may indeed be considered as
complementary to the one of molecular biologists, pharmacologists and sys-
tems theoreticians [77, 78] who seek to control the cell division cycle at the
single cell level by targeted drugs that are hoped-for blockers of intracellu-
lar pathways essential in cancer proliferation. Either by targeting a “hub”
in the network by a single drug (e.g., imatinib in CML targeting BCR-Abl
chimeric tyrosine kinase [126]) or by combining drugs that can hit complemen-
tary pathways, they search for “druggable” proteins that can be hit to arrest
the cell cycle. A typical and recent example may be found in [122]. However,
this approach, obviously valuable to provide new weapons in the war against
cancer, by its nature cannot take into account the constraints linked to toxic-
ity or drug resistance issues, which must be considered at the cell population
level in a whole-body drug delivery optimisation perspective. This molecular
biology approach should also be completed by whole-body pharmacokinetic-
pharmacodynamic molecular modelling to represent the fate of drugs in the
organism, as sketched above and in [37, 38]. In other words, these approaches
may be thought of as understanding the target and the weapon, whereas, to
stay in this metaphor, optimisation of drug control is training to shoot in all
conditions to safely reach the target.

Focusing on cell population models, for cancer is never the problem of a
single cell, we thus advocate in this chapter the interest of using structured
cell population dynamics, to be further integrated in a multiscale setting, in
the optimisation of drug delivery in oncology. From intracellular molecular
dynamics to human populations, aiming at getting closer to actual clinical
applications, we clearly have still hard work ahead, both in modelling and
model analysis, and in experimental identification and validation. Various
therapeutic optimisation methods have been reviewed in their principles, and
we have shown, focusing even more on linear population growth for cancer and
for healthy cells, how it is possible to choose one, adapted to the model under
consideration. The question of therapeutic optimisation in cancer is vast, and
it may be treated in quite different manners, which have to be adapted to
the particular clinical problem at stake. Nevertheless, modelling the target,
the means of control, and taking account of the known clinical issues, there
is still room for mathematical developments to pave the way for optimisation
methods that will be able to face always more clinical challenges, all the more
so as more links will be developed between mathematicians and clinicians.
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75. M. Kimmel and A. Świerniak. Control theory approach to cancer chemother-
apy: Benefiting from phase dependence and overcoming drug resistance. In
A. Friedman, editor, Tutorials in Mathematical Biosciences III, volume 1872
of Lecture Notes in Mathematics, pages 185–221. Springer Berlin / Heidelberg,
2006.

76. A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems.
Springer, New York, 2nd edition, 2011.

77. H. Kitano. Cancer as a robust system: Implications for anticancer therapy.
Nature Rev. Cancer, 3:227–235, 2004.

78. H. Kitano. A robustness-based approach to systems-oriented drug design. Na-
ture Rev. Drug Discovery, 6:202–210, 2007.

79. M. Kohandel, M. Kardar, M. Milosevic, and S. Sivaloganathan. Dynamics
of tumor growth and combination of anti-angiogenic and cytotoxic therapies.
Phys Med Biol, 52:3665–3677, 2007.

80. F. Kozusko, P. Chen, S. G. Grant, B. W. Day, and J. C. Panetta. A mathemat-
ical model of in vitro cancer cell growth and treatment with the antimitotic
agent curacin a. Math Biosci, 170(1):1–16, 2001.

81. A. Laird. Dynamics of tumour growth. Br. J. Cancer, 13:490–502, 1964.
82. A. Lasota and M. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects of

Dynamics. Springer, New York, 2nd edition, 1994.
83. U. Ledzewicz, H. Maurer, and H. Schaettler. Optimal and suboptimal protocols

for a mathematical model for tumor anti-angiogenesis in combination with
chemotherapy. Mathematical Biosciences and Engineering, 8:307–323, 2011.

84. U. Ledzewicz, H. Maurer, and H. Schaettler. Optimal and suboptimal protocols
for a mathematical model for tumor anti-angiogenesis in combination with
chemotherapy. Mathematical Biosciences and Engineering, 8(2):307–323, 2011.

85. U. Ledzewicz and H. Schttler. Optimal controls for a model with pharma-
cokinetics maximizing bone marrow in cancer chemotherapy. Math Biosci,
206:320–342, 2007.

86. E. Lehmann and G. Casella. Theory of point estimation. Springer Texts in
Statistics, 2nd edition, 1998.



44 Frédérique Billy, Jean Clairambault, and Olivier Fercoq
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92. F. Lévi and U. Schibler. Circadian rhythms: Mechanisms and therapeutic
implications. Ann. Rev. Pharmacol. Toxicol., 47:493–528, 2007.

93. L. Ljung. System Identification - Theory for the User. PTR Prentice Hall,
Upper Saddle River, N.J., 2nd edition, 1999.

94. M. Lupi, P. Cappella, G. Matera, C. Natoli, and P. Ubezio. Interpreting cell
cycle effects of drugs: the case of melphalan. Cancer Chemother Pharmacol,
57:443–457, 2006.

95. M. Lupi, G. Matera, D. Branduardi, M. D’Incalci, and P. Ubezio. Cytostatic
and cytotoxic effects of topotecan decoded by a novel mathematical simulation
approach. Cancer Res, 64:2825–2832, 2004.

96. R. Martin. Optimal control drug scheduling of cancer chemotherapy. Auto-
matica, 28:1113–1123, 1992.

97. R. B. Martin, M. E. Fisher, R. F. Minchin, and K. L. Teo. Low-intensity
combination chemotherapy maximizes host survival time for tumors containing
drug-resistant cells. Math Biosci, 110:221–252, 1992.

98. R. B. Martin, M. E. Fisher, R. F. Minchin, and K. L. Teo. Optimal con-
trol of tumor size used to maximize survival time when cells are resistant to
chemotherapy. Math Biosci, 110:201–219, 1992.
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