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Abstract

A key result underlying the theory of MCMC is that any η-irreducible Markov
chain having a transition density with respect to η and possessing a stationary
distribution π is automatically positive Harris recurrent. This paper provides a
short self-contained proof of this fact using the ergodic theorem in its standard
form as the most advanced tool.
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1. Introduction

The use of Markov chain Monte Carlo methods (MCMC) has become a funda-
mental numerical tool in modern statistics, as well as in the study of many stochas-
tic models arising in mathematical physics; see Asmussen and Glynn (2007),
Gilks et al. (1996), Kendall et al. (2005), and Robert and Casella (2004), for ex-
ample. When applying this idea, one constructs a Markov chain X = (Xn : n ≥ 0)
having a prescribed stationary distribution π. By simulating a trajectory of X over
{0, 1, . . . , n − 1}, the hope is that the time-average n−1 ∑n−1

j=0 f (X j) will converge
to π f ,

∫
S

f (x)π(dx) where S is the state space. Thus, MCMC permits one to
numerically investigate the distribution π.

If X is an irreducible discrete state space Markov chain with stationary distri-
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bution π, it is well known that for all x

1
n

n−1∑

j=0

f (X j)→ π f Px-a.s. (1)

as n → ∞ for each f : S → R+, where Px(·) , P(·|X0 = x) for x ∈ S . Many
statistical applications of MCMC involve, however, distributions π that are con-
tinuous. A central theoretical question in MCMC is therefore the extension of the
above result to a general state space. Some key references for this are Tierney
(1994), Roberts and Rosenthal (2004), Roberts and Rosenthal (2004) and Robert
and Casella (2004); see also Chan and Geyer (1994). As in the discrete state space
setting, some notion of irreducibility is required. The Markov chain X is said to be
η-irreducible if η is a non-trivial (reference) measure for which η(B) > 0 implies
that K(x, B) > 0 for all x ∈ S , where

K(x, dy) ,
∞∑

n=1

2−nPx(Xn ∈ dy)

for x, y ∈ S . Typically, the key step for the general state space MCMC setting is
to establish results of the following spirit (note the ‘π-a.a x’ rather than ‘all x’!):

Theorem 1. Assume that X is an S -valued Markov chain having a stationary
distribution π and being η-irreducible for some η. Then for f : S → R+,

1
n

n−1∑

j=0

f (X j)→ π f Px-a.s.

as n→ ∞, for π-a.a. x ∈ S .

Unfortunately, the existing proofs tend to rely on referencing a substantial body of
advanced Markov chain theory (in particular, material from Nummelin (1984) or
Meyn and Tweedie (1993), and/or harmonic functions, and/or decomposition into
recurrent/transient classes which is a far more complicated topic when the state
space is general rather than discrete). The contribution of this paper is to offer
an alternative (short) proof that as background knowledge requires only graduate
probability, with the most advanced result being the ergodic theorem in its stan-
dard form. In our view, the advantages of this approach is that it is self-contained,
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that short proofs of the ergodic theorem can be found in standard intermediate-
level textbooks such as Breiman (1968), Durrett (2010), and that the ergodic theo-
rem has a much wider scope and range of applications than the specialized Markov
chain results referred to above.

Specializing to the MCMC setting, η-irreducibility is not quite strong enough
to guarantee (1) (see Example 1 at the end of Section 3). However, (1) is known
to hold subject to minor additional conditions. In particular:

Theorem 2. Assume that X is an S -valued Markov chain satisfying

Px(X1 ∈ dy) = p(x, y)η(dy) (2)

for each (x, y) ∈ S ×S and some measure η and some jointly measurable transition
density p : S × S → R+ . If X has a stationary distribution π, is η-irreducible and
f : S → R+, then

1
n

n−1∑

j=0

f (X j)→ π f Px-a.s.

as n→ ∞, for all x ∈ S .

Note that if S is discrete and η assigns positive mass to each state, (2) is immediate.
The η-irreducibility of X is then equivalent to the standard notion of irreducibility
in the discrete setting. Note also that by specializing to functions f that are indica-
tors, it follows that whenever π(B) > 0, Px(Xn ∈ B infinitely often) = 1 for x ∈ S .
This is precisely the definition of Harris recurrence. Thus, Theorem 2 implies that
X is a positive recurrent Harris chain.

A nice feature of Theorem 2 is that it does not require construction of any Lya-
punov functions to establish positive Harris recurrence. The assumed existence of
a stationary distribution, which is natural in MCMC applications, dispenses with
this need.

