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I. — NUMERICAL DEVELOPMENTS

L1. —INTRODUCTION

In recent years, much rescarch has been done on
conservative nonlinear hyperbolic systems in the
framework of the Euler equations. The main numeri-
cal methods (the list of references below is not com-
prehensive) include:

(1) Methods based on structured meshes
[7, 13, 14, 27, 28, 29, 30, 36, 37, 38, 39, 40, 39, 61].
For instance, Lerat and Sides [36-39, 59] use time-
implicit finite volume schemes and structured meshes
and the schemes are globally second-order accurate.

(2) Finite element methods (unstructured mesh)
1, 2,3,6, 16, 17, 18, 20-26, 41, 42, 43, 352,
53, 54, 55, 60]. For instance Angrand, Dervieux et al.
as well as Mortchelewicz [48] substitute a formulation
by finite elements for Jameson’s space discretization
of finite volumes [29]. Hughes [18] uses a formulation
by finite elements with a time-implicit scheme and a
representation using entropic variables to solve sym-
metrical systems.

All the techniques mentioned above require intro-
ducing an artificial viscosity which is explicitly added
to the Euler equations. The numerical discretization
schemes introduce a dissipation which is weak for the
schemes that are second-order accurate.

Recently, Lerat and Sides {40] suggested an implicit
scheme for transonic computations, without artificial
viscosity, using a mesh structured with ADI method
and which has a weak internal dissipation.

At CERT/DERI, Mazet, Kalfon and Bourdel
[44, 45, 46, 47, 8, 31] studied an approach based on
the principle of minimizing entropy generation under
constraint of the Euler equations. This approach
allows a time-implicit method to be used without
introducing artificial viscosity. The variational for-
mulation leads to a finite element method with
unstructured mesh. The use of the entropic variables
makes it possible to solve symmetrical systems. This
technique, which has new aspects, was analyzed
numerically by Mertchelewicz and Angelini [49]. The
analysis showed that problems remained in this for-
mulation, in particular problems of nonconvergence
to a steady state in certain cases.
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The final objective of the present work is to develop
a numerical method for 3D unsteady transonic flows
allowing the use of unstructured meshes.

After a brief review of certain properties of conser-
vative nonlinear hyperbolic systems, a numerical solv-
ing method based on a dual formulation with physica-
Ifentropic variables, of the type suggested by
Mazet [44-47] or Hughes [18], is discussed. We
directly construct the formulation which can also be
obtained by a Lagrangian which differs from the one
introduced by Mazet {44-47).

Space discretization is based on a finite element
method applied to the weak formulation. The time
scheme is implicit and, each time step, a single sym-
metrical linear system is solved. Solving can be car-
ried out according to an iterative algorithm which
obviates effective assembly of the elementary matrices
of finite elements. The methods is robust and, for
instance, a steady transonic problem can be initialized
“abruptly”.

For the construction of steady solutions and, a
fortiori for unsteady solutions, the dynamics of the
physical problem are preserved as the time step is not
local.

The method described can be applied to the Euler
equations. We describe below how the method is
applied to the isentropic Euler small transonic per-
turbation equations, in order to obtain a code which
is intermediate, from the standpoint of numerical
costs, between a 3D unsteady small transonic perturb-
ation potential code in ADI scheme on a structured
mesh {50, 51] and an implicit 3D unsteady Fuler code
with an unstructured mesh. These equations have
rotational solutions, and the irrotational solutions
verify the STP potential equations. The solving
method allows the inverse problems to be selved and
cases with interactions of lifting surfaces and bodies
to be studied, contrary to the possibilities currently
available with the potential STP codes in ADI sch-
emes.

However, we will show that the complete STP
equations lead to algebraic developments and there-
fore numerical costs that are similar to those applying
to the isentropic Euler equations. In order to satisfy
the objective of obtaining an intermediate code, even
if its field of application is more restricted, we limited
ourselves to the case of the usual simplified form of
the small transonic perturbation equations.



The numerical applications are described in Part II
of this article.

1,2. —CONSERVATIVE NONLINEAR
HYPERBOLIC SYSTEMS
AND ENTROPIC VARIABLES

In this section, we recall the results we will be using
below on the conservative hyperbolic systems and the
properties of the associated entropic variables. The
reader is also referred to [12, 19] for general develop-
ments on the role of entropy in conservative hyper-
bolic systems, to {20-26] for general considerations
and numerical considerations, to [8, 44-47] for the
mathematical developments related to the formulation
in entropic variables with applications to the Euler
equations and to [10, 11} for the mathematical criteria
of hyperbolicity.

,2.1. — HYPERBOLIC EQUATION CONSI-
DERED

Let B™, m integer = 1, be the Euclidean vector
space equipped with the usual scalar product:

(W, W 'y=Y W,W/, where W=(W, ..., W,),
i=1

J

W' =W/, ..., W} are elements of R™ (W is the
physical field). Let d be another integer = 1 which
will be the dimension of the physical space (d=2 for
the 2D case and 3 for the 3D case). We will denote
the generic point of R? as x=(jcl, ..., %y and the

scalar product as <€ x, X' » =D, X X;. Below, we
k=1
will generally use the Einstein convention for index
summation.
We consider the following general conservative
equation:

W2 peawy=
K5 T =0 )

where:

(a) K is a given positive real constant originating
from a dimensionless constant (reduced frequency)
and teR is the dimensionless time.

by {t, )= W, X}=(W (t,x), ..., W,(t, x)) is
the physical field of R x R? in R™

(c) Forke{l, ..., d}, m mappings:

Wi f5\W)=(FEV), ..., V), (2

continuously differentiable from R™ into R™

(d) Equation (1) is assumed hyperbolic in a part €
of R™ where ¥ is a convex open set of R™ with
dimension m.

(e) For any ke{l, ..., d}, we denote the Jacobian
matrix  of f*(W) at point W of R™ as
JE(W)eMatg (m, m);

(W)= =2 FEOW),

= ietje{l, ..., mpL(3
" o, ietjef }3-(3)

(f) For any ke{l, ..., d}, we can always write:

W)= (W)W +g" (W), (4)

where functions Wi— g* (W): R™ — R™ are defined by
equalities (4). In the case of the Euler equations,
functions f* are homogeneous in the first degree and
functions g* are then all identically zero. In the case
of small transonic perturbations, this is not the case
and functions g* are not all identically zero.

(2) It is recalled that any hyperbolic equation in a
conservative form automatically verifies the Rankine-
Hugoniot conditions through the discontinuities of
field W.

