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Steady-state solution of Fokker-Planck equation in

higher dimensicn

- C. Soize

Office National d’Etudes et de Recherches Aerospatiales, 29, Avenue de la Division Leclerc,

92230 Chatillion, France

The purpose of the present paper is a contribution to the study of steady-state p.d.f. for mechanical
systems of higher dimension, using the FK P equation method. The articie contains three parts. In
part [ we recall results about Ito stochastic differential equations and FK P equation and we set the
probiem. In part II we present a result concerning an exact steady-state p.d.f. for a class of
nonlinear dynamical systems of higher dimension. In part III we develop a numerical method to
solve the FK P equation in a reasonable higher dimension. We present a numerical exampleina 12

dimensions case.

INTRODUCTION

We know that one of the basic tools for the treatment of
diffusive Markov processes is the Kolmogrov's forward
equation, also called the Fokker-Planck equation (FKP
equation). For mechanical applications this tool allowed
the study of the response of nonlinear oscillators to
stochastic excitation. '

Recently T. K. Caughey?® drew a review of the state of
the art in the field of the exact steady-state probability
density function (p.d.f.) for one-dimensional nonlinear
oscillator to gaussian white noise excitation.

If the excitation is not a white noise. but a ‘coloured’
process, the stochastic averaging method*®-3!-7+.76-77 cap
be used. For one-dimensional nonlinear oscillator. many
results have been obtained in the last decade??-35-38.7%

If the non-white excitation is a ‘coloured’ stationary
physically realizable gaussian process, a Markov
realization of this process can be built to obtain the FKP
equation*®*>** instead of the averaging stochastic
method. But in this case. the dimension of the FKP
equation is greater than 2 for a one-dimensional
nonlinear oscillator. and no exact steady-state p.d.f. can
be obtained. A numerical method must be used to solve
the FKP equation.

For nonlinear dynamical systems of higher dimension
excited by a gaussian white noise, the situation is different
and very little is known. The exact steady-state p.d.f. has
been obtained for some specific nonlinear oscillator of
higher dimension’®**-!3, In the general case, no exact
solution can be obtained and numerical methods must be
performed. Unfortunately the numerical solution of the
FKP equation in higher dimension is very difficuit to
build. It is for this reason that the FK P method is not used
in this situation and an approximate method has been
developed. For instance. the stochastic linearization

method allows the building of an approximation of
some problems of higher dimension3+2-31-47.67.71.72.81
Nevertheless, the most general approximate method is in
the present time. the direct numerical simulation of the
nonlinear stochastic differential equations®-#3-62-66-71.73,
The purpose of the present paper is a contribution to
the study of steady-state p.d.f. for mechanical systems of
higher dimension. using the FKP equation method.
This articie contains three parts: (1) In part I we recall
results about Ito stochastic differential equations and
FKP equation and we set the problem. (2) In part II we
shail present a result concerning an exact steady-state
p.d.f. for a class of nonlinear dynamical systems of higher
dimension. This result contains the resuit in Ref 11. (3) In
part III we shall develop a numerical method to solve the
FKP equation in a reasonable higher dimension. We shall
present a numerical example in a 12 dimensions case.

PART I: PREREQUISITIES FROM THE THEORY
OF NONLINEAR STOCHASTIC DIFFERENTIAL
EQUATIONS

The aim of this first part is to recall certain notions and to
state the results that we shall use in the following parts of
the present paper.

Notations and setting the problem

Let x=(x,,...,x,) be a R" vector. Throughout this
paper, we identify the x vector with the (nx 1) column
matrix of its x; components. The Euclidian space R" is
equipped with the usual scalar product (x,y)=
> 7-1X;y; xand y in R" and the associated norm [ x| =
(x,x)¥? We denote by Maty (n. n) the set of all the (n x n)
real matrices, we take |a|=(}},-, a3)'”* for ae Matg
(n,n),and a” denotes the transpose of a. Let W (r)= (W, (z),
.... W,(r)) be the R"-valued normalized Wiener process on
R*=[0.+=[. [lts Matzn.n)-valued covariance



function is Cy(t.1')=min(z.r')[ where | denotes the unit
(n x n) matrix.

Let Xo=(X,,,....X,,) be a R"-valued second order
random variable which is independent of the Wiener
process W. We denote by py, (y) the probability density
function on R" of the random variable X,. We consider
the Ito stochastic differential equation on R":

dX(r)=b1X.fr),rJdr-i-a{XfrJ,r)dW{r), >0 (1)
with the random initial condition:
X(0)=X, as. (2)

where [ —b(x.t)= (b{x.t));and xz—a(x,t)= (aulx, 1)

‘are two mappings defined on R"xR™ with values
respectively in R" and Mat= (n,n). Concerning the
existence and uniqueness of the diffusion process X|(r)
solution of problems (1)~(2) in the uniform Lipschitz case.
we refer to Refs 21, 22 and 28. But this case is rarely
encountered and in the following parts other tools are
necessary. On the other hand, in what follows we are
concerned with the stationary solution of the initial value
problem (1}-2). So it is necessary that all coefficients
by(x,t)=b;(x)and a (X, £)=a;(x) are independent of time
t. Throughput this paper we restrict the development to
this case, i.e. we consider only stochastic differential
equations of the time homogeneous markovian type.