The proof of Theorem 1 is given in Section 2. Typical MCMC algorithms do
not satisfy (2). Rather, the one-step transition kernel can often be written in the
form

Px(X1 ∈ dy) = (1 − a(x))δx(dy) + a(x, y)q(x, y)η(dy), (3)

where δx(·) is a unit mass at x and a(x) and a(x, y) are non-negative. For example,
this arises in the context of the Metropolis-Hastings sampler with q(x, y) being
the proposal density at y for a given x and a(x, y) representing the probability of
accepting proposal y. The key result is then:
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Corollary 1. Assume that X is an S -valued Markov chain satisfying (3) for which
a(x) > 0 for each x ∈ S . If X is η-irreducible and has a stationary distribution π,
then X is a positive recurrent Harris chain.

The proof is a simple translation of Theorem 2 and can be found in previous papers
as well, but for the sake of self-containedness, it is given in Section 3 together with
the proof of Theorem 2.

2. Proof of Theorem 1

Let Pπ(·) ,
∫

S
π(dx)Px(·) and let Eπ(·) be the expectation operator correspond-

ing to Pπ.

A: First, suppose that η = π. The ergodic theorem implies that for each f : S →
R+,

1
n

n−1∑

i=0

f (Xi)→ Z Pπ-a.s.

as n → ∞, where Z = Eπ[ f (X0)|I ] and I is the invariant σ-field. We first
establish that Z = Eπ f (X0).

Note that we may assume that Eπ f (X0) < ∞ (for if this is not the case, we may
work instead with fn = f ∧ n and then send n→ ∞). Put h(x) = ExZ. Note that

Eπ[Z|X0, . . . , Xn]→ Z Pπ-a.s.

as n→ ∞. Since Z is invariant, the left-hand side equals h(Xn) Pπ-a.s., so we may
conclude that

h(Xn)→ Z Pπ-a.s. (4)

as n → ∞. Suppose that Z , Eπ f (X0) Pπ-a.s.. Then, there exists a, b ∈ R+ (with
a < b) for which π(A1) > 0 and π(A2) > 0, where A1 = {x : h(x) ≤ a} and
A2 = {x : h(x) ≥ b}.

Let τ1, τ2, . . . be iid Geometric( 1
2 ) random variables (rv’s) independent of X,

and set T0 = 0 and Tn = τ1 + · · · + τn for n ≥ 1. Note that (XTn : n ≥ 0)
is an S -valued Markov chain having one-step transition kernel K and stationary
distribution π. Then,

1
n

n∑

i=1

I(XTi ∈ A1) =
1
n

n∑

i=1

[I(XTi ∈ A1)−Pπ(XTi ∈ A1|XTi−1)]+
1
n

n−1∑

i=0

K(XTi , A1) Pπ-a.s.

(5)
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Of course, since the rv’s in [ ] form a bounded sequence of martingale differ-
ences,

1
n

n∑

i=1

[I(XTi ∈ A1) − Pπ(XTi ∈ A1|XTi−1)]→ 0 (6)

Pπ-a.s. as n→ ∞. Also, because (XTi : i ≥ 0) is a stationary sequence under Pπ, a
second application of the ergodic theorem ensures that

1
n

n−1∑

i=0

K(XTi , A1)→ Eπ[K(X0, A1)|I ] Pπ-a.s. (7)

as n→ ∞. Since π(A1) > 0, the π-irreducibility of X guarantees that K(x, A1) > 0
for each x ∈ S . Consequently, Eπ[K(X0, A1)|I ] > 0 Pπ-a.s., so that (5), (6), and
(7) yield the conclusion

lim
n→∞

1
n

n∑

i=1

I(XTi ∈ A1) > 0 Pπ-a.s.

and hence Pπ(h(Xn) ≤ a infinitely often) = 1. Similarly, we conclude that Pπ(h(Xn) ≥
b infinitely often) = 1. Since this contradicts (4), it must be that Z = Eπ f (X0).
Consequently, Pπ(N) = 0, where N = {n−1 ∑n−1

i=0 f (Xi) 9 π f as n→ ∞}.
B: We now extend to a general η. According to step A, it suffices to show that if
X is η-irreducible with an invariant probability π, then X is π-irreducible.

Step 1: Note that if X is η-irreducible, it is q-irreducible, where q = ηK with
K(x, dy) =

∑∞
n=1 2−nPn(x, dy).

Step 2: Suppose that π(B) > 0. Then, the ergodic theorem implies that the event
that Xn ∈ B i.o. has positive π-measure.

Step 3: We want to prove that q(B) > 0 (for then K(x, B) is clearly positive for all
x because of the q-irreducibility). Suppose, by way of contradiction, that q(B) = 0.
Thus, for η-a.a. x, Px

(
Xn ∈ B for some n ≥ 0

)
= 0.

