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Abstract

Source-tract decomposition (or glottal flow estimation) is one of the ba-
sic problems of speech processing. For this, several techniques have been
proposed in the literature. However studies comparing different approaches
are almost nonexistent. Besides, experiments have been systematically per-
formed either on synthetic speech or on sustained vowels. In this study we
compare three of the main representative state-of-the-art methods of glottal
flow estimation: closed-phase inverse filtering, iterative and adaptive inverse
filtering, and mixed-phase decomposition. These techniques are first sub-
mitted to an objective assessment test on synthetic speech signals. Their
sensitivity to various factors affecting the estimation quality, as well as their
robustness to noise are studied. In a second experiment, their ability to la-
bel voice quality (tensed, modal, soft) is studied on a large corpus of real
connected speech. It is shown that changes of voice quality are reflected by
significant modifications in glottal feature distributions. Techniques based
on the mixed-phase decomposition and on a closed-phase inverse filtering
process turn out to give the best results on both clean synthetic and real
speech signals. On the other hand, iterative and adaptive inverse filtering is
recommended in noisy environments for its high robustness.
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Research Highlights 

 
 
 

 CPIF and CCD give the best results on synthetic speech 
 

 

 NAQ, H1-H2 and HRF are useful glottal parameters 
 

 

 Glottal flow can be used for voice quality analysis 
 

 

 Methods are tested on a large speech database 
 

Research Highlights
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The authors would like to thank again the reviewers for their time and their 
fruitful suggestions. 
 
 
Reviewer #1: The revised paper has obviously been improved. I think that this 
paper can be published without further review but I recommend that the authors 
consider the following points. 
 
Section 4.4: 
The revised descriptions would still confuse the readers. 
In this section, the authors don't show any results about a relationship 
between the glottal formant parameter and the estimation accuracy. However, 
the authors say "Throughout our experiments we confirmed for all glottal 
source estimation techniques the performance degradation as a function of 
these factors." 
I understand the glottal formant affects the estimation accuracy but it is not 
shown in this experiment. 
Therefore, the glottal formant should not be included in "these factors." 
 
The authors had better further revise this section to clarify what the authors 
evaluated. 
 
So as to clarify this point, the first and second paragraph of section 4.4 
(page 17) have been modified: 
 
“The stronger this interference, the more important the time overlap between 
the minimum-phase component and the maximum-phase response of the next glottal 
cycle, and consequently the more difficult the decomposition.” 
 
And: 
 
“A strong interference then appears with high pitch, and with low F1 and Fg 
values. The previous experiments confirmed for all glottal source estimation 
techniques the performance degradation as a function of F0 and F1. Although we 
did not explicitly measure the sensitivity of these techniques to Fg in this 
manuscript, it was confirmed in other informal experiments we performed.” 
 
 
Section 2.1: 
interative => iterative 
 
Thanks. 
 
 
 
 
Reviewer #2: The revised manuscript corrects most of the issues that I pointed 
out in my review. I believe that the current version can be accepted for 
publication. 

 

*Revision Notes
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Reviewer #1: This paper presents an evaluation of three typical glottal flow 
estimation methods: closed-phase inverse filtering (CPIF); iterative and 
adaptive inverse filtering (IAIF); and complex cepstrum decomposition (CCD). 
These methods are compared with each other in terms of robustness to additive 
noise, sensitivity to F0, and sensitivity to the vocal tract transfer function 
in the experiments with speech samples synthesized with the LF model. 
Interesting properties of each estimation method are shown from the 
experimental results. Moreover, another experimental evaluation using real 
speech samples is also conducted. To evaluate the estimation performance, 
speech samples in three different speaking styles are analyzed, and then the 
parameters of the glottal flow estimated by the individual estimation methods 
are compared with each other. The experimental result demonstrates that CCD 
estimates the most discriminative style-dependent glottal flow compared with 
the others. This paper is relatively well written. The presented experimental 
results are interesting and worthwhile to be published. 
 
There are some unclear parts. I recommend that the authors revise the 
following points to further improve the paper. 
 
*** General remark *** 
Discussions in section 4: 
It is demonstrated from the presented experimental results which estimation 
method is robust or sensitive to some conditions. However, it is still unclear 
the reason why these results are caused: e.g., what is the reason why IAIF is 
more effective than the others in noisy conditions but it is less effective in 
clean conditions? Please add more discussions about the possible reasons to 
interpret the presented results. 
 
Thanks for your comment. We have extended Section 4.1 so as to give more 
explanations about the reasons for which one method is more robust or 
sensitive to noise than another one. 
 
 
Effect of the order of the inverse filter: 
How did you determine the order of the inverse filter in CPIF and IAIF? The 
authors have to describe it. The order of synthesis filter used for 
synthesizing speech samples in section 4 should also be described. Does the 
order of the inverse filter strongly affect the results of CPIF and IAIF shown 
in figures 4 and 5? Is it possible that significant improvements of the 
estimation performance are yielded if the order is carefully adjusted? Please 
add a discussion about the sensitivity to the setting of the order of inverse 
filtering as well. 
 
For IAIF, as mentioned in the paper (end of Section 2.1.2), we used the 
implementation from the toolbox available on the TKK Aparat website with its 
default options. Since the authors of IAIF have probably optimized their 
method, we used their implementation, without modifying the code. 
As for CPIF, the order used for DAP analysis was fixed to 18 (=Fs/1000+2), as 
commonly used in the literature. In order to investigate the improvements that 
can be obtained by carefully adjusting the analysis order, the following 
figure exhibits the evolution of the overall Spectral Distortion as a function 
of the DAP order. It can be observed the best performance is obtained using an 
order comprised between 12 and 18. However, the resulting improvement is 
extremely weak (in the range [10,20], only a difference of 0.07dB can be 
reached by optimizing the order), and insignificant with regard to the gap 
separating the different methods compared in this work. Furthermore, this 

*Revision Notes
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Figure was obtained for synthetic signals, and this order optimization may not 
hold for real speech signals. 
More information about the filter order has been provided in the manuscript, 
in the very end of Section 2.1.1. 
 
 

 
 
 
 
 

 
 
Experimental results in section 4.3: 
Only four typical vowels are considered in the evaluation. Why did you choose 
only them? The number of data points shown in figure 6 seems too small. If the 
first formant frequency is an effective parameter for capturing an impact of 
the vocal tract transfer function on the glottal flow estimation, the same 
tendencies as observed in these four vowels would also be observed in the 
other vowels. It seems better to show more data points if possible. If more 
data points would make the tendencies invisible, other parameters as well as 
the first formant frequency have also to be considered. 
 
Thanks for this suggestion. Section 4.3 and Figure 6 have been substantially 
modified so as to give a more complete answer to these questions. 
 
