Only the first term of some series counts

Aurel Spătaru

To cite this version:

Aurel Spătaru. Only the first term of some series counts. Statistics and Probability Letters, 2011, 81 (10), pp.1547. 10.1016/j.spl.2011.05.012 . hal-00770345

HAL Id: hal-00770345

https://hal.science/hal-00770345

Submitted on 5 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Only the first term of some series counts
Aurel Spătaru

PII: \quad S0167-7152(11)00187-8
DOI: 10.1016/j.spl.2011.05.012
Reference: STAPRO 6009

To appear in: Statistics and Probability Letters

Received date: 28 November 2010
Revised date: 25 May 2011
Accepted date: 25 May 2011

Please cite this article as: Spătaru, A., Only the first term of some series counts. Statistics and Probability Letters (2011), doi:10.1016/j.spl.2011.05.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Only the first term of some series counts
 Aurel Spătaru ${ }^{1}$

Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie, nr 13, 76100 Bucharest 5, Romania

Abstract

Let X, X_{1}, X_{2}, \ldots be i.i.d. random variables, and set $S_{n}=X_{1}+\ldots+X_{n}$. We prove that for three important distributions of X, namely normal, exponential and geometric, series of the type $\sum_{n>1} a_{n} P\left(\left|S_{n}\right| \geq x b_{n}\right)$ or $\sum_{n>1} a_{n} P\left(S_{n} \geq x b_{n}\right)$ behave like their first term as $x \rightarrow \infty$.

Keywords: Tail probabilities of sums of i.i.d. random variables, normal distribution, exponential distribution, geometric distribution.

1. Introduction

Let X, X_{1}, X_{2}, \ldots be i.i.d. random variables with partial sums $S_{n}=X_{1}+\ldots+X_{n}, n \geq 1$. Several authors considered series of the type

$$
\begin{equation*}
f(x)=\sum_{n \geq 1} a_{n} P\left(\left|S_{n}\right| \geq x b_{n}\right), \quad x>0, \tag{1.1}
\end{equation*}
$$

or, in case $X \geq 0$,

$$
\begin{equation*}
f(x)=\sum_{n \geq 1} a_{n} P\left(S_{n} \geq x b_{n}\right), \quad x>0 \tag{1.2}
\end{equation*}
$$

where $a_{n}, b_{n}>0$. If $\sum_{n \geq 1} a_{n}=\infty$, the primary focus was to obtain necessary and sufficient moment conditions for the convergence of these series, i.e. to find a threshold α such that $f(x)=\infty$ for $x<\alpha$, while $f(x)<\infty$ for $x>\alpha$. Then it was sensible to look for a normalizing

[^0]elementary function $g(x), x>\alpha$, such that the ratio $f(x) / g(x)$ have a nontrivial limit as $x \searrow \alpha$. The first result in this direction was due to Heyde (1975) who proved that
$$
\lim _{x \backslash 0} x^{2} \sum_{n \geq 1} P\left(S_{n} \geq x n\right)=E X^{2}
$$
whenever $E X^{2}<\infty$ and $E X=0$. (Hsu and Robbins (1947) and Erdős $(1949,1950)$ showed that $\sum_{n \geq 1} P\left(S_{n} \geq x n\right)<\infty, x>0$, if and only if $E X^{2}<\infty$ and $E X=0$.) References to the rich literature on this so-called precise asymptotics problem are given in Spătaru (2010).

The purpose of this paper is to deal with a dual problem motivated also by insurance applications. Namely, if $f\left(x_{0}\right)<\infty$ for some $x_{0}>0$, then $\lim _{x \rightarrow \infty} f(x)=0$ by dominated convergence. Then it is interesting to determine a normalizing simple function $g(x), x \geq x_{0}$, such that $f(x) / g(x)$ have a nondegenerate limit as $x \rightarrow \infty$. It turns out that in three important cases presented below this limit is 1 , and $g(x)$ equals the first term of the series. This phenomenon might be more general. Actually, if $E X^{2}<\infty$ and $E X=0$, Pruss (1997) proved that there are absolute constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
C_{1} x^{-2} E\left[X^{2} I\{|X| \geq x\}\right] \leq \sum_{n \geq 1} P\left(\left|S_{n}\right| \geq x n\right) \leq C_{2} x^{-2} E\left[X^{2} I\{|X| \geq x\}\right], \quad x>0 \tag{1.3}
\end{equation*}
$$

Since $P\left(\left|S_{1}\right| \geq x\right)=P(|X| \geq x) \leq x^{-2} E\left[X^{2} I\{|X| \geq x\}\right], x>0$, (1.3) may suggest that $\sum_{n \geq 1} P\left(\left|S_{n}\right| \geq x n\right) \sim P\left(\left|S_{1}\right| \geq x\right)$ as $x \rightarrow \infty$ whenever the series is positive for all $x>0$.