Step 4: Note that the η-irreducibility implies that for each x,

K(x, dy) = r(x, y)η(dy) +
(
1 − r(x)

)
M(x, dy) where

∫
r(x, dy)η(dy) > 0 .

We can use this to construct a randomized stopping time L for which w(x) =

Px(L < ∞) > 0 for all x and Px(XL ∈ ·) is absolutely continuous w.r.t η.

5



Step 5: Let Cn be the indicator that θnL < ∞ where θnL is L applied to the shifted
post-n path of X. So, E[Cn | X0, ...Xn] = w(Xn). As in the proof of Theorem 2,

1
n

n∑

i=1

(
Ci − w(Xi−1)

)

is an average of bounded MG differences so it converges a.s. to zero under Pπ. On
the other hand, the time-average of the w(Xi) converges Pπ-a.s. to E

[
w(X0)

∣∣∣I].
But w(X0) is a positive r.v., so it follows that the time-average of the Ci has Pπ-a.s.
a positive lim inf. So, this implies that for π-a.a. x, the time-average of the Ci has
Px-a.s. a positive lim inf. Consequently, for π-a.a. x,

Px
(
there exists a finite randomized stopping time N = N(x) s.t. θN L < ∞)

= 1 .

Step 6: For such an x, L∗ = N + θN L < ∞ Px-a.s. But

Px(Xn ∈ B for some n ≥ L∗) =

∫
Px(XL∗ ∈ dy)Py(Xn ∈ B for some n ≥ 0) = 0

(by virtue of the fact that XL∗ is absolutely continuous w.r.t. η and Step 3). So,
Px(Xn ∈ B i.o.) = 0 for all π-a.a. x. This contradicts Step 2.

3. Remaining proofs and an example

To prove Theorem 2, it remains to prove that Px(N) = 0 for x ∈ S . Let
C = {x : Px(N) > 0}. If η(C) > 0, the η-irreducibility of X ensures that K(x,C) > 0
for all x ∈ S . Since π is a stationary for K, an immediate implication would be

π(C) = (πK)(C) =

∫

S
K(x,C) π(dx) > 0 ,

contradicting the fact that Pπ(N) = 0. So, η(C) = 0. But (2) implies that

Px(N) =

∫

S
p(x, y)Py(N)η(dy) =

∫

C
p(x, y)Py(N)η(dy) = 0

for each x ∈ S , proving the result.

Now consider the MCMC case (3). Put β0 = 0 and let βn be the first acceptance
time after βn−1. If a(x) > 0 for each x ∈ S , then (Xβn : n ≥ 0) is itself a well-defined
S -valued Markov chain. Note that the transition kernel is given by

Px(Xβ1 ∈ dy) =
a(x, y)q(x, y)

a(x)
η(dy),
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so that (Xβn : n ≥ 0) has a one-step transition density with respect to η. Further-
more, it is trivial that (Xn : n ≥ 0) is η-irreducible if and only if (Xβn : n ≥ 0)
is η-irreducible. Finally, note that if π is a stationary distribution for X, then π̃
defined by π̃(dy) = a(y)π(dy)/

∫
S
π(dz)a(z) is a probability and

∫

S
π̃(dx)Px(Xβ1 ∈ dy) =

∫
S
π(dx)a(x, y)q(x, y)η(dy)

∫
S
π(dz)a(z)

=

∫
S
π(dx) (Px(X1 ∈ dy) − (1 − a(x))δx(dy))

∫
S
π(dz)a(z)

=
(π(dy) − (1 − a(y))π(dy))∫

S
π(dz)a(z)

= π̃(dy),

so that π̃ is stationary for (Xβn : n ≥ 0). It follows that if (Xn : n ≥ 0) is η-
irreducible and possesses a stationary distribution, Theorem 2 applies to (Xβn :
n ≥ 0), establishing the positive Harris recurrence of (Xβn : n ≥ 0). It is then
immediate that (Xn : n ≥ 0) is positive Harris recurrent.

Example 1. Let S = R and let X evolve as an autoregressive process with Gaus-
sian increments in R/N, i.e. Xn+1 = αXn + εn for Xn < N where 0 < α < 1 and
ε0, ε1, . . . are i.i.d. and standard Gaussian. If Xn = x ∈ N, let Xn+1 = x + 1 w.p.
1 − ax and Xn+1 = εn w.p. ax > 0. The Gaussian distribution π with mean 0
and variance 1/(1 − α2) is stationary and the chain is π-irreducible. However, if∑∞

1 ax < ∞, the Borel-Cantelli lemma implies that starting from any X0 = x ∈ N
there is positive probability that Xn ∈ N for all n and so (1) fails for such x.

Examples of similar spirit appear elsewhere, e.g. Example 3 of Roberts &
Rosenthal (2004).
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