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Minimization of the Energy of the Non-Relativistic One-Electron Pauli-Fierz Model over Quasifree States

In this article is proved the existence and uniqueness of a minimizer of the energy for the non-relativistic one electron Pauli-Fierz model, within the class of pure quasifree states. The minimum of the energy on pure quasifree states coincides with the minimum of the energy on quasifree states. Infrared and ultraviolet cutoffs are assumed, along with sufficiently small coupling constant and momentum of the dressed electron. A perturbative expression of the minimum of the energy on quasifree states for a small momentum of the dressed electron and small coupling constant is then given. We also express the Lagrange equation for the minimizer, in terms of the generalized one particle density matrix of the pure quasifree state.

I Introduction I.1 The Hamiltonian

According to the Standard Model of Nonrelativistic Quantum Electrodynamics [START_REF] Volker Bach | Quantum electrodynamics of confined nonrelativistic particles[END_REF] the unitary time evolution of a free nonrelativistic particle coupled to the quantized radiation field is generated by the Hamiltonian

H g := 1 2 1 i ∇ x -A( x)
2 + H f (I.1)

F (n) + (Z), (I.2)
where

F (0) + (Z) = C
• Ω is the vacuum sector and the n-photon sector F

(n) + (Z) = S(Z ⊗n ) is the subspace of totally symmetric vectors on the n-fold tensor product of the one-photon Hilbert space

Z = f ∈ L 2 (S σ,Λ ; C ⊗ R 3 ) ∀ k ∈ S σ,Λ a.e. : k • f ( k) = 0 (I.3)
of square-integrable, transversal vector fields which are supported in the momentum shell

S σ,Λ := k ∈ R 3 σ ≤ | k| ≤ Λ , (I.4)
where 0 ≤ σ < Λ < ∞ are infrared and ultraviolet cutoffs, respectively, reflecting our choice of gauge, namely, the Coulomb gauge. It is convenient to fix real polarization vectors for all k, k ′ ∈ S σ,Λ × Z 2 . The magnetic vector potential A( x) is given by

ε ± ( k) ∈ R 3 such that { ε + ( k), ε -( k), k | k| } ⊆ R
A( x) = ˆ G(k) e -i k• x a * (k) + e i k•
x a(k) dk, (I.9)

with k = ( k, τ ) ∈ R 3 × Z 2 ,
G( k, τ ) := g ε τ ( k) | k| -1/2 , (I.10) and g ∈ R being the coupling constant. In our units, the mass of the particle and the speed of light equal one, so the coupling constant is given as g = 1 4π

√ α, with α ≈ 1/137 being Sommerfeld's fine structure constant.

The Hamiltonian H g preserves (i.e., commutes with) the total momentum operator p = 1 i ∇ x + P f of the system, where

P f = ˆ k a * (k) a(k) dk (I.11)
is the photon field momentum. This fact allows us to eliminate the particle degree of freedom. More specifically, introducing the unitary is a selfadjoint operator on dom(H 0, 0 ), the natural domain of H 0, 0 = 1 2 P 2 f + H f .

U : L 2 (R 3 x ; F) → L 2 (R 3 p ; F) , UΨ ( p) := ˆe-i x•( p-P f ) Ψ( x) d 3 x (2π)

I.2 Ground State Energy

Due to (I.13), all spectral properties of H g are obtained from those of {H g, p } p∈R 3 .

Of particular physical interest is the mass shell for fixed total momentum p ∈ R 3 , coupling constant g ≥ 0, and infrared and ultraviolet cutoffs 0 ≤ σ < Λ < ∞, i.e., the value of the ground state energy E gs (g, p, σ, Λ) := inf σ[H g, p ] ≥ 0 (I.15) and the corresponding ground states (or approximate ground states). We express the ground state energy in terms of density matrices with finite energy expectation value and accordingly introduce DM := ρ ∈ L 1 (F) ρ ≥ 0, Tr F [ρ] = 1, ρ H 0, 0 , H 0, 0 ρ ∈ L 1 (F) , (I.16) so that the Rayleigh-Ritz principle appears in the form E gs (g, p) = inf Tr F ρ H g, p ρ ∈ DM .

(I.17)

Note that Tr F [ρ H g, p ] = Tr F [ρ 1-β H g, p ρ β ], for all 0 ≤ β ≤ 1, due to our assumption ρH 0, 0 , H 0, 0 ρ ∈ L 1 (F). It is not difficult to see that the ground state energy is already obtained as an infimum over all density matrices

DM := ρ ∈ DM ρ N f , N f ρ ∈ L 1 (F) (I.18)
of finite photon number expectation value, where

N f = ˆa * (k) a(k) dk (I.19)
is the photon number operator. Indeed, if σ > 0 then

H g, p ≥ H f ≥ σ N f , (I.20)
and DM = DM is automatic. Furthermore, if σ = 0 then it is not hard to see [START_REF] Volker Bach | Quantum electrodynamics of confined nonrelativistic particles[END_REF] that E gs (g, p, 0, Λ) = lim σց0 E gs (g, p, σ, Λ), by using the standard relative bound

A <σ ( 0) ψ ≤ O(σ) (H f,<σ + 1) 1/2 ψ , (I.21)
where A <σ ( 0) and H f,<σ are the quantized magnetic vector potential and field energy, respectively, for momenta below σ. So, for all 0 ≤ σ < Λ < ∞, we have that

E gs (g, p, σ, Λ) = inf Tr F ρ H g, p (σ, Λ) ρ ∈ DM , (I.22)
indeed. If the infimum (I.22) is attained at ρ gs (g, p, σ, Λ) ∈ DM then we call ρ gs (g, p, σ, Λ) a ground state of H g, p (σ, Λ).

Since DM is convex, we may restrict the density matrices in (I.22) to vary only over pure density matrices,

E gs (g, p, σ, Λ) = inf Tr F ρ H g, p (σ, Λ) ρ ∈ pDM , (I.23)
where pure density matrices are those of rank one, 

pDM := ρ ∈ DM ∃Ψ ∈ F, Ψ = 1 : ρ = |Ψ

I.3 Bogolubov-Hartree-Fock Energy

The determination of E gs (g, p) and the corresponding ground state ρ gs (g, p) ∈ DM (provided the infimum is attained) is a difficult task. In this paper we rather study approximations to E gs (g, p) and ρ gs (g, p) that we borrow from the quantum mechanics of atoms and molecules, namely, the Bogolubov-Hartree-Fock (BHF) approximation. We define the BHF energy as

E BHF (g, p, σ, Λ) = inf Tr F ρ H g, p (σ, Λ) ρ ∈ QF , (I.27)
with corresponding BHF ground state(s) ρ BHF (g, p, σ, Λ) ∈ QF, determined by

Tr F ρ BHF (g, p, σ, Λ) H g, p (σ, Λ) = E BHF (g, p, σ, Λ), (I.28)
where

QF := ρ ∈ DM ρ is quasifree ⊆ DM (I.29)
denotes the subset of quasifree density matrices. A density matrix ρ ∈ DM is called quasifree, if there exist f ρ ∈ Z and a positive, self-adjoint operator

h ρ = h * ρ ≥ 0 on Z such that W ( √ 2f /i) ρ := Tr F ρ W ( √ 2f /i) = exp 2i Im f ρ |f -f (1 + h ρ )f , (I.30)
for all f ∈ Z, where

W (f ) := exp iΦ(f ) := exp i √ 2 a * (f ) + a(f ) (I.31)
denotes the Weyl operator corresponding to f and we write expectation values w.r.t. the density matrix ρ as • ρ .

There are several important facts about quasifree density matrices, which do not hold true for general density matrices in DM. See, e.g., [START_REF] Volker | Generalized Hartree-Fock theory and the Hubbard model[END_REF][START_REF] Philip | Upper bounds to the ground state energies of the one-and two-component charged Bose gases[END_REF][START_REF] Bratteli | C * -and W *algebras, algebras, symmetry groups, decomposition of states[END_REF][START_REF] Bratteli | Operator algebras and quantumstatistical mechanics[END_REF]. The first such fact is that if ρ ∈ QF is a quasifree density matrix then so is W (g) * ρW (g) ∈ QF, for any g ∈ Z, as follows from the Weyl commutation relations

∀ f, g ∈ Z : W (f ) W (g) = e -i 2 Im f |g W (f + g). (I.32) Choosing g := -i √ 2f ρ , we find that W (-i √ 2f ρ ) * ρ W (-i √ 2f ρ ) is a centered quasifree density matrix, i.e., W ( √ 2f ρ /i) * ρ W ( √ 2f ρ /i) ∈ cQF := QF ∩ cDM. (I.33)
Next, we formulate a characterization of centered quasifree density matrices.

