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We extend the classical Hsu-Robbins-Erdős theorem to the case when all moments exist, but the moment generating function does not, viz., we assume that E exp{(log + |X|) α } < ∞ for some α > 1. We also present multiindex versions of the same and of a related result due to Lanzinger in which the assumption is that E exp{|X| α } < ∞ for some α ∈ (0, 1).

Introduction

In the seminal paper [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF] the authors introduced the concept of complete convergence, and proved that the sequence of arithmetic means of independent, identically distributed (i.i.d.) random variables converges completely (which means that the Borel-Cantelli sum of certain tail probabilities converges) to the expected value of the summands, provided their variance is finite. The necessity was proved by [START_REF] Erdős | On a theorem of Hsu and Robbins[END_REF][START_REF] Erdős | Remark on my paper "On a theorem of Hsu and Robbins[END_REF]. This result was later extended in a series of papers which culminated in the now classical paper [START_REF] Baum | Convergence rates in the law of large numbers[END_REF], in which the equivalence of (1.1), (1.2), and (1.4) in the following theorem was demonstrated.

Theorem 1.1 Let r > 0, α > 1/2, and αr ≥ 1. Suppose that X, X 1 , X 2 , . . . are i.i.d. random variables with partial sums S n = n k=1 X k , n ≥ 1. If E|X| r < ∞ and, if r ≥ 1, E(X) = 0, (1.1)

then ∞ n=1 n αr-2 P (|S n | > n α ε) < ∞ for all ε > 0; (1.2) ∞ n=1
n αr-2 P ( max

1≤k≤n |S k | > n α ε) < ∞ for all ε > 0. (1.3)
If αr > 1 we also have

∞ n=1 n αr-2 P (sup k≥n |S k /k α | > ε) < ∞ for all ε > 0. (1.4)
Conversely, if one of the sums is finite for all ε > 0, then so are the others (for appropriate values of r and α), E|X| r < ∞ and, if r ≥ 1, E(X) = 0.

Remark 1.1 Strictly speaking, if one of the sums is finite for some ε > 0, then so are the others (for appropriate values of r and α), and E|X| r < ∞. However, we need convergence for all ε > 0 in order to infer that E(X) = 0 for the case r ≥ 1. The same remark applies to Theorem 3.1 below. 2

The Hsu-Robbins-Erdős part of the theorem thus concerns (1.1) ⇐⇒ (1.2) for the case r = 2, p = 1. [START_REF] Spitzer | A combinatorial lemma and its applications to probability theory[END_REF] and [START_REF] Katz | The probability in the tail of a distribution[END_REF] proved the same equivalence for the cases r = p = 1 and r > 0, p = 1, respectively (with a small exception in the latter case). The equivalence (in the above sense) between (1.1), (1.2) and (1.4) is precisely the main theorem in [START_REF] Baum | Convergence rates in the law of large numbers[END_REF] as mentioned prior to the statement of the result. Finally, the equivalence between (1.1) and (1.3) was proved differently in [START_REF] Chow | Delayed sums and Borel summability of independent, identically distributed random variables[END_REF]; note, however, that (1.3) =⇒ (1.2) is trivial and, given the Baum-Katz theorem, the converse follows (essentially) via the Lévy inequalities.

For p = 2 one falls into the realm of the central limit theorem, so there is no hope for a positive result, since the probabilities do not tend to zero. To compensate for this one may consider probabilites such as

P (|S n | > ε √ n log n) and P (|S n | > ε √ n log log n)
in the above sums. The first paper in this direction was [START_REF] Lai | Limit theorems for delayed sums[END_REF]. Multiindex versions of much of this can be found in [START_REF] Gut | Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices[END_REF][START_REF] Gut | Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices[END_REF].

Theorem 1.1 provides conditions for the rate of decrease to zero as n → ∞ of the various tail probabilities. Otherwise put, the theorem provides information about the rate of convergence in the law of large numbers. An alternative question, that will not addressed in this paper, is to ask for the rate at which the tail probabilities tend to 1 as ε ց 0. Toward that end, [START_REF] Heyde | A supplement to the strong law of large numbers[END_REF] proved that

lim εց0 ε 2 ∞ n=1 P (|S n | ≥ εn) = EX 2 ,
whenever EX = 0 and EX 2 < ∞. Remaining values of r and p have later been taken care of in [START_REF] Chen | A remark on the tail probability of a distribution[END_REF], [START_REF] Spȃtaru | Precise asymptotics in Spitzer's law of large numbers[END_REF] and [START_REF] Gut | Precise asymptotics in the Baum-Katz and Davis law of large numbers[END_REF]. There also exist analogs related, for example, to randomly indexed partial sums, renewal theory, and records; cf. e.g. [START_REF] Gut | Probability: A Graduate Course[END_REF], Chapters 6 and 7, and further references given there.