12.2. — HYPERBOLICITY CRITERION

Considering (3), everywhere where W is differentia-
ble in x and %MW is taken in the sense of the distribu-
t

tions, equation (1) is written:

Y L rn <o,

5
ot %, )

Equation (5) and therefore (1) are hyperbolic in
& [11]if, VW in € and whatever the reals £, .. ., &,
the equation in &,

d
det (K§01+ Y &,,J"(W)):O,
k=1

where e Matg (m, m) is the unit matrix with m real
roots. Setting p= — K&, and:

d
D= Y E J*(W)eMatgy(m, m),
k=1

this equation is written det(D—pI)=0. The m eigen-
values of D must therefore be real.
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L2.3. — ENTROPIC VECTOR ASSOCIATED
WITH THE HYPERBOLIC EQUATION

1,2.3.1. — Definition of an entropy

An entropy is defined as a function WS (W) of
R™ into R, strictly convex on ¥, and that we- will
assume continuously differentiable twice in €.

Under these conditions, in each point W of &, the

Hessian matrix $” (W)e Matg(m, m) of S(W), such
that:

az

" (W)= 5o

S(W),

iand je{l, ..., m} (6)

is a positive-definite symmetrical matrix. Considering
the hypotheses on & and on the differentiability of
S, if this property of $” (W) is true in any point W
of ¥, then § is strictly convex on %.

In the case of a homogeneous entropy with degree
o> 1, ie. SAW)=A"S(W), we  have
(Ve S(W), WH=aS(W). Then V, S (W) is homo-
geneous with degree (a—1)>0 and
S"(WYW=(u—1)VyS(W). This last relation shows
that in this case, V,S(W)=H(W)W, where
HW)=(@—1)"18”(W) is a positive-definite real
symmetrical matrix for any We%. For instance, for
the Euler equations, such homogeneous entropies
exist [49].

In the present case, we will apply these develop-
ments to the small transonic perturbation equations.
We will show that there exists only one possible
entropy and that it is not homogeneous. Therefore,
we cannot introduce a hypothesis of homogeneity on
the entropy. However, we will introduce a weaker
hypothesis which will be verified.

Additional hypothesis: it is assumed that entropy S
is such that:

VwS(W)=BW)W (N

where for any W in €, H (W) e Maty (m, m) is a posit-
ive-definite real symmetrical matrix.

Remark: the hypothesis introduced does not imply
that VS is homogeneous and therefore that H (W)
is proportional to §” (W)

1,2.3.2. — Definition of the entropic vector associated
with the hyperbolic system

If there exist d functions W+ S*(W) continuously
differentiable from R™into R for ke {1, ..., d}, such
that;

F WYV, S(W)=Vg S (W), ke{l,....d}, (8)
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where T designates the matrix transpose and where
Vi 8 (W) is the gradient of § (W) with respect to W,
then the vector (S (W), SH(W), ..., S¢(W)) of Ri*!
is called the entropic vector at point W, associated
with the hyperbolic equation (1) and it can be said
that (1) has the entropy S (W).

1,2.3.3. — Property of the entropic vector

Everywhere where W is regular, the entropic vector
defined in Section 1,2.3.2 verifies the following so-
called entropy equation:

KES(W)+ iS"(W)=O. (9
ot Ox;,

In effect, taking the scalar product in R™ of the
two members of (5) with VS (W) vields, by means
of a transposition:

K(aal:/, VWS(W)>+<Z—W, (W) Yy S (W) 5 =0.

X

Application of equations (8) directly gives the
entropy equation (9).

I,2.3.4. — Legendre transform and entropic variables

Since Wi— S (W) is a strictly convex function on
%, the Legendre transform of function S is the strictly
convex function of U F(U) on the convex open set
%* with the dimension m, defined by:

FO=Sup (U, Wy=S W)} (10

Function U F(U) is called the conjugate function
of § of the so-called dual variable U=(U,, ..., Um).
Equation (10) expresses the fact that for any values
of variables U and W, we have:

SW)+F(U)—U, W) zN0. (11)

Point W (U) giving the sup of the second member
of (10) is unique because of the strict convexity of §.
Since function Wi~ S (W) is differentiable in % by
hypothesis (Sec. 1,2.3.1), the subdifferential contains
a single subgradient U/ which is the gradient of S (W).
We therefore have:

U=V, S (W). (12)

Below, variable U defined by (12) will be called
“entropic variable”.

Under these conditions, the conjugate function
F(U) defined by (10) is given by:

FU)=<U, W5—S5(W), (13)



where U and W are related by equation (12). This
Legendre transform is involutive and the conjugate
function of F{U)is $ (W). The dual relation of (12)
is directly obtained from {13) and is written:

W=V, F(U). (14)

Since F is strictly convex in U on €*, the Hessian
matrix F”(U)eMatg(m, m) of F(U) in point U of
%* such that:

62

[F (U= 30,0, F

),
iandje{l, ..., n} (15)

is a positive-definite symmetrical matrix.

A. Relation between W and U: Equation (12) is
used to establish the transformation giving U knowing
W. 1t is a bijective mapping Wi U (W) =V, S(W)
of ¥ into €*. The reciprocal mapping is the dual
relation (14): U W(U) =V, F(U) of * into €.

B. Algebraic properties: We will need the following
algebraic properties:

é

— W (IN=[F" i 16
anW;(U) LF (U} (16)
d

a—%U.-(W)=[S”(U)]u- an

These two relations are inferred trivially from (12)
and (14). If U and W are related by (12) or (14), we
have:

S"(WHYF' (U)=1 (18)
In effect:
dU;= ,‘?,MU;de; ﬂ % du,
oW, oW, aU,

giving {18}, considering (16) and (17). Since §” (W)
and F” (U) are two positive-definite matrices, they are
both invertible and we have:

FrU)=8"(W);  S"(W)=F"{U)~". (19)

Finally, the following is inferred immediately from
(16) and the first equality (19):

W _WW) Uy 10Uy
dx, ou; dx, O,

1,2.3.5. — Expression of the hyperbolic equation in
entropic variables

By analogy with (12) and (13), we define d functions

Uws F5(U) of R™ into Rfor ke{l, .. ., d}, such that:
FE={U, f*(W)>—-8s*(W). (21)

It should be noted that since functions $* are not
convex, transformations {(21) are not Legendre
transforms.

We have the relation:

FRWY=V,FXU), ke{l, ....d). (22

In effect, differentiating (21) yields:

AF*(U)=(dU, f*(W)>+< U, df*(W)>—dS*(W)
={dU, fX(W) >+ U, JF(W)dWw >
—(Vyy S (W), dW .

Using equation (8) and equation (12) yields:

dF*(U)=<dU, fX(W)>,

which proves (22),

In equations (22), W must be considered as the
function U—sW(U) of %* into ¥ defined in
Section L2.3.4 A.

