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Only the �rst term of some series counts

Aurel Sp¼ataru1

Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy,

Calea 13 Septembrie, nr 13, 76100 Bucharest 5, Romania

Abstract

Let X; X1; X2; ::: be i.i.d. random variables, and set Sn = X1 + :::+Xn: We prove that

for three important distributions of X; namely normal, exponential and geometric, series

of the type
P

n�1 anP (jSnj � xbn) or
P

n�1 anP (Sn � xbn) behave like their �rst term as

x!1:

Keywords: Tail probabilities of sums of i.i.d. random variables, normal distribution, exponential

distribution, geometric distribution.

1. Introduction

Let X; X1; X2; ::: be i.i.d. random variables with partial sums Sn = X1+ :::+Xn; n � 1:

Several authors considered series of the type

f(x) =
X
n�1

anP (jSnj � xbn); x > 0; (1.1)

or, in case X � 0;

f(x) =
X
n�1

anP (Sn � xbn); x > 0; (1.2)

where an; bn > 0: If
P
n�1

an = 1; the primary focus was to obtain necessary and su¢ cient

moment conditions for the convergence of these series, i.e. to �nd a threshold � such that

f(x) =1 for x < �; while f(x) <1 for x > �: Then it was sensible to look for a normalizing
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1



elementary function g(x); x > �; such that the ratio f(x)=g(x) have a nontrivial limit as

x& �: The �rst result in this direction was due to Heyde (1975) who proved that

lim
x&0

x2
X
n�1

P (Sn � xn) = EX2

whenever EX2 <1 and EX = 0: (Hsu and Robbins (1947) and Erd½os (1949,1950) showed

that
P
n�1

P (Sn � xn) <1; x > 0; if and only if EX2 <1 and EX = 0:) References to the

rich literature on this so-called precise asymptotics problem are given in Sp¼ataru (2010).

The purpose of this paper is to deal with a dual problem motivated also by insurance

applications. Namely, if f(x0) < 1 for some x0 > 0; then lim
x!1

f(x) = 0 by dominated

convergence. Then it is interesting to determine a normalizing simple function g(x); x � x0;

such that f(x)=g(x) have a nondegenerate limit as x ! 1: It turns out that in three

important cases presented below this limit is 1; and g(x) equals the �rst term of the series.

This phenomenon might be more general. Actually, if EX2 <1 and EX = 0; Pruss (1997)

proved that there are absolute constants C1; C2 > 0 such that

C1x
�2E[X2IfjXj � xg] �

X
n�1

P (jSnj � xn) � C2x�2E[X2IfjXj � xg]; x > 0: (1.3)

Since P (jS1j � x) = P (jXj � x) � x�2E[X2IfjXj � xg]; x > 0; (1.3) may suggest thatP
n�1

P (jSnj � xn) s P (jS1j � x) as x!1 whenever the series is positive for all x > 0:

The three cases refers to the normal distribution and series (1.1), where the assumption

thatX1; X2; ::: have a common distribution is dropped, and to the exponential and geometric

distributions and series (1.2).

2. Normal distribution

For n � 1; we assume that Xn has a normal distribution with zero mean and �2n variance,

and set B2n = �
2
1 + :::+ �

2
n:
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Lemma 1. Let � denote the standard normal distribution function, and put 	(x) = 1 �

�(x) + �(�x); x � 0: For c > 1; the following assertions hold:

(i) the function 	(cx)=	(x); x � 0; is decreasing;

(ii) lim
x!1

	(cx)=	(x) = 0:

Proof. To verify (i), it su¢ ces to show that the function

R(x) = (

1Z
cx

e�y
2=2dy)=

1Z
x

e�y
2=2dy; x � 0;

is decreasing. For 0 � x � y; we have

x2

2
(c2�1) � y2

2
(c2�1) =) �x

2

2
� c

2y2

2
� �y

2

2
� c

2x2

2
=) e�x

2=2e�c
2y2=2 � e�y2=2e�c2x2=2:

Therefore, for x � 0;

ce�x
2=2

1Z
x

e�c
2y2=2dy � ce�c2x2=2

1Z
x

e�y
2=2dy =) e�x

2=2

1Z
cx

e�y
2=2dy � ce�c2x2=2

1Z
x

e�y
2=2dy

=) R0(x) � 0:

Next, as 	(x) s 2p
2�

1
x
e�x

2=2 as x!1 (see, e.g., Corollary 2, p. 49 of Chow and Teicher

(1978)), we obtain

	(cx)

	(x)
s (

e�c
2x2=2

cx
)
x

e�x2=2
=
1

c
e�(c

2�1)x2=2 ! 0 as x!1: �

Theorem 1. Suppose that
P
n�1

anP (jSnj � x0bn) converges for some x0 > 0; where bn=b1 >

Bn=B1; n � 2: ThenX
n�1

anP (jSnj � xbn) s a1P (jS1j � xb1) = a1	(xb1=�1) as x!1: (2.1)

Proof. Write

X
n�1

anP (jSnj � xbn) = a1P (jS1j � xb1) +
X
n�2

anP (jSnj � xbn); x > 0: (2.2)
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For x � x0; applying Lemma 1.i with c = bn
Bn
� B1
b1
; n � 2; we getX

n�2

anP (jSnj � xbn)
a1P (jS1j � xb1)

=
X
n�2

an	(x
bn
Bn
)

a1	(x
b1
B1
)
=
X
n�2

an	(x
b1
B1
� bn
Bn
� B1
b1
)

a1	(x
b1
B1
)

�
X
n�2

an	(x0
b1
B1
� bn
Bn
� B1
b1
)

a1	(x0
b1
B1
)

=
1

a1	(x0
b1
B1
)

X
n�2

anP (jSnj � x0bn) <1:

Consequently, by dominated convergence and Lemma 1.ii, we have

lim
x!1

X
n�2

anP (jSnj � xbn)
a1P (jS1j � xb1)

=
X
n�2

an
a1
lim
x!1

	(xb1bn=b1
p
n)

	(xb1)
= 0: (2.3)

Now (2.1) follows from (2.2) and (2.3): �

3. Exponential distribution

In this section we assume that X has an exponential distribution with rate parameter �:

We need the following lemma.

Lemma 2. For n � 1; de�ne

hn(x) = e
�xbn

n�1X
k=0

(xbn)
k

k!
; x � 0:

where bn > 0 and bn � b1 � C�1(n� 1) for some C > 0: Then, for n � 2; we have:

(i) the function hn(x)=h1(x); x � 0; is decreasing for x > C;

(ii) lim
x!1

hn(x)=h1(x) = 0:

Proof. For n � 2 and 1 � k � n � 1; the derivative of the function e�x(bn�b1)xk; x �

0; is negative whenever x > k=(bn � b1): This entails that the derivative of the function

hn(x)=h1(x); x � 0; is negative whenever x > C � (n� 1)=(bn� b1): Thus (i) holds, and (ii)

is obvious: �

Theorem 2. Assume that bn; n � 1; are as in Lemma 2 and
P
n�1

anP (Sn � x0bn) <1 for

some x0 > 0: ThenX
n�1

anP (Sn � xbn) s a1P (S1 � xb1) = a1e��b1x as x!1: (3.1)
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Proof. Without loss of generality, suppose that � = 1: Then Sn has an Erlang distribution

with shape parameter n and rate parameter 1, and so P (Sn � x) = e�x
n�1X
k=0

xk

k!
; n � 1; x � 0.

We have

X
n�1

anP (Sn � xbn) = a1P (S1 � xb1) +
X
n�2

anP (Sn � xbn); x > 0: (3.2)

For x � x0 _ C; on account of Lemma 2.i, we obtain

X
n�2

anP (Sn � xbn)
a1P (S1 � xb1)

=
X
n�2

anhn(x)

a1h1(x)
�
X
n�2

anhn(x0 _ C)
a1h1(x0 _ C)

=
1

a1h1(x0 _ C)
X
n�2

anP (Sn � (x0 _ C)bn) <1:

Therefore, by dominated convergence and Lemma 2.ii, we get

lim
x!1

X
n�2

anP (Sn � xbn)
a1P (S1 � xb1)