 
*** The other comments *** 
Explanation about DAP in section 2.1.1: 
The 2nd sentence in the 2nd paragraph explains DAP but this explanation is 
insufficient due to lack of precision. A more precise explanation is required. 
 
Thanks. More information about DAP has been added in the second paragraph of 
Section 2.1.1. 
 
Experimental conditions in section 4: 
Please clarify sampling frequency of synthetic speech samples. In the last 
sentence in the 1st paragraph, "20.000 experiments" should be "20,000 
experiments." 
 
Thanks for this remark. Changes have been made in the manuscript. 
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Figure 6 in section 4.3: 
Is this figure correct? The F1 values should be 336, 378, 466, and 827 Hz but 
data points at 466 Hz don't seem to be plotted correctly. 
 
Thanks for the correction. We have probably made a mistake when plotting these 
points. Nevertheless, Figure 6 has now been totally modified. 
 
 
Section 4.4: 
The authors mention that the glottal formant is used as one of the parameters 
to capture interference. Is this parameter controlled in the additive noise 
experiment? Please clearly describe this point. Some examples showing the 
waveform (or spectral) change caused by varying each parameter would be 
helpful for readers to understand how each parameter affects the glottal flow 
or the impulse response of the vocal tract transfer function. Please show them 
if possible. 
 
Changes in the text (third enumeration of Section 4.4) have been brought so as 
to clarify the effect of the glottal formant on the interference. Due to 
limitation space, we think that showing the influence of each parameter is 
impossible for this document. However, we refer to (Doval and d’Alessandro, 
2006; or others) which discuss this point more in depth. 
 
 
Reviewer #2: This is an important paper that aims at comparing 3 different 
techniques for the estimation of the glottal flow relying solely on the 
acoustic speech signal. I find the paper in general well written and 
organized. I also did not find any methodological errors. 
 
My main critique of the work presented in the paper regards the limited number 
of robustness tests that were conducted when analyzing the performance of the 
algorithms on synthetic speech. There are many well known problems in voice 
recordings that affect the estimation of the glottal parameters and the 
evaluation of the robustness of the algorithms just by adding white Gaussian 
noise to the speech signal only accounts for a very small part of these 
problems. There are two types of problems: the ones related with the glottal 
flow signal and the ones related with the recording conditions. In the first 
case, the jitter is, in my view, the major challenge for these algorithms 
especially for the ones that require more than one glottal cycle for each 
analysis frame. Jitter is a very common effect in real speech signals, even 
for non-pathological voices. The amount of jitter is very good discriminator 
for detecting some types of voice pathologies. Another important effect is the 
case of breathy voices in which there is noise added no to the speech signal 
but to the glottal waveform. This is an amplitude modulated noise that also 
effects the robustness of most algorithms. The problems related with recording 
condition are just partially modeled by the additive noise model that was 
used. A major difficulty in real cases is the lack of fixed distance from the 
mouse to the microphone and the presence and non-stationary noise. This is 
what happens in speech acquired in hospital environment, in which each patient 
is recorded in different conditions. These problems should at least be 
referred. 
 
Thank you for this fruitful comment. The end of the introduction of Section 4 
(last sentences of the first paragraph) has been modified so as to refer to 
this issue. 
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It is true that this study, for simply practical reasons, does not cover the 
whole diversity of glottal production. This is now specified in the modified 
text. Our concentration is more on the real speech tests, which are 
comparatively broad. 
 
 
Another question is the selection of the voice qualities for the study in real 
speech. The discrimination between Loud, Modal and Soft qualities is not one 
of hardest to perform. Using these 3 it would have been easy to predict that 
the Normalized Amplitude Quotient would be best discriminator. The results of 
section 5 thus are not very interesting. 
 
This comment is surprising to us since Section 5 contains very large tests 
with real speech that has not been performed before. We frankly think that it 
is a very valuable contribution of this paper. We therefore believe that 
without this test some information would be missing for the readers with 
comparatively less expertise than Reviewer 2. Besides, it was not so clear to 
us, before performing the test itself, that NAQ would lead to the best 
discrimination. At least, we hope that, for the reader who could predict that, 
the results of Section 5 will give an objective confirmation led on a large 
dataset of what he intuitively expected. 
 
 
There are also some points that, in my view, should be improved. 
1. In the introduction (page 2), regarding the need for source-filter 
deconvolution. It is said that: 
In many speech processing applications, it is important to separate the 
contributions from the glottis and the vocal tract. Achieving such asource-
filter deconvolution could lead to a distinct characterization and modeling of 
these two components, as well as to a better understanding of the human 
phonation process. 
This misses the most important reason that is the completely different 
dynamics of the two contributions. 
 
Thanks. We have modified our introduction so as to account for this remark. 
 
 
2. In the section regarding the Closed Phase Inverse Filtering technique (page 
4-5): 
Closed phase refers to the timespan during which the glottis is closed (see 
Figure 1). During this period, the vocal tract is supposed to be free of any 
excitation. 
That is not exactly true, since the vocal tract is generally considered a 
system with memory and the effects of excitation open-phase are still present. 
The reason for using the closed phase is because during that part of the 
glottal cycle, the effects of the sub-glottal cavities are minimized, and thus 
providing a better estimate of the vocal tract transfer function. 
 
Thank you for this comment. The beginning of Section 2.1.1 has been modified 
accordingly. 
 
 
3. In figure 2 (page 8) the time axis of the time domain graphics are not 
correct. The impulse response of the vocal tract should start at n=0 and not 
at n=250 (more or less), as presented. This is the only way to have the 
depicted response speech signal. 
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Thank you. Figure 2 has been modified consequently. 
 
 
4. In page 10 the definition of the QOQ is not correct: 
Avoiding this problem and prefered to the traditional Open Quotient, the 
Quasi-Open Quotient (QOQ) was proposed as a parameter describing the relative 
open time of the glottis (Hacki, 1989). It is defined as the ratio between the 
quasi-open time and the quasi-closed time of the glottis, and corresponds to 
the timespan (normalized to the pitch period) during which the glottal flow is 
50% above the minimum flow. 
 
The QOQ was defined for the EGG signal and not for the flow itself. In this 
case there is no minimum flow but a variation in conductivity for which there 
is no zero value. I agree that the measure can be used for the glottal flow 
but the 50% above minimum does not make sense. It should be the normalized 
time span in which the flow is above 50% of the difference between the maximum 
and minimum flow. This is the way the measure is computed in the aparat matlab 
package that I believed the authors used. 
 
Thank you for this comment. The definition of QOQ has been changed so as to 
reflect your suggestion. 
 
5. Again in page 10, regarding the normalized amplitude quotient, NAQ: 
It is defined as the ratio between the maximum of the glottal flow and the 
minimum of its derivative, normalized with respect to fundamental frequency. 
I believe that it is more correct to say that NAQ is normalized with respect 
to the fundamental period, since it is this values that goes in the 
denominator of the definition. In this case and in the previous one, I would 
have found useful to have the definition of both measures expressed as a 
mathematical equation. 
 
