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Abstract

We extend the classical Hsu-Robbins-Erdős theorem to the case when all moments exist, but
the moment generating function does not, viz., we assume that E exp{(log+ |X|)α} < ∞ for
some α > 1. We also present multiindex versions of the same and of a related result due to
Lanzinger in which the assumption is that E exp{|X|α} < ∞ for some α ∈ (0, 1).

1 Introduction

In the seminal paper Hsu and Robbins (1947) the authors introduced the concept of complete con-
vergence, and proved that the sequence of arithmetic means of independent, identically distributed
(i.i.d.) random variables converges completely (which means that the Borel–Cantelli sum of cer-
tain tail probabilities converges) to the expected value of the summands, provided their variance
is finite. The necessity was proved by Erdős (1949, 1950). This result was later extended in a
series of papers which culminated in the now classical paper Baum and Katz (1965), in which the
equivalence of (1.1), (1.2), and (1.4) in the following theorem was demonstrated.

Theorem 1.1 Let r > 0, α > 1/2, and αr ≥ 1. Suppose that X, X1, X2, . . . are i.i.d. random
variables with partial sums Sn =

∑n
k=1 Xk, n ≥ 1. If

E|X |r < ∞ and, if r ≥ 1, E(X) = 0, (1.1)

then

∞∑

n=1

nαr−2P (|Sn| > nαε) < ∞ for all ε > 0; (1.2)

∞∑

n=1

nαr−2P ( max
1≤k≤n

|Sk| > nαε) < ∞ for all ε > 0. (1.3)

If αr > 1 we also have

∞∑

n=1

nαr−2P (sup
k≥n

|Sk/kα| > ε) < ∞ for all ε > 0. (1.4)

Conversely, if one of the sums is finite for all ε > 0, then so are the others (for appropriate values
of r and α), E|X |r < ∞ and, if r ≥ 1, E(X) = 0.

Remark 1.1 Strictly speaking, if one of the sums is finite for some ε > 0, then so are the others
(for appropriate values of r and α), and E|X |r < ∞. However, we need convergence for all ε > 0
in order to infer that E(X) = 0 for the case r ≥ 1. The same remark applies to Theorem 3.1
below. 2
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2 A. Gut and U. Stadtmüller

The Hsu-Robbins-Erdős part of the theorem thus concerns (1.1) ⇐⇒ (1.2) for the case r = 2,
p = 1. Spitzer (1956) and Katz (1963) proved the same equivalence for the cases r = p = 1 and
r > 0, p = 1, respectively (with a small exception in the latter case). The equivalence (in the above
sense) between (1.1), (1.2) and (1.4) is precisely the main theorem in Baum and Katz (1965) as
mentioned prior to the statement of the result. Finally, the equivalence between (1.1) and (1.3)
was proved differently in Chow (1973); note, however, that (1.3) =⇒ (1.2) is trivial and, given the
Baum-Katz theorem, the converse follows (essentially) via the Lévy inequalities.

For p = 2 one falls into the realm of the central limit theorem, so there is no hope for a positive
result, since the probabilities do not tend to zero. To compensate for this one may consider
probabilites such as P (|Sn| > ε

√
n log n) and P (|Sn| > ε

√
n log log n) in the above sums. The first

paper in this direction was Lai (1974). Multiindex versions of much of this can be found in Gut
(1978, 1980).

Theorem 1.1 provides conditions for the rate of decrease to zero as n → ∞ of the various tail
probabilities. Otherwise put, the theorem provides information about the rate of convergence in
the law of large numbers. An alternative question, that will not addressed in this paper, is to ask
for the rate at which the tail probabilities tend to 1 as ε ց 0. Toward that end, Heyde (1975)
proved that

lim
εց0

ε2
∞∑

n=1

P (|Sn| ≥ εn) = EX2,

whenever EX = 0 and EX2 < ∞. Remaining values of r and p have later been taken care of
in Chen (1978), Spătaru (1999) and Gut and Spătaru (2000). There also exist analogs related,
for example, to randomly indexed partial sums, renewal theory, and records; cf. e.g. Gut (2007),
Chapters 6 and 7, and further references given there.

A fair amount of papers have, since then, been devoted to replacing the powers of n in these
results by more general weights, and also by introducing dependence assumptions. The proofs of
those results generally follow (approximately) the same lines as the proofs of those cited above.