Lemma I.1. Let ρ ∈ cDM be a centered density matrix and denote A ρ := Tr F {ρA}. Then (i) ⇔ (ii) ⇔ (iii), where (i) ρ ∈ cQF is centered and quasifree;

(ii) All odd correlation functions and all even trunctated correlation functions of ρ vanish, i.e., for all N ∈ N and ϕ

1 , . . . , ϕ 2N ∈ Z, let either b n := a * (ϕ n ) or b n := a(ϕ n ), for all 1 ≤ n ≤ 2N. Then b 1 • • • b 2N -1 ρ = 0 and b 1 b 2 • • • b 2N ρ = π∈P 2N b π(1) b π(2) ρ • • • b π(2N -1) b π(2N ) ρ , (I.34)
where P 2N denotes the set of pairings, i.e., the set of all permutations π ∈ S 2N of 2N elements such that π(2n -1) < π(2n + 1) and π(2n -1) < π(2n), for all 1 ≤ n ≤ N -1 and 1 ≤ n ≤ N, respectively.

(iii) There exist two commuting quadratic, semibounded Hamiltonians

H = i,j B i,j a * (ψ i ) a(ψ j ) + C i,j a * (ψ i ) a * (ψ j ) + C i,j a(ψ i ) a(ψ j ) (I.35) H ′ = i,j B ′ i,j a * (ψ i ) a(ψ j ) + C ′ i,j a * (ψ i ) a * (ψ j ) + C ′ i,j a(ψ i ) a(ψ j ) (I.36) with B = B * ≥ 0, C = C T ∈ L 2 (Z)
, where {ψ i } i∈N ⊆ Z is an orthonormal basis, such that exp(-H -βH ′ ) is trace class, for all β < ∞, and

A ρ = lim β→∞ Tr F [A exp(-H -βH ′ )] Tr F [exp(-H -βH ′ )] , (I.37)
for all A ∈ B(F).

Eq. (I.33) and the vanishing (ii) of the truncated correlation functions of a centered quasifree state imply that any quasifree state ρ ∈ QF is completely determined by its one-point function a(ϕ) ρ and its two-point function (one-particle reduced density matrix)

Γ[γ ρ , αρ ] := γ ρ αρ α * ρ 1 + J γ ρ J ∈ B Z ⊕ Z), (I.38)
where the operators γ ρ , αρ ∈ B(Z) are defined as ϕ, γ ρ ψ := a * (ψ) a(ϕ) ρ and ϕ, αρ ψ := a(ϕ) a(J ψ) ρ , (I.39) and J : Z → Z is a conjugation. The positivity of the density matrix ρ implies that Γ[γ ρ , αρ ] ≥ 0 and, in particular, γ ρ ≥ 0, too. Moreover, the additional finiteness of the particle number expectation value, which distinguishes DM from DM, ensures that γ ρ ∈ L 1 (Z) is trace-class, namely, 

Tr Z [γ ρ ] = N f ρ < ∞
coh := |W (-i √ 2f )Ω W (-i √ 2f )Ω| f ∈ Z . (I.42) For these, γ ρ = αρ = 0. Conversely, if γ ∈ L 1 + (Z)
is a positive trace-class operator and α ∈ L 2 (Z) is a Hilbert-Schmidt operator such that Γ[γ, α] ≥ 0 is positive then there exists a unique centered quasifree density matrix ρ ∈ cQF such that γ = γ ρ and α = α ρ are its one-particle reduced density matrices.

Summarizing these two relations, the set QF of quasifree density matrices is in one-to-one correspondence to the convex set

1-pdm := (f, γ, α) ∈ Z ⊕ L 1 + (Z) ⊕ L 2 (Z) Γ[γ, α] ≥ 0 . (I.43)
Note that coherent states correspond to elements of 1-pdm of the form (f, 0, 0). Next, we observe in accordance with (I.43) that, if ρ ∈ QF is quasifree then its energy expectation value H g, p ρ is a functional of (f ρ , γ ρ , αρ ), namely,

H g, p ρ = E g, p (f ρ , γ ρ , αρ ), (I.44)
where 

E g, p (f, γ, α) = 1 2 (Tr[γ k] + f * kf + 2Re(f * G) -p) •2 + Tr[γ k • γ k] + Tr[ α * k • α k] + Tr[| k| 2 γ] + 2Re(( G + kf ) * α( G + kf )) + Tr[(2γ + 1)( G + kf ) • ( G + kf ) * ] + Tr[γ| k|] + f * |
(f ) = E g, p (f, 0, 0) in L 2 (S σ,Λ × Z 2 , ( 1 2 | k| 2 + | k|)dk).
1. The minimizer f g, p solves the system of equations

   f g, p = u g, p • G 1 2 | k| 2 +| k|-k• u g, p , u g, p = p -2Re(f * g, p G) -f * g, p kf g, p , with | u g, p | ≤ | p|. 2. For 0 ≤ σ < Λ < ∞, inf f ∈L 2 (S σ,Λ ×Z 2 ) E g, p (f ) = inf f ∈L 2 (S σ,Λ ×Z 2 ,( 1 2 | k| 2 +| k|)dk) E g, p (f ) = E g, p (f g, p )
,

and for 0 < σ < Λ < ∞, f g, p ∈ L 2 (S σ,Λ × Z 2 ).
3. For fixed g, σ, Λ, and small values of | p|, we have that

E g, p (f g, p ) = E g, p (0) -p • G * 1 1 2 | k| 2 + | k| + 2 G • G * G • p + O(| p| 3 ) .
We summarize in Theorem I.4 the information obtained in Sections VI to VIII.

Theorem I.4 (Quasifree States Case). Let 0 < σ < Λ < ∞. There exists C > 0 (possibly depending on σ and Λ) such that for all |g|, | p| < C, there exists a unique (f g, p , γ g, p , αg, p ) which minimizes the energy E g, p (f, γ, α).

1. The dependence of (f g, p , γ g, p , αg, p ) on (g, p) is smooth.

2. The functions (f g, p , γ g, p , αg, p ) satisfy

f g, p = 1 2 | k| 2 + | k| -1 p. G + O( (g, p) 3 ) , αg, p = -S-1 ( G • G * ) + O( (g, p) 3 ) , γ g, p + γ 2 g, p = αg, p α * g, p ,
where S acts on the kernel

K A (k, k ′ ) of a Hilbert-Schmidt operator A as the multiplication by k • k ′ + 1 2 | k| 2 + | k| + 1 2 | k ′ | 2 + | k ′ |.
3. For fixed σ, Λ, and small values of |g| and | p|, we have that

E BHF (g, p, σ, Λ) = E g, p (0, 0, 0) -g 2 | p| 2 C 2,2 (σ, Λ) -g 4 C 4,0 (σ, Λ) + O( (g, p) 5 ) , as (g, p) → 0, with C 2,2 (σ, Λ) = (2π 2 -8 3 π) ln( Λ+2 σ+2 ) and C 4,0 (σ, Λ) > 0.
4. The minimizer (f g, p , γ g, p , αg, p ) satisfies (we drop the g, p indexes to simplify the notation)

M(γ, u)f = -( k(γ + 1 2 1) -u) • G -k • α( G + kf ) , A(λ) α = -( G + kf ) • ( G + kf ) * , γ + γ 2 = α α * , λ : = ˆ∞ 0 e -t( 1 2 +γ) (M(γ, u) + ( G + kf )•( G + kf ) * )e -t( 1 2 +γ) dt , u : = p -Tr[γ k] -f * kf -2Re(f * G) , with M(γ, u) := 1 2 | k| 2 + | k| -k • u + k • γ k, A(λ) α := k α • k + λ α + αλ.
Remark I.5. In the coherent states case the formula

E g, p (f g, p ) = E g, p (0) -g 2 | p| 2 C 2,2 (σ, Λ) + O( (g, p) 5 ) ,
holds and can easily be compared to the quasifree state case.

Remark I.6. Although Theorem I.4 is formulated in terms of the one-particle reduced density matrix Γ ρ and its constituents γ ρ and αρ , it turns out to be more convenient to parametrize the pureness constraint γ ρ + γ 2 ρ = αρ α * ρ in terms of an antilinear Hilbert-Schmidt operator r which is chosen such that γ ρ = 1 2 (cosh(2r)-1), αρ = 1 2 sinh(2r)J , where

J : f ∈ L 2 (S σ,Λ × Z 2 ) → f ∈ L 2 (S σ,Λ × Z 2 )
. This is explained in detail in Section III.

Outline of the article We introduce our notation to describe the second quantization framework in Section II. Section III introduces two parametrizations of pure quasifree states and contains the proof of Theorem I.2. The energy functional for a fixed value of the momentum p of the dressed electron is computed in Section IV, along with some positivity properties of the different parts of the energy.