Thanks. The definition of NAQ has been changed according to your suggestion. 
 
 
6. Regarding the experiments on Synthetic Speech, in page 12, some important 
details are missing. The first one is the sampling frequency that was used. I 
assume that the experiments were conducting using the same sampling frequency 
used in the real speech experiments (16K) of the next section but it must be 
stated. Also missing is the order of the auto-regressive filter used for 
synthesis. 
 
This information has been added in the beginning of Section 4. 
 
7. Regarding the measures studied I think that the "determination rate" is a 
strange one. The correct measure must be the "error rate" on the estimation of 
NAQ and QOQ. Besides the meaning be more clearly stated, it also change the 
grading so that higher values are worst. This also makes these two measures 
compatible with the third one, the spectral distortion. In Fig 4 and Fig 5, 
the y axis of the first to graphs are "the higher the better" whilst the last 
one is "the lower the better". This makes the data harder to interpret. 
 
As suggested, the use of the ‘determination rate’ has been replaced by the 
‘error rate’ in Section 4. 
 
8. In the conclusion (page 20), the sentence following sentence is to strong: 
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For the first time in the literature, a large real speech corpus was used for 
testing, without limiting analysis to sustained vowels. 
It was not the effectiveness of the glottal flow estimation techniques that 
was used but its ability to discriminate 3 voice qualities. This does not mean 
that the parameters were correctly estimated, and it is not even a good 
indication on the relative quality of the 3 methods. 
 
Thanks for this comment. We made this sentence softer in the text. 
And indeed it is true that these results do not explicitly reflect the 
performance of the method for the goal of glottal flow estimation. However, it 
can be expected that, since the actual glottal behavior is known to 
significantly vary across the different voice qualities, these changes should 
be highlighted after parametrization of the estimates of the glottal flow. So, 
although our tests do not explicitly assess the performance of the methods, we 
think they perform contribute to their implicit assessment, specifically in 
the context of the unavailability of ground truth data. 
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Abstract

Source-tract decomposition (or glottal flow estimation) is one of the ba-
sic problems of speech processing. For this, several techniques have been
proposed in the literature. However studies comparing different approaches
are almost nonexistent. Besides, experiments have been systematically per-
formed either on synthetic speech or on sustained vowels. In this study we
compare three of the main representative state-of-the-art methods of glottal
flow estimation: closed-phase inverse filtering, iterative and adaptive inverse
filtering, and mixed-phase decomposition. These techniques are first sub-
mitted to an objective assessment test on synthetic speech signals. Their
sensitivity to various factors affecting the estimation quality, as well as their
robustness to noise are studied. In a second experiment, their ability to la-
bel voice quality (tensed, modal, soft) is studied on a large corpus of real
connected speech. It is shown that changes of voice quality are reflected by
significant modifications in glottal feature distributions. Techniques based
on the mixed-phase decomposition and on a closed-phase inverse filtering
process turn out to give the best results on both clean synthetic and real
speech signals. On the other hand, iterative and adaptive inverse filtering is
recommended in noisy environments for its high robustness.

Keywords:
Source-tract Separation, Glottal Flow Estimation, Inverse Filtering,
Mixed-Phase Decomposition, Voice Quality
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1. Introduction

Speech results from filtering the glottal flow by the vocal tract cavities,
and converting the resulting velocity flow into pressure at the lips (Quatieri,
2002). In many speech processing applications, it is important to separate the
contributions from the glottis and the vocal tract. Achieving such a source-
filter deconvolution could lead to a distinct characterization and modeling of
these two components, as well as to a better understanding of the human
phonation process. Such a decomposition is thus a preliminary condition
for the study of glottal-based vocal effects, which can be segmental (as for
vocal fry), or be controlled by speakers on a separate, supra-segmental layer
(as it is the case for the voice quality modifications mentioned in Section
5). Their dynamics is very different from that of the vocal tract contribu-
tion, and requires further investigation. Glottal source estimation is then
a fundamental problem in speech processing, finding applications in speech
synthesis (Cabral et al., 2008), voice pathology detection (Drugman et al.,
2009b), speaker recognition (Plumpe et al., 1999), emotion analysis/synthesis
(Airas and Alku, 2006), etc.

In this paper, we limit our scope to the methods which perform an esti-
mation of the glottal source contribution directly from the speech waveform.
Although some devices such as electroglottographs or laryngographs, which
measure the impedance between the vocal folds (but not the glottal flow it-
self), are informative about the glottal behaviour (Henrich et al., 2004), in
most cases the use of such aparatus is inconvenient and only the speech signal
is available for analysis. This problem is then a typical case of blind separa-
tion, since neither the vocal tract nor the glottal contribution are observable.
This also implies that no quantitative assessment of the performance of glot-
tal source estimation techniques is possible on natural speech, as no target
reference signal is available.

As one of the basic problems and challenges of speech processing research,
glottal flow estimation has been studied by many researchers and various
techniques are available in the literature (Walker and Murphy, 2007). How-
ever the diversity of algorithms and the fact that the reference for the actual
glottal flow is not available often leads to the questionability about relative
effectiveness of the methods in real life applications. In most of studies,
tests are performed either on synthetic speech or on a few recorded sustained
vowels. In addition, very few comparative studies exist (such as (Sturmel
et al., 2007)). In this paper, we compare three of the main representative

2
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state-of-the-art methods: closed-phase inverse filtering, iterative and adap-
tive inverse filtering, and mixed-phase decomposition. For testing, we first
follow the common approach of using a large set of synthetic speech signals
(by varying synthesis parameters independently), and then we examine how
these techniques perform on a large real speech corpus. In the synthetic
speech tests, the original glottal flow is available, so that objective measures
of decomposition quality can be computed. In real speech tests the ability of
the methods to discriminate different voice qualities (tensed, modal and soft)
is studied on a large database (without limiting data to sustained vowels).

The paper is structured as follows. In Section 2 the main state-of-the-art
methods for glottal source estimation are reviewed, and the three techniques
compared in this study are detailed. Section 3 discusses how the resulting
glottal signal can be parametrized both in time and frequency domains. The
three methods are evaluted in Section 4 through a wide systematic study
on synthetic signals. Their robustness to noise, as well as the impact of
the various factors that may affect source-tract separation, are investigated.
Section 5 presents decomposition results on a real speech database containing
various voice qualities, and shows that the glottal source estimated by the
techniques considered in this work conveys relevant information about the
phonation type. Finally Section 6 draws the conclusions of this study.

