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Abstract

Tissue-mimicking phantoms with high scatterer concentrations were

examined using quantitative ultrasound techniques based on four scat-

tering models: the Gaussian Model (GM), the Faran Model (FM), the

Structure Factor Model (SFM) and the Particle Model (PM). Experi-

ments were conducted using 10- and 17.5-MHz focused transducers on

tissue-mimicking phantoms with scatterer concentrations ranging from

1 to 25%.

Theoretical BSCs were first compared with the experimentally mea-

sured BSCs in the forward problem framework. The measured BSC

versus scatterer concentration relationship was predicted satisfactorily

by the SFM and the PM. The FM and the PM overestimated the

BSC magnitude at actual concentrations greater than 2.5% and 10%,

respectively. The SFM was the model that better matched the BSC

magnitude at all the scatterer concentrations tested. Secondly, the four

scattering models were compared in the inverse problem framework to

estimate the scatterer size and concentration from the experimentally

measured BSCs. The FM did not predict the concentration accurately

at actual concentrations greater than 12.5%. The SFM and PM need

to be associated with another quantitative parameter to differentiate

between low and high concentrations. In that case, the SFM predicted

the concentration satisfactorily with relative errors below 38% at actual

concentrations ranging from 10 to 25%.

PACS numbers: 43.35.Bf 43.35.Yb 43.80 Vj 43.80.Cs

Keywords: ultrasound backscatter, ultrasound tissue characterization,

structure factor, Percus-Yevick packing factor, Gaussian model
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I. INTRODUCTION

Quantitative ultrasound (QUS) techniques are based on the frequency-based analysis of

the signals backscattered from biological tissues in order to determine the physical properties

of the average tissue microstructures. These tissue characterization techniques aim to differ-

entiate between diseased and healthy tissue and to detect cancer tumors. QUS techniques

rely on theoretical scattering models in order to fit the spectrum of the echoes backscattered

by biological tissues to an estimated spectrum using an appropriate model. The theoret-

ical scattering model most frequently used for this purpose is the Gaussian Model (GM)

developed by Lizzi1,2 which yields two tissue properties: the average scatterer size and the

acoustic concentration (i.e., the product of the scatterer number density by the square of the

relative impedance difference between the scatterers and the surrounding medium). This

approach has been successfully used to characterize the eye3, the prostate4, the breast5–7,

apoptotic cells8 and cancerous lymph nodes.9 Other theoretical scattering models such as

the fluid-filled sphere model (FFSM)6,7 and the solid sphere model10 (which we refer to here

as the Faran Model - FM) have also been used to predict average scatterer sizes by modeling

the medium by an ensemble of fluid or solid spheres. In the aforementioned models (GM,

FFSM and FM), the scatterers were assumed to be randomly distributed (i.e., to have a

low scatterer concentration) and multiple scattering was neglected (in line with the Born

approximation). Under these hypotheses, the power of the backscattered signals increases

linearly with the scatterer concentration and depends on the size and acoustic properties

of the tissue scattering structures. This linear relationship has been used to monitor the

scatterer size and concentration.

However, the assumption that the scatterers are randomly distributed may not hold in

tumors with densely packed cells.11 This means that a scattering theory involving a high

cell concentration (i.e. accounting for a dense medium) should improve QUS techniques

to determine the microstructural properties of tissues. Some theoretical efforts have been

made in the field of ultrasonic blood characterization to take the high cell concentrations into
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account,12 since the concentration of red blood cells in blood (or hematocrit) ranges between

30 and 50%. In the Rayleigh scattering regime (i.e., where the product of the wavenumber

by the scatterer radius is ka≪1), Twersky13 developed a Particle Model (PM) giving an

expression for the backscattered intensity in terms of the single-particle backscattering cross

section, the particle number density and the packing factor. The packing factor is a measure

of orderliness in the spatial arrangement of particles. It depends on the cell concentration,

but not on the frequency. The PM succeeded to explain the nonlinear relationship between

the backscatter amplitude and the scatterer concentration in the case of non-aggregating

red blood cells.14 Again in the field of blood characterization, the PM was later generalized

to include any cell spatial distributions (i.e. aggregating red blood cell distributions) by in-

troducing the frequency dependent structure factor, and called the Structure Factor model

(SFM).15,16 The SFM sums the contributions from individual cells and models the cellular

interaction by a statistical mechanics structure factor, which is defined as the Fourier trans-

form of the spatial distribution of the cells.15,16 Note that the low frequency limit of the

structure factor is by definition the packing factor used under Rayleigh conditions.13 Until

quite recently, the PM and SFM were only used for blood characterization purposes, but

Vlad et al11 have performed two-dimensional computer simulations based on the SFM in

order to explain the backscatter behavior as a function of the particle size variance in the

case of centrifuged cells undergoing cell death processes. These centrifuged cells mimicked

the spatial distribution and packing of tumor cells.11

The aim of this study was to compare the backscatter coefficient (BSC) predictions

given by four theoretical scattering models, namely the GM, FM, PM and SFM, with the

BSCs measured experimentally on tissue-mimicking phantoms. These phantoms consisted

of polyamide microspheres (mean radius 6 µm) suspended in water at various scatterer con-

centrations ranging from 1 to 25%. The high scatterer concentrations were used to mimic

densely packed cells in tumors. Ultrasonic backscatter measurements were performed at fre-

quencies ranging from 6 MHz to 22 MHz. The theoretical BSCs based on different scattering

models were first compared with the BSCs measured experimentally in the forward problem

4



framework, i.e. the theoretical BSCs were determined from known structural and acoustical

properties of the polyamide microspheres. Secondly, comparisons were made between the

four theoretical scattering models in the inverse problem framework to estimate the scat-

terer size and concentration from the experimentally measured BSCs. To our knowledge,

the scatterer concentration has never been previously determined using the PM and SFM.

Lastly, the validity of the PM and the SFM as means of determining scatterer concentrations

is discussed.