A natural next question is: What can be said about rates growing faster than polynomially?

Theorem 1.2 Let 0 < α < 1, and suppose that X, X1, X2, . . . are i.i.d. random variables with
E(X) = 0 and partial sums Sn =

∑n
k=1 Xk, n ≥ 1. If

E exp{|X |α} < ∞ , (1.5)

then

∞∑

n=1

exp{nα} · nα−2 P (|Sn| > nε) < ∞ for all ε > 1; (1.6)

∞∑

n=1

exp{nα} · nα−2 P ( max
1≤k≤n

|Sk| > nε) < ∞ for all ε > 1; (1.7)

∞∑

n=1

exp{nα} · nα−2 P (sup
k≥n

|Sk/k| > ε) < ∞ for all ε > 1. (1.8)

Conversely, if one of the sums is finite for some ε > 0, then so are the others, and
E exp{|X/ε′|α} < ∞ for any ε′ > ε .

The equivalence of (1.5) and (1.6) is due to Lanzinger (1998) (in a slightly stronger form in
that he treats the two tails separately with a somewhat more general moment condition). The
implications (1.7) =⇒ (1.6) and (1.8) =⇒ (1.6) are trivial, (1.6) =⇒ (1.7) follows, again, from the
Lévy inequalities (see e.g. Gut (2007), Section 3.7), and (1.6) =⇒ (1.8) follows via a refinement
of the “slicing device” of Baum and Katz (1965) as given in Lai (1974), page 439, the details of
which we omit.

The aim of the present paper is to close the gap between the two results, that is, we consider
the case when exponential moments of some power of log |X | of order larger than one is finite.
This will be achieved in the following section. In Section 3 we present multiindex versions of our
theorem and of Lanzinger’s result. We close with some remarks.
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2 Main theorem

Before we present our main result, here are some minor pieces of notation. For x > 0 we set
log+ x = max{1, logx}. For simplicty and convenience we shall abuse this notation in the sense
that we tacitly interpret logarithms as if there were the extra +-sign in running text and in
computations. Moreover, c will denote numerical constants whose value are without importance,
and, in addition, may change between appearances.

Theorem 2.1 Let α > 1, and suppose that X, X1, X2, . . . are i.i.d. random variables with partial
sums Sn =

∑n
k=1 Xk, n ≥ 1. If

E exp{(log+ |X |)α} < ∞ and E(X) = 0, (2.1)

then
∞∑

n=1

exp{(log n)α} (logn)α−1

n2
P (|Sn| > nε) < ∞ for all ε > 1; (2.2)

∞∑

n=1

exp{(log n)α} (logn)α−1

n2
P ( max

1≤k≤n
|Sk| > nε) < ∞ for all ε > 1; (2.3)

∞∑

n=1

exp{(log n)α} (logn)α−1

n2
P (sup

k≥n
|Sk/k| > ε) < ∞ for all ε > 1. (2.4)

Conversely, if one of the sums is finite for some ε > 0, then so are the others, and
E exp{(1− δ)(log+ |X |)α} < ∞ for any δ > 0.

Remark 2.1 The reason that one obtains a lower bound for ε in Theorem 1.2 is due to the fact that
ε acts as a scaling parameter there, whereas it is in between a scaling factor and being irrelevant
in Theorem 2.1.

Remark 2.2 If (2.2) holds with ε < 1/2, then we have, in fact, that E exp{(log+ |X |)α} < ∞. 2

Proof. The general pattern of the proof differs slightly from the usual ones in the area, in that,
whereas one typically requires one truncation in LLN-related results and two truncations plus
exponential inequalities in LIL-related results, our proof is of the latter kind in spite of the fact
that we are in the LLN-domain.

The hard(est) part is
(2.1) =⇒ (2.2): Let 0 < δ < 1 and ε > 0 be arbitrary, set, for n ≥ 1,

bn =
ǫn

(log n)α
and cn = nε(1− δ), (2.5)

define, for 1 ≤ k ≤ n,

X ′
k = XkI{|Xk| ≤ bn}, X ′′

k = XkI{bn < |Xk| < cn}, X ′′′
k = XkI{|Xk| ≥ cn},

and let all objects with primes or multiple primes refer to the respective truncated summands (and
recall from above that log n = log+ n throughout our computations).