2. Glottal Source Estimation

Glottal flow estimation mainly refers to the estimation of the voiced exci-
tation of the vocal tract. During the production of voiced sounds, the airflow
arising from the trachea causes a quasi-periodic vibration of the vocal folds
(Quatieri, 2002), organized into so-called opening/closure cycles. During the
open phase, vocal folds are progressively displaced from their initial state due
to the increasing subglottal pressure. When the elastic displacement limit
is reached, they suddenly return to this position during the so-called return
phase. Figure 1 displays the typical shape of one cycle of the glottal flow
(Fig.1(a)) and its time derivative (Fig.1(b)) according to the Liljencrants-
Fant (LF) model (Fant et al., 1985). It is often prefered to gather the lip
radiation effect (whose action is close to a differentiation operator) with the
glottal component, and work in this way with the glottal flow derivative on
the one hand, and with the vocal tract contribution on the other hand. It is
seen in Figure 1 (bottom plot) that the boundary between open and return
phases corresponds to a particular event called the Glottal Closure Instant

3
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(GCI). GCIs refer to the instances of significant excitation of the vocal tract
(Drugman and Dutoit, 2009). Being able to determine their location is of
particular importance in so-called pitch-synchronous speech processing tech-
niques, and in particular for a more accurate separation between vocal tract
and glottal contributions.

Figure 1: Typical waveforms, according to the Liljencrants-Fant (LF) model, of one cycle
of: (top) the glottal flow, (bottom) the glottal flow derivative. The various phases of the
glottal cycle, as well as the Glottal Closure Instant (GCI) are also indicated.

The main techniques for estimating the glottal source directly from the
speech waveform are now reviewed. Relying on the speech signal alone, as it
is generally the case in real applications, allows to avoid the use of intrusive
(e.g video camera at the vocal folds) or inconvenient (e.g. laryngograph)
device.

Such techniques can be separated into two classes, according to the way
they perform the source-filter separation. The first category (Section 2.1) is
based on inverse filtering, while the second one (Section 2.2) relies on the
mixed-phase properties of speech.

2.1. Methods based on Inverse Filtering

Most glottal source estimation techniques are based on an inverse filtering
process. These methods first estimate a parametric model of the vocal tract,
and then obtain the glottal flow by removing the vocal tract contribution
via inverse filtering. The methods in this category differ by the way the
vocal tract is estimated. In Section 2.1.1 this estimation is computed during
the glottal closed phase, while in Section 2.1.2 an iterative and/or adaptive
procedure is used. A more extended review of the inverse filtering-based
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process for glottal waveform analysis can be found in (Walker and Murphy,
2007).

2.1.1. Closed Phase Inverse Filtering

Closed phase refers to the timespan during which the glottis is closed (see
Figure 1). During this period, the effects of the subglottal cavities are min-
imized, providing a better way for estimating the vocal tract transfer func-
tion. Therefore, methods based on a Closed Phase Inverse Filtering (CPIF)
estimate a parametric model of the spectral envelope, computed during the
estimated closed phase duration (Wong et al., 1979). The main drawback
of these techniques lies in the difficulty in obtaining an accurate determi-
nation of the closed phase. Several approaches have been proposed in the
literature to solve this problem. In (Veeneman and Bement, 1985), authors
use information from the electroglottographic signal (which is avoided in this
study) to identify the period during which the glottis is closed. In (Plumpe
et al., 1999), it was proposed to determine the closed phase by analyzing the
formant frequency modulation between open and closed phases. In (Alku
et al., 2009), the robustness of CPIF to the frame position was improved by
imposing some dc gain constraints. Besides this problem of accurate deter-
mination of the closed phase, it may happen that this period is so short (for
high-pitched voices) that not enough samples are available for a reliable filter
estimation. It was therefore proposed in (Brookes and Chan, 1994) a tech-
nique of multicycle closed-phase LPC, where a small number of neighbouring
glottal cycles are considered in order to have enough data for an accurate vo-
cal tract estimation. Finally note that an approach allowing non-zero glottal
wave to exist over closed glottal phases was proposed in (Deng et al., 2006).

In this study, the CPIF-based technique that is used is based on a Dis-
crete All Pole (DAP, (Jaroudi and Makhoul, 1991)) inverse filtering process
estimated during the closed phase. In order to provide a better fitting of
spectral envelopes from discrete spectra (Jaroudi and Makhoul, 1991), the
DAP technique aims at computing the parameters of an autoregressive model
by minimizing a discrete version of the Itakura-Saito distance (F. Itakura,
1970), instead of the time squared error used by the traditional LPC. The use
of the Itakura-Saito distance is justified as it is a spectral distortion measure
arising from the human hearing perception. The closed phase period is de-
termined using the Glottal Opening and Closure Instants (GCIs and GOIs)
located by the algorithm detailed in (Drugman and Dutoit, 2009). This algo-
rithm has been shown to be effective for reliably and accurately determining
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the position of these events on a large corpus containing several speakers.
For tests with synthetic speech, the exact closed phase period is known and
is used for CPIF. Note that for high-pitched voices, two analysis windows
were used as suggested in (Brookes and Chan, 1994), (Yegnanarayana and
Veldhuis, 1998) and (Plumpe et al., 1999). In the rest of the paper, speech
signals sampled at 16 kHz are considered, and the order for DAP analysis is
fixed to 18 (=Fs/1000+2, as commonly used in the literature). Through our
experiments, we reported that the choice of the DAP order is not critical in
the usual range, and that working with an order comprised between 12 and
18 leads to sensibly similar results.

2.1.2. Iterative and/or Adaptive Inverse Filtering

Some methods are based on iterative and/or adaptive procedures in order
to improve the quality of the glottal flow estimation. In (Fu and Murphy,
2006), Fu and Murphy proposed to integrate, within the AutoRegressive eX-
ogenous (ARX) model of speech production, the LF model of the glottal
source. The resulting ARXLF model is estimated via an adaptive and itera-
tive optimization (Vincent et al., 2005). Both source and filter parameters are
consequently jointly estimated. The method proposed by Moore in (Moore
and Clements, 2004) iteratively finds the best candidate for a glottal wave-
form estimate within a speech frame, without requiring a precise location of
the GCIs. Finally a popular approach was proposed by Alku in (Alku et al.,
1992) and called Iterative Adaptive Inverse Filtering (IAIF). This method
is based on an iterative refinement of both the vocal tract and the glottal
components. In (Alku and Vilkman, 1994), the same authors proposed an
improvement, in which the LPC analysis is replaced by the Discrete All Pole
(DAP) modeling technique (Jaroudi and Makhoul, 1991), shown to be more
accurate for high-pitched voices.

As a representative technique of this category, the IAIF method proposed
by Alku in (Alku et al., 1992) is considered in the rest of this paper. More
precisely, we used the implementation of the IAIF method (Airas, 2008) from
the toolbox available on the TKK Aparat website ([Online], 2008), with its
default options.