A fair amount of papers have, since then, been devoted to replacing the powers of n in these results by more general weights, and also by introducing dependence assumptions. The proofs of those results generally follow (approximately) the same lines as the proofs of those cited above.

A natural next question is: What can be said about rates growing faster than polynomially?

Theorem 1.2 Let 0 < α < 1, and suppose that X, X 1 , X 2 , . . . are i.i.d. random variables with E(X) = 0 and partial sums

S n = n k=1 X k , n ≥ 1. If E exp{|X| α } < ∞ , (1.5) then ∞ n=1 exp{n α } • n α-2 P (|S n | > nε) < ∞ for all ε > 1; (1.6) ∞ n=1 exp{n α } • n α-2 P ( max 1≤k≤n |S k | > nε) < ∞ for all ε > 1; (1.7) ∞ n=1 exp{n α } • n α-2 P (sup k≥n |S k /k| > ε) < ∞ for all ε > 1. (1.8)
Conversely, if one of the sums is finite for some ε > 0, then so are the others, and

E exp{|X/ε ′ | α } < ∞ for any ε ′ > ε .
The equivalence of (1.5) and (1.6) is due to Lanzinger (1998) (in a slightly stronger form in that he treats the two tails separately with a somewhat more general moment condition). The implications (1.7) =⇒ (1.6) and (1.8) =⇒ (1.6) are trivial, (1.6) =⇒ (1.7) follows, again, from the Lévy inequalities (see e.g. [START_REF] Gut | Probability: A Graduate Course[END_REF], Section 3.7), and (1.6) =⇒ (1.8) follows via a refinement of the "slicing device" of [START_REF] Baum | Convergence rates in the law of large numbers[END_REF] as given in [START_REF] Lai | Limit theorems for delayed sums[END_REF], page 439, the details of which we omit. The aim of the present paper is to close the gap between the two results, that is, we consider the case when exponential moments of some power of log |X| of order larger than one is finite. This will be achieved in the following section. In Section 3 we present multiindex versions of our theorem and of Lanzinger's result. We close with some remarks.

Main theorem

Before we present our main result, here are some minor pieces of notation. For x > 0 we set log + x = max{1, log x}. For simplicty and convenience we shall abuse this notation in the sense that we tacitly interpret logarithms as if there were the extra +-sign in running text and in computations. Moreover, c will denote numerical constants whose value are without importance, and, in addition, may change between appearances.

Theorem 2.1 Let α > 1, and suppose that X, X 1 , X 2 , . . . are i.i.d. random variables with partial sums

S n = n k=1 X k , n ≥ 1. If E exp{(log + |X|) α } < ∞ and E(X) = 0, (2.1) then ∞ n=1 exp{(log n) α } (log n) α-1 n 2 P (|S n | > nε) < ∞ for all ε > 1; (2.2) ∞ n=1 exp{(log n) α } (log n) α-1 n 2 P ( max 1≤k≤n |S k | > nε) < ∞ for all ε > 1; (2.3) ∞ n=1 exp{(log n) α } (log n) α-1 n 2 P (sup k≥n |S k /k| > ε) < ∞ for all ε > 1. (2.4)
Conversely, if one of the sums is finite for some ε > 0, then so are the others, and

E exp{(1 -δ)(log + |X|) α } < ∞ for any δ > 0.
Remark 2.1 The reason that one obtains a lower bound for ε in Theorem 1.2 is due to the fact that ε acts as a scaling parameter there, whereas it is in between a scaling factor and being irrelevant in Theorem 2.1.

Remark 2.2 If (2.
2) holds with ε < 1/2, then we have, in fact, that E exp{(log

+ |X|) α } < ∞. 2
Proof. The general pattern of the proof differs slightly from the usual ones in the area, in that, whereas one typically requires one truncation in LLN-related results and two truncations plus exponential inequalities in LIL-related results, our proof is of the latter kind in spite of the fact that we are in the LLN-domain.