From Section V on we tacitly assume that the coupling constant |g| > 0 is small. The energy is then minimized in the particular case of coherent states in Section V, providing a first upper bound to the energy of the ground state and a proof of Theorem I.3. The existence and uniqueness of a minimizer among the class of pure quasifree state is then proven in Section VI provided | p| is small enough. The first terms of a perturbative expansion for small g and p of the energy at the minimizer is computed in Section VII. Finally the Lagrange equations associated with the problem of minimization in the generalized one particle density matrix variables are presented in Section VIII.

II Second Quantization

In this section Z denotes a C-Hilbert space with a scalar product C-linear in the right variable and C-antilinear in the left variable.

Let B(X; Y ) be the space of bounded operators between two Banach spaces X and Y , and L 1 (Z) the space of trace class operators on Z. Given two C-Hilbert spaces (Z j , •, • j ), j = 1, 2 and a bounded linear operator A :

Z 1 → Z 2 , set A * : Z 2 → Z 1 to be the operator such that ∀z 1 ∈ Z 1 , z 2 ∈ Z 2 , z 2 , Az 1 2 = z 1 , A * z 2 1 ,
and

ReA := 1 2 (A ⊕ A * ), ImA := 1 2i (A ⊕ (-A * )) ∈ B(Z 1 , Z 2 ) ⊕ B(Z 2 , Z 1 ). Example II.1. For z, z ′ ∈ Z, z, z ′ = z * z ′ .
The adjoint of a bounded operator A on Z is A * .

The symmetrization operator S n on Z ⊗n is the orthogonal projection defined by

S n (z 1 ⊗ • • • ⊗ z n ) = 1 n! π∈Sn z π 1 ⊗ • • • ⊗ z πn
and extension by linearity and continuity. The symmetric tensor product for vectors is

z 1 ∨ z 2 = S n 1 +n 2 (z 1 ⊗ z 2 )
and more generally for operators is

A 1 ∨ A 2 = S q 1 +q 2 • (A 1 ⊗ A 2 ) • S p 1 +p 2 for A j ∈ B(Z ⊗p j ; Z ⊗q j ).
We set

Z ∨n := S n Z ⊗n , B p,q := B(Z ⊗p ; Z ⊗q ).
Definition II.2. The symmetric Fock space on a Hilbert space Z is defined to be

F + (Z) := ∞ n=0 Z ∨n ,
where Z ∨0 := CΩ, Ω being the normalized vacuum vector.

For a linear operator C on Z such that C B(Z) ≤ 1, let Γ(C) defined on each Z ∨n by C ∨n and extended by continuity to the symmetric Fock space on Z.

For an operator X on Z, the second quantization dΓ(X) of X is defined on each Z ∨n by dΓ(X)

Z ∨n = n 1 ∨n-1 Z ∨ X
and extended by linearity to alg n≥0 Z ∨n . The number operator is N f = dΓ(1 Z ). For a vector f in Z, the creation and annihilation operators in f are the linear operators such that a(f )Ω = 0, a * (f )Ω = f , and

a(f )g ∨n = √ n(f * g) g ∨n-1
, and a * (f )g ∨n = √ n + 1f ∨ g ∨n , (II.47) for all g ∈ Z. By the polarization identity

∀g 1 , . . . , g n , g 1 ∨ • • • ∨ g n = 1 2 n n! ε i =±1 ε 1 • • • ε n n j=1 ε j g j ⊗n
Eq. (II.47) extends to Z ∨n and hence also to alg n≥0 Z ∨n . They satisfy the canoni-

cal commutation relations [a(f ), a * (g)] = f * g, [a(f ), a(g)] = [a * (f ), a * (g)] = 0.
The self-adjoint field operator associated to

f is Φ(f ) = 1 √ 2 a * (f ) + a(f ) .
For more details on the second quantization see the book of Berezin [START_REF] Berezin | The method of second quantization[END_REF].

A dot "•" denotes an operation analogous to the scalar product in R 3 . For every two objects a = (a 1 , a 2 , a 3 ) and b = (b 1 , b 2 , b 3 ) with three components such that the products a j b j are well defined

a • b := 3 j=1 a j b j . Example II.3. With p ∈ R 3 , G ∈ Z 3 , k ∈ (B 1,1 ) 3 p •2 = 3 j=1 p 2 j ∈ R , k • p = 3 j=1 p j k j ∈ B 1,1 , p • G = 3 j=1 p j G j ∈ Z , k •2 = 3 j=1 k 2 j ∈ B 1,1 , k • G = 3 j=1 k j G j ∈ Z , G * • k = 3 j=1 G * j k j ∈ Z * , G • G * = 3 j=1 G j G * j ∈ B 1,1 , G * • G = 3 j=1 G * j G j ∈ C ,
where for an object with three components a = (a 1 , a 2 , a 3 ) such that a * j is welldefined, a * := (a * 1 , a * 2 , a * 3 ). We sometimes use the notation

p •2 = | p| 2 , or k •2 = | k| 2 .
And with another product, such as the symmetric tensor product ∨,

k •∨2 = 3 j=1 k ∨2 j ∈ B 2,2 , k •∨ G = 3 j=1 k j ∨ G j ∈ B 2,3 .
Recall that the Weyl operators are the unitary operators W (f ) = exp(iΦ(f )) satisfying the relations

∀z 1 , z 2 ∈ Z : W (z 1 )W (z 2 ) = e -i 2 Im(z * 1 z 2 ) W (z 1 + z 1 ) , (II.48) ∀z ∈ Z : W (-i √ 2z)Ω = e -|z| 2 2 ∞ n=0 z ∨n √ n! . (II.49)
Definition II.4. The coherent vectors are the vectors of the form

E z = W (-i √ 2z)Ω
for some z ∈ Z and the coherent states are the states of the form

E z E * z .
Definition II.5. A symplectomorphism T for the symplectic form Im •, • on a C-Hilbert space Z is a continuous R-linear automorphism on Z which preserves this symplectic form, i.e.,

∀z 1 , z 2 ∈ Z : Im T z 1 , T z 2 = Im z 1 , z 2 . A symplectomorphism T is implementable if there is a unitary operator U T on F + (Z) such that ∀z ∈ Z , U T W (z)U * T = W (T z) .
In this case U T is a Bogolubov transformation corresponding to T .

We recall a well-known parametrization, in the spirit of the polar decomposition, of implementable symplectomorphisms.

Proposition II.6. The set of implementable symplectomorphisms is the set of operators

T = u exp[r] = u ∞ n=0 1 n! rn ,
where u is an isometry and r is an antilinear operator, self-adjoint in the sense that ∀z, z ′ ∈ Z, z, rz ′ = z ′ , rz , and Hilbert-Schmidt in the sense that the positive operator r2 is trace-class. Equivalently, there exist a Hilbert basis (ϕ j ) j∈N of Z and (r i,j ) i,j ∈ ℓ 2 (N 2 ; C) such that

r = ∞ i,j=1
ri,j •, ϕ j ϕ i and ∀i, j ∈ N 2 : ri,j = rj,i .

Proof. On the one hand, every operator of the form T = u exp[r] with u a unitary operator and r a self-adjoint antilinear operator is a symplectomorphism. Since a unitary operator is a symplectomorphism, and the set of symplectomorphisms is a group for the composition, it is enough to prove that exp[r] is a symplectomorphism. It is indeed the case since, for all z, z ′ in Z, = Im e -r e rz, z ′ .

Im
The implementability condition is then satisfied if we suppose r to be Hilbert-Schmidt.

On the other hand, to get exactly this formulation we give the step to go from the result given in Appendix A in [START_REF] Breteaux | Higher order terms for the quantum evolution of a Wick observable within the Hepp method[END_REF] to the decomposition in Proposition II. [START_REF] Bratteli | Operator algebras and quantumstatistical mechanics[END_REF]. In [START_REF] Breteaux | Higher order terms for the quantum evolution of a Wick observable within the Hepp method[END_REF] an implementable symplectomorphism is decomposed as

T = ue cr , (II.50)
where u is a unitary operator, c is a conjugation and r is a Hilbert-Schmidt, selfadjoint, non-negative operator commuting with c. It is then enough to set r = cr to get the expected decomposition. To check the self-adjointness of r, observe that, for all z, z ′ in Z,

z ′ , rz = z ′ , rcz = rz ′ , cz = z, crz ′ = z, rz ′ .
For the convenience of the reader we recall the main steps to obtain the decomposition in Eq. (II.50). First decompose T in its C-linear and antilinear parts, T = L + A, then write the polar decomposition L = u|L|. It is then enough to prove that |L| + u * A is of the form e cr . From certain properties of symplectomorphisms (also recalled in [START_REF] Breteaux | Higher order terms for the quantum evolution of a Wick observable within the Hepp method[END_REF]) it follows that the antilinear operator u * A is selfadjoint and |L| 2 + 1 Z = (u * A) 2 . A decomposition of the positive trace class operator (u * A) 2 = j λ 2 j e j e * j with e j an orthonormal basis of Z yields

|L| = j (1 + λ 2 j ) 1/2 e j e * j .
Using that λ j → 0 one can study the operator |L| and u * A on the finite dimensional subspaces ker(|L| -µ1 Z ) which are invariant under u * A. It is then enough to prove that for a C-antilinear self-adjoint operator f such that f f * = λ 2 on a finite dimensional space, there is an orthonormal basis {ϕ k } k such that f (ϕ k ) = λϕ k . The conjugation is then defined such that c( β k ϕ k ) = βk ϕ k and r = sinh -1 (λ j )1 on that subspace.