Dijffusive process and FKP equation

Suppose we give continuous functions x— b(x):
R"— R"and x— a(x): R" — Maty (n, n) with the following
properties:
(Pl)—=Forall fixed positive real number R > 0and for all x
and y with |[x| <R, |y <R, there is a positive constant
Kz such that:

{]]b(x}— b)[? +|atx)—a(y)* < Kg| x— vif? 2

[B(x)[* +ato) < Kall + | x]?)

(P2) - Let L be the following differential operator on R"

- such that for any real function x— u(x) defined on R" we _

have:

F*u(x)

— (4)
0x; 6%,

n 6 i n
(L= 3 b 2D il T o)
i=1 OXj 2=y
where o(x)=a(x)a(x)"e Mat; (n,n). We suppose that
there exists a Liapounov function x.r— V,(x.z) defined
on R"xR™ with values in R*, with continuous second
derivative, which satisfies the two conditions:

3i>0: V(x,1)eR"x R™, iz Voo D)+ (LV,)(x, ) SAV, (x.1)

é
(5)

I”ﬁx»r.po Vilx,t)=— +x asr— +cc (6)
From all the above assumptions. we have the following
results?**4:

(RI) = The initial value problem:

dX(r)=b(X)dr+a(X)dW(t), t>0 (7

X(0)=X, as. ©(8)
has a unique solution X which is a R"-valued diffusive
Markov process defined a.s. for all t=0.

(R2) = For every r in R~ the random variable X(r). has a
probability density function p(r.x) which satisfies the
FKP equation on R":

=2

é LR I 2 7
5;9'-'1; g{: {bj(-‘C)P}"EMZ-l mx—t' (ex(x)p)=0 (_9)

for t>0, with the initial condition:
plL.x)=—py (x) as tl0 (10

Existence of an asymprotic stationary solution and
steady-state FKP equarion

We suppose that in addition of (P1) and (P2), there-
exists another real positive valued function x— V5 (x)
defined on R", with a continuous second derjvative and
such that:

SUP ¢ o gLlVi(x)==Cq, Cr=—+ as R=— +

(11)
with 2rhesc we have the following
fesults 4.28.44,

(R3) - The solution X of problem (7}~(8) tends in
probability for 1— +x, to a R"-valued stationary
process X¢(r) and we have:

assumptions

psx)= lim p(z, x) (12)

=~ 4+ax

where ps(x) is the p.d.f. on R" of the random variable X 5(1)
for any fixed r. The steady-state p.d.f. ps satisfies the
steady-state FKP equation associated with (9):

= ¢ 1 52
i; &x; (bj(x)pS(x))—Ejikz_l &x, o, (@x(x)ps(x))=0
(13)
with the normalization condition:
J ps(x)dx=1 (14)

PART II: EXACT STEADY-STATE p.d.f. FOR A
CLASS OF NONLINEAR MECHANICAL SYSTEM
OF HIGHER DIMENSION

In this part we establish the exact stead-state p.d.f. for a
class of nonlinear dynamical system described by
canonical equations.

Canonical equations of a class of dynamical systems

We consider a nonlinear dynamical system of
dimension m 2> | described in the canonical form.

Let O()=(Q,(t),...,0n(t) be the generalized
coordinates and Q(t)=dQ(t)/d: the generalized velociry.



We denote by P(r)=(P,(t), .... P,(t)) the generalized
momentum canonically conjugated from Qfr). The
wvariables P and Q are the canonical variables. We denote
by p=(py,.-..p,) and g=(q,,...,q,) the variables
associated with the P(z) and Q(:) stochastic processes. Let
p.g— hip,q) be a real function defined on R™x R™. For
z€{p,q) we shall denote by 6.h and G2h respectively the
R™-vector and the (m x m) real matrix such that:

" ch r %h
Ehy=z=  [GH]p=
=f

éz; 0z,

The nonlinear dynamical system is subjected to a R™-
valued normalized gaussian white noise denoted by
W,(t)= (W, i(t), ..., W, (). It is described by the
following generalized nonlinear stochastic differential
eguation on R"=R™ x R™ with n=2m:

0=0,H(Q,P), >0 15)
P=—G.H(Q,P)+F(Q, P, W,)

with the random initial condition:
(M=0Q,, P(0)=P, a.s. (16)

where:
(i) The derivatives Q and P with respect to t of the

stochastic processes Q(t) and P(t), should be
understood in the sense of the theory of generalized
stochastic processes**.

(i) The Hamiltonian function of the corresponding
associated conservative system (i.e.. F=0) is denoted
by H. We shall assume that (1) g.p— Hl(g,p) is a
function on R™xR™ with values in [0. +[,
independent of time r: (2) function H has a
continuous second derivative, and for all p and g in
R™, the matrix 6 H e Matg (m,m) is positive-definite:
(3) for all p and g in R™, we have the following
inequalities:

0<([éiH]=.2) <Crf=]|?, VzeR™ |z|>0 (17)

where C; is a positive real constant which does not

depend on p and g. In addition we shall assume that:

Inf,:. ;5 p:H(g,p)— +x fR— +x (18)

(iii) The initial condition (Q,, P,) is a given R™x R™-
valued second order random variables and has a
probability density function Po,.2,(ds D).