The hard(est) part is (2.1) =⇒ (2.2): Let 0 < δ < 1 and ε > 0 be arbitrary, set, for n ≥ 1,

b n = ǫn (log n) α and c n = nε(1 -δ), (2.5 
) define, for 1 ≤ k ≤ n, X ′ k = X k I{|X k | ≤ b n }, X ′′ k = X k I{b n < |X k | < c n }, X ′′′ k = X k I{|X k | ≥ c n },
and let all objects with primes or multiple primes refer to the respective truncated summands (and recall from above that log n = log + n throughout our computations). Next, set

A n = {|S n | > nε} , A ′ n = {|S n | > nε and X ′′ k = 0 for at most one k ≤ n and X ′′′ k = 0 for all k ≤ n} , A ′′ n = {X ′′ k = 0 for at least two k ≤ n} , A ′′′ n = {X ′′′ k = 0 for at least one k ≤ n} .
We furthermore split

A ′ n into A ′ n,1 ∪ A ′ n,2
, where

A ′ n,1 = {|S n | > nε and |X k | ≤ b n for all k ≤ n} , A ′ n,2 = {|S n | > nε and |X k | > b n for exactly one k ≤ n} ,
and note that

A n ⊂ A ′ n,1 ∪ A ′ n,2 ∪ A ′′ n ∪ A ′′′ n , (2.6) 
which tells us that

P (|S n | > nε) = P (A n ) ≤ P (A ′ n,1 ) + P (A ′ n,2 ) + P (A ′′ n ) + P (A ′′′ n ) .
(2.7)

• P (A ′ n,1 ) Since truncation destroys centering, it follows, using standard procedures, that

|E S ′ n | = |nE X k I{|X k | ≤ b n }| = n| -E X k I{|X k | > b n }| ≤ nE|X|I{|X| > b n } ≤ nE X 2 I{|X| > b n } b n = (log n) α ε E X 2 I{|X| > b n } = o (log n) α as n → ∞,
so that, by applying the exponential bound as given in Gut (2007), Theorem 3.1.2, we obtain, for n ≥ n 0 large,

P (A ′ n,1 ) = P (|S ′ n | > nε) ≤ P (|S ′ n -E S ′ n | > (n -δ(log n) α )ε) ≤ exp{- (log n) α nε • (n -δ(log n) α ))ε + (log n) 2α n 2 ε 2 • nVar X} (2.8) ≤ c exp{-(log n) α } ,
and, hence, that

n≥n0 exp (log n) α (log n) α-1 n 2 P (A ′ n,1 ) ≤ c n≥n0 (log n) α-1 n 2 < ∞.
(2.9)

• P (A ′ n,2 ) First note that n P (|X| > b n ) ≤ n • E exp{(log + |X|) α } exp{(log b n ) α } ,
which, together with the fact that for large n, say n ≥ n 1 ,

(log b n ) α = log(ε + log n -α log log n) α ≥ (1 -δ/2)(log n) α , shows that n P (|X| > b n ) ≤ c n exp{-(1 -δ/2)(log n) α } → 0 as n → ∞ . (2.10) 
Next by (2.8) and (2.10) we have, for n ≥ n 1 ,

P (A ′ n,2 ) ≤ P (|S ′ n-1 | > εn -c n ) • n P (|X| > b n ) = P (|S ′ n-1 | > ε δ n) • n P (|X| > b n ) ≤ c n exp{-δ(log n) α -(1 -δ/2)(log n) α } , which implies that n≥n1 exp{(log n) α } (log n) α-1 n 2 P (A ′ n,2 ) ≤ c n≥n1 (log n) α-1 n (1+δ/2) < ∞ . • P (A ′′ n ) By (2.10) again, n≥n1 exp{(log n) α } (log n) α-1 n 2 P (A ′′ n ) ≤ c n≥n1 exp{-(1 -δ) (log n) α } (log n) α-1 < ∞ . (2.11) • P (A ′′′ n ) Since P (A ′′′ n ) ≤ nP (|X| > c n ) = nP |X| > nε(1 -δ) , it follows that ∞ n=1 exp{(log n) α } (log n) α-1 n 2 P (A ′′′ n ) ≤ ∞ n=1 exp{(log n) α } (log n) α-1 n P |X| > nε(1 -δ) , (2.12)
and the latter sum converges iff ε(1δ) ≥ 1 by Lemma 2.1 below. By combining (2.6) with (2.9) -(2.12), we finally conclude that (2.4) follows by mimicing the analogous part in the proof of Theorem 1.1 (cf. also [START_REF] Gut | Probability: A Graduate Course[END_REF], Section 7.12).