III Pure Quasifree States

III.1 From Quasifree States to Pure Quasifree States

Let Z be the C-Hilbert space L 2 (S σ,Λ × Z 2 ). We make use of the following characterization of quasifree density matrices.

Lemma III.1. The set of quasifree density matrices and pure quasifree density matrices, respectively, of finite photon number expectation value can be characterized by

QF = DM W (-i √ 2f )U * Γ(C) Tr[Γ(C)] UW (-i √ 2f ) * f ∈ Z, U a Bogolubov transformation, C ∈ L 1 (Z), C ≥ 0, C B(Z) < 1 pQF = DM W (-i √ 2f )U * ΩΩ * UW (-i √ 2f ) * f ∈ Z, U a Bogolubov transformation
Proof. We only sketch the argument, details can be found in [START_REF] Berezin | The method of second quantization[END_REF][START_REF] Philip | Upper bounds to the ground state energies of the one-and two-component charged Bose gases[END_REF]. It is not difficult to see that any density matrix of the form

W (-i √ 2f )U * Γ(C) Tr[Γ(C)] UW (-i √ 2f
) * is indeed quasifree. Conversely, if ρ ∈ QF is a quasifree density matrix then it is fully characterized by its one-point function f ρ ∈ Z and two-point functions

(γ ρ , αρ ). Moreover, W (-i √ 2f ρ ) * ρ W (-i √ 2f ρ )
∈ cQF is a centered quasifree density matrix with the same one-particle density matrix, that is, the density matrix W (-i

√ 2f ρ ) * ρ W (-i √ 2f ρ ) corresponds to (0, γ ρ -f ρ f * ρ , αρ -f ρ f * ρ ). Ob- viously, γ ρ -f ρ f *
ρ is again trace-class and αρ -f ρ f * ρ is Hilbert-Schmidt. Now, we use that there exists a Bogolubov transformation U which eliminates αρ , i.e.,

U * W ( √ 2f ρ /i) * ρ W ( √ 2f ρ /i)U corresponds to (0, γρ , 
0). While this is the only nontrivial step of the proof, we note that if U is characterized by u and v as in Lemma III.2 then there is an involved, but explicit formula that determines u and v. Again γρ is trace-class because the photon number operator N f transforms under U * to itself plus lower order corrections,

U * N f U = N f + O(N 1/2 f + 1).
Finally, it is easy to see that (0, γρ , 0) corresponds to the quasifree density matrix Γ(C ρ )/Tr[Γ(C ρ )] with C ρ := γρ (1 + γρ ) -1 . Following these steps we finally obtain

ρ = W (f ρ )U Γ(C ρ ) Tr[Γ(C ρ )] U * W (f ρ ) * ,
as asserted. The additional characterization of pure quasifree density matrices is obvious.

Lemma III.2. Let U ∈ B(F) be a unitary operator. The following statements are equivalent:

U ∈ B(F) is a Bogolubov transformation; (III.51) ⇔∃T implementable symplectomorphism, (III.52) U = ŨT , ŨT W (f ) Ũ * = W (T f ). ⇔∃u ∈ B(Z), v ∈ L 2 (Z) ∀f ∈ Z : (III.53) Ua * (f )U * = a * (uf ) + a(J vJ f ); ⇔U = exp(iH)
, where H = H * is a semibounded operator, (III.54) quadratic in a * and a and without linear term.

Proof. Again, we only sketch the argument. First note that (III.51)⇔(III.52) is the definition of a Bogolubov transformation. Secondly, ŨT W (f ) Ũ *

T = W (T f ) is equivalent to ŨT Φ(f ) Ũ * T = Φ(T f ). Hence, using that a * (f ) = 1 √ 2 [Φ(f )-iΦ(if )] and a(f ) = 1 √ 2 [Φ(f ) + iΦ(if )]
we obtain the equivalence (III.52)⇔(III.53). Thirdly, setting U λ = exp(iλH) and a * λ (f

) := U λ a * (f )U * λ , we observe that ∂ λ a * λ (f ) = i[H, a * λ (f )]. Furthermore, [H, a * λ (f )]
is linear in a * and a if, and only if, H is quadratic in a * and a. Solving this linear differential equation, we finally obtain (III.53)⇔(III.54).

Lemma III.3. For all Bogolubov transformation U and g ∈ Z:

W (g)U QF U * W (g) * = QF, (III.55) U cQF U * = cQF.
(III.56)

Remark III.4. A pure quasifree state is a particular case of quasifree state with C = 0, that is Γ(C) = ΩΩ * .

We come to the main result of this section.

Theorem III.5. Let 0 ≤ σ < Λ < ∞, g ∈ R and p ∈ R 3 , | p| < 1. Minimizing the energy over quasifree states is the same as minimizing the energy over pure quasifree states, i.e.,

E BHF (g, p, σ, Λ) := inf ρ∈QF Tr[H g, p ρ] = inf ρ∈pQF Tr[H g, p ρ] .
For the proof of Theorem III.5 we derive a couple of preparatory lemmata.

Proposition III.6. Let C a non-negative operator on Z, then

Tr[Γ(C)] < ∞ ⇔ C ∈ L 1 (Z) and C B(Z) < 1 .
In this case Tr[Γ(C)] = det(1-C) -1 . (We refrain from defining the determinant.) For the direction ⇐ the non-negativity assumption is not necessary.

Proof. Let us decompose Z = j≥0 Ce j where C = c j e j e * j with (e j ) j≥0 an orthonormal basis of Z. Then F + (Z) = j≥0 F + (Ce j ) and Proof. In finite dimension d we can use a resolution of the identity with coherent states (see, e.g., [START_REF] Berezin | The method of second quantization[END_REF])

Tr[Γ(C)] = Tr[ j≥0 Γ(c j )] = j≥0 Tr[Γ(c j )] =
1 Γ(Z d ) = ˆZd E z d E * z d dz d π d
where Z d is identified with C d and dz d = dx d dy d , z d = x d + iy d . Using Equation (II.49) we get

Γ(C) = ˆZd Γ(C 1/2 )E z d E * z d Γ(C 1/2 ) dz d π d = ˆZd E C 1/2 z d E * C 1/2 z d exp(|C 1/2 z d | 2 -|z d | 2 )dz d π d . The measure dµ d (z d ) = π -d exp(|C 1/2 z d | 2 -|z d | 2 )dz d /Tr[Γ(C)] has mass one. Indeed ˆZd exp(-z * d (1 Z d -C)z d ) dz d π d = d j=1 ˆR2 exp(-(1 -c j )(x 2 + y 2 )) dx dy π = d j=1 1 1 -c j = Tr[Γ(C)]
where C = d j=1 c j e j e * j with (e j ) d j=1 an orthonormal basis of Z d .