The three cases refers to the normal distribution and series (1.1), where the assumption that X_{1}, X_{2}, \ldots have a common distribution is dropped, and to the exponential and geometric distributions and series (1.2).

2. Normal distribution

For $n \geq 1$, we assume that X_{n} has a normal distribution with zero mean and σ_{n}^{2} variance, and set $B_{n}^{2}=\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}$.

Lemma 1. Let Φ denote the standard normal distribution function, and put $\Psi(x)=1-$ $\Phi(x)+\Phi(-x), x \geq 0$. For $c>1$, the following assertions hold:
(i) the function $\Psi(c x) / \Psi(x), x \geq 0$, is decreasing;
(ii) $\lim _{x \rightarrow \infty} \Psi(c x) / \Psi(x)=0$.

Proof. To verify (i), it suffices to show that the function

$$
R(x)=\left(\int_{c x}^{\infty} e^{-y^{2} / 2} d y\right) / \int_{x}^{\infty} e^{-y^{2} / 2} d y, \quad x \geq 0
$$

is decreasing. For $0 \leq x \leq y$, we have
$\frac{x^{2}}{2}\left(c^{2}-1\right) \leq \frac{y^{2}}{2}\left(c^{2}-1\right) \Longrightarrow-\frac{x^{2}}{2}-\frac{c^{2} y^{2}}{2} \leq-\frac{y^{2}}{2}-\frac{c^{2} x^{2}}{2} \Longrightarrow e^{-x^{2} / 2} e^{-c^{2} y^{2} / 2} \leq e^{-y^{2} / 2} e^{-c^{2} x^{2} / 2}$.
Therefore, for $x \geq 0$,

$$
\begin{gathered}
c e^{-x^{2} / 2} \int_{x}^{\infty} e^{-c^{2} y^{2} / 2} d y \leq c e^{-c^{2} x^{2} / 2} \int_{x}^{\infty} e^{-y^{2} / 2} d y \Longrightarrow e^{-x^{2} / 2} \int_{c x}^{\infty} e^{-y^{2} / 2} d y \leq c e^{-c^{2} x^{2} / 2} \int_{x}^{\infty} e^{-y^{2} / 2} d y \\
\Longrightarrow R^{\prime}(x) \leq 0
\end{gathered}
$$

Next, as $\Psi(x) \sim \frac{2}{\sqrt{2 \pi}} \frac{1}{x} e^{-x^{2} / 2}$ as $x \rightarrow \infty$ (see, e.g., Corollary 2, p. 49 of Chow and Teicher (1978)), we obtain

$$
\frac{\Psi(c x)}{\Psi(x)} \sim\left(\frac{e^{-c^{2} x^{2} / 2}}{c x}\right) \frac{x}{e^{-x^{2} / 2}}=\frac{1}{c} e^{-\left(c^{2}-1\right) x^{2} / 2} \rightarrow 0 \text { as } x \rightarrow \infty
$$

Theorem 1. Suppose that $\sum_{n \geq 1} a_{n} P\left(\left|S_{n}\right| \geq x_{0} b_{n}\right)$ converges for some $x_{0}>0$, where $b_{n} / b_{1}>$ $B_{n} / B_{1}, n \geq 2$. Then

$$
\begin{equation*}
\sum_{n \geq 1} a_{n} P\left(\left|S_{n}\right| \geq x b_{n}\right) \sim a_{1} P\left(\left|S_{1}\right| \geq x b_{1}\right)=a_{1} \Psi\left(x b_{1} / \sigma_{1}\right) \text { as } x \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

Proof. Write

$$
\begin{equation*}
\sum_{n \geq 1} a_{n} P\left(\left|S_{n}\right| \geq x b_{n}\right)=a_{1} P\left(\left|S_{1}\right| \geq x b_{1}\right)+\sum_{n \geq 2} a_{n} P\left(\left|S_{n}\right| \geq x b_{n}\right), \quad x>0 . \tag{2.2}
\end{equation*}
$$