II. SCATTERING MODELS

Four scattering models, the GM, FM, SFM and PM, are presented in this section. For

all four scattering models, the formulations were written for monodisperse spheres and it

was assumed that no multiple scattering occurred among the scatterers. When solving the

inverse problem in the framework of each theory, the acoustical properties of spheres and

the surrounding fluid were assumed to be known a priori and a minimization procedure was

used to fit a curve to the measured BSC in order to estimate the size a∗ and concentration

φ∗ of the scatterers.

A. The Gaussian model (GM)

The BSC can be modeled using a spatial autocorrelation function describing the shape

and distribution of the scatterers in the medium. The scattering sites are usually assumed

to be randomly distributed and to have simple geometric shapes, which can be modeled in

the form of gaussian scatterers representing continuous functions of changing impedance. In

this framework, the BSC can be expressed as the product of the BSC in the Rayleigh limit

and the backscatter form factor.17 The form factor describes the frequency dependence of

the scattering, based on the size and shape of the scatterers. The Gaussian form factor has

been used for many applications.3–9 It describes tissue structures as continuously varying

distributions of acoustic impedance fluctuations about the mean value, and the effective
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radius is related to the impedance distribution of the scatterer.

The theoretical BSC used with the GM formulation is therefore written as follows:5,17

BSCGM(k) =
k4V 2

s nz

4π2
e−0.827k2a2

(1)

where k is the wave number, Vs the sphere volume, nz the acoustic concentration and a the

mean effective radius of the scatterer.

The effective radius a∗ and the acoustic concentration n∗

z were determined by comparing

the logarithm of the experimental BSC values, denoted BSCexp, with the logarithm of the

theoretical BSCGM given by Eq. (1), as previously done by Oelze et al.6 Note that this fit

was realized in the frequency bandwidth from 6 to 22 MHz.

B. The Faran model (FM)

The original theory developed by Faran18 provides an exact solution for the scattering of

sound by a solid sphere in a surrounding fluid medium, and therefore includes shear waves

in addition to compressional waves. The sphere is assumed to be insonified by a harmonic

plane wave and to be located far from the point at which the scattered pressure field is

observed. In the present study, the differential backscattering cross section at 180o for a

single scatterer σb was computed for a sphere of radius a using Faran’s theory18 and then

scaled by the number density to obtain the BSC from an ensemble of identical solid spheres

as follows:

BSCFM(k) =
φ

Vs

σb(k), (2)

where φ is the scatterer concentration. The ratio φ/Vs, denoted m, corresponds to the

number density of spheres.

The values of the unknown parameters were estimated by matching the experimentally

measured BSCexp with the theoretical BSCFM given by Eq. (2). For this purpose, we

searched for values of (a, φ) ∈ [0, 50]×[0.001, 0.74], where a was expressed in µm, minimizing
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the cost function:

FFM(a, φ) =
∑

i

||BSCFM(ki) − BSCexp(ki)||
2. (3)

Note that the maximum concentration was fixed to 0.74, which corresponds to the closely-

packed hexagonal arrangement. The cost function synthesizes all the wavenumbers ki (i =

1 · · ·N) in the 6 to 22 MHz frequency bandwidth. Figure 1(a) and (b) gives an example of

a cost function surface FFM(a, φ) obtained from the experiments performed with an actual

microsphere radius of 6 µm and an actual concentration of 2.5% presented below in section

III. It can be seen from this figure that, at a given value of the radius, the cost functions have

a single minimum. Figure 1(c) shows the gradient in the region of interest (ROI) around

the values of the actual parameters.

Since there exists no analytical expression for σb using Faran’s theory,18 an exhaustive

search was conducted on the value of a in order to minimize the cost function FFM given

by Eq. (3). In these studies, we started the exhaustive search in the 1 to 50 µm range with

a 5 µm step. The step was then decreased to 0.1 µm, while performing the search 10 µm

around the best value obtained so far. At each fixed value of the radius, the parameter φ

was obtained using a trust-region-reflective algorithm with a minimization routine lsqnonlin

in MATLAB (The MathWorks, Inc., Natick, MA).

C. The Structure Factor Model (SFM) and the Particle Model (PM)

The SFM15 is based on the assumption that at high scatterer concentrations, interfer-

ence effects are mainly caused by correlations between the spatial positions of individual

scatterers. The SFM has generally been applied to an ensemble of fluid spheres to model

red blood cells in blood.15,16,19 Herein, the SFM was slightly adapted to the case of an ensem-

ble of solid spheres which are homogeneously distributed in space. In comparison with the

Faran model described in Eq. (2), the SFM considers the interference effects relatively easily

by replacing the single-particle backscattering contribution σb(k) by the product σb(k)S(k),

where S(k) is the structure factor depending on the scatterer concentration and the pattern
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of the spatial arrangement of the scatterers. By considering an ensemble of identical solid

spheres of radius a, the theoretical BSC for the SFM formulation is given by:

BSCSFM(k) =
φ

Vs

σb(k)S(k), (4)

where the differential backscattering cross section σb was calculated using the Faran’s the-

ory. The structure factor S is related by definition to the three-dimensional (3D) Fourier

transform of the total correlation function (g(r) − 1) as follows:

S(k) = 1 + m

∫

(g(r) − 1) e−2jkrdr. (5)

where g(r) is the pair-correlation function, which is the probability of finding two particles

separated by the distance r. In this case, the structure factor can be interpreted as being a

line of the 3D Fourier transform of the total correlation function (g(r) − 1), the line being

in the direction of the incident wave (see appendix of Ref 20). The structure factor S

therefore depends only on the modulus k of the wave vector k. The structure factor cannot

be calculated analytically for a complex spatial positioning of particles, as occurs in the case

of aggregates of particles. However, for an ensemble of identical hard spheres homogeneously

distributed, an analytical expression for the structure factor can be obtained, as established

by Wertheim.21 The modified version of the analytical expression for the structure factor

used here is described in detail in Appendix A.