Next, set An = {|Sn| > nε} ,

A′
n = {|Sn| > nε and X ′′

k 6= 0 for at most one k ≤ n and X ′′′
k = 0 for all k ≤ n} ,

A′′
n = {X ′′

k 6= 0 for at least two k ≤ n} ,

A′′′
n = {X ′′′

k 6= 0 for at least one k ≤ n} .

We furthermore split A′
n into A′

n,1 ∪ A′
n,2, where

A′
n,1 = {|Sn| > nε and |Xk| ≤ bn for all k ≤ n} ,

A′
n,2 = {|Sn| > nε and |Xk| > bn for exactly one k ≤ n} ,
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and note that

An ⊂ A′
n,1 ∪A′

n,2 ∪ A′′
n ∪ A′′′

n , (2.6)

which tells us that

P (|Sn| > nε) = P (An) ≤ P (A′
n,1) + P (A′

n,2) + P (A′′
n) + P (A′′′

n ) . (2.7)

• P (A′
n,1)

Since truncation destroys centering, it follows, using standard procedures, that

|E S′n| = |nE XkI{|Xk| ≤ bn}| = n| − E XkI{|Xk| > bn}| ≤ nE|X |I{|X | > bn}

≤ nE X2I{|X | > bn}
bn

=
(log n)α

ε
E X2I{|X | > bn} = o

(
(log n)α

)
as n →∞,

so that, by applying the exponential bound as given in Gut (2007), Theorem 3.1.2, we obtain, for
n ≥ n0 large,

P (A′
n,1) = P (|S′n| > nε) ≤ P (|S′n − E S′n| > (n− δ(log n)α)ε)

≤ exp{− (log n)α

nε
· (n− δ(log n)α))ε +

(log n)2α

n2ε2
· nVarX} (2.8)

≤ c exp{−(log n)α} ,

and, hence, that

∑

n≥n0

exp (log n)α (log n)α−1

n2
P (A′

n,1) ≤ c
∑

n≥n0

(log n)α−1

n2
< ∞. (2.9)

• P (A′
n,2)

First note that

n P (|X | > bn) ≤ n · E exp{(log+ |X |)α}
exp{(log bn)α} ,

which, together with the fact that for large n, say n ≥ n1,

(log bn)α =
(
log(ε + log n− α log log n)

)α ≥ (1 − δ/2)(logn)α ,

shows that
n P (|X | > bn) ≤ c n exp{−(1− δ/2)(log n)α} → 0 as n →∞ . (2.10)

Next by (2.8) and (2.10) we have, for n ≥ n1,

P (A′
n,2) ≤ P (|S′n−1| > εn− cn) · n P (|X | > bn)

= P (|S′n−1| > ε δ n) · n P (|X | > bn) ≤ c n exp{−δ(logn)α − (1 − δ/2)(logn)α} ,

which implies that

∑

n≥n1

exp{(log n)α} (log n)α−1

n2
P (A′

n,2) ≤ c
∑

n≥n1

(log n)α−1

n(1+δ/2)
< ∞ .

• P (A′′
n)

By (2.10) again,

∑

n≥n1

exp{(log n)α} (logn)α−1

n2
P (A′′

n) ≤ c
∑

n≥n1

exp{−(1− δ) (log n)α} (log n)α−1 < ∞ . (2.11)

• P (A′′′
n )

Since
P (A′′′

n ) ≤ nP (|X | > cn) = nP
(
|X | > nε(1− δ)

)
,
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it follows that
∞∑

n=1

exp{(logn)α} (log n)α−1

n2
P (A′′′

n ) ≤
∞∑

n=1

exp{(logn)α} (log n)α−1

n
P

(
|X | > nε(1− δ)

)
, (2.12)

and the latter sum converges iff ε(1− δ) ≥ 1 by Lemma 2.1 below.
By combining (2.6) with (2.9) – (2.12), we finally conclude that

∞∑

n=1

exp{(log n)α} (log n)α−1

n2
P (|Sn| > n ε) < ∞ ,

whenever ε(1− δ) ≥ 1, which, in view of the arbitrariness of δ, finishes the proof of this step.
As for the remaining part of the proof, implications (2.3) =⇒ (2.2) and (2.4) =⇒ (2.2) are

trivial, and (2.2) =⇒ (2.3) follows via an application of the Lévy inequalities. Finally (2.2) =⇒
(2.4) follows by mimicing the analogous part in the proof of Theorem 1.1 (cf. also Gut (2007),
Section 7.12).