∞ n=1 exp{(log n) α } (log n) α-1 n 2 P (|S n | > n ε) < ∞ , whenever ε(1 -δ) ≥ 1,
In order to prove the converse, more precisely that (2.2) =⇒ (2.1), one proceeds (with obvious modifications) along the lines of the analog for the classical Hsu-Robbins-Erdős theorem as provided in [START_REF] Gut | Probability: A Graduate Course[END_REF], page 314. The heart of the matter is to show that P (|S n | > nε) ≥ 1 2 nP (|X| > 2nε), after which one applies the following lemma, in order to conclude that E(exp{(log(|X|/(2ε))) α } < ∞, which, in turn, implies that E(exp{(1δ)(log |X|) α } < ∞ for any δ > 0.

2 Lemma 2.1 For any random variable X and γ > 0,

E exp{(log + |X/γ|) α } < ∞ ⇐⇒ ∞ n=1 exp{(log n) α } (log n) α-1 n P (|X| > nγ) < ∞.
Proof. The proof of the lemma is based on partial summation; cf. [START_REF] Gut | Probability: A Graduate Course[END_REF], Section 2.12 for results of this kind. We omit the details. 2

Random fields

Many of the earlier results in the area have been extended to multiindex models or random fields. The Kolmogorov strong law was extended to this setting by [START_REF] Smythe | Strong laws of large numbers for r-dimensional arrays of random variables[END_REF]. For the Marcinkiewicz-Zygmund analog we refer to [START_REF] Gut | Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices[END_REF]. As an introductory example we quote the multiindex analog of the Baum-Katz Theorem 1.1 from Gut (1978), cf. Theorem 4.1 there. In order to set the scene, let Z Z d + , d ≥ 2, denote the positive integer d-dimensional lattice with coordinate-wise partial ordering ≤, that is, for m = (m 1 , m 2 , . . . , m d ) and n = (n 1 , n 2 , . . . , n d ), m ≤ n means that m k ≤ n k , for k = 1, 2, . . . , d. The "size" of a point equals |n| = d k=1 n k , and n → ∞ means that n k → ∞, for all k = 1, 2, . . . , d.

Theorem 3.1 Let r > 0, α > 1/2, αr ≥ 1, and suppose that {X k , k ∈ Z Z d + } are i.i.d. random variables with partial sums S n = k≤n X k , n ∈ Z Z d + . If E|X| r (log + |X|) d-1 < ∞ and, if r ≥ 1, E(X) = 0, (3.1) 
then n |n| αr-2 P (|S n | > |n| α ε) < ∞ for all ε > 0; (3.2) n |n| αr-2 P (max k≤n |S k | > |n| α ε) < ∞ for all ε > 0. ( 3.3) 
If αr > 1 we also have

∞ j=1 j αr-2 P ( sup j≤|k| |S k /|k| α | > ε) < ∞ for all ε > 0. (3.4)
Conversely, if one of the sums is finite for all ε > 0, then so are the others (for appropriate values of r and α), E|X| r (log

+ |X|) d-1 < ∞ and, if r ≥ 1, E(X) = 0.
The corresponding results related to Theorems 2.1 and 1.2, respectively, run as follows.

Theorem 3.2 Let α > 1, and suppose that {X k , k ∈ Z Z d + } are i.i.d. random variables with E(X) = 0 and partial sums S n = k≤n X k , n ∈ Z Z d + . The following are equivalent:

E exp{(log |X|) α }(log + |X|) d-1 < ∞; n exp{(log |n|) α } • (log |n|) α-1 |n| 2 P (|S n | > |n|ε) < ∞ for all ε > 1; n exp{(log |n|) α } • (log |n|) α-1 |n| 2 P (max k≤n |S k | > |n|ε) < ∞ for all ε > 1; ∞ j=1 exp{(log j) α } • (log j) α-1 j 2 P ( sup j≤|k| |S k /|k|| > ε) < ∞ for all ε > 1.
Theorem 3.3 Let 0 < α < 1, and suppose that {X k , k ∈ Z Z d + } are i.i.d. random variables with E(X) = 0 and partial sums

S n = k≤n X k , n ∈ Z Z d + .
The following are equivalent:

E exp{|X| α }(log + |X|) d-1 < ∞; n exp{|n| α } • |n| α-2 P (|S n | > |n|ε) < ∞ for all ε > 1; n exp{|n| α } • |n| α-2 P (max k≤n |S k | > |n|ε) < ∞ for all ε > 1; ∞ j=1 exp{j α } • j α-2 P ( sup j≤|k| |S k /|k|| > ε) < ∞ for all ε > 1.
Remark 3.1 The equivalence with respect to the moment assumptions should be interpreted as in our earlier results. 2