In the low frequency limit, the structure factor tends towards a constant value S(k) →

S(0) = W called the packing factor.13 The most commonly used expression for the packing

factor is based on the Percus-Yevick pair-correlation function for identical, hard and radially

symmetric particles. The Perkus-Yevick packing factor WPY is related with the scatterer

concentration φ as follows13:

WPY =
(1 − φ)4

(1 + 2φ)2
. (6)

In comparison with the SFM described in Eq. (4), the theoretical BSC for the PM is thus

obtained by replacing the structure factor S by the Percus-Yevick packing factor WPY as

follows:

BSCPM(k) =
φ

Vs

(1 − φ)4

(1 + 2φ)2
σb(k). (7)
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Estimated values of a∗ and φ∗ were determined by fitting the measured BSCexp to the

theoretical BSCSFM given by Eq. (4) in the case of the SFM (or with the theoretical

BSCPM given by Eq. (7) in the case of the PM). For this purpose, we searched for values of

(a, φ) ∈ [0, 50] × [0.001, 0.74], where a was expressed in µm, minimizing the cost function:

FSFM(a, φ) =
∑

i

||BSCSFM(ki) − BSCexp(ki)||
2, for the SFM

FPM(a, φ) =
∑

i

||BSCPM(ki) − BSCexp(ki)||
2, for the PM.

(8)

The cost function had several local minima, as observed by plotting the cost function sur-

faces. Figure 2(a) and (b) gives an example of a cost function surface FSFM(a, φ) for the

SFM obtained from the experiments performed with an actual microsphere radius of 6 µm

and an actual concentration of 20% described below in section III. Similar behavior was

observed in the case of the PM. One can observe that, at a given value of the radius, the

cost functions show either one or two minima. In the case of two minima, one minimum

corresponds to a low scatterer concentration estimate and the other one to a high concen-

tration estimate. This point will be discussed below in section V.C. Figure 2(c) shows the

gradient in the ROI around the values of the actual parameters.

The same procedure was used to estimate a∗ and φ∗ with the SFM and the PM. Since no

analytical expression for σb is available in the framework of Faran’s theory,18 as mentioned

above, an exhaustive search was conducted on the values of a in the 1 to 50 µm range

in order to minimize the cost function FSFM (or FPM) given by Eq. (8). Since the cost

functions can display two minima, we searched for two concentration estimates φ1 and φ2 at

each given value of a, using a trust-region-reflective algorithm with the MATLAB nonlinear

data-fitting lsqnonlin (The MathWorks, Inc., Natick, MA). The concentration value obtained

φ1 (or φ2, respectively) corresponds to the minimum of the cost function obtained with an

initial concentration of φinit = 0.001 (or φinit=0.74) at the beginning of the minimization

routine. By varying the value of a, two possible solutions (a∗

1,φ
∗

1) and (a∗

2,φ
∗

2) were obtained,
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corresponding to a low initial value and a high initial value of the concentration at the

beginning of the minimization routine. The solution (a∗,φ∗) corresponds to the minimum

value between FSFM(a∗

1, φ
∗

1) and FSFM(a∗

2, φ
∗

2) with the SFM (or equivalently FPM(a∗

1, φ
∗

1)

and FPM(a∗

2, φ
∗

2) with the PM). Note that in some cases, the values of FSFM(a∗

1, φ
∗

1) and

FSFM(a∗

2, φ
∗

2) (or equivalently the values of FPM(a∗

1, φ
∗

1) and FPM(a∗

2, φ
∗

2) for the PM) are

equal.

III. METHODS

A. Tissue-mimicking phantoms

The tissue-mimicking phantoms consisted of polyamide microspheres with a radius of

6±2 µm (orgasol 2001 EXD NAT1, Arkema, France) gently stirred in water. The size

distribution of the microspheres measured using optical microscopy is presented in Fig. 3.

The tissue-mimicking phantoms usually consisted of microspheres in agar-agar phantom. In

the present study, the microspheres were suspended in water because agar-agar phantoms

consisting of polyamide microspheres are difficult to degas at high scatterer concentration

(>15%). The phantoms had identical scatterer sizes but different scatterer concentrations

ranging from 1 to 25%. The acoustic parameters (the sound speed c, density ρ, impedance z

and Poisson’s ratio) of the polyamide microspheres are given in Table I. The tissue-mimicking

phantoms were designed to mimick the structural and acoustical properties of densely packed

cells in tumors. The properties of the cell components are not well known and vary widely

in the literature. Table I gives an example of cell properties used by Baddour and Kolios22

and Doyle et al.23 Note that the impedance and Poisson’s ratio of polyamide microspheres

are similar to those of human acute myeloid leukemia cell nuclei.

B. Experimental setup

Two broadband focused transducers with center frequencies of 10 MHz and 17.5 MHz

(and focuses of 14.2 mm and 13.8 mm, respectively) were used in these experiments. The
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pulse-echo acquisition system was composed of an Olympus model 5072 PR pulser-receiver

and a Gagescope model 8500CS acquisition board. The transducer was placed in an agar-

agar gel, i.e. a solidified mixture of distilled water and 2% (w/w) agar powder (A9799,

Sigma Aldrich, France) so that the distance between the transducer and the suspension was

equal to 13.2 mm in the 10 MHz experiment (and 12.8 mm in the 17.5 MHz experiment).

The transducer focus was therefore positioned below the agar-agar/suspension interface at

a distance of 1 mm. The suspension was stirred in a beaker with a magnetic agitator to

prevent sedimentation. Sixty RF lines were acquired and stored. Echoes were selected in

the focal zone with a rectangular window d =0.13 cm in length. The power spectra of the

backscattered RF echoes were then averaged to provide Pmeas. This procedure was repeated

twice with the two transducers at each scatterer concentration.