For $x \geq x_{0}$, applying Lemma 1.i with $c=\frac{b_{n}}{B_{n}} \cdot \frac{B_{1}}{b_{1}}, n \geq 2$, we get

$$
\begin{aligned}
& \sum_{n \geq 2} \frac{a_{n} P\left(\left|S_{n}\right| \geq x b_{n}\right)}{a_{1} P\left(\left|S_{1}\right| \geq x b_{1}\right)}=\sum_{n \geq 2} \frac{a_{n} \Psi\left(x \frac{b_{n}}{B_{n}}\right)}{a_{1} \Psi\left(x \frac{b_{1}}{B_{1}}\right)}=\sum_{n \geq 2} \frac{a_{n} \Psi\left(x \frac{b_{1}}{B_{1}} \cdot \frac{b_{n}}{B_{n}} \cdot \frac{B_{1}}{b_{1}}\right)}{a_{1} \Psi\left(x \frac{b_{1}}{B_{1}}\right)} \\
\leq & \sum_{n \geq 2} \frac{a_{n} \Psi\left(x_{0} \frac{b_{1}}{B_{1}} \cdot \frac{b_{n}}{B_{n}} \cdot \frac{B_{1}}{b_{1}}\right)}{a_{1} \Psi\left(x_{0} \frac{b_{1}}{B_{1}}\right)}=\frac{1}{a_{1} \Psi\left(x_{0} \frac{b_{1}}{B_{1}}\right)} \sum_{n \geq 2} a_{n} P\left(\left|S_{n}\right| \geq x_{0} b_{n}\right)<\infty .
\end{aligned}
$$

Consequently, by dominated convergence and Lemma 1.ii, we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{n \geq 2} \frac{a_{n} P\left(\left|S_{n}\right| \geq x b_{n}\right)}{a_{1} P\left(\left|S_{1}\right| \geq x b_{1}\right)}=\sum_{n \geq 2} \frac{a_{n}}{a_{1}} \lim _{x \rightarrow \infty} \frac{\Psi\left(x b_{1} b_{n} / b_{1} \sqrt{n}\right)}{\Psi\left(x b_{1}\right)}=0 . \tag{2.3}
\end{equation*}
$$

Now (2.1) follows from (2.2) and (2.3).

3. Exponential distribution

In this section we assume that X has an exponential distribution with rate parameter λ. We need the following lemma.

Lemma 2. For $n \geq 1$, define

$$
h_{n}(x)=e^{-x b_{n}} \sum_{k=0}^{n-1} \frac{\left(x b_{n}\right)^{k}}{k!}, \quad x \geq 0 .
$$

where $b_{n}>0$ and $b_{n}-b_{1} \geq C^{-1}(n-1)$ for some $C>0$. Then, for $n \geq 2$, we have:
(i) the function $h_{n}(x) / h_{1}(x), x \geq 0$, is decreasing for $x>C$;
(ii) $\lim _{x \rightarrow \infty} h_{n}(x) / h_{1}(x)=0$.

Proof. For $n \geq 2$ and $1 \leq k \leq n-1$, the derivative of the function $e^{-x\left(b_{n}-b_{1}\right)} x^{k}, x \geq$ 0 , is negative whenever $x>k /\left(b_{n}-b_{1}\right)$. This entails that the derivative of the function $h_{n}(x) / h_{1}(x), x \geq 0$, is negative whenever $x>C \geq(n-1) /\left(b_{n}-b_{1}\right)$. Thus (i) holds, and (ii) is obvious.

Theorem 2. Assume that $b_{n}, n \geq 1$, are as in Lemma 2 and $\sum_{n \geq 1} a_{n} P\left(S_{n} \geq x_{0} b_{n}\right)<\infty$ for some $x_{0}>0$. Then

$$
\begin{equation*}
\sum_{n \geq 1} a_{n} P\left(S_{n} \geq x b_{n}\right) \sim a_{1} P\left(S_{1} \geq x b_{1}\right)=a_{1} e^{-\lambda b_{1} x} \text { as } x \rightarrow \infty . \tag{3.1}
\end{equation*}
$$