Let F*’(U)eMatg (m, m) be the symmetrical Hes-

sian matrices of F*(U) such that:
62

F*(n,

3U,8U, ©

iandje{l, ..., m} (23)

Fe (U))y=

Substituting (14) and equations (22} into eguation (1)
yields:

2y, rn+ v, Fr(U)=0
ot 9x;

giving the expression of the hyperbolic equation in
the entropic variable U on €*:

U
1‘(17"’(U)-a—H +F"”(U)a— =0. (24)
ot ox,

It should be noted that expressed as an entropic
variable, the hyperbolic operator is symmetrical since
F’(U) is a positive-definite symmetrical matrix on €*
(Sec. 1,2.3.4) and matrices F*/(U) are symmetrical
for ke{l, ..., d}. Finally, we have the following
algebraic property that we will use:

For any kin {1, ..., d} we have:

FW)YF' U)=F" ()W), (25)

or again, using (19)
JWYS (W) =87 (W) ! J )T (26)
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In effect, for 1e{1, ..., m}, equation (22) gives:

" 8%
a—Ujf W)=

F*U)=[F* (U)},»

In addition, using {2) and (16}):

2 g =2 ey -2
f(W(U)) aW,f(W) JW:(U)

=[J(W ) [F” (D]
From this we infer the matrix equation:

S W)=F@),  kel, ... 4. (27)
Since matrices F*’(U) are symmetrical, we infer
(25).

1,2.3.6. — Existence of an associated entropic vector
and hyperbolicity

From the above results it can be inferred that any
conservative system of type (1) which has an associ-
ated entropic vector is hyperbolic.

In effect, if equation (1) has an entropic vector for
W in ¥, then, whatever W in ¥, matrix 87 (W) is
positive-definite.  Equation (19) then shows that
matrix F” (U) is positive-definite for any U in ¥* and
equation (24) is hyperbolic on ¥* if, whatever U in
%* and whatever the reals &, ..., £, the equation
in £

d
det (&, KF” (U}+;§1 E F 7 (U)=0

has m real solutions. This is true since for any U in
‘fd*, F'(U) is positive-definite and  matrix

Y. & F¥(U) is real and symmetrical.
k=1

I,3. —NUMERICAL
SOLVING METHOD

L3.1. — TIME DISCRETIZATION

Let At be the time step. The values at time
t=(n+1)At {or t=nAt) are denoted W, U, etc.
(or W", U, etc.).

We use the following numerical scheme. Equations
(1) and (5) time-discretized are written as follows:

—(W W+ -2 w)=0 (28)
0x;

K ew_wno pw ¥ _

At(w W)+ J (W)axk 0. (29)
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,3.2. — CONSTRUCTION OF THE SYSTEM OF
EQUATIONS IN VARIABLES W AND U

We will construct the system of equations in W
and U. Substituting (20} into (29} vields, everywhere
where U is regular:

E(W— W™+ J* (W) S (W)-igg =0.

k

This equation can also be written usmg the com-
mutation equation {26):

—(W W™+S8” (W)™ J*(W)ng_o

X

Since §” (W) is positive-definite for any W in %,
the two left members can be multiplied, giving:

ES” (WY (W— W“)-}—J"(W)Ta—U:O. (30)
At ax;

The two basic equations are now (30) and (28) in
which variables W and U are considered independent.
However, the unique physical solution must verify
equation (12) considering the construction. From
the standpoint of numerical solving, we could, for
instance, impose equation (12} as a conmstraint by
means of a Lagrange multiplier, This approach was
not however used, since it considerably complicates
the numerical formulation. We therefore preferred
to use a numerical type technique which is designed
to give the operators of the mixed problem good
propertics of symmetry, positivity and contraction.
Obviously, we must make sure that the numerical
solution obtained effectively verifies equation (12).
As equations (12) and (14) are mutually dual, we
penalize equation (30} with (12) and equation (28)
with {14).

Let p be a positive real depending on x such that
(Sec. 1,3.3.4, Remark 4):

Vx, p()elo, 2 (31)

The system of equations in mixed variables W and
U7 that we consider is then wrilten:

K svowmyow—wny+rowy Y
At Oy,
K
+—(l——) (VWS(W) =0
At
_Ew_wn-Z pamy
At Xy,

K g _
+ o b w-v Fp=0. ()



(@) Let H (W) be given by (7) and let us define
matrix H (W)eMatg(m, m) by the equality:

( —%)H’(W)=S”(W)+( —%)ﬁ(W). (33)

Since, for any W in %, matrices $” (W) and H (W)
are positive-definite real symmgetrical matrices and
since 1—p/2 >0, matrix H (W) is positive-definite,
real and symmetrical for any W in %.

(b) Considering hypothesis (7), equation (12) is
written:

U=V, S(W)=HW)W. (34)

For any W in &, H(W)~! exists and therefore
W=H (W) 'U. By comparison with equation (14),
we infer that:

VyF(DY=B(W) ' U. (35)

In this last equation, we must consider W as func-
tion W{U) of $* in %.

(c) Using (33) and (35) and reorganizing the terms

of system (32) gives the final form of the system of
equations of the mixed formulation:

X (2—%)5’(W)W

At

2 X

K ’ n
=S MW" (36)

5]

“Ergwyriv=-Ewe @
At 2 At
3.3. — NUMERICAL SOLVING OF THE

MIXED FORMULATION BY THE FINITE ELE-
MENT METHCD

1,3.3.1. — Computation domain and hypotheses

In the reference configuration, the computation
domain is the connected bounded open set 2 of R"
with boundary 9§ (generally not connected).

We will denote the unit normal to 8Q, external to
Q,as N=(N,, ..., Ny

1 N I':3=Ceiling
I'.,=Downstream
Iy, = Profile 1 Q@ |7
"
NTol— . [N
T, =Upstream —. 1 T'p,=Profile 2

fn \J",4=Floor

Diagram 1. — Example of a 2D computation domain
in the reference configuration,

Diagram 1 illustrates a 2D configuration of a refer-
ence computation domain.

At time ¢t = (n+ 1} At, the domain is denoted £, and
its boundary, whose unit normal external to {J, Is
N=(Ny, ..., Np), is denoted 89Q,.

Let n=(n;, - - ., 1, be the point of 4, which is
the transform in the movement of point
x=(xy3, ..., x,) of the reference configuration dQ of
the boundary. We write:

n=x+h(x, ) (38)

where h(x, )=, (x, 8), ..., hy{x, £)) is a given
function defined on 8Q x R with values in R?,
At time ¢, the boundary 99, is written:

Q=T UL, , (39)

where:

T, is the union of the fixed boundaries. Therefore
I edQ and h(x, H)=0,Vxel,and V¢

I, . is the union of the moving boundaries.

Below, small movements of the moving boundaries
I, . around the reference configuration are assumed.
We therefore linearize the movements of I', , around
the corresponding part I', of the reference boundary.