C. Attenuation measurements

The attenuation coefficients of the tissue-mimicking phantoms were determined using

a standard substitution method. The 10 MHz transducer was used in the reflection mode

with a reflector on the opposite side, as shown in Fig. 4. At each phantom concentration,

acquisitions of 100 rf lines were performed both with the suspension and with water. The

water acquisition was used for normalization. At each acquisition, the phantom attenuation

was calculated using log spectral difference technique.24 These values were then averaged to

obtain αph and are summarized in Fig. 5.

D. BSC estimation

The measured BSC values reported in this study were computed using the normalization

technique for focused transducers described by Wang and Shung.25 This normalization tech-

nique consists in using a reference scattering medium instead of a perfect flat reflector, on

condition that the BSC of the reference scattering medium is known or can be determined.25

The reference scattering medium allows to compensate the measured backscattered power
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spectrum Pmeas for the electromechanical system response and the depth-dependent diffrac-

tion and focusing effects caused by the ultrasound beam. In the case of blood ultrasound

characterization, the reference scattering medium is generally a low 6% hematocrit red blood

cell suspension.25,26 Since the radius of one red blood cell sphere-shaped model is around 2.75

µm, the corresponding theoretical BSC is given by the classical version of the PM written for

an ensemble of identical Rayleigh scatterers (see Eq. (7) in Ref. 26). In the present study,

the reference scattering medium used was a suspension of polyamide microspheres with a

radius of 2.5 µm (orgasol 2001 UD NAT1, Arkema, France) present at a low concentration

of 0.5% and gently stirred in water. The sample is easy to prepare and to handle, and the

scattering process occurring in an ensemble of identical solid microspheres at a very low

concentration (dilute medium) has been well documented using the FM.18,27 Note that a

small scatterer size of 2.5 µm was chosen so that the reference scattering medium would be

in the Rayleigh scattering regime (ka ≪1) and to avoid the resonant peaks that occur with

higher scatterer sizes. Echoes from the reference scattering medium were windowed as with

the tissue-mimicking phantoms at the same depth, and sixty echoes were also averaged to

obtain Pref . The measured BSC was thus computed as follows25,26

BSCexp(k) = BSCref(k)
Pmeas(k)

Pref(k)
e

4

8.68
(αphd)k c

2π = BSCref(k)
Pmeas(k)

Pref(k)
e

4

8.68
(αphd)f (9)

where f is the frequency in MHz and the theoretical BSC of the reference sample BSCref

is given by Eq. (2) using the FM. Note that the last term in Eq. (9) compensates the

measured BSCexp for the predetermined phantom attenuation values αph (in dB/cm/MHz).

The coefficient 8.68 expresses unit conversion from dB to Neper: αph[Neper/cm/MHz]=

αph[dB/cm/MHz]/8.68.

IV. RESULTS

A. Forward problem: comparison between theoretical and experimental results

Figures 6 and 7 give the measured BSCexp versus the frequency at scatterer concentra-

tions of 1, 5, 10, 15 and 25%. The solid lines give the BSCexp values based on measurements
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performed with the 10-MHz center frequency transducer in the 6-15 MHz frequency band-

width and with the 17.5-MHz center frequency transducer in the 10-22 MHz frequency

bandwidth. At all the concentrations tested, the BSCexp measured with the two transduc-

ers in the 10-15 MHz frequency bandwidth were similar. This means that the results were

not influenced by the system’s transfer function. Fig. 6(a) and 7(a) also gives the theoret-

ical BSC predictions based on the FM, and Fig. 6(b) and 7(b) gives the theoretical BSC

predictions based on the SFM and PM. At all the scatterer concentrations tested, the best

agreement between the experimental BSCexp and theoretical BSCs was obtained with the

SFM in the 6-15 MHz frequency bandwidth. Whereas the results obtained with the FM

were only satisfactory at the 1% scatterer concentration, and those obtained with the PM

were satisfactory at concentrations of 1, 5, 10 and 15%. Note that the results obtained with

the GM were not presented in the forward problem study, since the GM does not include

shear wave in the modeling. The GM therefore gave less satisfactory results that the FM

(data not shown), even at the lowest concentration of 1%.

To enhance the lecture of these results, Figure 8 shows the measured BSCexp magnitude

averaged in the frequency bandwidth from 6 to 15 MHz and in the frequency bandwidth

from 15 to 22 MHz as a function of the scatterer concentration. The standard deviation

plotted in Fig. 8 was computed as described below. The power spectra of ten backscattered

RF echoes were averaged to obtain P ′

meas. Six power spectra P ′

meas were thus obtained

from all sixty RF echoes acquired, and the six corresponding BSC ′

exp were calculated using

Eq. (9). The standard deviation of the BSC ′

exp averaged over the frequency bandwidth

was then computed. Note that the BSCexp magnitude changed with the concentration:

the BSCexp magnitude increased with increasing concentration between 1 and 10%, then

decreased with increasing concentration between 10 and 25%. Also plotted in Fig. 8 are

the theoretical BSC values predicted with the FM, SFM and PM. Good agreement was

obtained at a low scatterer concentration of 1% and 2.5% for all models. The FM and the

PM overestimated the BSC amplitude at φ >2.5% and for φ >10%, respectively. The SFM

was the model showing the best agreement with the experimental data, especially in the
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6-15 MHz frequency bandwidth. The SFM slightly overestimates the BSC magnitude at

φ >10% in the 15-22 MHz frequency bandwidth.

A quantitative ultrasonic parameter that has often been used for tissue characterization

is the spectral slope (SS). The SS is the linear slope of the BSC as a function of the frequency

on a log-log scale. The changes in the SS in the 6-22 MHz frequency bandwidth with the

actual concentration are shown in Fig. 9. The experimental data did not show the occurrence

of any significant changes in the frequency dependence of the BSCexp at the various scatterer

concentrations tested, since the SS varies randomly between 3.4 and 3.7. The SSs obtained

with the three scatterings models were all in the same range of values. The SSs of the FM

and the PM were equal to a constant value of 3.44 at all the concentrations tested, whereas

the SS of the SFM slightly increased from 3.46 to 3.75 with increasing concentrations.