(iv) The non-conservative force F=(F,,...,F,) is
expressed in terms of the canonical variables. We
consider here the restricted class of systems such that

F(Q,P, W)= —f(H)GO +g(H)SW, (19)

with O =¢,H (first equation (15)), and where S and G
are two constant real (m xm) matrices such that
G=25S" and |S|> 0. Hence denoting by N the rank of
S we have lS N<m, and G is a positive matrix, but
not necessarily a positive definite matrix. Functions f
and g are continuous on [0, + o[ with values in
10, + o[, and g is differentiable. In addition, there
exists ro>0 and real constants u>0, C,>0, C,>0.

C,>0, —xc<x,<1, 2, >2, =1, 25<z, —2,+1
2 2 1 =% 0 <X =2

such that:
Yrzr, flnzCr™ (20)
Vrzry, Coexp(—ur*) <g*(r)<C,/™ (21)

(v) In order to apply the resuits (R1) to (R3) of part [, we
introduce the following notations:

1Y _{0O)\, _ [0 n
x-(p)eR, X(r)-(Pm). xo_(P() (22)

6,H ' ' :
x)=("". ] R 5
e (.—o,ﬁ—ﬂH_)Gc,H)E )
L Olmxm Omumr\
afx)_<0wm g(H]S)E Matg (. n) (24)

Hence the initial value problem (15-16) can be written
as:
X =5 W, 0
{ (X)+a(X) 1> 29)

X(0)=X, a.s.

with W=(W,, W,) a R"-valued normalized gaussian
white noise. We know (see Ref. 44) that the generalized
stochastic problem (25) is equivalent to the following Ito
stochastic differential equation with initial value:

{dX(r)=b(X(z))dz+a(X{r))dW(rJ, >0 26)

X(0)=X, as.

Finally, we shall suppose functions £, g and H to be such
that the mappings b and a on R", defined by relations
(23)}{24) verify the inequalities (3) and that the random
variabie X, is independent of {W(t),:>0}.

EXISTENCE AND UNIQUENESS OF A
REGULAR SOLUTION AND FKP EQUATION

Let uand v be two real functions defined on R™ x R™ with
a continuous derivative. We introduce the Poisson
bracket notation:
mfou v & =0kt B
[H. U] = z (.—.__._"'_'_ = <un- GPU> '-<Cpu‘ aqu>
j=1\04;0p; Cp;6q;

(27)

Let L be the differential operator on R™x R™"=R"
which is defined by (4) and which is associated with the a
and b mappings given by (23) and (24). Let g,p— Vg, p)
be a real function on R™ x R™ with a continuous second
derivative. Hence we have:

LV=[V,H]—f(HKXS" ¢,H,57 ¢,V

]‘ 9 o -
59°(H) Y (G V)Sk, 5% (28)
k=1

4

with S*e€R™ such that S¥=S,. In the particular case
where V=o0(H), with r— @(r) a real function on R, we



S
- ) po e B e
LV= ( S g H)w" (H)~ f(H)o (H))HS‘ 5 H]
: . m
+39"fH)<D'(H] > {(G2H)Sk, 5% (29)
- k=1

with ¢’'(r)=d/dr o(r). We observe that in this case we
have used the Poisson bracket property: [o(H),H]=
@'(H)[H, H] =0and the usual differential calculus: G,V=
@' (H)G,H, GiV=0"(H) 5,H(E,H)T +@'(H) G3H.

Let us consider the Liapounov function Viig,p)=
H(g, p)+7y with 7 a positive real number. The conditions
(6) is satisfied in view of (18). Note that dV, /ét=0. Using
the relation (29) we obtain:

LV, == [(H)IST S H| +36E) T <(GHS, 5%
k=1

It is clear that for all fixed positive real number R,
condition (5) is satisfied for all p and g such that | pjj? +
lg/|* < R. Hence we can limit the proof of the condition (5)
to the case H>Hy>r, with H,>1 and where r, is the
positive real number introduced in (21). The inequalities

(17) yieid
0< ¥ ((G2H)SY, S* < CrlS|? (30)
k=1

and (21) gives g*(H)<C,H because «,<1 and H>
Hy> 1. Hence we have for H>H,:

LV, S =fUEIST 0,H| +5 CaCASPH

and condition (5) is satisified with i=4C,C|S]*>0
because >0 and - f(H)|S” H[*<0. So, we have
proved the following result in using (R1) and (R2) of part
I:

Resuit 1: The nonlinear stochastic problem (15) subjected
to all conditions defined in (i), (iii), (iv) and (v), has a
unique regular solution. For every :>0, the random
variable X (t) has a probability density function p(z, q,p)
which satisfies the FKP equation on R™ x R™:

Z—f+[p.H]—div,.r(p)=o, t>0 (31)

with the initial condition:

p(t.q, p)= pg,.p,,p) as tl0 (32)

where div,J=3 ", 3/3p,J; and where J(p) is the R™-
vector:

1, .
J(p)=p(f(H)+g(H)g'(H))G &,H+§g'(H)G Gp  (33)

Existence and construction of the exact steady-state
pd.f ' . _

Asymptotic stationary solution of system (15)(16)
does not exist with the previous assumption. We must
change the assumprion on S introduced in (iv).