In order to prove the converse, more precisely that (2.2) =⇒ (2.1), one proceeds (with obvious
modifications) along the lines of the analog for the classical Hsu-Robbins-Erdős theorem as provided
in Gut (2007), page 314. The heart of the matter is to show that P (|Sn| > nε) ≥ 1

2nP (|X | > 2nε),
after which one applies the following lemma, in order to conclude that E(exp{(log(|X |/(2ε)))α} <
∞, which, in turn, implies that E(exp{(1− δ)(log |X |)α} < ∞ for any δ > 0. 2

Lemma 2.1 For any random variable X and γ > 0,

E exp{(log+ |X/γ|)α} < ∞ ⇐⇒
∞∑

n=1

exp{(logn)α} (log n)α−1

n
P (|X | > nγ) < ∞.

Proof. The proof of the lemma is based on partial summation; cf. Gut (2007), Section 2.12 for
results of this kind. We omit the details. 2

3 Random fields

Many of the earlier results in the area have been extended to multiindex models or random fields.
The Kolmogorov strong law was extended to this setting by Smythe (1973). For the Marcinkiewicz–
Zygmund analog we refer to Gut (1978). As an introductory example we quote the multiindex
analog of the Baum-Katz Theorem 1.1 from Gut (1978), cf. Theorem 4.1 there.

In order to set the scene, let ZZd
+, d ≥ 2, denote the positive integer d-dimensional lattice with

coordinate-wise partial ordering ≤, that is, for m = (m1, m2, . . . , md) and n = (n1, n2, . . . , nd),
m ≤ n means that mk ≤ nk, for k = 1, 2, . . . , d. The “size” of a point equals |n| = ∏d

k=1 nk, and
n →∞ means that nk →∞, for all k = 1, 2, . . . , d.

Theorem 3.1 Let r > 0, α > 1/2, αr ≥ 1, and suppose that {Xk, k ∈ ZZd
+} are i.i.d. random

variables with partial sums Sn =
∑

k≤n Xk, n ∈ ZZd
+. If

E|X |r(log+ |X |)d−1 < ∞ and, if r ≥ 1, E(X) = 0, (3.1)

then
∑

n

|n|αr−2P (|Sn| > |n|αε) < ∞ for all ε > 0; (3.2)

∑

n

|n|αr−2P (max
k≤n

|Sk| > |n|αε) < ∞ for all ε > 0. (3.3)

If αr > 1 we also have
∞∑

j=1

jαr−2P ( sup
j≤|k|

|Sk/|k|α| > ε) < ∞ for all ε > 0. (3.4)

Conversely, if one of the sums is finite for all ε > 0, then so are the others (for appropriate values
of r and α), E|X |r(log+ |X |)d−1 < ∞ and, if r ≥ 1, E(X) = 0.
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The corresponding results related to Theorems 2.1 and 1.2, respectively, run as follows.

Theorem 3.2 Let α > 1, and suppose that {Xk, k ∈ ZZd
+} are i.i.d. random variables with E(X) =

0 and partial sums Sn =
∑

k≤n Xk, n ∈ ZZd
+. The following are equivalent:

E exp{(log |X |)α}(log+ |X |)d−1 < ∞;

∑

n

exp{(log |n|)α} · (log |n|)α−1

|n|2 P (|Sn| > |n|ε) < ∞ for all ε > 1;

∑

n

exp{(log |n|)α} · (log |n|)α−1

|n|2 P (max
k≤n

|Sk| > |n|ε) < ∞ for all ε > 1;

∞∑

j=1

exp{(log j)α} · (log j)α−1

j2
P ( sup

j≤|k|
|Sk/|k|| > ε) < ∞ for all ε > 1.

Theorem 3.3 Let 0 < α < 1, and suppose that {Xk, k ∈ ZZd
+} are i.i.d. random variables with

E(X) = 0 and partial sums Sn =
∑

k≤n Xk, n ∈ ZZd
+. The following are equivalent:

E exp{|X |α}(log+ |X |)d−1 < ∞;
∑

n

exp{|n|α} · |n|α−2P (|Sn| > |n|ε) < ∞ for all ε > 1;

∑

n

exp{|n|α} · |n|α−2P (max
k≤n

|Sk| > |n|ε) < ∞ for all ε > 1;

∞∑

j=1

exp{jα} · jα−2P ( sup
j≤|k|

|Sk/|k|| > ε) < ∞ for all ε > 1.