2.2. Mixed-Phase Decomposition

The methods presented in this Section rely on the mixed-phase model
of speech (Bozkurt and Dutoit, 2003). According to this model, speech is
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composed of both minimum-phase (i.e causal) and maximum-phase (i.e anti-
causal) components. While the vocal tract impulse response and the glottal
return phase of the glottal component can be considered as minimum-phase
signals, it has been shown in (Doval et al., 2003) that the glottal open phase
of the glottal flow is a maximum-phase signal. Besides it has been shown in
(Gardner and Rao, 1997) that mixed-phase models are appropriate for model-
ing voiced speech due to the maximum-phase nature of the glottal excitation.
They showed that the use of an anticausal all-pole filter for the glottal pulse
is necessary to resolve magnitude and phase information correctly. The key
idea of mixed-phase decomposition methods is then to separate minimum
from maximum-phase components of speech, where the latter is only due to
the glottal contribution.

A crucial issue in mixed-phase separation is the weighting window that
is applied to the speech signal for short-term analysis. Indeed, since the de-
composition is based on phase properties, windowing may have a dramatic
influence. It has been shown that GCI-synchronization, as well as the re-
spect of some constraints on the window length and function, are essential
for guaranteeing a correct decomposition (Drugman et al., 2009a), (Bozkurt
et al., 2005). Throughout the rest of this study, we use an appropriate GCI-
centered two pitch period-long Blackman window satisfying these conditions.

In previous works, we proposed two approaches achieving such a decom-
position: a technique based on the Zeros of the Z-Transform (ZZT, (Bozkurt
et al., 2005)), and one based on the Complex Cepstrum Decomposition (CCD,
(Drugman et al., 2009a), (Quatieri, 2002)). Both techniques are briefly pre-
sented in Sections 2.2.1 and 2.2.2 and depicted in Figure 2. Finally, the
methods are shown to be functionnaly equivalent in Section 2.2.3.

2.2.1. Zeros of the Z-Transform (ZZT)

For a series of N samples (x(0), x(1), ..., x(N − 1)) taken from a discrete
signal x(n), the ZZT representation is defined as the set of roots (zeros)
(Z1, Z2, ...ZN−1) of the corresponding z-transform X(z):

7
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X(z) =
N−1∑
n=0

x(n)z−n (1)

= x(0)z−N+1

N−1∏
m=1

(z − Zm) (2)

= x(0)z−N+1

Mo∏
k=1

(z − Zmax,k)
Mi∏
k=1

(z − Zmin,k) (3)

To achieve the ZZT-based decomposition of speech, speech frames are first
weighted by a specific window (see above). When computing the ZZT of this
signal as in Equation 3, some roots Zmax,k fall outside the unit circle. These
are due to the maximum-phase (i.e anticausal) component of speech, and
are consequently only related to the glottal open phase. On the opposite,
roots located inside the unit circle Zmin,k are due to the minimum-phase
component of speech, i.e mainly to the vocal tract impulse response. Mixed-
phase decomposition can then be easily achieved in the ZZT domain, using
the unit circle as a discriminant boundary (see Figure 2, third column).

2.2.2. Complex Cepstrum Decomposition (CCD)

The Complex Cepstrum (CC) x̂(n) of a discrete signal x(n) is defined by
the following equations (Oppenheim and Schafer, 1989):

X(ω) =
∞∑

n=−∞

x(n)e−jωn (4)

log[X(ω)] = log(|X(ω)|) + j∠X(ω) (5)

x̂(n) =
1

2π

∫ π

−π
log[X(ω)]ejωndω (6)

where Equations 4, 5, 6 respectively correspond to a Discrete-Time Fourier
Transform (DTFT), a complex logarithm and an inverse DTFT (IDTFT).
Decomposition in the CC domain arises from the fact that the complex cep-
strum x̂(n) of an anticausal (causal) signal is zero for all n positive (negative).
Retaining only the negative indexes of the CC makes then it possible to es-
timate the glottal contribution. The separation in the complex cepstrum

8
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Figure 2: Illustration of mixed-phase decomposition. Rows respectively exhibit the fol-
lowing signals: the glottal flow derivative (top), the vocal tract response (middle), and the
resulting speech signal (bottom). Each column corresponds to a domain of representation
of these signals: time domain (first column), amplitude spectrum (second column), ZZT
representation in polar coordinates (third column), and complex cepstrum domain (fourth
column). Interestingly, convolution in the time domain corresponds to the union operator
in the ZZT domain and to the addition operator in the complex cepstrum domain. The
ZZT and CC domains are suited for achieving mixed-phase decomposition since minimum
and maximum-phase components become linearly separable. In the ZZT domain, the unit
circle is used as a discriminant boundary, while the quefrency origin is used as a boundary
in the complex cepstrum domain.

domain using the quefrency origin as a discriminant boundary is clearly seen
in Figure 2, fourth column.

2.2.3. Equivalence between ZZT and CCD

If X(z) is written as in Equation 3, it can be easily shown that the cor-
responding complex cepstrum can be expressed as (Oppenheim and Schafer,
1989):

x̂(n) =


|x(0)| for n = 0∑Mo

k=1
Zmax,k

n

n
for n < 0∑Mi

k=1
Zmin,k

n

n
for n > 0

(7)
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This equation shows the narrow link between the ZZT and the CCD
techniques. These two methods can then be seen as two different ways of
performing the same operation: separate the minimum and maximum-phase
components from a given z-transform X(z). Nevertheless, although function-
naly equivalent, it has been shown (Pedersen et al., 2010), (Drugman et al.,
2009a) that CCD performs much faster (speed is increased between 10 and
100 times for a sampling rate of 16 kHz, depending on the pitch period). This
may be explained by the fact that it only relies on FFT and IFFT operations
while ZZT requires the factoring of high-order polynomials.

As a method achieving mixed-phase separation, the CCD is considered in
the rest of this paper for its higher computational speed. To guarantee good
mixed-phase properties (Drugman et al., 2009a), GCI-centered two pitch
period-long Blackman windows are used. For this, GCIs were located on
real speech using the technique we proposed in (Drugman and Dutoit, 2009).
CC is calculated as explained in Section 2.2.2 and FFT is computed on a
sufficiently large number of points (typically 4096), which facilitates phase
unwrapping.

3. Glottal Source Parametrization

Once the glottal signal has been estimated by any of the aforementioned
algorithms, it is interesting to derive a parametric representation of it, using
a small number of parameters. Various approaches, both in the time and fre-
quency domains, have been proposed to characterize the human voice source.
This Section gives a brief overview of the most commonly used parameters
in the literature, since some of them are used in Sections 4 and 5.