=
X
n�2

an
a1
lim
x!1

hn(x)

h1(x)
= 0: (3.3)

By (3.2) and (3.3), (3.1) obtains: �

4. Geometric distribution

Now we assume that X is geometrically distributed with parameter p and taking values

in the set f0; 1; :::g: Then Sn follows a negative binomial distribution with parameters n and

p expressed in terms of the regularized incomplete beta function Ip; namely we have

P (Sn � k) = Ip(k; n) =
k+n�1X
j=k

�
k + n� 1

j

�
pjqk+n�1�j; n; k � 1; (4.1)

where q = 1� p.

Lemma 3. Let 0 < p < 1: For n � 2; the following assertions hold:

(i) the sequence fIp(mn; n)=Ip(m; 1) : m � �1= log pg is decreasing;

(ii) lim
m!1

Ip(mn; n)=Ip(m; 1) = 0:
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Proof. By (10), we get Ip(m; 1) = P (S1 � m) = pm; m � 1: For n � 2 and m � 1; on

account of (10), we have

Ip(mn; n) =

�
mn+ n� 1
n� 1

�
pmnqn�1 +

�
mn+ n� 1
n� 2

�
pmn+1qn�2

+:::+

�
mn+ n� 1

1

�
pmn+n�2q + pmn+n�1

=
(mn+ n� 1)(mn+ n� 2):::(mn+ 1)

(n� 1)! pmnqn�1

+
(mn+ n� 1)(mn+ n� 2):::(mn+ 2)

(n� 2)! pmn+1qn�2

+:::+ (mn+ n� 1)pmn+n�2q + pmn+n�1:

Therefore, we obtain

Ip(mn; n)

Ip(m; 1)
=
(mn+ n� 1)(mn+ n� 2):::(mn+ 1)

(n� 1)! pm(n�1)qn�1

+
(mn+ n� 1)(mn+ n� 2):::(mn+ 2)

(n� 2)! pm(n�1)+1qn�2

+:::+ (mn+ n� 1)pm(n�1)+n�2q + pm(n�1)+n�1 (4.2)

=
(mpmn+ (n� 1)pm)(mpmn+ (n� 2)pm):::(mpmn+ pm)

(n� 1)! qn�1

+
(mpmn+ (n� 1)pm)(mpmn+ (n� 2)pm):::(mpmn+ 2pm)

(n� 2)! pm+1qn�2

+:::+ (mpmn+ (n� 1)pm)p(m+1)(n�2)q + p(m+1)(n�1):

As the function xpx; x � 1; is decreasing for x � �1= log p; (4.2) shows that (i) holds. Since

lim
m!1

mpm = lim
m!1

pm = lim
m!1

p(m+1)l = 0; (ii) follows as well: �

Theorem 3. Suppose that
P
n�1

anP (Sn � m0n) <1 for some m0 � 1: Then

X
n�1

anP (Sn � mn) s a1P (S1 � m) = a1pm as m!1: (4.3)
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Proof. Notice that lim
m!1

P
n�1

anP (Sn � mn) = 0 by dominated convergence. Write

X
n�1

anP (Sn � mn) = a1P (S1 � m) +
X
n�2

anP (Sn � mn); m � 1: (4.4)

Let m1 � �1= log p: Then, for m � m0 _m1; in view of Lemma 3.i, we have

X
n�2

anP (Sn � mn)
a1P (S1 � m)

=
X
n�2

anIp(mn; n)

a1Ip(m; 1)
�
X
n�2

anIp((m0 _m1)n; n)

a1Ip(m0 _m1; 1)

=
1

a1Ip(m0 _m1; 1)

X
n�2

anP (Sn � (m0 _m1)n) <1:

Hence, by dominated convergence and Lemma 3.ii, we get

lim
m!1

X
n�2

anP (Sn � mn)
a1P (S1 � m)

=
X
n�2

an
a1

lim
m!1

Ip(mn; n)

Ip(m; 1)
= 0: (4.5)

Thus (4.3) follows from (4.4) and (4.5): �
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