Remark 3.1 The equivalence with respect to the moment assumptions should be interpreted as
in our earlier results. 2

The proofs of the theorems amount to rather straightforward generalizations of those in Gut
(1978, 1980) and are omitted, except for the following extension of Lemma 2.1.

Lemma 3.1 For any random variable X and γ > 0,

E exp{(log+ |X/γ|)α}(log+ |X |)d−1 < ∞

⇐⇒
∑

n

exp{(log |n|)α} (log |n|)α−1

|n| P (|X | > |n|γ) < ∞ ;

E exp{|X/γ|α}(log+ |X |)d−1 < ∞ ⇐⇒
∑

n

exp{|n|α} · |n|α−1P (|X | > |n|γ) < ∞ .

The basis of the proof of the lemma is, again, partial summation, together with the fact that terms
with equisized indices are equal, viz., we may write

∑

n

· · · =
∞∑

j=1

∑

|n|=j

d(j) · · · ,

where
d(j) = Card {k : |k| = j}, j ≥ 1.

Using this device the sums in the lemma turn into

∑

n

exp{|n|α} · |n|α−1 P (|X | > |n|) =
∞∑

j=1

d(j) exp{jα} · jα−1 P (|X | > j),

∑

n

exp{(log |n|)α} (log |n|)α−1

|n| P (|X | > |n|) =
∞∑

j=1

d(j) exp{(log j)α} (log j)α−1

j
P (|X | > j),
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respectivly, after it remains to connect these sums of the respective tail probabilities to the appro-
priate moment (cf. Gut (2007), Section 2.12).

In order to do so we also need the quantity

M(j) = Card {k : |k| ≤ j}
(

=
j∑

k=1

d(k)
)
, j ≥ 1,

with its asymptotics
M(j)

j(log j)d−1
→ 1

(d− 1)!
as j →∞.

For details concerning these number theoretical matters we refer to Hardy and Wright (1954),
Chapter XVIII and to Titchmarsh (1951), relation (12.1.1) (for the case d = 2).

4 Further results and remarks

So called “last exit times” related to the LLN and LIL have been investigated in various papers.
The last exit time with respect to Theorem 1.2 would be

L(ε) = sup{n : |Sn| > nε},

for which we have the relation

{L(ε) ≥ j} = {sup
k≥j

|Sk/k| > ε},

which, in view of Theorem 1.2, tells us that, for ε > 0,

E exp{|X/ε|α} ≍
∞∑

j=1

exp{jα} · jα−2 P (L(ε) ≥ j) .

Using Theorem 1.2, together with a variation of Lemma 2.1, yields the following result.

Theorem 4.1 If E(X) = 0 and E exp{|X |α} < ∞ for some α ∈ (0, 1), then

E
(exp{(L(ε))α}

L(ε)

)
< ∞ for all ε > 1 .

Conversely, if E exp{(L(ε))α}
L(ε) < ∞ for some ε > 0, then E exp{|X/ε′|α} < ∞ for any ε′ > ε.

Turning our attention to Theorem 2.1, we obtain, in essence,

E exp{(log |X |)α} ≍
∞∑

j=1

exp{(log j)α} ((log j)α−1

j2
P (L(ε) ≥ j) ,

and combining this with Lemma 2.1 we arrive at

Theorem 4.2 If E(X) = 0 and E exp{(log |X |)α} < ∞ for some α > 1, then

E
(exp{(log(L(ε))α}

L(ε)

)
< ∞ for all ε > 1 ,

Conversely, if E
(

exp{(log(L(ε))α}
L(ε)

)
< ∞ for some ε > 0, then E exp{(1 − δ)(log |X |)α} < ∞ for

any δ > 0 .

We conclude by mentioning without any details that corresponding results may be stated for

♦ random fields; one considers Ld(ε) = sup{|n| : |Sn| > |n|ε} ;

♦ the counting variable Nd(ε) = Card{|n| : |Sn| > |n|ε}.
For the case of polynomial growth we refer to Gut (1980), Section 8, and further references given
there.
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