Result 2: With the assumptions of the resuit 1. if the rank
of S is equal tom (hence G is a positive definite matrix), the
process X(r) tends in probability for t— + % to 2
R™ x R™-valued stationary process X t)=1{0s(1), Ps(0)}.
For every 1. the steady-state p.d.f. ps(q, p) of the random
variable X(t) satisfies the steady-state FKP equation on
R™ x R™:

[ ps, H] =div, J(ps) =0 (34)

with the normalization condition:

J;_ . [ps(q, p)dgdp=1 (35)

where J is given by (33). Problem (34)~(35) has an exact
unique solution which is written as:

"Hiq, p)

al 1 =20 ¢
pslg, p)=Cy mcxlﬁ(--’-Jo g=(r)y (r)dr)

(36)

where Cy Is a positive real constant defined by condition
(35).

Proof:

(a) Existence of X(r)-process is obtained applying resuit
(R3) of part 1. The proof of this point is lengthy
because several cases must be considered. Hence we
shall only give some elements. First of all one can
prove that the assumptions on H allow to consider
only the case {qj*+ | p{*> R? with || pil > 0. Hence
|S™6,H| >0 because rank S=m and |&,H(>0 in
this case. Next we can exhibit a V,-function the
condition (11) to be verified. For instance the case
2, <a, is easy to perform. The choice V,=H yieids as
R— +x,

LVZSH(—CIH" ST H|? +éc,c,|sl=)_ -

(b) The application of (13) and (14) yields (34) and (35)
taking into account result 1. Exact steady-state p.d.f.
is built by searching it in the form pg(g, p)=o(H).
Hence [ps,H]=0, J(ps)=yGé,H with y=
(f+99")o+%+g°¢’ and equation (34) is verified when
@ is solution of equation y=0. Note that ps is
integrable on R™ x R™ because we have (18) and as
H— +x,

C Rie LE C ;
ps(q,piszicxp(—H'(C—‘—uH’" '))~E’1cxm-H’)
0 2 0

—wlth ?=a1 -a2+1>0 and :D""';.‘<0D

Remark:

Conditions (ii) yield that equation G,H(g,p)=y can be
solved locally in g for v in R™ Let p=h(g, y)e R™ be the
solution. If we assume that / can be built for all y in R™
and that y—h(g, v) is a continuously differentiable R™-
valued defined on R™, hence the steady-state p.d.f.
Po,6(q, y) of the random variable {Q(r), Q(t)}, with respect



to dgdy is given by:

Poold, )= ps(q, hig, y))det[é,hig, v)]| (37)

where [ 4], =6h,/Cy, is the Jacobian matrix.

Exampie 1

Let M(q) be a symmetric real (m x m) matrix such that
forall g in R™. M(q) is positive definite and g— [M(g)]™!
is a C*-function bounded on R™ Let U(q) be a C2-
potential function on R™. Hence:

{M(q)™'p.p>+Ulg)

L

Hig, p)=

is the Hamiltonian function associated with the nonlinear
dynamical system on R™:

ad; (M(Q(2)Q(e))+ f(H)GO() + 8,U (Q(H)) = g(H)SW,

The generalized momentum is P(r)=M(Q(z))0(r). When
rank S=m. the exact steady-state p.d.f. Po.s(a, y) is given
by (37) with h(g, y)=M(q)y and [6,h] = M(q).

Example 2

One can generalize example | considering a more
general form of the kinetic energy of the dynamical
systems:

—

T(q.9)==<{Mlq)4,4> +<{B(g), 4> +Clq)

2
such that T(q,4)20 for all ¢ and ¢ in R™, M(g) as in
example 1, B(g)e R™ and C(g)eR.

In this case the generalized momentum is given by
p=6,;T, i.e. by p=M(q)d+ B(q), and the Hamiltonian
function defined by

H={p.§>~-%(q,4q)
Z£(q,9)=Tl(q,9)—Ulg)
is written as:

1

H(g,p)==<{M™'(q)(p—Blg)),p— Bl(g)>

[ ]]

+2(M~*(g)(p—B(g)), B(g)) +Clg)+Ulq)

For this general conservative part, the exact steady-state
p.d.f. is given by (36) if rank S=m.

PART III: NUMERICAL RESOLUTIGN OF THE
STEADY-STATE FKP EQUATION IN
REASONABLE HIGHER DIMENSION

We consider the initial value problem (7) and we assume
that a unique regular solution exists and tends for
[— + 0 10 a stationary process Xs(r), i.e., the result (R1)
to (R3) hold. Here we are going to construct a numerical
approximation of the steady-state FKP equation (13)
with condition (14). This approximation is based on
Galerkin's method, taking for the base functions the
normalized Hermite polynomials in several variables.

The main difficuity of this approach is the convergence
rate for a problem of reasonable higher dimension. So. we
propose a method to accelerate the convergence rate. We
mean by ‘reasonable higher dimension’. a FKP eguation
on R" with n of the order 10 to 20. :

In the following we keep all the notations introduced in
the part [.