3.1. Time-domain features

Several time-domain features can be expressed as a function of time in-
tervals derived from the glottal waveform (Alku, 1992). These are used to
characterize the shape of the waveform, by capturing for example the loca-
tion of the primary or secondary opening instant (Laukkanen et al., 1996),
of the glottal flow maximum, etc. The formulation of the source signal in
the commonly used LF model (Fant et al., 1985) is based on time-domain
parameters, such as the Open Quotient Oq, the Asymmetry coefficient αm,
or the Voice Speed Quotient Sq (Doval and d’Alessandro, 2006). However in
most cases these instants are difficult to locate with precision from the glottal
flow estimation. Avoiding this problem and prefered to the traditional Open

10
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Quotient, the Quasi-Open Quotient (QOQ) was proposed as a parameter
describing the relative open time of the glottis (Hacki, 1989). It is defined as
the ratio between the quasi-open time and the quasi-closed time of the glot-
tis, and corresponds to the timespan (normalized to the pitch period) during
which the glottal flow is above 50% of the difference between the maximum
and minimum flow. Note that QOQ was used in (Laukkanen et al., 1996)
for studying the physical variations of the glottal source related to the vocal
expression of stress and emotion. In (Airas and Alku, 2007) various variants
of Oq have been tested in terms of the degree by which they reflect phonation
changes. QOQ was found to be the best for this task.

Another set of parameters is extracted from the amplitude of peaks in the
glottal pulse or its derivative (Gobl and Chasaide, 2003). The Normalized
Amplitude Quotient (NAQ) proposed by Alku in (Alku et al., 2002) turns
out to be an essential glottal feature. NAQ is a parameter characterizing the
glottal closing phase (Alku et al., 2002). It is defined as the ratio between
the maximum of the glottal flow and the minimum of its derivative, normal-
ized with respect to the fundamental period. Its robustness and efficiency
to separate different types of phonation was shown in (Alku et al., 2002),
(Airas and Alku, 2007). Note that a quasi-similar feature, called basic shape
parameter, was proposed by Fant in (Fant, 1995), where it was qualified as
”most effective single measure for describing voice qualities”.

In (Plumpe et al., 1999), authors propose to use 7 LF parameters and 5
energy coefficients (defined in 5 subsegments of the glottal cycle) respectively
for characterizing the coarse and fine structures of the glottal flow estimation.
Finally some approaches aim at fitting a model on the glottal flow estimate
by computing a distance in the time domain (Plumpe et al., 1999), (Drugman
et al., 2008).

3.2. Frequency-domain features

In the frequency domain, the LF model presents a low-frequency res-
onance called the glottal formant (Doval and d’Alessandro, 2006) (see the
amplitude spectrum of the glottal flow derivative in Figure 2, row 1, column
2). Some approaches characterize the glottal formant both in terms of fre-
quency and bandwidth (Drugman et al., 2009a). By defining a spectral error
measure, other studies try to match a model to the glottal flow estimation
(Ling et al., 2005), (Fant, 1995), (Drugman et al., 2008). This is also the
case for the Parabolic Spectrum Parameter (PSP) proposed in (Alku et al.,
1997).
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An extensively used measure is the H1−H2 parameter (Fant, 1995). This
parameter is defined as the ratio between the amplitudes of the magnitude
spectrum of the glottal source at the fundamental frequency and at the second
harmonic (Klatt and Klatt, 1990), (Titze and Sundberg, 1992). It has been
widely used as a measure characterizing voice quality (Hanson, 1995), (Fant,
1995), (Alku et al., 2009).

For quantifying the amount of harmonics in the glottal source, the Har-
monic to Noise Ratio (HNR) and the Harmonic Richness Factor (HRF) have
been proposed in (Murphy and Akande, 2005) and (Childers and Lee, 1991).
More precisely, HRF quantifies the amount of harmonics in the magnitude
spectrum of the glottal source. It is defined as the ratio between the sum
of the amplitudes of harmonics, and the amplitude at the fundamental fre-
quency (Childers, 1999). It was shown to be informative about the phonation
type in (Childers and Lee, 1991) and (Alku et al., 2009).

4. Experiments on Synthetic Speech

The first experimental protocol we opted for is close to the one presented
in (Sturmel et al., 2007). Decomposition is achieved on synthetic speech
signals (sampled at 16 kHz) for various test conditions. The idea is to cover
the diversity of configurations one can find in continuous speech by varying all
parameters over their whole range. Synthetic speech is produced according
to the source-filter model by passing a known sequence of Liljencrants-Fant
(LF) glottal waveforms (Fant et al., 1985) through an auto-regressive filter
extracted by LPC analysis (with an order of 18) from real sustained vowels
uttered by a female speaker. As the mean pitch during these utterances
was about 180 Hz, it can be considered that fundamental frequency should
not exceed 100 and 240 Hz in continuous speech. For the LF parameters,
the Open Quotient Oq and Asymmetry coefficient αm are varied through
their common range (see Table 1). For the filter, 14 types of typical vowels
are considered. Noisy conditions are modeled by adding a white Gaussian
noise to the speech signal, from almost clean conditions (SNR = 80dB) to
strongly adverse environments (SNR = 10dB). Table 1 summarizes all test
conditions, which makes a total of slightly more than 250,000 experiments. It
is worth mentioning that the synthetic tests presdented in this section focus
on the study of non-pathological voices with a regular phonation. Although
the glottal analysis of less regular voices (e.g presenting a jitter or a shimmer;
or containing an additive noise component during the glottal production, as
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it is the case for a breathy voice) is a challenging issue, this latter problem
is not addressed in the present study.

Source Filter Noise

Pitch (Hz) Oq αm Vowel type SNR (dB)
100:5:240 0.3:0.05:0.9 0.55:0.05:0.8 14 vowels 10:10:80

Table 1: Table of synthesis parameter variation range.

The three source estimation techniques described in Section 2 (CPIF,
IAIF and CCD) are compared. In order to assess their decomposition quality,
two objective quantitative measures are used (and the effect of noise, funda-
mental frequency and vocal tract variations to these measures are studied in
detail in the next subsections):

• Error rate on NAQ and QOQ : An error on the estimation of NAQ
and QOQ after source-tract decomposition should be penalized. An
example of distribution for the relative error on QOQ in clean con-
ditions is displayed in Figure 3. Many attributes characterizing such
a histogram can be proposed to evaluate the performance of an algo-
rithm. The one we used in our experiments is defined as the proportion
of frames for which the relative error is higher than a given threshold
of ±20%. The lower the error rate on the estimation of a given glottal
parameter, the better the glottal flow estimation method.

Figure 3: Distribution of the relative error on QOQ for the three methods in clean condi-
tions (SNR = 80dB). The error rate is defined as the percentage of frames for which the
relative error is higher than a given threshold of 20% (indicated on the plot).