Proof. Without loss of generality, suppose that $\lambda=1$. Then S_{n} has an Erlang distribution with shape parameter n and rate parameter 1 , and so $P\left(S_{n} \geq x\right)=e^{-x} \sum_{k=0}^{n-1} \frac{x^{k}}{k!}, n \geq 1, x \geq 0$. We have

$$
\begin{equation*}
\sum_{n \geq 1} a_{n} P\left(S_{n} \geq x b_{n}\right)=a_{1} P\left(S_{1} \geq x b_{1}\right)+\sum_{n \geq 2} a_{n} P\left(S_{n} \geq x b_{n}\right), \quad x>0 . \tag{3.2}
\end{equation*}
$$

For $x \geq x_{0} \vee C$, on account of Lemma 2.i, we obtain

$$
\begin{gathered}
\sum_{n \geq 2} \frac{a_{n} P\left(S_{n} \geq x b_{n}\right)}{a_{1} P\left(S_{1} \geq x b_{1}\right)}=\sum_{n \geq 2} \frac{a_{n} h_{n}(x)}{a_{1} h_{1}(x)} \leq \sum_{n \geq 2} \frac{a_{n} h_{n}\left(x_{0} \vee C\right)}{a_{1} h_{1}\left(x_{0} \vee C\right)} \\
=\frac{1}{a_{1} h_{1}\left(x_{0} \vee C\right)} \sum_{n \geq 2} a_{n} P\left(S_{n} \geq\left(x_{0} \vee C\right) b_{n}\right)<\infty .
\end{gathered}
$$

Therefore, by dominated convergence and Lemma 2.ii, we get

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{n \geq 2} \frac{a_{n} P\left(S_{n} \geq x b_{n}\right)}{a_{1} P\left(S_{1} \geq x b_{1}\right)}=\sum_{n \geq 2} \frac{a_{n}}{a_{1}} \lim _{x \rightarrow \infty} \frac{h_{n}(x)}{h_{1}(x)}=0 . \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3), (3.1) obtains.

4. Geometric distribution

Now we assume that X is geometrically distributed with parameter p and taking values in the set $\{0,1, \ldots\}$. Then S_{n} follows a negative binomial distribution with parameters n and p expressed in terms of the regularized incomplete beta function I_{p}, namely we have

$$
\begin{equation*}
P\left(S_{n} \geq k\right)=I_{p}(k, n)=\sum_{j=k}^{k+n-1}\binom{k+n-1}{j} p^{j} q^{k+n-1-j}, \quad n, k \geq 1, \tag{4.1}
\end{equation*}
$$

where $q=1-p$.
Lemma 3. Let $0<p<1$. For $n \geq 2$, the following assertions hold:
(i) the sequence $\left\{I_{p}(m n, n) / I_{p}(m, 1): m \geq-1 / \log p\right\}$ is decreasing;
(ii) $\lim _{m \rightarrow \infty} I_{p}(m n, n) / I_{p}(m, 1)=0$.

Proof. By (10), we get $I_{p}(m, 1)=P\left(S_{1} \geq m\right)=p^{m}, m \geq 1$. For $n \geq 2$ and $m \geq 1$, on account of (10), we have

$$
\begin{aligned}
I_{p}(m n, n)= & \binom{m n+n-1}{n-1} p^{m n} q^{n-1}+\binom{m n+n-1}{n-2} p^{m n+1} q^{n-2} \\
& +\ldots+\binom{m n+n-1}{1} p^{m n+n-2} q+p^{m n+n-1} \\
= & \frac{(m n+n-1)(m n+n-2) \ldots(m n+1)}{(n-1)!} p^{m n} q^{n-1} \\
+ & \frac{(m n+n-1)(m n+n-2) \ldots(m n+2)}{(n-2)!} p^{m n+1} q^{n-2} \\
& +\ldots+(m n+n-1) p^{m n+n-2} q+p^{m n+n-1}
\end{aligned}
$$

Therefore, we obtain

$$
\begin{gather*}
\frac{I_{p}(m n, n)}{I_{p}(m, 1)}=\frac{(m n+n-1)(m n+n-2) \ldots(m n+1)}{(n-1)!} p^{m(n-1)} q^{n-1} \\
+\frac{(m n+n-1)(m n+n-2) \ldots(m n+2)}{(n-2)!} p^{m(n-1)+1} q^{n-2} \\
+\ldots+(m n+n-1) p^{m(n-1)+n-2} q+p^{m(n-1)+n-1} \tag{4.2}\\
=\frac{\left(m p^{m} n+(n-1) p^{m}\right)\left(m p^{m} n+(n-2) p^{m}\right) \ldots\left(m p^{m} n+p^{m}\right)}{(n-1)!} q^{n-1} \\
+\frac{\left(m p^{m} n+(n-1) p^{m}\right)\left(m p^{m} n+(n-2) p^{m}\right) \ldots\left(m p^{m} n+2 p^{m}\right)}{(n-2)!} p^{m+1} q^{n-2} \\
+\ldots+\left(m p^{m} n+(n-1) p^{m}\right) p^{(m+1)(n-2)} q+p^{(m+1)(n-1)} .
\end{gather*}
$$