Proof of Theorem III.5. The inclusion pQF ⊂ QF implies that

inf ρ∈QF Tr[H g, p ρ] ≤ inf ρ∈pQF Tr[H g, p ρ] ,
and it is hence enough to prove for any quasifree state

ρ qf = W (-i √ 2f ) U * T Γ(C) Tr[Γ(C)] U T W (-i √ 2f ) * , that the inequality Tr[H g, p ρ qf ] ≥ inf ρ∈pQF Tr[H g, p ρ] .
holds true. The operator C is decomposed as C = j≥0 c j e j e * j where (e j ) is an orthonormal basis of the Hilbert space Z and c j ≥ 0. Let C d = j≤d c j e j e * j . Let

ρ qf,d = W (-i √ 2f ) U * T Γ(C d ) Tr[Γ(C d )] U T W (-i √ 2f ) * ,
then using Lemma III.7 with

Z d = j≤d Ce j , F + Z = F + (Z d ⊕ Z ⊥ d ) ∼ = F + Z d ⊗ F + Z ⊥ d and the extension of the operator Γ(C d ) on F + Z d to F + Z d ⊗F + Z ⊥ d by Γ(C d )⊗ (Ω Z ⊥ d Ω * Z ⊥ d
) (which we still denote by Γ(C d )), we obtain

ρ qf,d = ˆZd ρ d (z d ) dµ d (z d ) ,
where ρ d (z d ) are pure quasifree states and the µ d are non-negative measures with mass one. Note that

ν d := Tr[Γ(C d )] Tr[Γ(C)] = j>d (1 -c j ) ր 1 , as d → ∞. Further note that ρ qf ≥ ν d ρ qf,d , for any d ∈ N, since Γ(C) ≥ Γ(C d ).
Thus

Tr[H g, p ρ qf ] ≥ Tr[H g, p ν d ρ qf,d ] = ν d ˆZd Tr[H g, p ρ d (z d )] dµ d (z d ) ≥ ν d inf z d ∈Z d Tr[H g, p ρ d (z d )] ≥ ν d inf ρ∈pQF Tr[H g, p ρ] ,
for all d ∈ N, and in the limit d → ∞, we obtain

Tr[H g, p ρ qf ] ≥ lim d→∞ {ν d } inf ρ∈pQF Tr[H g, p ρ] = inf ρ∈pQF Tr[H g, p ρ] .

III.2 Pure Quasifree States and their One-Particle Density Matrices

Let Z be a C-Hilbert space.

Definition III.8. Let ρ ∈ DM be a density matrix on the bosonic Fock space

F + (Z) over Z. If Tr[ρN p+q 2 f
] < ∞, we define ρ p,q ∈ B p,q (Z) through ∀ϕ, ψ ∈ Z , ψ * ∨p ρ p,q ϕ ∨q = Tr[a * (ϕ) q a(ψ) p ρ] .

We single out f = ρ 0,1 ∈ B 0,1 ∼ = Z , i.e., f ρ ∈ Z is the unique vector such that Tr[a(ψ) ρ] = ψ * f ρ , for all ψ ∈ Z. Furthermore, with ρ = W ( √ 2f ρ /i) * ρW ( √ 2f ρ /i), the matrix elements of the (generalized) one-particle density matrix are defined by

γ ρ = ρ1,1 ∈ B 1,1 and α ρ = ρ0,2 ∈ B 0,2 ∼ = Z ∨2 , in other words ∀ϕ, ψ ∈ Z : ψ , γ ρ ϕ = Tr[ρ a * (ϕ)a(ψ)] , ψ ⊗ ϕ , α ρ = Tr[ρ a(ψ)a(ϕ)] .
Note that f ρ , γ ρ , and α ρ exist for any ρ ∈ DM since N f ρ, ρN f ∈ L 1 (F + ).

Remark III.9. For a centered pure quasifree state ρ, ρp,q vanishes when p + q is odd.

Remark III.10. Another definition of the one-particle density matrix γ ρ would be through the relation ψ, γ ρ ϕ = Tr[a * (ϕ)a(ψ)ρ]. We prefer here a definition with a "centered" version ρ of the state ρ, because this centered quasifree state ρ then satisfies the usual Wick theorem. The same considerations hold for α ρ .

Hence, any quasifree density matrix is characterized by (f ρ , γ ρ , α ρ ), since ρ p,q can be expressed in terms of (f ρ , γ ρ , α ρ ).

When f ρ = 0, the definition of γ ρ is consistent with the usual one, for z 1 ,

z 2 ∈ Z, z 1 , γ ρ z 2 = Tr[a * (z 2 )a(z 1 )ρ].
The definition of α ρ is related with the definition of the operator αρ (here denoted with a hat for clarity) used in the article of Bach, Lieb and Solovej [START_REF] Volker | Generalized Hartree-Fock theory and the Hubbard model[END_REF], through the relation

z 1 ⊗z 2 , α ρ Z ⊗2 = z 1 , αρ cz 2 Z with c a conjugation on Z.
Example III.11. A centered pure quasifree state satisfies the relation,

ρ2,2 = γ ⊗ γ + γ ⊗ γ Ex +αα * ∈ B 2,2 , (III.57)
where the exchange operator is the linear operator on Z ⊗2 such that

∀z 1 , z 2 ∈ Z, Ex(z 1 ⊗ z 2 ) = z 2 ⊗ z 1
and where for any

b ∈ Z ⊗2 , αα * b = α, b Z ⊗2 α.
We now turn to another parametrization of quasifree states, by vectors in a real Hilbert space. This parametrization enables us to use convexity arguments.

Proposition III.12. Let T = ue r be an implementable symplectomorphism and ρ a quasifree state of the form ρ = U * T ΩΩ * U T . Then

γ ρ = 1 2 (cosh(2r) -1) , (III.58) ∀z 1 , z 2 ∈ Z : z 1 ⊗ z 2 , α ρ Z ⊗2 = z 1 , 1 2 sinh(2r)z 2 . (III.59)
Proof of Proposition III.12. We have T i = ue ri = uie -r = iue -r and for all z ∈ Z

Tr[ρW (-i √ 2z)] = Tr U * T ΩΩ * U T W (-i √ 2z) = Ω * W (ue r(-i √ 2z))Ω = Ω * W (-i √ 2ue -r z)Ω = exp -1 2 |ue -r z| 2 = exp -1 2 |e -r z| 2
From this formula we can easily compute the function

h(t, s) := Tr ρW (-ti √ 2z)W (-si √ 2z) = exp -1 2 |e -r (t + s)z| 2 whose derivative ∂ t ∂ s at (t, s) = (0, 0) involves α and γ ∂ t ∂ s h(0, 0) = Tr ρ(a * (z) -a(z)) 2 = -2z * γz + 2Re(α * z ∨2 ) -z * z .
But we have also

∂ t ∂ s exp(- 1 2 |e -r (t + s)z| 2 ) t=s=0 = -(e -r z) * (e -r z) = -(cosh(r)z -sinh(r)z) * (cosh(r)z -sinh(r)z) = -(cosh(r)z) * (cosh(r)z) + 2Re(sinh(r)z) * (cosh(r)z) -(sinh(r)z) * (sinh(r)z) = -z * (cosh 2 r + sinh 2 r)z + 2Re(z * (sinh r cosh r)z) = -z * cosh(2r)z + 2Re(z * 1 2 sinh(2r)z)
and hence, using the polarization identity

4z ∨ z ′ = (z + z ′ ) ⊗2 -(z -z ′ ) ⊗2
to recover every vector from Z ∨2 from linear combinations of vectors of the form z ∨2 , we arrive at (III.58)-(III.59).

Proposition III.13. The admissible γ, α for a pure quasifree state are exactly those satisfying the relation

γ + γ 2 = (α ⊗ 1) * (1 ⊗ α) , (III.60) with γ ≥ 0.
This is the constraint when we minimize the energy as a function of (f, γ, α) with the method of Lagrange multipliers in Section VIII.

Proof. If γ, α are associated with a quasifree state, then there is an r such that γ, α and r satisfy Equations (III.58) and (III.59), then

z 1 , (α * ⊗ 1)(1 ⊗ α)z 2 = (α * ⊗ z * 1 )(z 2 ⊗ α) = ([α * (z 2 ⊗ 1)] ⊗ z * 1 )α = α * (z 2 ⊗ 1), 1 2 sinh(2r)z 1 Z = α * , z 2 ⊗ 1 2 sinh(2r)z 1 Z ⊗2 = 1 4 sinh 2 (2r)z 1 , z 2 Z = ( 1 2 (cosh(2r) -1) + 1 4 (cosh(2r) -1) 2 )z 1 , z 2 Z .
Conversely, if γ and α satisfy Eq. (III.60) then we define the C-antilinear operator α such that z 1 , αz 2 = (z 1 ⊗ z 2 ) * α, and set r = 1 2 sinh -1 (2 α), then

∀z 1 , z 2 ∈ Z : z 1 ⊗ z 2 , α ρ Z 2 = z 1 , αz 2 = z 1 , 1 2 sinh(2r)z 2 ,
which, in turn, implies that (α * ⊗ 1)(1 ⊗ α) = 1 4 sinh 2 (2r). Hence, we have

γ + γ 2 = 1 4 sinh 2 (2r)
and as γ ≥ 0, it follows that γ = 1 2 (cosh(2r) -1). Then γ, α is associated with the centered pure quasifree state whose symplectic transformation is exp[r].

IV Energy Functional

Notation: We first recall that, as before, we denote by k, and

| k| the multiplication operators k ⊗ 1 C 2 and | k| ⊗ 1 C 2 on Z = L 2 (S σ,Λ × Z 2 )
, with three components in the case of k.