• Spectral distortion : Many frequency-domain measures for quanti-
fying the distance between two speech frames x and y arise from the

13
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speech coding litterature. Ideally the subjective ear sensitivity should
be formalised by incorporating psychoacoustic effects such as mask-
ing or isosonic curves. A simple and relevant measure is the spectral
distortion (SD) defined as (Nordin and Eriksson, 2001):

SD(x, y) =

√∫ π

−π
(20 log10 |

X(ω)

Y (ω)
|)2dω

2π
(8)

where X(ω) and Y (ω) denote both signals spectra as a function of
normalized angular frequency. In (K. Paliwal, 1993), authors argue
that a difference of about 1dB (with a sampling rate of 8kHz) is hardly
perceptible. In order to take this point into account, we used the
following measure between the spectra of the estimated and reference
glottal signals:

SD(Estimated,Reference) ≈√
2

8000

∫ 4000

20

(20 log10 |
SEstimated(f)

SReference(f)
|)2df (9)

An efficient technique of glottal flow estimation is then reflected by low
spectral distortion values.

Figure 4: Evolution of the three performance measures (error rate on NAQ and QOQ,
and spectral distortion) as a function of the Signal to Noise Ratio for the three glottal
source estimation methods.

Based on this experimental framework, we now study how the glottal
source estimation techniques behave in noisy conditions, or with regard to
some factors affecting the decomposition quality, such as the fundamental
frequency or the vocal tract transfert function.
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Figure 5: Evolution of the three performance measures as a function of the fundamental
frequency for the three glottal source estimation methods.

4.1. Robustness to Additive Noise

As mentioned above, white Gaussian noise has been added to the speech
signal, with various SNR levels. This noise is used as a (weak) substitute
for recording or production noise but also for every little deviation to the
theoretical framework which distinguishes real and synthetic speech. Results
according to our three performance measures are displayed in Figure 4. As
expected, all techniques degrade as the noise power increases. More precisely,
CCD turns out to be particularly sensitive. This can be explained by the fact
that a weak presence of noise may dramatically affect the phase information,
and consequently the decomposition quality. The performance of CPIF is also
observed to strongly degrade as the noise level increases. This is probably
due to the fact that noise may dramatically modify the spectral envelope
estimated during the closed phase, and the resulting estimate of the vocal
tract contribution becomes erroneous. On the contrary, even though IAIF
is, in average, the less efficient on clean synthetic speech, it outperforms
other techniques in adverse conditions (below 40 dB of SNR). One possible
explanation of its robustness is the iterative process it relies on. It can be
indeed expected that, although the first iteration may be highly affected by
noise (as it is the case for CPIF), the severity of the perturbation becomes
weaker as the iterative procedure converges.

4.2. Sensitivity to Fundamental Frequency

Female voices are known to be especially difficult to analyze and synthe-
size. The main reason for this is their high fundamental frequency which
implies to process shorter glottal cycles. As a matter of fact the vocal tract
response has not the time to freely return to its initial state between two
glottal sollication periods (i.e. the duration of the vocal tract response can
be much longer than that of the glottal closed phase). Figure 5 shows the
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evolution of our three performance measures with respect to the fundamen-
tal frequency in clean conditions. Interestingly, all methods maintain almost
the same efficiency for high-pitched voices. Nonetheless an increase of the
error rate on QOQ for CPIF, and an increase of the spectral distortion for
CCD can be noticed. It can be also observed that, for clean synthetic speech,
CCD gives the best results with an excellent determination of NAQ and a
very low spectral distortion. Secondly, despite its high spectral errors, CPIF
leads to an efficient parametrization of the glottal shape (with notably the
best results for the determination of QOQ).

4.3. Sensitivity to Vocal Tract

In our experiments, filter coefficients were extracted by LPC analysis on
sustained vowels. Even though the whole vocal tract spectrum may affect the
decomposition, the first formant, which corresponds to the dominant poles,
generally imposes the longest contribution of its time response. To give an
idea of its impact, Figure 6 exhibits, for the 14 vowels, the evolution of the
spectral distortion as a function of the first formant frequency F1. A general
trend can be noticed from this graph: it is observed for all methods that the
performance of the glottal flow estimation degrades as F1 decreases. This will
be explained in the next Section by an increasing overlap between source and
filter components, as the vocal tract impulse response gets longer. It is also
noticed that this degradation is particularly important for both CPIF and
IAIF methods, while the quality of CCD (which does not rely on a parametric
modeling) is only slightly altered.

Figure 6: Evolution, for the 14 vowels, of the spectral distortion with the first formant
frequency F1.
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4.4. Conclusions on Synthetic Speech

Many factors may affect the quality of the source-tract separation. In-
tuitively, one can think about the time interference between minimum and
maximum-phase contributions, respectively related to the vocal tract and to
the glottal open phase. The stronger this interference, the more important
the time overlap between the minimum-phase component and the maximum-
phase response of the next glottal cycle, and consequently the more difficult
the decomposition. Basically, this interference is conditioned by three main
parameters:

• the pitch F0, which imposes the spacing between two successive vocal
system responses,

• the first formant F1, which influences the length of the minimum-phase
contribution of speech,

• and the glottal formant Fg, which controls the length of the maximum-
phase contribution of speech. Indeed, the glottal formant is the most
important spectral feature of the glottal open phase (see the low-
frequency resonance in the amplitude spectrum of the glottal flow
derivative in Figure 2). It is worth noting that Fg is known (Doval and
d’Alessandro, 2006) to be a function of the time-domain characteris-
tics of the glottal open phase (i.e of the maximum-phase component of
speech): the open quotient Oq, and the asymmetry coefficient (αm).

A strong interference then appears with high pitch, and with low F1

and Fg values. The previous experiments confirmed for all glottal source
estimation techniques the performance degradation as a function of F0 and
F1. Although we did not explicitly measure the sensitivity of these techniques
to Fg in this manuscript, it was confirmed in other informal experiments we
performed.

It can be also observed from Figures 4 and 5 that the overall performance
through an objective study on synthetic signals is the highest for the complex
cepstrum-based technique. This method leads to the lowest values of spectral
distortion and gives relatively high rates for the determination of both NAQ
and QOQ parameters. The CPIF technique exhibits better performance
in the determination of QOQ in clean conditions and especially for low-
pitched speech. As for the IAIF technique, it turns out that it gives the worst
results in clean synthetic speech but outperforms other approaches in adverse
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noisy conditions. Note that our results corroborate the conclusions drawn in
(Sturmel et al., 2007) where the mixed-phase deconvolution (achieved in that
study by the ZZT method) was shown to outperform other state-of-the-art
approaches of glottal flow estimation.

5. Experiments on Real Speech

Reviewing the glottal flow estimation literature, one can easily notice that
testing with natural speech is a real challenge. Even in very recent published
works, all tests are performed only on sustained vowels. In addition, due to
the unavailability of a reference for the real glottal flow (see Section 1), the
procedure of evaluation is generally limited to providing plots of glottal flow
estimates, and checking visually if they are consistent with expected glottal
flow models. For real speech experiments, here we will first follow this state-
of-the-art experimentation (of presenting plots of estimates for a real speech
example), and then extend it considerably both by extending the content of
the data to a large connected speech database (including non-vowels), and
extending the method to a comparative parametric analysis approach.