(@) Volume integral: considering the above hypoth-
esis, the volume integrals are written:

J. o j . (40)
Q, o

(b) Edge integral: in the weak formulation, the flux
integral on 8Q, of a vector field X =(X,, ..., Xy will
be involved:

J:J < N', X > do' (41)
a0y,
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where do' is the surface measure borne by 6Q,. Con-
sidering (39), it is written:

F=F 45, (42)

.ﬁf=-[ < X(x), do(x) >
Ly

(43)
Fy= f < X(n), do* () >
Tp,¢
where de=(N,dag, ..., N,;do) and
de'=(N do', . .., Nydc') are oriented area clements

relative to I'; and I', , respectively. Considering the
movement linearization hypothesis, the edge integral
4, can be written:

Sy f <X(),dMEN>. (44

1,3.3.2. ~— Weak formulation of the mixed problem

The objective is to numerically solve the equations
by the finite element method [4, 5, 9, 56, 62] to allow
the use of unstructured meshes. It is therefore neces-
sary to first establish the weak formulation of system
(36)-(37) which directly allows us to build the volume
operators and the boundary operators. It is then
necessary to specify how the boundary conditions are
introduced in the boundary operators for each type
of problem. We will go into this aspect in Section L4.

First we formally establish the weak formulation.
Then we choose the approximation spaces.

Let W and & be two functions defined on Q ~ Q
with sufficiently regular values in R™.

(@) Taking the scalar product in R™ of the two
members of (36) with W and summing on £, consider-
ing (40), yields:

L = (2—-~)<H(W} W, ¥>dx

sl e

+<J"(W)T— \l!)]

Xk

EJ —{ST(WYW"  ddx. (45)
q At

(b) Similarly, we take the scalar product in R™ of
the two members of (37} with @, we sum on Q,, we
apply Green’s theorem to the volume term in

(%f" (W), ®>, we use (4) and (40)-(44) and
k
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obtain:

_K( B k o
L[ At(l 2)<W,¢>)+(J (W)W,axk)]dx

-J = 2(H(W)‘ U, ®>dx
—[f <X(W,@),da>+j <X(W,(I)),do‘>]
Ty Fp
L)
—.[ <g"(W),6—>dx

Q Xk
“J Kiw 0ydx 6)

o At

where we set
X(Ws (D)=(X1 (W: (I))s ey Xd(W» (D))ERJ
with, for ke{l, ..., d}:

Xe(W, @)= f4(W), @) (47)

Remark: the equations we established can also be
inferred from the following Lagrangian at time ¢

LW, m=gj (VS (W), W— W dx
K
_KEI CW—W", US dx

j G US) —>dx j F(U) N do’
a0

K1

v L (U, WH—S (W)~ F(U))dx.

This Lagrangian is similar to that introduced in
[8, 44-47). We added the last term, whose sign is
negative, considering (11).

1,3.3.3. — Construction of the approximation spaces

Let % and % be the spatial approximation spaces
for fields W and U respectively. These spaces, with a
finite dimension, are constructed by the finite element
method from the same “triangulation” of domain Q.

A. Choice of triangulation

Domain ) is meshed by finite elements with three
nodes (triangles) in 2D (d=2) and with four nodes
(tetrahedrons) in 3D (d=3) (see Diagram 2).



x1

x2 x3

Biagram 2. — Finite volume elements.

We will call these clements volume elements (even
in 2D). The total number of volume elements is M,
and the total number of nodes is N,. We have:

M,
Q~ U T, (48)

J=1
To simplify these notations, we will drop index J
of the elements when no confusion is possible. The
local numbers of the nodes of any volume element of
domain T are denoted /, where le{l, ..., d+1} and
x'=(x}, ..., x}) are the coordinates of node I. We
also need finite boundary elements. They are defined
topologically by the trace of the volume mesh on 0.
The boundary elements are therefore elements with
two nodes (line segment common to one side of a
triangle) in 2D and elements with three nodes (triangle
common to a tetrahedron face) in 3D. The total
number of boundary elements is denoted M, We

have:

My

N~ U T,, (49)
I=1

As above, we will drop index I and we wili denote
the local numbers of the nodes of any boundary
element of domain T, as Ie{l, ..., d} and the coor-
dinates of node [ as x'=(x!, ..., x)).

The nodes of the boundary elements are obviously
common {o the nodes of the volume elements.

B. Choice of the approximation space W~

For # we take all the step functions defined
(almost everywhere) on (), with values in R™, such
that each function W of %" is constant on each finite
volume element. Let T be the domain of any finite
volume element. We then have:

VxeT, Wx)=WeR" (50)

where W=(W,, ..., W,_) is the constant value of
field W on the finite volume element considered. We

made this choice for the following reasons:

— Discretized field W is local to each finite volume
element. Variables W are independent from one
element to another. This allows us to locally eliminate
field W, which will be done algebraically. The
implicit field will therefore concern only discretized
field U.

— The algebra is considerably simplified.

— The functional regularity is sufficient as can be
seen on (45)-(46).

However, the functions of %" do not have a natural
trace on boundary Q. We can construct one by
lifting. From a numerical standpoint, the lifting can
be local or global. Globat lifting is “accurate” but
too costly from a numerical standpoint. We therefore
excluded it. Local lifting is not costly, but it is not
sufficiently ““accurate™ to be able to be used in the
boundary operator.

Under these conditions, we decided to express the
boundary term of (46) by means of the entropic
variables U, since the approximation space 4 will
have a trace (continuous functions). The boundary
term of (46} will therefore be written:

F(U, ®)=—[J < X(U, D), do »
Ty

+J < X(U, ), d0'>:|, (51)
F,

P

where we set

XU o)=X,(U, D), ..., X;(U, ®),

where for any ke{1,...,d}

XU, &)= fXU), @yeR (52)
FFOy=rwuyer" (53)

where Urs W{U): €* - ¢ is the function defined in
Section 1,2.3.4A.

C. Choice of approximation space ¥

For %, we take all the continuous functions U of
Q into R™, such that the restriction of U to any
finite volume element is a first-degree polynomial in
variables x, ..., x, with coefficients in R™. The
functions of % therefore have a trace on boundary
o8,

C 1. Finite volume elements: For field U, we are
therefore in the conventional framework of linear
finite elements with three nodes (2D case) or four
nodes (3D case).

Let x—q(x): T-R,le{l, ..., d+1} be the
d+1 interpolation functions for a finite volume ele-
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ment of domain T. They are such that:

¢, (x)=8;, [ and je{l,....d+1} (54
and we have:
d+1
¥xeT, U= o x}U (55)
I=1
where U is the value of field U at node x%
Ul=U)eR™,  Ile{l, ..., d+1}.  (56)

C2. Finite boundary elements: Here again, we are
in the conventional framework of linear finite ele-
ments with two or three nodes. Let x+— o (x):
T,— R, Ie{l, ..., d} be the 4 interpolation functions
for a finite element of domain T, They are such

that:
o} ()=8,, I and je{l,....,d} (57
and we have:
d
VxeT, U@)=7Y o¢/(x)U. (58)
=1
1,3.3.4. — Construction of the elementary matrices of

a finite volume element

Let T be the domain of any fixed finite volume
element, L=d+ 1 be the number of nodes, WeR" be
the constant value of field W on Tand U, ..., U~
be the values of field U at the L nodes. Let p be the
value, taken as constant, of x—p(x) on T. The
value of p can change from one element to another,
‘We introduce the following real constants:

CS=J dx; CS,= 5-— CS;
T At

(59)
€S, =CS, (1~_ E)
2
and for land I'e{l, ..., L} and ke{l, ..., d})
1 1 d
Q= — x)dx; =— | — @, (x)dx;
'=TCs L‘P:( ) Bue Cs .L 2% @ (x)
1
=— x) @ (x)dx
Yu Cs '{‘T(Pt( Yoy (x)
(60)
For [ and le{l, ..., L}, we define matrices
G, (W) eMatz(m, 1), E'(W)eMatz(m, m) and
A" (W) e Matg (m, m) such that:
d
GL(W)=—CS Y Bug*(W)—CSqe, W" (61)

k=1

Rech. Aérosp. — n® 1989-2
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d

E'(W)=—0,CS, I+CS ¥ By J<(W)

k=1

(62)

. 1 .
AY (W)= 'Z“ilcso Yo H (W)™ (63)
where 1eMatg(m, m) is the unit matrix. We define
the following matrices by blocks: UeMatg(Lm, 1),
G,(W)eMatgp(Lm, 1), E(W)eMatz(Lm, m), and
A(W)e Maty (Lm, Lm), such that:

u! Gl (W)
u=| 1, GMW=| ;
U G, (W)
EN (W)
EW)=|
EX (W)
AL (W) : A (W)
A(W) = AT (W)
AL (W) AL (W)

Then, based on (45) and (46) and on (50} and (55},
the equations relative to the finite volume elements
of domain T are written:

(2-~ %‘) CSo B (W)W +EW)TU

=CS, §” (W)W" (65)

EW)W—-A4(W)U=G,(W). (66)

Matrices H (W), §” (W), A (W) are symmetrical
Variable U is not local to the element treated, but
W is. Since, according to Section I,3.2a, H (W) is

invertible for any W in % and (2— %) CSs >0, we

can infer the following from equation (65):

-1
W=(2—E) Wr
2

(1Y EY -t T
(1 2)(2 2) AW tEW)TU (67)

where we set:
Wr=H (W)~ 18" (W) W"
Bwy~t=(CS,) 'H(W) .

(68)
(69)

Substituting (67} in (66) and changing all the signs
gives the following matrix equation:

P(W)U=G"(W) (70)

(64



where P(W)eMatg(Lm, Lm) is the matrix of the
finite volume element which is written:

(1))

EMWYR(W) TEWT+AMW) (71

and G"(W)eMatgz(Lm, 1) is the “second member”
column matrix of the finite volume element, written:

G"‘(‘W)=(2mg)—lE(W)W”—G,,(W). (72)

Remarks:

(1} Matrix P(W) is positive-definite, real and sym-
metrical for any W in %,

(2) Equality (70) is symbolic. The entropic variab-
les U are not local to the finite volume element. Theé
system is obtained by assembling elementary matrices
P(W) and “second member” matrices G"(W) on the
set of finite volume elements,

(3) As we changed all the signs of (70), we will
also change the signs of the elementary matrices for
the finite houndary elements.

(4) To establish a law x+ p(x), we analyzed the
associated linear problem.

The system of mixed equations formally has struc-
ture (65)-(66). We show that the operator is contract-
ing if pe]0, 2[. In order to obtain the same condition-
ing on the set of finite volume elements of a given
mesh, we constructed the following law. The finite
volume element of domain T with “area”™ CS has the
following value for p:

CSmin 1
H=F‘-1—(—) (B —o)

Cs (73)

where p, and p, are two fixed constants independent
of the mesh such that:

O<po<p; <2, (74)

and where CS_,, is the smallest value of CS$ on the
set of finite volume elements of a given mesh:

min
Jefl, oy My}

{cs} (75)

min —

It can be noted that on the smallest finite element
K=y, and on the largest p~p, insofar as
CS8 jnax » CS i, which is the case in practice.

1,3.3.5. — Construction of the elementary matrix for
the finite boundary elements

A. Case of a boundary element on a moving bound-
ary

Let T, be the domain of a finite boundary element
belonging to I', in the reference configuration. The

1"

number of nodes is 4 and the values of field U in
these nodes are UY, ..., U? with U'eR™.

Considering the remark of Section I,3.3.4, the
remark of Section I,3.3.2 and (51), the elementary
matrix sought is that associated with mapping
—F, (U, ®) on % x4

U, & —fp(U, (D)=J < X(U, @), de* > (76)
Ty

where X is defined by (52) and (53) and where, for
any xe Ty

d
Ux=% eV
=1

; (17
o)=Y o} (x)0"

=1

which are equations {58). Under these conditions,
the elementary matrix B,(U)eMaty(md, md) of the
finite boundary element is defined by the equality:

< XU, ©), de' >

®7B,(U)U= f (78)

Ty

where U and ® are the following matrices of
Matg (md, 1), defined by blocks:
Ut ot
(19)
(I)d

B. Case of a boundary element on a fixed boundary

The computations are identical to those for point
A above. 1t is sufficient to replace do' by de. The
elementary matrix B, (U) € Matg (md, md) is therefore
defined by the following equality:

@7 B, (U) IU=J <X(U, @), do>. (80)

Ty

C. Remarks

(1) Since matrix B,(U)) is constructed by (78) it is
sufficient to set h=0 to obtain the expression for
B (U}, considering (38).

(2) Those boundary conditions which do not
depend on the Dirichlet conditions must be developed
in (78) and (80).

(3) In most of the physical cases encountered
(Eunler equations, STP equations, etc.), matrices
B;(U) and B, (U) are symmetrical, but not necessarily
positive-definite. We will therefore assume them to
be symmetrical.
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In addition, the boundary conditions are generally in
a subspace of the trace and the boundary operators
are then defined in this subspace. We will therefore
assume these matrices to be positive-definite below.

(4) In 2D (d=2), the integrand of the second mem-
ber of (78) has the 1-differential form:

< X(U, D), do' >

=X, (U, ®dn;—X, (U, ®)dn, (81
where 7 is given by {38) and the variations in ¢ can
be ignored (¢ fixed), We therefore have:

dnk=dxk+ ihkdxl
Ix,

+ 2 hy dx,
0%

kell, 3} (82)

For the integral of (80), we simply have (setting
h = 0):

< X (U, ®), do >
=X, (U, ®)dx;— X3 (U, ®)dx;. (83)
(5) In 3D (d=3), the integrand of the second mem-
ber of (78) has the 2-differential form:

< X(U, 9),do" » =X, (U, ®ydn, A dn,

+X, (U, ®ydny A dng+ X, (U, @)dny A dn, (84)

where 1 is given by (38) and, as above (¢ fixed):

i By dx,

a
dn,=dx; + ihkdxl—k — Ry dx,+
x4 8%, X3

ke{1,2,3). (83

We can express the second member of (84) and we

keep only the linear terms, the terms of type

2 ks 9 h,dx, A dx, being dropped. For integral
ox, X

(80), by setting h = 0, we simply have:
< X(U, ), do > =X, (U, ®)dx, A dx,

+X, (U, ®)ydx; A dx,+ X5 (U, ©)dx; A dx, (86)
(6) The development of the elementary boundary
matrices is specific to each problem.
It should be stressed that the lincarization of the
boundary conditions occurs omly for the unsteady
part.

