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NEW APPROACH -
TO SMALL TRANSONIC PERTURBATIONS
FINITE ELEMENT
NUMERICAL SOLVING METHOD

PART II: NUMERICAL APPLICATIONS

by

I J. ANGELINI (*) and C, SOIZE (*)

ABSTRACT

In this Part {1, we give some numerical applications of the finite element numerical
solving method exposed in part |, for the unsteady small transonic perturbation. A
2-D code has been developed to validate the proposed approach. We present
some numerical results for airfoils. Steady and unsteady transonic flows are mainly
considered. These resuits are a validation of the Part | developments.

Keywords (NASA thesaurus): Aerodynamics — Transonic flow — Numerical
methods — Finite efement method.
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II. — NUMERICAL APPLICATIONS

IL,1. —INTRODUCTION

In Part I, we described a time-implicit finite element
numerical solving method with mixed variables: phys-
icalfentropic variables, for unsteady conservative non-
linear hyperbolic systems, This method can be
applied in particular to the Euler equations.

We then showed that this formalism couid be
applied to the 3D unsteady small transonic perturba-
tion equations. We obtained a new form of the
smali transonic perturbation equations in physical
variables, which have rotational solutions and which
allow body interactions to be accounted for, contrary
to the potential small transonic perturbation equa-
tions in ADI scheme on structured meshes.

In Part II, we give numerical results for 2D tran-
sonic steady and unsteady flows which validate the
numerical method proposed, in the framework of
approximation of small transonic perturbations, This
2D code was also developed to verify the feasibility
of development of an isentropic unsteady transonic
3D code in an unstructured mesh. Finally, the equa-
tions and the solving method chosen supply a code
which operates in direct mode and inverse mode as
well as in linear mode (subsonic and supersonic).

I1,2. —DEVELOPMENT OF THE 2D PROGRAM

We developed a 2D code based on the equations
of Sections 4,4 to 4,8 of Part L

IL,2.1. — CONSTANTS OF THE SCHEME

The only constants of the scheme are py and pq,
introduced in equation (I-73). They were numerically
calibrated. We obtained:

Ko =0-45, ul =0-6.

These constants are independent of the problem
treated, i.e. of the mesh, the time step, the Mach
number, the angle of attack, etc. These fixed values
arc used for all the numerical applications given in
Sections II,3 and IL4.

Rech, Aérosp. — n® 1989-2

1,2.2. — CONVERGENCE NORM FOR THE
STEADY CASE

In addition to the lift and moment on the airfoils,
we use the criterion log(R2) for the field, where R2
is the following norm:

M,

v 1/2
R2=[]Q|”1 v cs,,{K(At)“(wz”—Wf)J}z]
J=1

where CS, is the area of the finite volume element
Ml}

(cell) J, M, is the number of cells, Q= 3, C8,is
J=1

the measure of domain Q and W, is the first com-
ponent (p} of W.

For the steady case, the tolerance on convergence
of the conjugate gradient is controlled with respect
to log(R2).

IL,2.3. — U AND W REPRESENTATION

As functions U of the approximation space % have
a trace on the boundaries, the pressure coefficients
Cp, the local Mach numbers, etc. are naturally calcu-
lated with U. Equation (I-12) must be verified numer-
ically, i.e. U=V S (W)=H(W)W. In the field, we
take the norm L2 of field U— Vg S (W), written on
each finite volume element U — & (W) W, where U is
the barycenter of the values of U at the apex nodes
of the element and W is the constant value of W on
the same element.

We also computed the pressure coefficients Cp,
denoted CPR, in W representation. Since the
functions W of ¥ do not have a trace on the bound-
aries, we used a local lifting. In each node I of an
airfoil boundary, the lifting value of W in this node,
denoted W R, was computed by:

WR=(Z,CS,) 'L, CS, W

extending the summing to all the finite volume ele-
ments J which have a common apex with node I,
where WY is the value of W on each of elements J.
The lifting chosen is only an approximation which is
also the case for the lifting pressure coefficient CPR.
However, except for the lifting approximation, the
comparison of C, (in U representation) with CPR (in
lifted W representation) gives a very good indication
of equation (I-12) from a numerical standpoint.



I1,2.4. — COMPUTATION OF THE CFL FOR
THE STEADY CASE

In the method developed, the time step At is not
local for the steady case. For each finite volume
element Je{l, ..., M,}, the local time step, denoted
Aty, is defined by At,=L,/V;, where:

LJ=(CSJ)1I2’ VJ:}-+M_1(1—}'W(2‘D)1,2.
Under the usual conditions of functioning of an

explicit scheme, a time step Az should be taken, then
denoted At,,,;, such that:

min
Jefl, .o My}

Atexpi = {Atl}’

If At is the time step, considered fixed, of the
present implicit scheme, we then define the CFL by
CFL=At/At,, e

CFL=  max

Jeil, ..., My}

{AtjAt,}.