The proofs of the theorems amount to rather straightforward generalizations of those in [START_REF] Gut | Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices[END_REF][START_REF] Gut | Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices[END_REF] and are omitted, except for the following extension of Lemma 2.1. Lemma 3.1 For any random variable X and γ > 0,

E exp{(log + |X/γ|) α }(log + |X|) d-1 < ∞ ⇐⇒ n exp{(log |n|) α } (log |n|) α-1 |n| P (|X| > |n|γ) < ∞ ; E exp{|X/γ| α }(log + |X|) d-1 < ∞ ⇐⇒ n exp{|n| α } • |n| α-1 P (|X| > |n|γ) < ∞ .
The basis of the proof of the lemma is, again, partial summation, together with the fact that terms with equisized indices are equal, viz., we may write

n • • • = ∞ j=1 |n|=j d(j) • • • , where d(j) = Card {k : |k| = j}, j ≥ 1.
Using this device the sums in the lemma turn into

n exp{|n| α } • |n| α-1 P (|X| > |n|) = ∞ j=1 d(j) exp{j α } • j α-1 P (|X| > j), n exp{(log |n|) α } (log |n|) α-1 |n| P (|X| > |n|) = ∞ j=1 d(j) exp{(log j) α } (log j) α-1 j P (|X| > j),
respectivly, after it remains to connect these sums of the respective tail probabilities to the appropriate moment (cf. [START_REF] Gut | Probability: A Graduate Course[END_REF], Section 2.12).

In order to do so we also need the quantity

M (j) = Card {k : |k| ≤ j} = j k=1 d(k) , j ≥ 1,
with its asymptotics

M (j) j(log j) d-1 → 1 (d -1)! as j → ∞.
For details concerning these number theoretical matters we refer to [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF], Chapter XVIII and to [START_REF] Titchmarsh | The Theory of the Riemann Zeta-function[END_REF], relation (12.1.1) (for the case d = 2).

Further results and remarks

So called "last exit times" related to the LLN and LIL have been investigated in various papers.

The last exit time with respect to Theorem 1. Using Theorem 1.2, together with a variation of Lemma 2.1, yields the following result. Conversely, if E exp{(L(ε)) α } L(ε)

< ∞ for some ε > 0, then E exp{|X/ε ′ | α } < ∞ for any ε ′ > ε.

Turning our attention to Theorem 2.1, we obtain, in essence,

E exp{(log |X|) α } ≍ ∞ j=1
exp{(log j) α } ((log j) α-1 j 2 P (L(ε) ≥ j) , and combining this with Lemma 2.1 we arrive at For the case of polynomial growth we refer to [START_REF] Gut | Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices[END_REF], Section 8, and further references given there.

  2 would beL(ε) = sup{n : |S n | > nε},for which we have the relation{L(ε) ≥ j} = {sup k≥j |S k /k| > ε},which, in view of Theorem 1.2, tells us that, for ε > 0,E exp{|X/ε| α } ≍ ∞ j=1 exp{j α } • j α-2 P (L(ε) ≥ j) .

Theorem 4 . 1

 41 If E(X) = 0 and E exp{|X| α } < ∞ for some α ∈ (0, 1), thenE exp{(L(ε)) α } L(ε) < ∞ for all ε > 1 .

Theorem 4 . 2

 42 If E(X) = 0 and E exp{(log |X|) α } < ∞ for some α > 1, then E exp{(log(L(ε)) α } L(ε) < ∞ for all ε > 1 , Conversely, if E exp{(log(L(ε)) α } L(ε) < ∞ for some ε > 0, then E exp{(1δ)(log |X|) α } < ∞ for any δ > 0 .We conclude by mentioning without any details that corresponding results may be stated for♦ random fields; one considers L d (ε) = sup{|n| : |S n | > |n|ε} ; ♦ the counting variable N d (ε) = Card{|n| : |S n | > |n|ε}.

  which, in view of the arbitrariness of δ, finishes the proof of this step. As for the remaining part of the proof, implications (2.3) =⇒ (2.2) and (2.4) =⇒ (2.2) are trivial, and (2.2) =⇒ (2.3) follows via an application of the Lévy inequalities. Finally (2.2) =⇒
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