1,3.3.6. — Solving Method

The assembly of the elementary volume and bound-
ary matrices leads to the following matrix equation:;
Pw, w)u=F"(w, uy, (n+1) At) (87)

Rech. Aérosp, — n® 1888-2
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where:
we= (W1, ..., W) e (R™)My
u=(UY, ..., UV¥o)e (R™Mo ~ RY

where v=m x N, is the total number of degrees of
freedom of the entropic variables, u, are the u DOFs
involved in the boundary elements,
F(w, uy, (n+1) At)eRY is the second assembled
member and £ (w, 1,) € Maty(v, v) is the assembled
matrix. Any Dirichlet conditions on u due to the
boundary conditions must be added to (87).

Matrix £ (w, u,) is positive-definite symmetrical.
Equation (87) is nonlinear in » and w. It can be
solved by a complete or incomplete Newton’s method.

Actually, in the framework of the numerical analy-
sis conducted for the small transonic perturbation
equations, we obtained an excellent solution by
approximating the system by:

P W, i u=F"(W", uf, (n+1) At), (88)
which leads to solving a linear system. In the unste-
ady case, this scheme introduces a negligible time
error if the time step is not too large. Then, knowing
u at time (n+ 1) At, we computed w at the same time
by equations (67) and (68), with, for each volume
element,

-1
w=(2—5) W
2

—_ ....,E _E o my—1 n TU
(1 2) (z 2) F (W™t E(W")
W= B (W% ™1S” (W) W,

(89)

We used a preconditioned conjugate gradient
method to solve (88). Since this method is iterative,
matrices # and F" are not effectively assembled.
There is therefore no real problem of memory space,
since only the clementary matrices of the finite ele-
ments must be stored. In addition, the Dirichlet
conditions are directly taken into account algorithmi-
cally in the conjugate gradient.

L4. —APPLICATIONS TO SMALL TRANSONIC
PERTURBATIONS (STP)

L4.1. — REVIEW OF THE 3D SMALL TRAN-
SONIC PERTURBATION EQUATION

We consider a compressible, irrotational 3D flow
(d=3) of an inviscid fluid varying isentropically. The
system of Cartesian coordinates x,, x,, x5 is such
that x, is directed according to the infinite upstream
velocity of the flow (see diagram 3).



X3
*2

<y

—— o X1

Diagram 3. — Coordinate systems.

The associated 2D problems (d =2) will be in plane
0x, x5, We consider the dimensionless problem. We
denote as M (instead of M to simplify the notations)
the infinite upstream Mach number and as
V=(V,, V,, V), p and p the dimensionless velocity,
density and pressure physical quantities. Let @ be the
total velocity potential: ¥=grad ¢. The isentropic
pressure coefficient is such that:

c, 1—p’

2 yM? %0)

where vy is the adiabatic index {y=7/5=1.4 for a
diatomic gas). The mass conservation equation is

written:
p . - -
K'é? +div(pgrad @) =0 91)
" and Bernouilli’s theorem gives:
a9 pr-i—1
K-~ +—(|grado|]*~ 1) + ———=0. (92
o (IIg ol*-1) ( mTSYe (92)

For small transonic perturbations, we introduce the

perturbation quantities @, p and
V=(V,, V,, V3)=grad ¢ such that:
Ep=x1+(P; ?1=I+V1
p=1+p; V,=V, (93)
p=l4p, Vi=V,
By setting:
7 2l
p=K k2,2, —||gradq>||2 (94)
ot oxy
equation (92) gives:
p=[1—M2(y—1) =1, (95)

Expanding p—p(w) around 0, substituting the
expansion in (91) and preserving only the terms of
the same order directly yields the so-called complete
3D small transonic perturbation eguation which
governs the perturbation potential:

_e2 8l _gp 00
at? dx, Ot
2 [(1mwek ) 20
dx, 2 0x,/ 0x,
M2 ({ Bo )

e CIREII
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e[ (1w 0)]
0%, | 0x, x4

(1 - M>
e

+ 2 [_ (1
x4 |03

A=M[3—-M*2—7))

222 |
M2 )}0(96)

X1

where:

(97)
For many applications, the contribution of the non-

linear terms in §/dx, and 9/dx, is negligible and the

so-called simplified 3D small transonic perturbation
equation is then written [51];

el o aple
t? dx, Ot
+i[(1_M2_5_‘?fE_)£ip,] (98)
&xy 2 8%, ) Oxy
0 00,0 % _,
Ox, Ox, Ox; dx3
4.2, — EXPRESSION OF THE COMPLETE

EQUATION AS A CONSERVATIVE EQUATION

It will be shown that (96) is equivalent to an equa-
tion of type (1). We set W=(W,, W,, W,, W,)eR*
(m=4 in 3D), with:

W, = —M? [Kg‘f + E‘—"-] (99)
gt Oxy
W =V,=22  kell, 2,3}  (100)
0x;,
F 8 Ao, 1
Ko W+ — | Wi+ Wy— S Wi~ M? W2+W2]
6t 1 ax.ll: 1 2 2 2 ( 3 4)
+ L a-m2 W)
dx,
+- 2w, a—mrw=0. (101)
0%,

Differentiating the two members of (99) with
respect to x,, ke{l, 2, 3}, yields the three following
equations, considering (100):

d d b7

K—Wyi+ — W+ M2 —W,=0. (102
3t k+1 axl k+1 6Xk 1 ( )

The four equations (101) and (102) are therefore
written in form (1):

k2 W+ Z —f"(W) 0

(103)
ot k=1 0%
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where:
[ A 2 1 2 2 2
Wl‘i'Wz—EWz““‘é‘M (W3+W4)
frw)= W, +M™2W, ;
W,
__ W,
W, (1-M*W,)
0
2 Wye ;
rPO=l
0
_W“(}._Msz)
0
fPw)= 0 {104)
| M7iw,

This conservative form accepts the appropriate
Rankine-Hugoniot equations.

1,4.3. — ENTROPY AND ENTROPIC VECTOR
ASSOCIATED WITH THE COMPLETE EQUA-
TION

The entropic vector associated with problem (103)-
{104) is written:

1 1
S(W)=5W§+EM2(W3+W§+W.3)

—%MZW‘{’—

SUW)=S (W)

1
+W, [Wz—% meiMz(WaerW‘f)

% MAW,(W2+W2) (105)

] (106)
S*W)=W,W;(1-M*W))

S3(W)=W, W, (1—M*W,).