We now work at fixed values of total momentum p ∈ R 3 . The operator H g, p is given by

H g, p = 1 2 (dΓ( k) + 2Re a * ( G) -p) •2 + dΓ(| k|) ,
where

G(k) = G( k, ±) := g| k| -1/2 ε ± ( k).
The energy of a pure quasifree state ρ associated with

f ∈ Z, γ ∈ L 1 (Z), α ∈ Z ∨2 is E g, p (f, γ, α) := Tr[H g, p ρ] , (IV.61)
where Z is the C-Hilbert space Z = L 2 (S σ,Λ × Z 2 ) and L 1 (Z) is the space of trace class operators on Z.

Proposition IV.1. The energy functional (IV.61) is

E g, p (f, γ, α) = 1 2 (Tr[γ k] + f * kf + 2Re(f * G) -p) •2 + Tr[γ k • γ k] + α * ( k • ⊗ k)α + Tr[| k| 2 γ] + 2Re{α * [( G + kf ) •∨2 ]} + Tr[(2γ + 1)( G + kf ) • ( G + kf ) * ] + Tr[γ| k|] + f * | k|f . (IV.62)
where the following positivity properties hold

(Tr[γ k] + f * kf + 2Re(f * G) -p) •2 ≥ 0 , Tr[γ k • γ k] + Tr[γ k] •2 + α * ( k • ⊗ k)α + Tr[| k| 2 γ] ≥ 0 , (Tr[γ k] + f * kf + 2Re(f * G) -p) •2 +Tr[γ k • γ k] + α * ( k • ⊗ k)α + Tr[| k| 2 γ] ≥ 0 , 2Re(α * (( G + kf ) •∨2 )) + Tr[(2γ + 1)( G + kf ) • ( G + kf ) * ] ≥ 0 .
The energy of a pure quasifree state in the variables f and r is where

Êg, p (f, r) = 1 2 (Tr[ 1 2 (cosh(2r) -1) k] + f * kf + 2Re(f * G) -p) •2 + Tr[ 1 2 (cosh(2r) -1) k • 1 2 (cosh(2r) -1) k] + Tr[ 1 2 sinh(2r) k • 1 2 sinh(2r) k] + Tr[| k| 2 1 2 (cosh(2r) -1)] + 2Re 1 2 sinh(2r)( G + kf ); ( G + kf ) + Tr[(2 1 2 (cosh(2r) -1) + 1)( G + kf ) • ( G + kf ) * ] + Tr[
H g, p (f ) = W ( √ 2f /i) * H g, p W ( √ 2f /i) and ρ = W ( √ 2f /i) * ρW ( √ 2f / 
i), so that ρ is centered. Modulo terms of odd order, which vanish when we take the trace against a centered quasifree state, H g, p (f ) equals

H g, p (f ) = 1 2 dΓ( k) + f * kf + 2Re a * ( kf + G) + 2Re(f * G) -p •2 + dΓ(| k|) + f * | k|f + odd = 1 2 dΓ( k) + f * kf + 2Re(f * G) -p •2 + 1 2 2Re a * ( kf + G) •2 + dΓ(| k|) + f * | k|f + odd .
To compute E(f, γ, α) we are thus lead to compute, for ϕ ∈ Z 3 and u ∈ R 3 ,

Tr ρ (dΓ( k) + u) •2 and Tr ρ (2Re{a( ϕ)}) •2 .
The expression of the energy as a function of (f, γ, α) then follows from Propositions IV.2 and IV.4. The expression of the energy as a function of (f, r) follows from Proposition III.12.

Proposition IV.2. Let u ∈ R 3 , then

0 ≤ Tr[ρ(dΓ( k) + u) •2 ] = (Tr[γ k] + u) •2 -Tr[γ k] •2 + Tr[γ k • γ k] + Tr[γ k] •2 + α * ( k •⊗ k)α + Tr[| k| 2 γ] .
This condition is used with u = p -f * kf -2Re(f * G).

Proof. Indeed,

(dΓ( k) + u) •2 = dΓ( k) •2 + 2dΓ( k) • u + u •2 .
Then we use that Proof. Indeed, using Equation (III.57), This condition is used with the three components of ϕ = G + kf .

Tr[ρdΓ(X)dΓ(X) * ] = Tr[ρ( ˆX(k 1 , k ′ 1 )X(k 2 , k ′ 2 )a * (k 1 )a * (k 2 )a(k ′ 2 )a(k ′ 1 )dk 1 dk 2 dk ′ 1 dk ′ 2 + dΓ(XX * )] = Tr[(γ ⊗ γ + γ ⊗ γ Ex + αα * )(X ⊗ X * )] +
Proof. A computation using the canonical commutation relations yields

T r[ρ (a * (ϕ) + a(ϕ)) 2 ] = Tr[ρ (a * (ϕ)) 2 + ρ (a(ϕ)) 2 + ρ (a * (ϕ)a(ϕ) + a(ϕ)a * (ϕ))] = α * ϕ ∨2 + ϕ ∨2 * α + Tr[γ ϕϕ * + (γ + 1)ψψ * ].

V Minimization over Coherent States

For this section we can take σ = 0 if we consider the parameter f in the energy to be in

Z := L 2 (S σ,Λ × Z 2 , ( 1 2 | k| 2 + | k|)dk). Recall that S σ,Λ = { k ∈ R 3 | σ ≤ | k| ≤ Λ}.
Remark V.1. For a coherent state (see Definition II.4) the energy reduces to

E g, p (f ) = 1 2 G 2 + 1 2 (f * kf + 2Re(f * G) -p) •2 + f * ( 1 2 | k| 2 + | k|)f . (V.65)
Note that, for σ > 0, Z = L 2 (S σ,Λ × Z 2 , dk) = Z, while for σ = 0, Z ⊂ Z, and E g, p (f ) extends to Z by using Equation (V.65).

Theorem V.2. There exists a universal constant C < ∞ such that, for 0 ≤ σ < Λ < ∞, g 2 ln(Λ + 2) ≤ C and | p| ≤ 1/3, there exists a unique f p which minimizes E g, p in Z.

1. The minimizer f p solves the system of equations

f p = u p • G 1 2 | k| 2 + | k| -k • u p , (V.66) u p = p -2Re(f * p G) -f * p kf p , (V.67) with | u p | ≤ | p|. 2. For 0 ≤ σ < Λ < ∞, inf f ∈Z E g, p (f ) = inf f ∈ Z E g, p (f ) = E g, p (f p ) ,
and for 0 < σ < Λ < ∞, we have that f p ∈ Z.

3. For fixed g, σ, Λ, as a function of p,

E g, p (f p ) = E g, p (0) -p • G * 1 1 2 | k| 2 + | k| + 2 G • G * G • p + O(| p| 3 ) . 4. For all f in Z, E g, p (f p + f ) = E g, p (f p ) + f * ( 1 2 | k| 2 + | k| -u p • k)f + 1 2 f * kf + 2Re(f * p kf ) + 2Re(f * G) •2 . (V.68) 5.
The energy E g, p (f p ) of the minimizer compared to the energy of the vacuum state E g, p (0) is

E g, p (f p ) = E g, p (0) -1 2 2Re(f * p u p • G) -1 2 | u p -p| 2 .
Note that the term 2Re(f * p u p • G) is non-negative.

Remark V.3. Our hypotheses are similar those of Chen, Fröhlich, and Pizzo [START_REF] Chen | Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm[END_REF],

where their vector ∇E σ p is analogous to u p in our notations. The construction of u p as the solution of a fixed point problem and the dependency in the parameter p imply that the map p → u p is of class C ∞ . Remark V.4. We note that we also expect to have u p in the neighboorhood of p.