Notations in muliti-indices

We consider multi-indices x=(a,, ..., z,)e N", B=(8,,
--» Bp)€N" and denote |a| =Y 7., %, [B=Y 1., 8, The
notation |xj=0 means z, =z, =...=x,=0, We let: /=
2% X2ls §, =0, , x...x4,,; where 0,4, is the
usual Kronecker symbol; x¥*=x}' x... x . Finally, (a)
designates the multi-index (xp =fay, - ooz;— T T
o )

Hilbert space [*(R",v,).
Let v,(dx) be the canonical normal measure on R". We
denote its density with respect to dx by f,(x). Thus

vp(dx)=fy(x) dxx; f,(x)=(2x)'"’zexp( —%,fo'z) (38)

Let *(R".v,) be the Hilbert space of the real functions
defined (v,—a.e) on R" with integrable square with
respect 1o v,. This space is equipped with the scaiar
product:

fp.y> = f (X)W (x) folx) dx
-

Normalized Hermite polynomials on R
The normalized Hermite polynomial H,(x) on R of
index me N is defined by

d ™,
Hm(x)fi(x?=(—l)"'(a) Jilx), xeR (39)

and its generating function is written as
r
x+iy)"fip)dy: =/ =1 (40)

e

H,(x)=

The polynomials can be built with the recurrenece:

Hylx)=1 1)

H - i(X)=xH_[x) —--Ei— H, (x)
dx

and have the following properties:

The functions h,(x)=(m!)"'?H_(x), meN, form an
orthonormal basis in L*(R.v,). The derivative of H,(x)
with respect to x equals d/dx H (x)=mH_,_ (x). The
Fourier transform (FT) of H,, with"}spect to the measure
v,(dx) is:

[.e“""H,,,{.‘c)f(x)dx=(-fu?'" exp(—%“z) (42)

Normalized Hermite polvnomials on R"
The normalized Hermite polvnomial H,(x) on R" of



multi-index ze N" is defined as:
H,(x)=H, (x,)x...x H,(x,) (43)

with A, (x;) the normalized Hermite polynomials on R.
[ts generating function is written as:

H,fx)=j (x+iyPf.(y)dy (44)
|-

with (x+iy)a=(x, +iy, "' X... X (X, +iy,)=. We list the
following properties of the multi-index polynomials

(@) The functions h, on R" of multi-index zeN" such
that: 7 .
hy(x)=(/a) " H,(x) @)

form an orthonormal basis in L[*(R",v"). Thus we
have

Shy hy> =5, (46)

(b) The partial derivative of h,(x) with respect to x; is
written as

-

g%h,[xhv/; e (@7

(¢) The FT of H, with respect to v, is:
J‘ e~ P H (x) fulx)dx=(—iuP ex;:n(—l Muﬂz)
g : 2

for all u in R™.
(d) In addition for all je{l,....n} and for ail multi-
indices x and § in N", we let:

[ L X hy(x) fy () )

and we have the following result:

= v/z—:’ dara+ v'fﬁ_j Oz.0v (49)
Hermite-polynomial expansion of a probability density
function

Let j¢(x) be a probability density function on R". Thus
Ps{x) = 0and condition (14) is verified. i.e., jc € L' (R"). We
can always rewrite g¢(x) dx=g(x)v,(dx) where

g(x)=ps(x) falx) ™" (50)
Is 2 v,-integrable function on R". We say that q is the
density of pg(x)dx with respect to v,.

(i) In the particular case where ge[*(R",v,), we can
write the expansion in multi-index Hermite-
polynomials of this density:

g(x)= Y gqh,(x) (51)
ld=0

with h, defined by (45). This series converges in
L[*(R",v,) and for any multi-index xeN", the real

number gq, is given by:
q,=<q,h,> =j Pslx)h,(x)dx (52)

As hy(x)= for |z{ =0, condition (14) yields:
g;=1  for|af=0 (53)

Let (F5¢)(u), ueR", the FT of gg¢(x) such that:
(fﬁs)fu)=f e~ €42 pe(x)dx | (54)
R
Hence # 5 admits the expansion:

#ps)wmerp( -3 i) ¥ s/ mwr @9

ki=0

The expansion (55) of (F js)(u) allows to compute
easily the moments in function of g..

(i) If g does not belong to L*(R", v,), but j; os such that
the real numbers g, are finite for all , hence we may
also conmsider the expanmsion (51) and study the
convergence of this series in 2 space that is larger than
LAHR",v,).

Acceleration of the convergence rate

In a first step we are considering the following initial
linear stochastic problem on R":

L == L) 114
{dX (t)=BX 1)+ AdW(), (>0 (56)

X4H0)=X, as.

where 4 and B are two real (1 x n) matricss, the B-matrix
being such that all the eigenvalues of B have strictly
negative real part (in this case B is said to be
asymptotically stable), and W(r) is the R"-valued
normalized Wiener process on R".