The Hessian matrix of S{W) defined by (6) is
written:

5§ (W)
1 0 0 0
OM2(1—AW,)| —M*W, MW,
0f —M*‘W, [M2(1-M>W,) 0
—-M*W, 0 M2(1-M2W,)

Cone ¥ is determined by stating that S” (W) is
positive-definite. We demonstrated that entropy (105)
is the one and only possible entropy for problem
(103)-{104) except for the linear terms and constants.
It is not homogeneous. The additional hypothesis
introduced on S in Section I,2.3 is verified and matrix
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. (107)

H (W) defined by (7) is written:

BwW)=8" (% W). (108)

Matrix H (W) defined by (33) is then written:

-1

Fwy=(2_k
H{W)_.(z ;

X [S”(W)-i—(l— %) s (% W):| (109)

It can thus be seen that matrices H (W), B (W)
and §” (W) are not diagonal.

The complete equation (96) leads to an algebra
which, from a numerical standpoint, generates a
volume of computations roughly equal to that of the
Euler equations, isentropic or not. There is no real
gain with respect to the Euler equations and it is
therefore preferable to use the Euler equations. We
therefore consider below the simplified 3D small tran-
sonic perturbation equation (98).

1,44, — CONSERVATIVE EQUATION ASSOCI-
ATED WITH THE SIMPLIFIED EQUATION

We use equation (98) instead of (96). We set (99)
and (100). Egquation (101) is modified, equations
(102) are unchanged. We obtain the conservative
form (103) with:

W1+Iwr/2—;l—2LWz2
rmy=| warmrw, |
W,
W,

W, W,
rm- 2L eansl Y | an
M2w, | 0
0 M2W,

In this case, the Jacobian matrices J*(W) are very
simple and functions g* (W) defined by (4) are written:

* wi 0
2 0

g 0 | gm=gm-| | au
. 0

Remark 1: The mass conservation equation (91) is
written:



The first equation (103) with (110) can also be
written:

g g A
K—(1+W)+—| l+W,+W,— W}
at( 1) axll: 1 2 2 2]

4—i Wi+ 2 w,=0. (113)
Ix, x4
By identification of (112) and (113) we infer the

relations between physical variables p, ¥ and variable

5=1+W1

"o A

Vi=1+W, +W,——W?

p¥y ) e (114)
5‘722”’3
pV3=W4.

Considering the second equation (93) and the first
equation {114), we infer that W is the density perturb-
ation variable:

W, =p. (115)

Remark 2: The pressure coefficient C,, given by (90)
is written:

C,=2(y M) 1+ W) 1]

We can obviously compute C, by this equation,
but to remain consistent with the small transonic

perturbation formulation, we write
(1+W,) ~1+yW, and obtain:
C,=2M"*W,. (116)

Remark 3: We denote the local Mach number as
M,,. to distinguish it from the infinite Mach number
denoted M.

It is written:

-1
M= p(1+ 310, )| eI
3
R EPRCIAR
k=1

Using (50) yields:
M2 =M?|| PV |2 pt .

loc
The use of the approximation of Remark 2 then
gives the formula:

Mg =Mip P l+(y+) W, (117)

_ Remark 4: To obtain the linear problem, it is suffi-
cient to set A=0. Thus, the formulation also allows
the subsonic and supersonic linearized problem to be
solved.

It should also be noted that (103)/(104) or (110)
has rotational solutions.
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L4.5. — ENTROPY AND ENTROPIC VECTOR
ASSOCIATED WITH THE SIMPLIFIED EQUA-
TION

The entropic vector associated with problem
(103)/(110) is written:

A
S(W)= §W12+ %MZ(W22+W32+W42)—3M2 w3.
(118)
A |
ST(W)=S (W)+W, (W,_-— = Wf)
119
STW)Y=W, W, (119)
SS(W)=W1 W4-

The Hessian matrix S (W) of S (W) is diagonal
and is written:

1 0 01 0
0| M*(1—-AW. 01 0

S (W)= o ¢ o 2 A2 (120)
0 0 0 | M?

Considering the results of Sections ,2.3.2 and
1,2.3.6, the system is hyperbolic if matrix §”(W) is

positive-definite, i.e. if 1-AW; >0 Accordingly,
the cone € — R* is defined by:
1
%ﬁ{We R W, < X}' (121)

Here again, entropy (118) is the ome and only
entropy for problem (103} f(110). It is not homogen-
eous and matrix H (W) defined by (7) is diagonal

and is written H (W)=S" (% W), like (108). Tt is
effectively positive-definite and symmetrical for any

W in ¥, since I—lW2>Oz>lm?2:W2>O.

Remark: The eigenvalues of the Jacobian J* (W)

are written p=1 (doubie) and
p=1+M"! /T-%AW, A single eigenvalue may
vanish for the critical value W} of W, written:
WH=1"1(1-M?%. (122)
The expression of the critical C,, is then:
C;‘:-—.’Zl“(i—Mz). (123

1,4.6. — ENTROPIC VARIABLES FOR THE SIM-
PLIFIED EQUATION

Let U=(U,, U,, U, U,)eR* be the entropic varia-
ble.
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(a) Equation WesUW)=V,SW)=BW)W
(see 1,2.3.4 A) defined on ¥ is written, considering
(118):

Ui=W,
U,=M*[1- -?f W, | W
z 2 )2 (124)
U3 =M2 W3
U4 = MZ W4.

(b) Equation Urs W () =V, F(U) (see 1,2.3.4A)

defined on €* is written:

W}_ _— Ul
2 -1
2,
M? (125)

W,=2U, [Mz(l + [1~

W3 ZM_Z U3

W4 = M_ 2 U4

where %* is the subspace of R* such that:

F*={UeR* U, < 20" M?}. (126)

L47. — ALGEBRAIC COMPLEMENTS FOR
THE SIMPLIFIED EQUATION

(a) Matrix H (W) defined by (33) is diagonal and
is written:

1 0 0|0
0| M*(1-AW 0 | 0
H= (o ) M| o |
0 0 0 | a2
izx(3_”/2), (127)
4—p

(b) It should be noted that expressions (61)-(63)
are extremely simple, that matrix P (W) defined by
(71) can be calculated algebraically with no difficulty,
since H(W)~! is diagonal, and finally that W=~
defined in (89) is expressed simply:

Wi

- AW

— 2 Ar=g—awna-Awyn
W3
Wi

(128)
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(c) Functions f*(U) defined for ke{l, 2, 3} are
written:

MU, +U,
P U)=M-2 U +2U, 1+ /123 MZ0,] !
Us
Uy
U3 Ud.
2 -2 0 3 -2 O
FAy=M ;=M
0 U,
,4.8. — MATRIX OF THE EDGE ELEMENTS
AND BOUNDARY CONDITIONS IN THE 2D
CASE
To simplify the presentation, we will develop only
the 2D case for airfoils.
The boundaries are oriented as shown in
Diagram 1.
L4.8.1. — Matrix of an edge element on a moving
boundary

Let x' =(x}, x3) and x*=(x%, x2) be the coordina-
tes of the two nodes of the element. Node 1 is the
originating node and node 2 is the end node and 12
is pointed according to the orientation of boundary
I',. The parameterizing of the finite element is defined
by:

[0, UarxE)=(x, (), x5 () e R?
x;=(1—r)x}t4rx?,

} (130)

x3=(1—r)yxi+rx3
and, since @] (x (r))=1—r and @} (x(r))=r, we have:

GO=(1—r) D! +r D% U=(1-ryUt+r?