As the function $x p^{x}, x \geq 1$, is decreasing for $x \geq-1 / \log p$, (4.2) shows that (i) holds. Since $\lim _{m \rightarrow \infty} m p^{m}=\lim _{m \rightarrow \infty} p^{m}=\lim _{m \rightarrow \infty} p^{(m+1) l}=0$, (ii) follows as well.

Theorem 3. Suppose that $\sum_{n \geq 1} a_{n} P\left(S_{n} \geq m_{0} n\right)<\infty$ for some $m_{0} \geq 1$. Then

$$
\begin{equation*}
\sum_{n \geq 1} a_{n} P\left(S_{n} \geq m n\right) \sim a_{1} P\left(S_{1} \geq m\right)=a_{1} p^{m} \text { as } m \rightarrow \infty \tag{4.3}
\end{equation*}
$$

Proof. Notice that $\lim _{m \rightarrow \infty} \sum_{n \geq 1} a_{n} P\left(S_{n} \geq m n\right)=0$ by dominated convergence. Write

$$
\begin{equation*}
\sum_{n \geq 1} a_{n} P\left(S_{n} \geq m n\right)=a_{1} P\left(S_{1} \geq m\right)+\sum_{n \geq 2} a_{n} P\left(S_{n} \geq m n\right), \quad m \geq 1 . \tag{4.4}
\end{equation*}
$$

Let $m_{1} \geq-1 / \log p$. Then, for $m \geq m_{0} \vee m_{1}$, in view of Lemma 3.i, we have

$$
\begin{gathered}
\sum_{n \geq 2} \frac{a_{n} P\left(S_{n} \geq m n\right)}{a_{1} P\left(S_{1} \geq m\right)}=\sum_{n \geq 2} \frac{a_{n} I_{p}(m n, n)}{a_{1} I_{p}(m, 1)} \leq \sum_{n \geq 2} \frac{a_{n} I_{p}\left(\left(m_{0} \vee m_{1}\right) n, n\right)}{a_{1} I_{p}\left(m_{0} \vee m_{1}, 1\right)} \\
=\frac{1}{a_{1} I_{p}\left(m_{0} \vee m_{1}, 1\right)} \sum_{n \geq 2} a_{n} P\left(S_{n} \geq\left(m_{0} \vee m_{1}\right) n\right)<\infty
\end{gathered}
$$

Hence, by dominated convergence and Lemma 3.ii, we get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{n \geq 2} \frac{a_{n} P\left(S_{n} \geq m n\right)}{a_{1} P\left(S_{1} \geq m\right)}=\sum_{n \geq 2} \frac{a_{n}}{a_{1}} \lim _{m \rightarrow \infty} \frac{I_{p}(m n, n)}{I_{p}(m, 1)}=0 . \tag{4.5}
\end{equation*}
$$

Thus (4.3) follows from (4.4) and (4.5).

Acknowledgment

I am grateful to Gheorghiţă Zbăganu for discussing motivating this paper, and to the referee for pointing out some misprints in the original version of the manuscript.

References

Chow, Y. S., Teicher, H., 1978. Probability Theory. Springer-Verlag, New York.
Erdős, P., 1949. On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286-291.
Erdős, P., 1950. Remark on my paper "On a theorem of Hsu and Robbins". Ann. Math.
Statist. 21, 138.
Heyde, C. C., 1975. A supplement to the strong law of large numbers. J. Appl. Probab. 12, 173-175.

Hsu, P. L., Robbins, H., 1947. Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33, 25-31.

Pruss, A. R., 1996. On Spătaru's extension of the Hsu-Robbins-Erdős law of large numbers.
J. Math. Anal. Appl. 199, 558-578.

Spătaru, A., 2010. Exact asymptotics in loglog laws for random fields. J. Theor. Probab. 23, 417-427.

[^0]: ${ }^{1}$ Tel.: + 40217716559;
 E-mail address: aspataru@rdslink.ro