B. Inverse problem: radius and concentration estimates

In what follows, the relative errors for parameters a∗ and φ∗ correspond to:

ǫa∗ =
a∗ − a

a
ǫφ∗ =

φ∗ − φ

φ
(10)

1. Radius and concentration estimates using the GM and FM

The estimated values a∗ and φ∗ using the GM and the FM and the corresponding

relative errors are given in Fig. 10. The results obtained with the GM are presented

in the inverse problem framework because that model has been widely used in previous

studies.3–9 Since the impedance difference γz between the microspheres and the water is

known a priori, the estimated concentration φ∗ =
n∗

z(4/3)πa∗3

γ2
z

with the GM is given here

instead of the estimated acoustic concentration n∗

z usually given in previous studies.5,6

The GM overestimated the microsphere radii: the average effective radii estimated at

all the concentrations was found equal to 10.43±1.65 µm, corresponding to a relative

error of 74±27%. The GM therefore underestimated the scatterer concentrations, giving

relative errors between 88% and 100% (average relative errors 90±9%) at all the actual
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concentrations tested. The results obtained with the GM were somewhat anticipated, since

this model is well adapted for fluid spheres in a dilute medium and is therefore not very

suitable for modeling solid spheres in a dense medium.

The radii estimated using the FM were quantitatively satisfactory at all the actual

concentrations tested, since relative absolute errors of less than 22% were obtained, except for

the actual concentration of 5%, at which a relative error of approximately 38% occurred (see

Fig. 10). At concentrations of 1, 2.5, 7.5, 10 and 12.5%, the estimated concentrations given

by the FM were qualitatively consistent with a significant correlation with r2 of 0.96 between

the true and estimated concentrations (data not shown). The estimated concentrations were

quantitatively satisfactory for the actual concentrations 7.5, 10 and 12.5% with relative errors

inferior to 23%. Note that at the actual concentration of 5%, underestimating the radius

resulted in overestimating the concentration. The FM concentrations were underestimated

at the highest actual concentrations, i.e., those greater than 12.5%, as it was expected.

2. Radius and concentration estimates using the SFM and PM

The results obtained using the SFM are shown in Fig. 11. The triangular symbols

(and the diamond-shaped symbols) represent the possible solutions (a∗

1,φ
∗

1) (and the

possible solutions (a∗

2,φ
∗

2), respectively) given by the SFM with an initial concentration of

φinit = 0.001 (and φinit=0.74, respectively) at the beginning of the minimization routine.

The SFM gave quantitatively satisfactory radius estimates a∗

1 and a∗

2 at the concentrations

studied with relative absolute errors of less than 20%. The estimated concentrations φ∗

1

obtained with a low initial concentration φinit = 0.001 were quantitatively satisfactory,

giving relative absolute errors of less than 31% at actual concentrations ranging from 5

to 15%, and were qualitatively consistent at the two lowest concentrations of 1 and 2.5%,

giving relative absolute errors of 77% and 58%, respectively (see the triangular symbols

in Fig. 11(a2) and 11(b2)). The estimated concentrations φ∗

2 obtained with a high initial
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concentration φinit = 0.74 were quantitatively satisfactory giving relative absolute errors of

less than 38% at actual concentrations ranging from 10 to 25% (see the diamond-shaped

symbols in Fig. 11(a2) and 11(b2)). The circular symbols in Fig. 11 give the final solution

(a∗,φ∗) corresponding to the global minimum of the cost function studied. Note that the

global minimum (a∗,φ∗) did not always correspond to the actual parameters, whereas the

value of one of the two local minima (a∗

1,φ
∗

1) or (a∗

2,φ
∗

2) is closed from the actual parameters.

Figure 12 presents the results obtained using the PM. These results were fairly similar

to those obtained using the SFM. Note that the PM yielded less satisfactory concentrations

φ∗

2 with relative errors of up to 105% at the highest concentrations, i.e., those greater than

15% (see the diamond-shaped symbols in Figs. 12(a2) and 12(b2)). But the estimated

concentrations φ∗

1 were more accurate at the low concentrations 1 and 2.5%, giving relative

absolute errors of less than 32%.

V. DISCUSSION

A. Forward problem: discussion

BSCs in the 6 to 22 MHz frequency range were measured using tissue-mimicking phan-

toms at scatterer concentrations ranging from 1 to 25%. The experimental data thus ob-

tained were compared with the predictions of three ultrasound scattering models, namely

the FM, PM and SFM, in the framework of a forward problem study. This study is in line

with that performed by Chen and Zagzebski31 using Sephadex spheres immersed in gel. In

the latter study, qualitative comparison were made between the experimental and theoret-

ical BSC behavior as a function of the scatterer concentration (see Figures 1 and 8 in Ref.

30) using a continuum scattering model. In the present study, the relationship between the

BSC magnitude and scatterer concentration was studied quantitatively. The observed BSC

magnitude versus concentration relationship was satisfactorily predicted by the SFM and

the PM, whereas the FM predicted that the BSC increases with increasing concentrations.
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With the FM, the assumption that the scatterers were randomly distributed failed due to the

spatial correlation among the scatterers at high scatterer concentrations. The FM therefore

failed to predict the BSC magnitude at scatterer concentrations above 2.5%. The BSCPM

curves were in good agreement with the BSCexp curves up to concentrations of 15% (see

Fig. 8). But the best agreement between the theoretical and experimental BSC curves in

scattering magnitude was obtained with the SFM, even at the highest concentration of more

than 15%, especially in the 6-15 MHz frequency bandwidth (see Fig. 8(a)). To conclude, the

SFM was found to be more suitable than the PM and the FM for modeling high scatterer

concentrations.