In this study, experiments on real speech are carried out on the De7 cor-
pus, a diphone database designed for expressive speech synthesis (Schroeder
and Grice, 2003). The database contains three voice qualities (modal, soft
and loud) uttered by a German female speaker, with about 50 minutes of
speech available for each voice quality (leading to a total of around 2h30).
Recordings sampled at 16 kHz are considered. Locations of both GCIs and
GOIs are precisely determined from these signals using the algorithm de-
scribed in (Drugman and Dutoit, 2009). As mentioned in Section 2, an
accurate position of both events is required for an efficient CPIF technique,
while the mixed-phase decomposition (as achieved by CCD) requires, among
others, GCI-centered windows to exhibit correct phase properties.

Let us first consider in Figure 7 a concrete example of glottal source esti-
mation on a given voiced segment (/aI/ as in ”ice”) for the three techniques
and for the three voice qualities. In the IAIF estimate, some ripples are
observed as if some part of the vocal tract filter contribution could not be
removed. On the other hand, it can be noticed that the estimations from
CPIF and CCD are highly similar and are very close to the shape expected
by the glottal flow models, such as the LF model (Fant et al., 1985). It can
be also observed that the abruptness of the glottal open phase around the
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GCI is stronger for the loud voice, while the excitation for the softer voice is
smoother.

Figure 7: Example of glottal flow derivative estimation on a given segment of vowel (/aI/
as in ”ice”) for the three techniques and for the three voice qualities: (top) loud voice,
(middle) modal voice, (bottom) soft voice.

We investigated whether the glottal source estimated by these techniques
conveys information about voice quality. Indeed the glottis is assumed to play
an important part for the production of such expressive speech (d’Alessandro,
2006). As a matter of fact we found some differences between the glottal
features in our experiments on the De7 database. In this experiment, the
NAQ, H1-H2 and HRF parameters described in Section 3 are used. Figure
8 illustrates the distributions of these features estimated by CPIF, IAIF
and CCD for the three voice qualities. This Figure can be considered as a
summary of the voice quality analysis using three state-of-the-art methods
on a large speech database. The parameters NAQ, H1-H2 and HRF have
been used frequently in the literature to label phonation types (Alku et al.,
2002), (Hanson, 1995), (Childers and Lee, 1991). Hence the separability
of the phonation types based on these parameters can be considered as a
measure of effectiveness for a particular glottal flow estimation method.

For the three methods, significant differences between the histograms of
the different phonation types can be noted. This supports the claim that, by
applying one of the given glottal flow estimation methods and by parametriz-
ing the estimate with one or more of the given parameters, one can perform
automatic voice quality/phonation type labeling with a much higher success
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rate than by random labeling. It is noticed from Figure 8 that parameter
distributions are convincingly distinct, except for the IAIF and H1-H2 com-
bination. The sorting of the distributions with respect to vocal effort are
consistent and in line with results of other works ((Alku et al., 2002) and
(Alku et al., 2009)). Among other things, strong similarities between his-
tograms obtained by CPIF and CCD can be observed. In all cases, it turns
out that the stronger the vocal effort, the lower NAQ and H1-H2, and the
higher HRF.

Figure 8: Distributions, for various voice qualities, of three glottal features (from top to
bottom: NAQ, H1-H2 and HRF) estimated by three glottal source estimation techniques
(from left to right: CPIF, IAIF and CCD). The voice qualities are shown as dashed (loud
voice), solid (modal voice) and dotted (soft voice) lines.

Although some significant differences in glottal feature distributions have
been visually observed, it is interesting to quantify the discrimination be-
tween the voice qualities enabled by these features. For this, the Kullback-
Leibler (KL) divergence, known to measure the separability between two
discrete density functions A and B, can be used (Lin, 1991):

DKL(A,B) =
∑
i

A(i) log2

A(i)

B(i)
(10)
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Since this measure is non-symmetric (and consequently is not a true dis-
tance), its symmetrised version, called Jensen-Shannon divergence, is often
prefered. It is defined as a sum of two KL measures (Lin, 1991):

DJS(A,B) =
1

2
DKL(A,M) +

1

2
DKL(B,M) (11)

where M is the average of the two distributions (M = 0.5 ∗ (A + B)).
Figure 9 displays the values of the Jensen-Shannon distances between two
types of voice quality, for the three considered features estimated by the three
techniques.

From this figure, it can be noted that NAQ is the best discriminative fea-
ture (i.e. has the highest Jensen-Shannon distance between distributions),
while H1-H2 and HRF convey a comparable amount of information for dis-
criminating voice quality. As expected, the loud-soft distribution distances
are highest compared to loud-modal and modal-soft distances. In seven cases
out of nine (three different parameters and three different phonation type
couples), CCD leads to the most relevant separation and in two cases (loud-
modal separation with NAQ, loud-modal separation with HRF) CPIF pro-
vides a better separation. Both Figures 8 and 9 show that the effectiveness
of CCD and CPIF is similar, with slightly better results for CCD, while
IAIF exhibits clearly lower performance (except for one case: loud-modal
separation with HRF).

Figure 9: Jensen-Shannon distances between two types of voice quality using (from left
to right) the NAQ, H1-H2 and HRF parameters. For each feature and pair of phonation
types, the three techniques of glottal source estimation are compared.

6. Conclusion

This study aimed at comparing the effectiveness of the main state-of-
the-art glottal flow estimation techniques. For this, detailed tests on both
synthetic and real speech were performed. For real speech, a large corpus was
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used for testing, without limiting analysis to sustained vowels. Due to the
unavailability of the reference glottal flow signals for real speech examples,
the separability of three voice qualities was considered as a measure of the
ability of the methods to discriminate different phonation types. In synthetic
speech tests, objective measures were used since the original glottal flow
signals were available. Our first conclusion is that the usefulness of NAQ,
H1-H2 and HRF for parameterizing the glottal flow is confirmed. We also
confirmed other works in the literature (such as (Alku et al., 2002) and
(Alku et al., 2009)) showing that these parameters can be effectively used as
measures for discriminating different voice qualities. Our results show that
the effectiveness of CPIF and CCD appears to be similar and rather high,
with a slight preference towards CCD. However, it should be emphasized here
that in our real speech tests, clean signals recorded for text-to-speech (TTS)
synthesis were used. We can thus confirm the effectiveness of CCD for TTS
applications (such as emotional/expressive TTS). However, for applications
which require the analysis of noisy signals (such as telephone applications)
further testing is needed. We observed that in the synthetic speech tests, the
ranking dramatically changed depending on the SNR and the robustness of
CCD was observed to be rather low. IAIF has lower performance in most tests
(both in synthetic and real speech tests) but shows up to be comparatively
more effective in very low SNR values.
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