II,3. —NUMERICAL CASES TREATED

iI,3.1. — STEADY COMPUTATIONS

Below we give the results of the steady computa-
tions for the following cases:

C18: NACA12 airfoil, Mach 0.8, angle of attack 0
degrees.

C28: NACAI12 airfoil, Mach 0.85, angle of attack
1 degree.

C38: NACA12 airfoil, Mach 0.15, angle of attack
0 degrees.

C48S: Biplane NACAI12 airfoils, Mach 0.58, angle
of attack 0 degrees.

C5S: Biplane NACAI12 airfoils, Mach 0.58, angle
of attack 6 degrees.

C6S: S airfoil, Mach 0.735, angle of attack 0.6
degrees.

(1) For C4S and C38, the Mach number used,
0.58, is different from the reference Mach number
which is 0.55. We will explain why.

(2) The § airfoil of the C6S case is the profile of a
supercritical wing section of a transport aircraft of
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the Airbus family. The influence of the mesh is
discussed for this airfoil. Three meshes are consid-
ered,

(3) For all the steady computations, the initializa-
tion is the zero uniform field (the variables of the
formulation are perturbation variables).

{4) The computation time step At is the same for
all the steady results given. As the period is 2%, we
took At=2n/Ng with Ng=256 and Ky=1 as reduced
frequency. Thus, for all the steady computations, we
have:

(K/At)g=(2 )~ ! Ky Ng=256/(2 7).
11,3.2. — UNSTEADY COMPUTATIONS

The unsteady results given correspond to the fol-
lowing cases:

CI1INS: NACAI12 zirfoil, Mach (.85, steady angle
of attack i degree.

C2INS: NACA12 airfoil, Mach 0.8, steady angle
of attack 0 degrees.

C3INS: 3§ airfoil, Mach 0.735, steady angle of
attack 0.6 degrees.

(1) For all the unsteady computations, the move-
ment is a forward quarter pitch with an amplitude of
1 degree around the steady angle of attack.

(2} The initialization of each unsteady computation
is the associated steady solution, i. e. C28 for CIINS,
C18 for C2INS and C6S for C3INS.

(3) For each unsteady computation, the time step
At was chosen such that:

(K/ADms = (K/A)s.

Denoting the number of time steps per period as
N]NS’ we have AtiNs“—“znlNle, and:

Nins =K Ns/Kins = 256/Kins.

Thus, for a reduced frequency Kps=2 (or
IQNS:O‘ZS)’ we have NINS= 128 (OI' N]NS= 1024).

1L,3.3. — THE MESHES

Five meshes are used. The characteristics and use
of the meshes are given in Table I.

TABLE |
Meshes used.
Number Use in the:
Airfoil Nurmber of points .
of on Figure
celis the airfoil Steady case Unsteady case
NACA12 9,338 196 1 and 2 €51, CS2, CS3 C1INS, C2INS
Bi-NACA12 12.280 2x154 11, 12 C48, C58 -
Mesh 1 5,502 100 15, 16
3 Mesh 2 6.628 174 19 C6S C3INS
Mesh 3 7.254 154 22

Rech. Aérosp. — n° 1889-2



For the § airfoil, the three meshes (Figs. 15,
16, 19, 22) differ only in the proximal region of the
airfoil. Meshes 1 and 2 differ by the number of
points on the airfoil. Mesh 3 is similar to mesh 2 on
the airfoil with a higher concentration in the leading
edge region. This mesh, which contains very small
mesh cells, was introduced to illustrate the robustness
of the numerical method.

II,4. — NUMERICAL RESULTS

IL4.1. — STEADY COMPUTATIONS

On all the steady pressure coefficient figures, the
ordinate is —C,, and the abcissa is x; =X, /Ce[0, 1].
Both the upper and lower surface are shown together
in each figure (Figs. 3-6, 8, 10, 13, 14, 17, 20, 23).

Fig. 1. — Complete view of the mesh
of the computation domain, NACA12 airfoil.

The steady pressure coefficients given correspond
to the convergence state indicated by graphs
ni—log(R2(n)), where n is the number of the time
step (Figs. 7, 9, 18, 21, 24). In Figures 7 and 9, it
can be seen that the norm increases locaily, due to
the dynamics of the problem (shock displacement),
whereas the dynamics are preserved in the steady
computations (the computations are actually made
for the unsteady case).