Concerning the frequency dependence of the BSC, the relationship between the SS and

the scatterer concentration was also studied. Since the SS values obtained on the basis of

the experimental data varied randomly around 3.55 at the various concentrations tested,

there is no clear variation of the SS with the concentration. The experimental SSs did not

match the theoretical SSs given by the FM, SFM and PM. Contrary to what occurred with

the experimental values, the theoretical SSs obtained with the FM and PM are constant

as a function of the concentration, since the BSC frequency dependence with these models

is determined only by the frequency dependence of σb (see equations (2) and (7)). Note

that σb depends on the scatterer size and not on the concentration. With the SFM, the SS

was predicted to increase with the concentration because of the structure factor. Indeed,

according to Eq. (4), the BSCSFM frequency dependence is determined by the frequency

dependences of σb and S. Note that S depends on the scatterers’ radius and their concen-

tration. However, the experimental and theoretical SSs values obtained ranged between 3.4

and 3.75 with all three models.

B. On the use of polyamide microspheres to make cell-mimicking phantoms

In the present study, experiments were performed at the cell scale using solid polyamide

microspheres with a radius of 6 µm, having similar acoustic parameters to those of isolated
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nuclei (see Table I). However, the suitability of models for describing scattering by cells

has given rise to some debate. Cells have also been modeled as fluid media. Two other

approaches have been used so far to modeling a cell: using a single FFSM28 or modeling two

concentric fluid spheres29 with impedances of around 1.6 MRayl. However, weakly scattering

fluid phantoms (i.e., with impedances of around 1.6 MRay) consisting of small microspheres

are difficult to manufacture. The smallest weakly scattering fluid microspheres found in the

literature were around 90 - 212 µm in size.30 This means that only large scale experiments

(using low frequencies) can be performed with these weakly scattering fluid microspheres.

Besides the choice of an elastic or fluid medium for modeling cells, another disadvan-

tage of these tissue-mimicking phantoms is the large impedance contrast involved: that

between polyamide microspheres and water is around 58%, versus 30% between cell nuclei

and cytoplasm/extracellular matrix (taking c=1570 m/s, ρ=1.06 and z=1.66 MRayl for the

cytoplasm and the extracellular matrix and z=2.15 MRayl for nuclei as given in Table I).

Although the wave propagation distance was quite short in our experiments (d=1.3 mm),

multiple scattering can occur at high scatterer concentrations, which may explain the dis-

crepancies observed between the measured BSCexp and theoretical BSCSFM in the 15 - 22

MHz range (see Fig. 8(b)).

C. Inverse problem

In the forward problem study, it was established that the SFM was the model giving

the best match with the experiments at all the concentrations tested. However, the best

model for use with inverse problems should not only give a good fit with the data but also

should be associated with a highly variable cost function in the ROI. It is worth noting

that the cost function of the SFM has a higher gradient than the FM in the ROI, and that

the area in which the gradient is small is larger in the case of the FM (see Fig. 1(c) and

2(c)). In addition, at a given value of the radius, the FM cost function minima all have

similar values, whereas the SFM cost function minima are extremely variable (see Fig. 1(b)
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and 2(b)). The behavior of the cost functions shows that the SFM is more sensitive than

the FM to the unknown parameters, which could be an important point when dealing with

the noisy data obtained in the case of real tissue.

The accuracy of the FM to estimate the scatterer size and concentration was first exam-

ined. As can be seen from Fig. 10, the FM does not give accurate scatterer concentrations

at φ >12.5%. However, good correlations between the scatterer concentration predicted by

the FM and the actual concentration were found at actual concentrations ranging between

1 and 12.5% (apart from 5%). We did not actually expect to obtain such good results

up to 12.5%, since the FM overestimates the BSC amplitude for φ >2.5% as shown in

the forward problem study. It is worth noting that the concentration estimates obtained

at actual concentrations ranging between 7.5% and 12.5% were associated with a slight

underestimation of the scatterer radius, which may explain why such accurate results were

obtained at these actual concentrations.

The accuracy of the SFM and the PM to estimate the scatterer size and concentration

was then examined in the case of high scatterer concentration, since the PM and the SFM

are more suitable than the FM for modeling dense media. To our knowledge, neither the

PM nor the SFM have been tested so far in blood characterization studies as means of

predicting the scatterer concentration because the hematocrit is assumed to be known a

priori.26 However, our study showed that the estimation of the scatterer concentration is

not straightforward using the PM or the SFM. The following discussion intends to explain

why the concentration estimates cannot be obtained directly using standard minimization

procedures in the 6-22 MHz frequency bandwidth studied here.

As can be seen in Fig. 8(a), when the value of the radius is fixed, the BSC magni-

tude can be the same at both small and large scatterer concentrations (for example, at the

concentrations 5% and 20% in the 6-15 MHz frequency bandwidth), apart from the maxi-

mum BSC magnitude, at which the concentration is unique (herein, 10%). The BSCSFM
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magnitudes computed with the SFM versus the concentration are plotted in Fig. 13(a) at

several radius sizes (ranging from 5 to 7 µm). It can be observed here that several pairs of

parameters (a,φ) can have the same BSC magnitude. This explains why the cost functions

of the SFM and the PM had several local minima, as shown in Fig. 2. In Figures 11 and

12, one can notice that the global minimum (a∗,φ∗) did not always correspond to the actual

parameters. However, one of the two local minima (a∗

1,φ
∗

1) or (a∗

2,φ
∗

2) corresponded to the

actual parameters. To better understand what happened in these special cases, Fig. 13(b)

gives the experimental BSCexp at a concentration of 20% and two fitted curves BSCSFM

corresponding to the two local minima. Although the curves fitted with the SFM were sim-

ilar, the concentration estimates were very different : (a∗

1=6.5 µm, φ∗

1=5.69%) and (a∗

2=6.9

µm, φ∗

2=22.50%). In this example, the global minimum was obtained with the smallest con-

centration (i.e. φ∗=φ∗

1=5.69%), whereas the actual concentration was equal to 20%. This

means that the information used to solve the inverse problem did not suffice to be able to

determine the concentration. The discussion next considers some possible solutions to this

problem.

One solution might be to increase the information available by using higher frequencies.