We know that the problem (56) has a unique solution
X*{r) which is a R"-valued centred second order gaussian
diffusion process and that X*“(t) tends in probability for
t— + to a R"valued stationary process X%(r). For
every ¢ in R, X§{c) is a centred second order gaussian
random variabie and its p.d.f. p5{(x) on R", which satisfies
the steady-state FKP equation (13) with b(x)=58x and
a(x)= A, is written as

pE(x)=(27)""3(det Cyg)™'7 exp(— %(Cﬁ." x, x))

(57)
where Cy=E(X{{1)X$(r)" )eMaty (n,n) is the cov-
ariance matrix of the random variable X%(r). This
covariance matrix can be easily computed.

In general, Cy, is very different of the unit matrix J
and we know that expansion (50)~(51) of pf (given by
(57)) requires in order to converge a great many terms
in the series (51) because the comvergence rate is low
in this case. However Cy; is 2 positive definite matrix

and we can build the following factorization:

Cry=UUT (58)



with U € Mats (n,n). Let X'(r) be the R"-valued stochastic
process on R~ such that

Xry=UX" ) (59)

Hence problem (36) can be written as:
dXHt)=BX )+ AdW (), >0 (60)

with B=U"'BU, 4=U"'4 and £,=U"'X,. The
asymptotic stationary solution X%(z) of problem (60)
Is a centred diffusion gaussian process. For every time
tin R, the covariance matrix C, ¢ of the random variabie

X&(r) is equal to the unit matrix . In this case the
expansion-of the steady-stare p.d.f. pi(x} of X+ requires
only one term to obtain an exact convergence. The
convergence rate is infinity.

These resuits show that the Hermite-polynomial
expansion of the steady-state p.d.f. ps for the nonlinear
problem (7) will be generally slowly convergent.

In view of accelerating the convergence, we are
proposing following method.

(1) The above 4 and B matrices (with B asymptotically
stable) is calculated in minimizing the distance of the
Xs(t)-stationary solution of nonlinear problem (7)
from the X§(t)-stationary solution.of linear problem
(56). For instance we can choose the distance
dist(X(z), X§(1))=E(| Xs(r)= X(1)[|?) and apply the
stochastic linearization method. Finally when 4 and
B matrices are known, the factorization (58) of C .
can be performed and the U matrix is known. °

(2) The 4 and B matrices being known, nonlinear
problem (7) is rewritten as:

{dX[r) =(BX(t)+b" (X (1)) dt + (4 + & (X () dW ()

X(0)=1x, a.s.
(0)=1x, as (61)

where x— b"*(x) and x— aL(x) are two mapping on R"
respectively with values in R" and Matg (n, n) such that:

¥ (x)=b(x)=Bx: a"(x)=a(x)—A (62)

(3) Let X(t) be the R™-valued stochastic process such
that:

X(n=UX() (63)

In performing this transformation in (7) we obtain:

{dX'(r)=5(.f(r)) dr+a(X(0)dw) -
X0)=X, #4)
with :

' b(x)=Bx+5"(x)eR" (65)
a(x)=A+ad"(x)e Maty (n.n) (66)

where B, 4 and X, have been previously defined and

where 57 (x)=U"1p¥ (U x)eR", a'Hx)=U"'a" (x)e

Matg (n, n).

(4) Due to the existence of an asymptotic stationary
solution of problem (7), the new problem (64) in X
has also an asymptotic stationary solution denoted
by Xs(1). Forevery r in R, the steady-state p.d.f. Ps(x)

of the random variable X(¢) satisfies the steady-state
FKP equation (13), i.e.,

- ] & 2 e
,; Py “»“‘"’“-‘”‘EL coy oy (G x(x)s(x)) =10
(67)-
with )
G(x)=cd"+ ' (x) (68)
=447 (69)
FHx)= A" (x)" + @ Hx) AT + @G Hx)T
(70)
and the condition:
J fs(x)dx=1 (71)

Note that the p.d.f. ps(x) is such that pg(x)=
Ps(U ™ x)[det U™,

(5) A numerical approximation of problem (67)~(7 1) is
built by using Galerkin's method based on the
Hermite-polynomial expansion (50~(51) of Os (see
the next section). But it is clear now, that the
convergence rate of the series (51) is berter because
the nonlinear problem (64) appears as a perturbation
of the linear problem (60), and for this last one. the
expansion is exactly converged with one term. Note
that, the smaller the distance between nonlinear
problem and associated linear problem is. the larger
the convergence velocity of the js-expansion is. .

(6) Convergence of the Hermite-polynomial expansion
built in the next section. can be studied by using
results (i) and (ii) of the previous section. This
mathematical aspect will not be discussed here.

rth order approximation to steadv-state FKP egquatien
Let r>0 be an integer and R the number of all muiti-

indices x such that the length |2|€(0,1.....r). The rth

order approximation of js, denoted Js ,, is given by

r

Per0)= T guhix)f(x) (72)

iz =0

Substitution of (72) on (67), taking the scaiar product of
L*(R",dx) with h, for any £ of length |Ble (0.1,...,r)and
integrating by parts we conclude that the vector qe R of
coordinates g, is solution of the homogeneous linear
equation

with ¥ =2 + Z e Matg (R,R) and where # and & are
two real (R x R) matrices with entries:

j=1Ja OX;

i & 3 3
Gp=3 ¥ f (i hg{x)).i{&,-k(x)h,zx)f,txndx
2J.k=1 /" x

0x,



We know that condition (71) implies (353). Thus we can
introduce the block decomposition of (73).