B (r, D=h (x(r), t);
W) =%, (") + b, (7, 1) ke{l, 3}

(131)

} (132)

Using (78), {81), (52), {53), and (129), the elemen-
tary matrix B,(U)eMatg(6, 6) is symmetrical and is
written by blocks:

%bh(wl 25,) 1
B,(U)=|= 1 (133)
S5,(U) l S5

(12¢



where b, (L) e Matg (3, 3} is the symmetrical matrix:

Py M™2p, —P,
b,,(lU)z M_ZPD M_2B12(€U)Po 0 (134)
—P, 0 M~%P,

in which we set:
P0=x§“xé+’;3(ls t)_ﬁ3(0s t)
Po=M2[x—xl4h, (1, A (0, )] (135)
Blz(lU)=2[1+\/I——M'27L(U§+IU§)]"1.

L4.8.2. — Matrix of an edge element on a fixed
boundary

For a boundary element on I'j, it is sufficient to
set h = 0. We then obtain:

rgbo L) ‘ ébo(&ﬂ
B, (U)= (136)

1
Lgbo(“)l é—bo(U)J

where by (U) is given by (134), having set h, =h, =0
in (135).

1,4.8.3. — Boundary conditions and modifications of
the finite edge element matrices

A. Infinite boundaries

As the meshes are unstructured, we chose a rectan-
gle for the infinite boundaries. The upstream and
downstream boundaries are line segments paraliel to
axis xg. The “ceiling” and the “floor” are line seg-
ments parzllel to axis x,. These boundaries are fixed.
The supersonic case is conventional and does not
raise any problems. We will discuss only the subsonic
case (M < 1) which requires “adjustments”.

Subsonic upstream: We write:

MW, +W,=0;, W,=0, (137)

We use (124) and we approximate (137) linearly
(A=0), yielding:

U1+M_1 U2=0; U4=O. (138)

In each node x', we write two Dirichlet conditions
determined from (137):

Ub=—MUY"  UL=0. (139)

Considering (138), the first line of b, (U) U is writ-
ten:

bo(U) Ul=P, U\ + M~ 2P UL —P, U}
=Py (1-M YU

Considering the two Dirichlet conditions, matrix
by (U) can then be written:

xE—xDOQ-M"Hio]0
bo (U) = 0 olol. (140
0 6|0

Since M <1, 1-M™! <0, but on the upstream
x2—xj < 0.. Therefore, matrices B, (U) are nonnega-
tive on the subsonic upstream.

Subsonic downstream: We write W, =0. Therefore
U, =0 according to (124). Therefore, in each node
x! of the downstream, we write a Dirichlet condition:

U =0. (141)

In matrix by{U), we drop the nonlinear term (A =0
as on the upstream).

Considering the Dirichlet condition, matrix bg (LJ)
is then written:

0 0 0
0| M~ 2(x%—x}) 0
0 0 I M™2(x3—x3)

bo (U) =

But on the downstream, x3~—x3 > 0.. Therefore
matrices B,(U) are nonnegative on the subsonic
downstream.

Subsonic ceiling and floor: Here we consider only
the case of profiles and not that of cascades. If these
two boundaries are not physical walls, we can write
the nonreflection conditions using the Riemann inva-
riants. In this case, these two boundaries of the
computation domain are placed far from the aerody-
namic body(ies} and it is equivalent to consider them
as physical walls. Below, we therefore consider only
physical walls and, in each node x' of the ceiling and
floor (parallel to x,) we write, considering (124), a
Dirichlet condition:

U4 =0. (143)
On the ceiling and floor, we have Py=x2—x3=0,
and, considering the Dirichlet condition, matrix

by (U) is zero. Matrices B, (U) are therefore nonnega-
tive on the subsonic floor and ceiling.
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B. Profile boundaries

In 2D, equation (112) on ', , is written:
A 3 o
L+ GV —(EV)=0. (144
ar - omy N

We consider the associated 2-differential form:

Kpdny A dn+(pVy)dns A di+(pV3)de A dny=0.
(145)

We consider the linearization hypothesis for the
movements and the reference boundary I, is assumed
parametrized in x,. Therefore, for ke{1, 3}:

The=Xg+ I (x4, 1)

oh 146
dT]k=dxk+ jﬁdxl‘i' a_;dt ( )

*1

Then, using (114), {124} and (125), we obtain the
1-differential form on I',, which must be zero. It is
the boundary condition:

M2 (1 + g’ﬁ) [(z +U,) KM? % —U{| dx,

Xy

+[1 +U+M™2 Uz—(1+U1)K%]
b4 [dx3+ %dx1}=0. (147)
ox

1

On a finite boundary element I” » we obtain, based
on (147), using (130) and (132) and taking notations
(133) and (134):

[BP(U) Uj,+& (U}, =0 } (148)
[B,(U) Uly + & (V) =0
where:
1 1, 1,
V(U)1=5P4+(P4—Po) §U1+—U1
. ) (149)
9’(0J)4=5P4+(P4—P0)(gw+3w)
and:
P,=Py—PyP;+P P,
d 1
a2 ! 1 2
P,=M Kat 2[}'3 (x1, )+ A3 {xq, 1] (150)

1
p E[hi (x1, +hy (x3, D).

For 2D profiles, we can divide each member of
(147) by M~2 (1+ gﬁi) dx,.

Xy

Rech. Aérosp. — n° 1989-2

This yields an equation imposed as Dirichlet condi-
tion in each node x! of the profile boundary:
Uk=g(t, Uy", U3 (151)

Based on {133), using {148) and the fact that there

is a Dirichlet condition (151), the elementary matrix
B,(U) is given by (133) with b, (U) which is written:

0 0 0
by(U)= 0 | M72B,,(U)P, | O (152)
0 0 0

The second member of the finite boundary element
is the column matrix & (U)eMatg(6,1) with & (U),
and & (1), given by (149) and:

i
F(U),=—M"2P, G U{+-6»U{)
(153

)
i 1
F(U)s=—M"?P, (g Ul+ gui).

LS. — CONCLUSIONS

We described a numerical method for solving the
conservative hyperbolic equations by an implicit finite
element method without artificial viscosity. It is
applied to a new form of the small transonic perturba-
tion equations. The numerical applications and the
validation of the approach are given in Part II of this
article.

Manuscript submitted on June 28, 1988,
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