For all cases, we always verified that equation (I-
12) was satisfied numerically (Sec. I,2.3). For
obvious reasons of space, we did not give all the
graphs and we restricted ourselves, to illustrate this
aspect, to case C18. Figure 3, showing the U/ and W

Rech, Aérosp. — n° 1989-2
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representations of —C, superimposed, demonstrate
that the equation is effectively satisfied.

CIS Results: These results are illustrated in
Figures 3 to 7. Figure 6 shows the steady pressure
coefficient on the airfoil, obtained with the potential
2D small transonic perturbation code in ADI scheme
on a structured mesh. The comparison of Figure 6
with Figures 4 and 5 shows that practically the same
solution is obtained. At convergence, we have
CFL=18 and the lower and upper surface shock is
located at x, =0.498.

C28 Results: Figure 8 shows the steady pressure
coefficient —C, on the upper surface and lower sur-
face. The flow exhibits two relatively strong shocks.
At convergence, we have CFL =18 and Table IT gives
the position of the shocks, the drag, the lift and the
moment, compared with W, Schmidt and
A. Jameson's reference solution (taken from [1]), con-
structed with the Euler equations.

TABLE 1
NACA12, Mach 0.85, Angle of attack 1 degree.
Results Refergnce

solution

Lower surface 0.6230 0.6458
shock

Upper surface 0.8750 0.8624
shock

Drag 0.0733 0.0880

Lift 0.3510 0.3584

Moment 01232 0.1228

These results show that the small transonic perturb-
ation equations considered give a very good approx-
imation of the Euler equations in this case.
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C3S Results: For this weakly supersonic case,
Figure 10 shows the pressure coefficient of the airfoil.
Here again, we obtain practically the same solution
as with the Euler equations.

C48 and C5S Results: We made an initial computa-
tion at Mach 0.55 (reference case) for two angles of
attack: 0 and 6 degrees. For this Mach number, we
did not obtain a shock in the channel for 0 degrees
or for 6 degrees. Figure 13 (and Figure 14) show the
pressure coefficients —C, on the upper and lower
airfoils for an angle of attack of 0 degrees
(or 6 degrees) and a Mach number of 0.58. It is
probable that this difficulty is due to the small tran-
sonic perturbation approximation and that, in this
case, the critical Mach number is between 0.55 and
0.58. We can therefore not compare this result with
the reference solution, constructed with the Euler
equations, since the Mach number is not the same.
In spite of this difference in Mach number, the sol-
utions are close to one another [1, 2].

28

Fig. 11. — Complete view of the mesh of the computation

domain,
Biptane NACA12 airfoil.

C6S Results: The results for the three meshes are
given in Figures 17, 20 and 23. The values of the
CFL and the overall values at convergence are sum-
marized in Table HI

TABLE HlI
S airfoil, Mach 0.735, angle of attack 0.6 degrees.
Mesh 1 Mesh 2 Mesh 3
CFL 21 20 53
Lift 0.4663 0.4686 0.4759
Moment 01282 01277 01264

Rech. Aérosp. — n° 1989-2
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Fig. 13. — Mach 0.58, angle of attack O degrees, steady pressure
coefficient —Cp, uppet surface and lower surface on the upper
and lower profiles, biplane NACA12 airfoil.
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Fig. 14, — Mach 0.58, angle of attack & degrees, steady pressure
coefficient —Cp, upper surface and lower surface of the upper
profile, upper surface and lower surface of the lower profile.
Biplane NACA12 airfoil.

-- 0.5

~1

. Fig. 17. — Steady pressure coefficient —Cp, upper surface and
Fig. 15. — Complete view of mesh 1 of the computation domain.

Supercritical S airfoil.

lower surface with mesh 1.

Mach 0.735, angle of attack

0.6 degrees, supercritical S airfoil.
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Fig. 24. — Steady convergence, log {R2), mesh 3.
Mach 0.735, angle of attack 0.6 degrees. Supercritical § airfoil.

11,4.2. — UNSTEADY COMPUTATIONS

All the figures represent the results of the harmonic
analysis of the unsteady pressure coefficients. The
values of harmonics 0, | and 2 are given on the
ordinate, with the usual sign conventions, and
x;=X,/Cel0, 1] is given on the abscissa. All the
figures always show both the upper surface and lower
surface (Figs. 27-50). The harmonic analysis is always
conducted on the last computation period.