Remark V.5. The minimizer is constructed as the solution of a fixed point problem. As a result the application Proof of Theorem V.2. Proof of 1. Assume there is a point f p where the minimum is attained. The partial derivative of the energy at the point f p

(σ, Λ, g, p) → inf ρ∈coh Tr[H g, p ρ]
∂ f * E(f p ) = ((f * p kf p -p + 2Re(f * p G)) • k + 1 2 | k| 2 + | k|)f p -( p -f * p kf p -2Re(f * p G)) • G then vanishes, where the derivative ∂ f * E(f ) at a point f is the unique vector in Z * ∼ = L 2 (S σ,Λ , ( 1 2 | k| 2 + | k|) -1 dk) defined by E(f + δf ) -E(f ) = 2Re(δf * ∂ f * E(f )) + o( δf Z ) with f, δf ∈ Z. Observe that 0 ≤ E g, p (0) -E g, p (f p ) = 1 2 | p| •2 - 1 2 (f * p kf p + 2Re(f * p G) -p) •2 -f * p ( 1 2 | k| 2 + | k|)f p
which yields the result. Proof of 4. The Taylor expansion of the energy around f p is

E g, p (f p + f ) = E g, p (f p ) + f * ∂ f * E(f p ) + ∂ f E(f p ) f + 1 2 (f * kf + 2Re(f * G) + 2Re(f * p kf )) .2 + 2(f * p kf p + 2Re(f * p G) -p) • f * kf + f * | k| 2 f + f * | k|f .
Since ∂ f * E(f p ) vanishes this gives Equation (V.68). Proof of 5. It is sufficient to replace f by -f p in Equation (V.68). The observation

f * p u p • G = ˆ( u p • G( k)) 2 dk 1 2 | k| 2 + | k| -k • u p shows that 2Re(f * p u p • G) is non-negative since | u p | < 1.
VI The Minimizer for the Energy Functional varying over Pure Quasifree States Definition VI.1. Let Z be a C-Hilbert space. Let Y be the R-Hilbert space of antilinear operators r on Z, self-adjoint in the sense that ∀z, z ′ ∈ Z, z, rz ′ = z ′ , rz , and Hilbert-Schmidt in the sense that the positive operator r2 is trace class. The space X = Z × Y with the scalar product

(f, r), (f ′ , r′ ) X = f * f ′ + Tr[rr ′ ] is an R-Hilbert space.
Keeping σ > 0, we only need to use Z = L 2 (S σ,Λ × Z 2 ) in this section.

Theorem VI.2. Let 0 < σ < Λ < ∞. There exists C > 0 such that for g, | p| ≤ C there exists a unique minimizer for Êg, p (f, r).

Proof. This result follows from convexity and coercivity arguments. By Proposition VI.3, Êg, p (f, r) is strictly θ-convex (i.e., uniformly strictly convex) on BX (0, R) for some R > 0 and θ > 0. Since Êg, p (f, r) is strongly continous on the closed and convex set BX (0, R) of the Hilbert space X we get the existence and uniqueness of a minimizer in BX (0, R). (See for example [START_REF] Allaire | Numerical analysis and optimization[END_REF]. The uniform strict convexity allows to prove directly that a minimizing sequence is a Cauchy sequence.) Proposition VI.4 then proves that it is the only minimum of Êg, p (f, r) on the whole space.

Note that to use Propositions VI.3 and VI.4 we need to restrict to values of g and | p| smaller than some constant C > 0.

Remark VII.2. The energy in 0 X is the energy of the vacuum state and is Êg, p (0 X ) =

1 2 p •2 + 1 2 G 2 . Further note that ( p • G * ) 1 1 2 | k| 2 + | k| ( G • p) = g 2 | p| 2 2π 2 - 8π 3 ln Λ + 2 σ + 2
and in particular does not depend on the choice of the polarization vectors ε.

The quantity G •∨2 * S -1 G •∨2 does not depend on the choice of the vectors ε either since

G •∨2 * S -1 G •∨2 = µ,ν=± ˆ| ε( k 1 , µ) • ε( k 2 , ν)| 2 | k 1 || k 2 |S( k 1 , k 2 ) d 3 k 1 d 3 k 2
and with P u is the orthogonal projection on u in R 3 , µ,ν=±

| ε( k 1 , µ) • ε( k 2 , ν)| 2 = µ,ν=± Tr R 3 [P ε( k 1 ,µ) P ε( k 2 ,ν) ] = Tr R 3 [P ⊥ k 1 P ⊥ k 2 ] = 1 + k 1 | k 1 | • k 2 | k 2 | 2 .
Proof of Theorem VII.1. Let F : (g, p, f, r) → ∂ f,r Êg, p (f, r)

and f r (g, p) := f (g, p) r(g, p)

such that F (g, p, f r (g, p)) = 0 , (VII.69) then a derivation of Equation (VII.69) with respect to (f, r) brings ∂ g, p f r (0 g, p ) = -∂ f,r F (0 g, p , 0 f,r ) -1 ∂ g, p F (0 g, p , 0 f,r ) .

The term which is independent of (g, p) and quadratic in f r in the energy is To compute ∂ g, p F in 0, observe that no part in the energy is linear in (g, p) and linear in (f, r). Thus ∂ g, p F (0 g, p , 0 f,r ) = 0 and we get The part of the energy which is quadratic in (g, p) and linear in (f, r) is -2Re(f * G)• p + Re r G; G , it follows that, in (0 g, p , 0 f,r ),

∂ 2 g, p F = 2 1 0 ∨ 0 -2∂ g G ∂ g G 0 . ∨ ∂ g G 0 ,
which gives in 0 g, p

∂ 2 g, p f r = 2 1 0 ∨ 0 ∂g G 1 2 | k| 2 +| k| -S -1 ∂ g G 0 • ∨ ∂ g G 0 .
Hence the expansion of f r up to order 2. We can thus express the energy around 0 g, p modulo error terms in O( (g, p) defined on balls of centers centrers 0, 0, 0, 1 2 | k| 2 + | k| -k. p and p and proving that the application

+ 1 2 G •∨2 * S -1 G •∨2 -G •∨2 * S -1 G •∨2 + ( p • G) * ( p • G)
Ψ (f,λ) (f, λ) = (Ψ f [f, Ψ α {f, λ} , Ψ γ {Ψ α (f, λ)} , Ψ u {f, Ψ γ (Ψ α [f, λ])}] , Ψ λ [f, Ψ γ {Ψ α (f, λ)} , Ψ u {f, Ψ γ (Ψ α [f, λ])}])
is a contraction for a convenient choice of the radiuses and a sufficiently small coupling constant g. Note that it is then convenient to consider the norm of L 2 (S σ,Λ × Z 2 , | k| 2 ) for f . 

3

 3 form a righthanded orthonormal basis (Dreibein) and replace (I.3) byZ = L 2 (S σ,Λ × Z 2 ), (I.5)with the understanding that f( k) = ε + f ( k, +) + ε -f ( k, -).In (I.1) the energy of the photon field is represented byH f = ˆ|k| a * (k) a(k) dk, (I.6)where ´f (k)dk := τ =± ´Sσ,Λ f ( k, τ ) d 3 k and {a(k), a * (k)} k∈S σ,Λ ×Z 2 are the usual boson creation and annihilation operators constituing a Fock representation of the CCR on F, i.e.,[a(k) , a(k ′ )] = [a * (k) , a * (k ′ )] = 0, (I.7) [a(k) , a * (k ′ )] = δ(k -k ′ ) 1, a(k)Ω = 0, (I.8)

  Ψ| , (I.24) and pDM := DM ∩ pDM. (I.25) Another class of states that play an important role in our work is the set of centered density matrices, cDM := ρ ∈ DM ∀f ∈ Z : Tr F ρ a * (f ) = 0 . (I.26)

  e rz, e r z ′ = Im e rz, cosh(r)z ′ + Im e rz, sinh(r)z ′ = Im cosh(r)e r z, z ′ + Im z ′ , sinh(r)e rz = Im cosh(r)e r z, z ′ -Im sinh(r)e r z, z ′

j≥0 1 1 1 .

 11 -c j and the infinite product converges exactly when C ∈ L 1 (Z) and C B(Z) < Lemma III.7. Suppose Z d is of dimension d < ∞. Then, for any non-negative operator C d = 0 such that C d ∈ L 1 (Z d ) and C d B(Z d ) < 1, there exist a non-negative measure µ d (depending on C) of mass one on Z d and a family {ρ d (z d )} z d ∈Z d of pure quasifree states such that Γ(C) Tr[Γ(C)] = ˆZd ρ d (z d ) dµ d (z d ) .

1 2 (

 2 cosh(2r) -1)| k|] + f * | k|f . (IV.63) Proof. Using the Weyl operators, E g, p (f, γ, α) := Tr[H g, p ρ] = Tr[H g, p (f )ρ]

  Tr[ρ dΓ( k)] = Tr[γ k], add and substract Tr[γ k] •2 to complete the square and compute Tr[ρ dΓ( k) •2 ] using Lemma IV.3. Lemma IV.3. Let X ∈ B 1,1 , then 0 ≤ Tr ρdΓ(X)dΓ(X) * = Tr[γXγX * ]+|Tr[γX]| 2 +α * (X⊗X * )α+Tr[XX * γ] .