[ f)(l) "
W STE SPAY. |

with £, eR, A ,eMa, (l,LR-1), X, &Matq
(R=1,1) and X ,,eMatys (R-1, R—1) and where

qe®~! is the vector coordinates g, x: |aje(l,...,r).
Finally we obtain

5§,(I}=(1+ Z qgh:{x)

)f.(-‘c) (76)
=1
where q is solution of the linear system on Rf ™!,

A 2q=—Ay, (77)
Computarion of the drift coefficients

Using (65) and (74), property (47) and dct' nition (48),
we can write 4 as:

By =B, + BN (78)
with
Br=— Y /B BuIy’ (79)

k=1

ag=-1 B

5“(1);1 (x)higy () frlx) dx

(80)

(i) Computation of the terms 4%, can be easily and
exactly pertormed using the result (4Y).

(ii) The terms 2}* depends on the nonlinear part 5'(x)
of the drift. vector.

In general no exact calculation can be performed and a
numerical method must be used 1o compute the integrals
on R". If the dimension n < n, with n, of the order of 10, a
3 to 5 points gauss method with the weight exp(—4 %)
can be used for each coordinates. When ny<n<n, with
n, of the order of 20 a Monte Carlo numerical smulauon
can be used to compute the integrals on R". [f n>n, it is
not reasonable, in general, to compute these integrals and
the proposed method must be abandoned

Compuration of the diffusion coefficients

As the drift coefficients. using (68. (75), (47), notation
(48) and the orthogonal property (46), coefficients 2y, can
be written as:

95:“‘6"?1534'92’: B1)

with

1 L
9‘5¢=§ Z V/ﬁ—h&?k(\/zécaf.m‘_'ﬁ'wr) (82)

< k=1

1 &2 - 0
92'::; Z \/{BI‘J‘ hiﬁ}‘(x)-—o'( '”'i«:[r)f{ ) dx

- jk=1 R c'j

© (i) The coefficients &

(i) Computation of the coefficients Ja, can be exactly
performed usmg l:he result (49). L

L, which depend on the nonlinear

part ¢'“ of the dxffusmn matrix, are computed as

Numerical example for a FKP equation on R*?

A general computer code. based on the previous
method, has been developed to analyse the stationary
dynamic stochastic response of a jacket-type offshore
structure subjected to wave effects for a given short term
sea state.

To realize this code many complementary algebraic
calculation and numerical test have been performed: (1)
to reduce the dimension of the initial problem; (2) to
establish the markovianization of the coloured gaussian
input process; (3) to build the pseudo-linear problem by
using stochastic linearization method: (4) to optimize the
choice of the value of rth order approximation; (5) to
select the muiti-indices which are neglected in the series-
expansion (72) and to guarantes the- preservation of
moment properties; (6) to adapt the calculation of
integrals on R" of the nonlinear part of the drift
coefficients in the case of hydrodynamic nonlinearities; (7)
to calcuiate moments and statistics on sample paths such
as upcrossings, downcrossings, absolute maxima on an
interval and so on.

It is clear that we cannot develop in detail all these

points. However, presenting the numerical example, we
shall give some commentaries.
(A) So, the present example concerns a jacket-type
offshore structure. For a given short-term sea state, the
fres surface elevation # is modeiled by a time-stationary
centred second order ‘coloured’ gaussian random field.
This stochastic field is fully described by the unilateral
wave spectrum denoted by Sq(w) and written as

i =i 2R
S,,[aJ):Hff;T,,/.(J]-_;), w>0

where 4 is a given positive real function on R*, H 5 is the
significant height and T is the apparent mean period (ses
Ref, 44),

The strucrure is assumed to have a linear behaviour
and nonlinearities in the present probiem are caused by
bydrodynamic viscous drag forces and by the fluid-
structure interactions due to motions of the structure as a
resulit of its deformations in time. The present structure is
a tapered vertical line-like structure, made with a pipe
having circular section. artached to the sea bed and free at
the top. The water depth is 30 metres and total height of
structure is 40 metres. Denoting by D and S the exterior
diameter and section of the pipe, by C, and C,, the
hydrodynamic drag and added mass coefficients relative
to the direction perpendicular to the axis of the pipe, we
have presently DC,=0.57(m) and SC,=0.46 (m?).
Hydrodynamic forces are described by the generalized
Morrison formula in terms of the velocity field ¥ and
acceleration field 4 of the incident flow, and of the
hydrodynamic coefficients DC, and SC,,. The random
modelling of the wave leads us to use a first order
kinematics of the incident flow. Thus the stochastic field
(V,4) with R* x R3-values is also time-stationary and
gaussian fieid (ses Ref. 44). The structure is modelled with
30 beam finite elements and we are studying the plane
movements. The total number of degrees of freedom is



N =90. Thus the discretized system is governed by the
following nonlinear stochastic differential on R":

vl + M) Y ()= EY () + XY (0)=4l | Alt)+ Fp(V(2), Y(2)
(84)

where:

(1) Y(t)=(Y(),..., ¥y(z)) is the vector of the unknown
nodal displacements;

(2) «#, 6 and X" are respectively the structural mass.
damping and stiffness (N x N) real symmetric and
positive definite matrices;

(3) «#, is the hydrodynamic added mass (N x N) real
symmetric and positive matrix;

(4) V(e)=(Vy(t),..., Vylt) and A(t)=(A,(1),.... Aylt)
arethevectors of the values of the V'and A discretized
stochastic fields along the wetted elements of the
pIpe:

(3) #, is a (Nx M) real matrix. The term A A
represents the equivalent forces applied to the wetted
nodes of the finite element meshes and is produced by
the hydrodynamic inertia forces distributed along
the pipe.