Figure 13(c) shows the theoretical BSCSFM in the 6 to 40 MHz frequency bandwidth at

concentrations of 5% and 20% with radii of 5.5 µm and 6 µm. With the same fixed radius,

the BSCSFM versus frequency curves obtained at both scatterer concentrations share a

similar pattern, since the peaks and dips occur at the same frequencies. In addition, at

the same fixed radius, the BSCSFM amplitudes are practically identical at low frequencies

(<20 MHz), whereas the BSCSFM amplitude is larger at high frequencies (>20 MHz) for

the highest concentration of 20%. The use of higher frequencies may thus (1) improve the

radius estimates, since the BSC peaks and dips could be captured in the 25-40 MHz frequency

bandwidth, and (2) increase the ability to differentiate between low and high concentrations,

since the BSC amplitude differs between low and high concentrations at higher frequencies.

The use of high frequencies with QUS techniques could be envisaged when working with

subcutaneous or excised tissues, as in the study performed by Mamou et al9 on cancer
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patients’ freshly-dissected lymph nodes. However, if one keeps a low frequency bandwidth

(6 - 22 MHz as performed in our in vitro study or even less) with a view to develop in vivo

SFM applications, the microstructure (i.e. the scatterer size and concentration) estimations

based on the SFM might be associated with another quantitative parameter, such as the

attenuation. In the tissue-mimicking phantom study presented here, the attenuation was

found to increase with the concentration, as shown in Fig. 5 and this information could be

used to choose a solution between the two local minima. This means that if the attenuation

is high, one can expect to have high scatterer concentrations. Moreover, in the case of

some tissues such as liver or most cancer tissues, the cells are known to be densely packed.

Structural parameter estimations based on the SFM could be possibly limited to a high

initial concentration value of φinit=0.74 at the beginning of the minimization routine. It

is worth emphasizing that, by combining the structural estimates with the attenuation or

by assuming a priori that the medium is dense, the SFM yielded satisfactory concentration

estimates with relative errors of less than 38% at actual concentrations ranging from 10 to

25%.

VI. CONCLUSION

Four scattering models were examined for characterizing biological tissues with high

scatterer concentrations. The GM has been previously used in various tissue studies;3–9

whereas the FM has been mainly used for tissue-mimicking phantoms composed of solid

particles.10,31 Both of these models assume randomly distributed scatterers such that the

theoretical BSC magnitude increases with scatterer concentration. These models are there-

fore most suitable for dealing with dilute media. The SFM and PM have been developed

for modeling dense blood medium13–16 in order to consider the interference effects caused by

the correlation in the spatial disposition of individual scatterers.

The FM, SFM and PM were first studied in the forward problem framework in order to

compare the theoretical and experimental BSCs. The relationship between BSC magnitude
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and scatterer concentration was addressed. The BSCexp magnitude was found to increase

with the concentration at low scatterer concentrations, and then decreased at concentrations

greater than 10%. This pattern of BSC behavior versus the concentration was satisfactorily

predicted by the SFM and the PM, but not by the FM. The SFM was the model that better

matched the experiments at all the scatterer concentrations studied, especially in the 6-15

MHz frequency bandwidth.

The four scattering models were then examined to estimate the scatterer size and con-

centration from the experimentally measured BSCexp. The GM did not yield accurate

structural parameters, since it gave relative errors of approximately 74% in the radius and

90% in the concentration. The FM provided significant correlations between the estimated

and true concentrations with r2 around 0.96 at actual concentrations ranging from 1 and

12.5% (apart from the actual concentration of 5%). However, the FM did not predict the

concentration accurately at φ >12.5%. The minimization routines used with the SFM and

the PM were more complex than with the GM and FM, since the cost functions associated

with these models often exhibited two local minima, corresponding to low and high scat-

terer concentration estimates. The global minimum did not always correspond to the actual

parameters but one of the two local minima corresponded to the actual parameter. In order

to solve this problem, it is possible to either (1) assume the medium to be dense a priori,

or (2) associate the structural estimates with another quantitative parameter, such as the

attenuation. With additional information of this kind, the SFM gave satisfactory concentra-

tion estimates with relative errors of less than 38% at actual concentrations ranging from 10

to 25%. Future works should focus on the combination of the SFM with other quantitative

parameters (attenuation, signal envelope statistics32) and on the use of higher frequencies.
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APPENDIX A: ANALYTICAL EXPRESSION FOR THE STRUCTURE

FACTOR

The analytical expression for the structure factor can be obtained from the article of

Wertheim21 giving the analytical expression of the direct correlation function c(r). Indeed,

Percus-Yevick equation33 relates the pair correlation function (i.e. the radial distribution

function) to the direct correlation function. Wertheim developed the analytical solution of

the Percus-Yevick equation for hard spheres leading to21

−c(r) = c0 + c1
r
d

+ c3

(

r
d

)3
for r ≤ d

= 0 for r > d

(A1)

where d is the hard-sphere diameter. The coefficients c0, c1 and c3 are given by21

c0 =
(1 + 2φ)2

(1 − φ)4

c1 = −
6φ(1 + φ/2)2

(1 − φ)4

c3 =
φ

2
c0 =

φ(1 + 2φ)2

2(1 − φ)4

(A2)

Note that the expression of c0 is related to the inverse of the three-dimensional expression

of the packing factor WPY given in Eq. (6).

The Fourier transform of the structure factor S is linked to the Fourier transform of the

direct correlation function C as follows:34

S(k) =
1

1 − mC(k)
(A3)

with

C(k) = 4πd3

∫ 1

0

r2sin(2kr)

2kr
c(r)dr. (A4)

The structure factor S was also calculated by computing the Fourier transform of a

three-dimensional random distribution of particles as performed in Ref35 and was compared

with the analytical expression of the structure factor (see Fig. 14a). The two curves show

good agreement at large ka > 1. In order to improve the analytical expression for small ka,
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we slightly modified the coefficient c0 empirically as follows:

c′0 =
(1 + 3φ)2

(1 − φ)4
. (A5)

The inverse of c′0 corresponds to the modified packing factor expression proposed by

Twersky36 with the variance parameter equals to 0 and with the shape parameter equals to

4. Since the new coefficients c′0, c′1 and c′3 verify the following equations: c′3 = (φ/2)c′0 and

−c(d) = c0 + c1 + c3 = c′0 + c′1 + c′3, we obtained the following expressions

c′1 = −
8φ(1 + φ/2)(1 + φ)

(1 − φ)4
,

c′3 =
φ

2
c′0 =

φ(1 + 3φ)2

2(1 − φ)4
.