  Tr[γ XX * ] = Tr[γX]Tr[γX * ] + Tr[γXγX * ] + α * (X ⊗ X * )α + Tr[γ XX * ] . Proposition IV.4. Let ϕ ∈ Z, then 0 ≤ Tr[ρ(a * (ϕ) + a(ϕ)) 2 ] = 2Re(α * (ϕ ∨2 )) + Tr[(2γ + 1)ϕϕ * ] (IV.64) and |2Re(α * (ϕ •∨2 ))| ≤ Tr[(2γ + 1)ϕϕ * ].

  is continuous on the domain defined by Theorem V.2, and at σ, Λ fixed,(g, p) → inf ρ∈coh Tr[H g, p ρ]is analytic for g 2 < C/ ln(Λ + 2) and | p| < 1/3.

  r] + f * (| k| 2 + 2| k|)f } thus, in (0 g, p , 0 f,r ), ∂ f,r F = | k| 2 + 2| k| 0 0 S .

∂

  g, p f (0 g, p ) = 0 .Differentiating a second time Equation (VII.69) brings0 = ∂ 2 g, p F + 2∂ f,r ∂ g, p F • ∂ g, p f r + ∂ f,r F • ∂ 2 g, p ) = -[∂ f,r F (0 g, p , 0 f,r )] -1 ∂ 2 g, p F (0 g, p , 0 f,r ) .

2 | k| 2 + 2 | k| 2 + 1 2|

 22221 5 ) min f,r Êg, p (f, r) -Êg, p (0, 0)≡ 1 2 (Tr[r 2 k] + f * kf + 2Re(f * G) -p) •2 + Tr[r k • r k] + Tr[| k| 2 r2 ] + 2Re r( G + kf ); ( G + kf ) + G 2 + f * | k| 2 f + Tr[r 2 | k|] + f * | k|f -Êg, p (0, 0) ≡ -2Re(f * G) • p + 1 2 Tr[rS r] + Re r G; G + f * ( 1 | k|)f ≡ -2Re(f * p • G) + 1 2 Tr[rS r] + Re r G; G + f * ( 1 | k|)f ≡ -2 ( p • G) * ( p • G) k| 2 + | k|

1 2 |

 2 k| 2 + | k| which completes the proof.

Proof of Theorem VIII. 1 . 2 ( 1 ) 2 (

 1212 Indeed, set u = p -Tr[γ k] -f * kf -2Re(f * G) and define the partial derivatives as∂ f * E(f, γ, α) ∈ Z, ∂ α * E(f, γ, α) ∈ Z ∨2 and ∂ γ E(f, γ, α) ∈ B(Z) ∼ = L 1 (Z) ′ such that E(f + δf, γ + δγ, α + δα) -E(f, γ, α) = 2Re(δf * ∂ f * E(f, γ, α)) + 2Re(δα * ∂ α * E(f, γ, α)) + Tr[δγ ∂ γ E(f, γ, α)] + o( (δf, δγ, δα) Z×L 1 (Z)×Z ∨2 ) .Recall the energy functional is given by Equation (IV.62) and this yields∂ f * E(f, γ, α) = 1 2 kf + G) • (Tr[γ k] + f * kf + 2Re(f * G) -p) + 2 k •∨( G + kf ) * α + k • (2γ + 1)( G + kf ) + | k|f = -( kf + G) • u + k • ∨( G + kf ) * α + k • (γ + 1 2 1)( G + kf ) + | k|f = M(γ, u)f + ( k(γ + 1 2 -u) • G + k •∨( G + kf ) * α , ∂ α * E(f, γ, α) = 1 2 ( k •⊗ k)α + 1 G + kf ) •∨2 , ∂ γ E(f, γ, α) = 1 2 2 k • (Tr[γ k] + f * kf + 2Re(f * G) -p) + 2 k • γ k + | k| 2 + 2( G + kf ) • ( G + kf ) * + | k| = M(γ, u) + ( G + kf ) • ( G + kf ) * .The constraint given by Equation (III.60) can be expressed asC(f, γ, α) = 0 (VIII.75) with C : Z × L 1 (Z) × Z ∨2 → L 1 (Z) (f, γ, α) → γ + γ 2 -(α * ⊗ 1 Z )(1 Z ⊗ α) .

Hence the minimum point f p satisfies Equations (V.66) and (V.67). It is in particular sufficient to prove that there exist a unique u p in a ball B(0, r) with r ≥ | p| such that the function in Equation (V.66) satisfies also Equation (V.67) to prove the existence and uniqueness of a minimizer.

Proof of the existence and uniqueness of a solution.

for some universal constant C 0 > 0. Observe then that

for some universal constant

We can thus define the application

We check that the hypotheses of the Banach-Picard fixed point theorem are verified on the ball B(0, r), which will prove the result.

and the estimates above that the sum of the two first terms is smaller than r -1/3 and since | p| ≤ 1/3 the map Ψ sends B(0, r) into itself, Ψ( B(0, r)) ⊆ B(0, r) .

Contraction: For u and v in B(0, r), we have that

For the term 2Re(Φ * u G), we observe that

Note that, for g 2 ln(2 + Λ) < (1 -r) 2 /(3C 1 ),

Finally, for the term Φ * u kΦ u , we obtain the estimate

and thus this term can be controlled for |g ln(Λ+2)| 2 sufficiently small by 1 3 | u-v|. We thus get a contraction

and with f p = Φ u p Equation (V.66) is solved. Proof of 3. The expression of the energy E g, p (f ) given in Equation (V.65) implies that E g, p (f ) ≥ 1 2 G 2 , and for p = 0 this minimum is only attained at the point

and thus

Expanding the left hand side of this equality in 0 brings

The expansion of f p to the second order is then

We can compute the energy modulo error terms in O(| p| 3 ). To have less heavy computations we set

(Convexity)

. There exist 0 < C, R < ∞ such that for g ≤ C and | p| ≤ 1 2 , the Hessian of the energy satisfies H Êg, p (f, r) ≥ σ 4 1 X on the ball B X (0, R).

Proof. We use that strict positivity of the Hessian implies strict convexity and thus first compute the Hessian in (0, 0). The Hessian H Êg, p (f, r) ∈ B(X) is defined using the Fréchet derivative

with D Êg, p (0, 0) ∈ B(X, R). (Note that differentiability is granted in this case because

With µ = 2 we obtain (with

and for g small enough

We then compare it with the Hessian in points near zero. Observing that the Hessian is continous with respect to (f, r, p, g), we deduce that there exist R < ∞ and C > 0, as asserted.

Proposition VI.4 (Coercivity). Suppose p and C > 0 are fixed such that

, with the value of R given by Proposition VI.3, for any 0 < g < C.

For every (f, r) ∈ X,

Since Êg, p (0, 0) = 1 2 | p| 2 + 1 2 G 2 < σR 2 , any minimizing sequence takes its values in BX (0, R).

VII Asymptotics for small Coupling and Momentum

We use below an identification between self-adjoint C-antilinear Hilbert-Schmidt operator r and symmetric two vector r given by the relation ϕ, rψ Z = ϕ ⊗ ψ, r Z ⊗2 . Note that the self-adjointness condition for r is equivalent to the symmetry condition r ∈ Z ∨2 .

Theorem VII.1. Let 0 < σ < Λ < ∞. There exists C > 0 such that for |g|, | p| < C, there exist two functions f g, p and rg, p which are smooth in (g, p) such that the minimum of the energy Êg, p (f, r) is attained at (f g, p , rg, p ). These functions satisfy

VIII Lagrange Equations

This section formulates the results of Section VI in terms of γ and α subject to the constraints γ + γ 2 = (α * ⊗ 1 Z )(1 Z ⊗ α), without reference to the parametrization of γ and α in terms of r.

Then there is a unique (λ, u) such that (f, γ, α, λ, u) satisfies the following equations, equivalent to Lagrange equations Remark VIII.2. To prove that Equations (VIII.70) to (VIII.74) admit a solution we use here the result of existence of a minimizer proved in Section VI. It can also be proved directly by a fixed point argument by defining the applications

Equation (VIII.75) is equivalent to Equation (VIII.72). The application C has a differential DC(f, γ, α)

For γ B(Z) < 1 2 the application DC(f, γ, α) is surjective. Indeed it is already surjective on {0} × L 1 (Z) × {0}, since, for every γ ′ ∈ L 1 (Z) the equation δγ + δγ γ+γ δγ = γ ′ with unknown δγ has at least one solution, see Proposition VIII.3. We can then apply the Lagrange multiplier rule (see for example the book of Zeidler [START_REF] Zeidler | Applied functional analysis[END_REF]) which tells us that there exists a λ ∈ B(Z) such that

This is equivalent to Equations (VIII.70), (VIII.71) and

Using again Proposition VIII.3 we get that Equation (VIII.76) is equivalent to Equation (VIII.73).

For the invertibility of A(λ) note that

For M(γ, u), M(γ, u)

Let us recall a well known expression for the solution of the Sylvester or Lyapunov equation.