CI1INS Results: The reduced frequency is K=2 and
the computation is made on four periods. Figures 25
and 26 show the Lissajous figures for the lift and

2700

32

moment, Figures 27-32 are relative to harmonics 0,
1 and 2 of the unsteady pressure coefficient.

C2INS Result: Two reduced frequencies are treated.

A. Reduced frequency K=0.25. The analysis was
made ‘on three periods and the results are given in
Figures 33-39.

B. Reduced frequency K=2. The analysis was
made on four periods and the resulis are given in
Figures 40-45.

Table IV gives a comparison of the overall values
for harmonic 1, with the potential 2D small transonic
perturbation code in ADI scheme. The differences
are mainly due to the fact that the potential small
transonic perturbation code does not include all the
time terms in the boundary conditions, contrary to
the present formulation which does [52].

C3INS Results: The reduced frequency is K=0.25
and the analysis was conducted on three periods start-
ing from the steady solution C6S constructed on
mesh 2. The results of the harmonic analysis are
illustrated in Figures 46-50.

0,451

0.41

0.35;

5 T T T A
0.257 1 -05 0 05 1
NACA12 MACH 0.85, ANGLE OF ATTACK 1. =2, PITCH 1. LIFT

Fig. 26. -— Lift Lissajous figure.
Maovement: forward quarter pitch, amplitude 1 degree,
reduced frequency K=2,

TABLE iV
Comparisons of the global coefficients on harmonic 1.

Results for harmonic 1

Potential small transonic perturbation code -

harmonic 1
Modulus Phase Modulus Phase
_ Lift 5.50 152 6.68 165
k=025 Moment 0.69 ~167 0.59 -157
K=2 Lift 5,36 -1569 4,61 -164
- Moment 1.99 -131 1.82 -142

Rech. Aérosp. -— n° 1989-2
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0.124

)

0,11
0.08 T T T
-1 —-05 0 0.5 1
Fig. 26. - Lissajous figure for forward quarter moment.
Movement: forward guarter pitch, amplitude 1 degree,
reduced frequency K=2,
i
0 ' .
0 0.25 0.5 0.75 1
- 0,5
—1.31
-2
Fig. 27. — Harmonic 0.
Unsteady pressure coefficient on upper surface
and lower surface.
6
2.51
0 . .
10 0.25 05 0.75 1
—45
-8

Fig. 28. — Harmonic 1, real part.
Unsteady pressure coefficient,
Lower surface, Upper surface.

10

- 10

0,25 O;5~J

0,75

10

Fig. 29. — Harmonic 1, imaginary part.
Unsteady pressure coefficient.

l.ower surface,

Upper surface.

B

0

-

0] 0.25 0.5 0.76 i

— 5
-~ 10
Fig. 30. — Harmonic 1, modulus.
Unsteady pressure coefficient.
— | ower surface, Upper surface.
05
0.13] ’
[
() gine : Y4 i
0 0.25 0.b 0.7 1
- 0,251
— 0,63
-1

Fig. 31. — Harmonic 2, real part.
Unsteady pressure coefficient.

Lower surface,

Upper surface.




1
0.5
. il /\o
0 0.25 0.5 0.75 1
- 05
-1
Fig. 32. — Harmonic 2, imaginary part.
Unsteady pressure coefficient.
Lower surface, Upper surface.
1
0.254
0 + t }
0 0.25 05 0.75 1
--0.5-
- 13

Fig. 33. — Harmonic 0. NACA12 airfoil, Mach 0.80, steady
angle of attack O degrees. Maovement: forward quarter pitch,
amplitude 1 degree, reduced frequency K=0.25. Unsteady
pressure coefficient on upper surface and lower surface.
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— 7.5

~- 15

Fig. 34. — Harmonic 1, real part. NACA12 airfoil, Mach 0.80,
steady angle of attack 0 degrees. Movement: forward quarter
pitch, amplitude 1 degree, reduced frequency K=0.25,
Unsteady pressure cosfficient. ——— Lower surface,
Upper surface.
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Fig. 43.
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Fig. 41. — Harmonic 1, real part. NACA12 airfoil, Mach 0.80,

steady angle of attack O degrees. Movement: forward quarter
pitch, amplitude 1 degres, raduced frequency K=2. Unsteady
prassure coefficient. Lower surface, Upper sur-
face.

Fig. 42. — Harmonic 1, imaginary part. NACA12 airfoil, Mach

0.80, steady angle of attack O degrees. Movement: forward
quarter pitch, amplitude 1 degree, reduced frequency K=2.
Unsteady pressure coefficient. Lower surface,
Upper surface.