(6) v,y—Fp(v.y) is a R"-valued function defined on
R x R" and represents the equivalent forces applied
to the werted nodes of the finite element meshes. The
term Fp(V(t), ¥(r) is produced by the nonlinear
hydrodynamic drag forces distributed along the pipe.

- (B) Mechanical point of view allows to reduce the
dimension N=90 of this problem considering the
classical generalized eigenvalue problem:

HY' =@M+ o), 0<o?<wi<. ..
which is associated with the homogeneous conservative
system. In the present example the first three eigen-
frequences are w, =2.18, w,=12.3 and w;=35.4 rad/s.
For w>6rad/s we know that the energy in the wave
spectrum S (w) is negligible. Thus we can represent Y(r)
with the fifit pth normal vibration modes ¢'eR" and
write:

psN (85)

In view of the previous values of w,, we have selected p= 2.
Projection of differential equation (84) in the subspace of
R" generated by (', ..., y/?), gives the reduced form of the
nonlinear stochastic differential equation on R?:

M Z(1)+ €200+ X Z(1)=E (1) + Fpa(E®1), Z(1))
(86)

- with Z(1)=(Z,(t), ..., Z,(t)) and where:

(1) A, %,and X, are (p x p) real symmetric positive
definite matrices, .# p and X', being diagonal
matrices.

(2) &) and &3(r) are two dependent R’-valued
stochastic processes such that for all ie(1,..., p):

§HO =<' A AR

: (87)
=Y R7UGV(@), ¥
Jj=1

with ReMat: (p.p) and GeMat: (M.N) two
matrices which result from the finite element

formulation.

(3) u.z=— Fpplu.z) 1s a RP-valued noniinear function
defined on R” x 7 and which is deduced from the F,-
function.

(C) Let &(t)=(E"r), #*'(r)) be the R? x R? = R*”-valued
stochastic process which is a centred second order
stationary gaussian process because the mapping n— ¢ is
a stable linear filter. Classical spectral analysis technique
allows the calculation of the Mat- (2p, 2p)-valued spectral
density function S,(w) expressed in terms of the frequency
response function of this filter and the spectrum S (w).
We can verify that &(r) is a physically realizable protess.
So we built an approximate Markov realization of this
process-using the method developed in Refs 43, 44 and 70;
The model which has been developed, is a
markovianization with dimension 4p. Thus, Q, and Q,
matrices are calculated such that

E(t)=0,L(r)
{df:fz)=92;m dt+dW, (1) T
where [(r) is a R*P-valued diffusive stochastic process,
W,(t) is the R*?-valued normalized Wiener process, 0, is
a (2p x 4p) real matrix and Q, is an asymptotically stable
(4p x 4p) real matrix. _

(D) Putting X(r)=(Z(t), Z(1), {(t)) the R x R? x R*P =
R®?-valued stochastic process, equations (36)and (88) can
be written in the form (7) with n=6p, i.e.:

dX(t)=5b(X,t))dt+adW(1) (89)

with a€ Matg (n.n) a constant real matrix.

(E) Stochastic linearization technique is used to build the
matrices A and B introduced in the section ‘Acceleration
of the convergence rate’. In fact this method is applied
directly on equation (86) and the second order linearized
differential equation which is obtained. is transformed in
the canonical form (56).

(F) Finally the previously numerical resolution of the
steady-state FKP equation with acceleration of the
convergence rate is applied.
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For the treated example, we have p=2 and the steady-
state FK P equation has dimension n=6p=12. Integral in 24
relation (80) is computed with five gauss points and the
retained vaiue of the rth order approximation is r=3. 5
(G) Let Y, (r) be the horizontal translation at the top of
the structure in the sea-wave direction. It is a component %
of the Y(r)-procsss which is solution of stochastic
- i | -
equation (84). We put oy, =(E(Y,()*))'"3, Gy = 7
(E{Y;np(r)z))hz and vy, =1/2n éNl’._..’faNL‘ Let o, 6, and v, 28
be the same variables corresponding to the process Y5 (z) E
obtained by stochastic linearization. Figs | and 2 show 9
the evolution of ¢y, /oy, G, /d, and vy, /v, in function of a
parametric investigation expressed in terms of 1/2H, 3 30
and T,/T, with T,=2zw '. These figures show the ”
difference obtained in this case. between the stochastic
linearized solution and the nonlinear solution built by
numerical resolution of the steady-state FKP equation. 32
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