(A6)

Figure 14b) represents the comparison of the structure factors computed by the Fourier

transform of a three-dimensional random distribution of particles and computed by the

modified analytical methods based on the article of Wertheim21 using the coefficients given

in Eq. (A5) and (A6). The two curves agrees well for high scatterer concentration even for

small ka.
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TABLE CAPTIONS

Table I. Summary of the parameters used to calculate the theoretical BSC response of

the polyamide microsphere. Comparisons with parameters for human acute myeloid

leukemia cell OCI-AML-5 used in Baddour and Kolios.22
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TABLE I.

Polyamide OCI-AML-5 OCI-AML-5

microsphere nucleus cell

Radius a (µ m) 6 4.55 5.75

Sound speed c (m/s) 2300 1503 1535

Density ρ (kg/m3) 1030 1430 1240

Impedance z (MRayl) 2.37 2.15 1.90

Poisson’s ratio 0.42 0.42 0.487
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Figure 1. (Color online) (a) Typical aspect of the logarithm of the cost function

FFM(a, φ) for the FM obtained from the experiments with actual microsphere radius

of 6 µm and actual concentration of 2.5%. The logarithm is shown here in order to

enhance the visual contrast. Black rectangle indicates the ROI used to compute the

gradient in subplot (c). (b) Typical aspects of the function log (FFM(a, φ)) obtained

with several fixed values of a. These cost functions have a single minimum. (c)

Direction and relative magnitude of the gradient in the ROI around the values of the

actual parameters.

Figure 2. (Color online) (a) Typical aspect of the logarithm of the cost function

FSFM(a, φ) for the SFM obtained from the experiments with actual microsphere radius

of 6 µm and actual concentration of 20%. The logarithm is shown here in order to

enhance the visual contrast. This cost function has two possible solutions (a∗

1,φ
∗

1) and

(a∗

2,φ
∗

2). Black rectangle indicates the ROI used to compute the gradient in subplot

(c). (b) Typical aspects of the function log (FSFM(a, φ)) obtained with several fixed

values of a. These cost functions can display either one or two minima. (c) Direction

and relative magnitude of the gradient in the ROI around the values of the actual

parameters.

Figure 3. Normalized histogram of the microsphere radii.

Figure 4. (Color online) Diagram of the experimental set-up used to perform the

attenuation measurement.

Figure 5. Attenuation αph of the tissue-mimicking phantoms as a function of the actual

concentration.

Figure 6. (Color online) BSCs at scatterer concentrations of 1, 5 and 10 %. (a)

Comparison between the measured BSCs and the FM predictions. (b) Comparison

between the measured BSCs and the SFM and PM predictions.
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Figure 7. (Color online) BSCs at scatterer concentrations of 15 and 25 %. (a) Com-

parison between the measured BSCs and the FM predictions. (b) Comparison between

the measured BSCs and the SFM and PM predictions.

Figure 8. (Color online) Comparison between the measured and theoretical mean BSC

versus the scatterer concentration (a) in the 6 to 15 MHz frequency range and (b) in

the 15 to 22 MHz frequency range.

Figure 9. (Color online) Spectral slopes obtained in the 6-22 MHs frequency band-

width as a function of the actual concentration in the experiments and with the three

theoretical scattering models (FM, SFM and PM).

Figure 10. (Color online) a) Values of a∗ and φ∗ estimated by the GM and the FM

versus the actual concentration. Also represented are actual values of a and φ. (b)

Corresponding relative errors of a∗ and φ∗.

Figure 11. (Color online) a) Parameter estimates using the SFM versus the actual

concentration. The triangular and the diamond-shaped symbols represent the possi-

ble solutions (a∗

1,φ
∗

1) and (a∗

2,φ
∗

2), respectively, with an initial value of the concentration

φinit = 0.001 and φinit=0.74, respectively, at the beginning of the minimization rou-

tine. The circular symbols give the global minimum, i.e. the solution (a∗,φ∗). Also

represented in dashed lines are actual values of a and φ. (b) Corresponding relative

errors.

Figure 12. (Color online) a) Parameter estimates using the PM versus the actual con-

centration. The triangular and the diamond-shaped symbols represent the possible

solutions (a∗

1,φ
∗

1) and (a∗

2,φ
∗

2), respectively, with an initial value of the concentration

φinit = 0.001 and φinit=0.74, respectively, at the beginning of the minimization rou-

tine. The circular symbols give the global minimum, i.e. the solution (a∗,φ∗). Also

represented in dashed lines are actual values of a and φ. (b) Corresponding relative

errors.
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Figure 13. (Color online) a) BSCSFM magnitude versus the concentration computed

with the SFM for several fixed microsphere radii ranging from 5 to 7 µm. b) Exper-

imental BSCexp at a scatterer concentration of 20% and the theoretical BSCSFM

computed with two possible solutions (a∗

1=6.5 µm, φ∗

1=5.69%) and (a∗

2=6.9 µm,

φ∗

2=22.50%). c) Theoretical BSCSFM computed with the SFM for two scatterer con-

centrations of 5% and 20% with microsphere radii of 5.5µm and 6µm.

Figure 14. Comparison between structure factors at three different concentrations 5,

15 and 25%, computed by the Fourier transform (FT) of a three-dimensional random

distribution of particles35 and computed by two analytical methods based on the article

of Wertheim21 (a) using the coefficients given in Eq. (A2) and (b) using the coefficients

given in Eq. (A5) and (A6).
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