Fig. 43. — Harmonic 1 modulus. NACA12 airfoil, Mach 0.80,

steady angle of attack O degrees. Movement: forward quarter
pitch, amplitude 1 degree, reduced frequency K=2. Unsteady
pressure coefficient on upper surface and lower surface.
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0.5
06 Q 25: 0 5 0 :7.5 N Fig. 44. — Harmonic 2, real part. NACA12 airfoil, Mach 0.8,
' ’ ! 1 steady angle of attack 0 degrees. Movement: forward quarter
pitch, amplitude 1 degres, reduced frequency K=2. Unsteady
pressure cosfficient. Lower surface, Upper sur-
face.
Fig. 45. — Harmonic 2, imaginary part. NACA12 airfoil, Mach
— 0.5 0.80, steady angle of attack O degrees. Mavement: forward
quarter pitch, amplitude 1 degree, reduced frequency K=2.
Unsteady pressure coefficient, e l.ower surface,
Upper surface.
Fig, 46, — Harmonic 0. 8 airfoil, Mach 0.735, steady angle of
attack 0.6 degrees. Movement: forward quarter pitch, ampli-
Fig. 45, tude 1 degree, reduced frequency K=0.25. Unsteady pres-
| sure coefficient on upper surface and lower surface.
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Fig. 49.

Fig. 47. — Harmonic 1, real part. S airfoil, Mach 0.735, steady
angle of attack 0.6 degrees. Movement: forward quarter pitch,
amplitude 1 degres, reducsd frequency K=0.25. Unsteady
pressure cosfficient. Lower surface, Upper sur-
face.

Fig. 48, — Harmonic 1, imaginary part. S airfoil, Mach 0.735,
steady angle of attack 0.6 degrees. Movement: forward
quarter pitch, amplitude 1 degree, reduced frequency X=0.25.
Unsteady pressure coefficient. Lower surface,
Upper surface,

Fig, 48. — Harmonic 2, real part, & airfoil, Mach 0.735, steady
angle of attack 0.6 degrees. Movement: forward quarter pitch,
amplitude 1 degree, reduced frequency K=0.25. Unsteady
pressure cosfficient. —w— {.ower surface, Upper sur-
face.
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Fig. 50. — Harmonic 2, imaginary part. § airfoil, Mach 0.735,
steady angle of attack 0.6 degrees. Movement: forward
quarter pitch, amplitude 1 degree, reduced frequancy K=0.25.
Unsteady pressure coefficient. Lower surface,
Upper surface.

IL,5. — COMPUTATION TIMES

The CPU times below correspond to the Cray
XMP18 serial 332

I,5.1. — MEAN TIME PER CELL AND PER
TIME STEP

For the code developed, the mean time, which is
identical for the steady and unsteady cases, is
2.5%107% seconds per time step and per cell. It
should be stressed that the method supports relatively
large time steps without deterioration.
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1I,5.2. — EXAMPLE OF THE COST OF CON-
STRUCTING THE SOLUTION FOR THE
SUPERCRITICAL § AIRFOIL

Steady solution: This solution corresponds to case
C6S with mesh 2. Table V gives the CPU time in
seconds according to the convergence level.

TABLE V
CPU time for the supercritical S airfoil.
Number of time steps 2560 1280 768
CPU time in seconds 424 216 138
Lift 0.4686 047085 0.4669
Moment 0.1277 01270 01272
log {R2) -5.51 -4,11 —-3.60

Unsteady solution: This solution corresponds to
case C3INS with K=0.25. For this reduced fre-
quency, the three periods represent 3072 time steps
and the unsteady solution is obtained in 400 seconds.
For a reduced frequency K=1, the CPU time would
be 100 seconds.

IL,6. — CONCLUSIONS

The numerical method for solving the finite element
type conservative hyperbolic equations described in
Part I is used for 2D small transonic perturbations.
A 2D code was developed. It was validated for
the steady and unsteady case within the Iimits of
approximation of the small transonic perturbations,
for the transonic and low supersonic domains. This
validation was achieved by comparing the results with
reference solutions constructed with the Euler equa-
tions for the steady case. The method is robust with
respect to the mesh and the choice of the time step.
The use of unstructured meshes allows enrichment of
the interesting regions of the computation domain to
be optimized for a fixed number of finite elements
and the mesh to be easily generated for complex
geometries at a negligible numerical cost. The com-
putation times remain reasonable, considering that
we are working on unstructured meshes, allowing us
to consider developing a transonic unsteady 3D code
using unstructured meshes.

Manuscript submitted on June 28, 1988,
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