N
N

N

HAL

open science

Numerical simulation of homogeneous and

inhomogeneous Gaussian stochastic vector fields

F. Poirion, Christian Soize

» To cite this version:

F. Poirion, Christian Soize. Numerical simulation of homogeneous and inhomogeneous Gaussian

stochastic vector fields. La Recherche Aerospatiale (English edition), 1989, 1 (-), pp.41-61.

00770316

HAL Id: hal-00770316
https://hal.science/hal-00770316
Submitted on 3 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00770316
https://hal.archives-ouvertes.fr

NUMERICAL SIMULATION OF HOMOGENEOUS
AND INHOMOGENEOUS GAUSSIAN STOCHASTIC
VECTOR FIELDS

by’
F. POIRION and C., SOIZE

ABSTRACT

The first part of this paper presents a numerical simulation method for homo-
geneous and inhomogeneous stochastic Gaussian vector fields. The convergence
properties of the method are studied in detail as these are the only criteria for
guaranteeing the quality of the simulated paths and hence the representativity of the
simulation compared with the ‘probabilistic model. Numerical simulation formulae
are given explicitly in this first part.

In the second part, an example is given of a velocity field simulation of atmos-
pheric turbulence, as madeled by an isotropic homogeneous Gaussian field and by
an inhomogeneous Gaussian field.



I — INTRODUCTION

Numerical simulation methods are efficient for con-
structing an approximated solution of certain nonlin-
ear stochastic dynamic problems. In fact, they are
presently the only methods which can be used to
construct a solution for numerous large dimension
linear stochastic problems for which there are no
other practical methods [55, 56]. For instance, it is
desired to solve the equation:

Y= X0, Y@) t>0,  Y(0)=y

where fis a nonlinear mapping and X (¢) is a station-
ary stochastic process defined on a probabilistic space
(A, =, P). The simulation method then consists of
constructing sample paths ¢+ X(t, a), i=1, N, g, 4
to solve the equations

Y(t: af)zf (X&: ai)= Y(f., ai))! £>0= 1= 1: N:

then, from these solutions, constructing estimators of
the random values of the response of the nonlinear
system.

Such an approach is used to predict the response
of an aircraft to continuous atmospheric turbulence
by a numerical model in presence of nonlinearities in
the coupled system: aesrodynamics-structure-servocon-
trol (control surface rate saturation nonlinearity,
structural nonlinearities, acrodynamic nonlinearity in
the transonic state, etc.) [45]. For this type of study,
it is therefore necessary to numerically simulate
stochastic fields. For the example just mentioned, the
field to be simulated is that of continuous atmospheric
turbulence.

Although numerical simulation methods are gen-
erally conceptually simple, they are relatively compli-
cated to implement. In effect, the mathematical
properties of the stochastic fields to be simulated
must mandatorily be verified, since they are the only
way of guaranteeing the “quality” of the simulated
paths and therefore the representativity of the simula-
tion with respect to the probabilistic model. Further-
more, whereas the choice of method has little impact
on the cost of simulation in the case of processes
(random values indexed by a scalar parameter), in
the case of fields (values indexed by a vector param-
eter, for instance one coordinate for time and three
coordinates for space), the choice of an unsuitable
method can lead to prohibitive numerical costs.
There are many methods for numerically simulating
stochastic processes and fields with real or vector
values, stationary or not, homogeneous or not, Gaus-
sian or not. Synoptic data on the main methods can
be found, for instance, in [55].

The first part of this paper presents a numerical
simulation method for homogeneous and inhomo-
geneous Gaussian stochastic vector fields, which case
occurs very often’ in practice. Certain bases of the
method described are not new. For instance, a
description and applications can be found in [51, 52,
53]. However, for the reasons mentioned, this paper
gives a complete, relatively detailed description for
the general case of vector fields, including the proper-
ties which appear essential to us for controlling the
quality of numerical simulation and, finally, directly
usable, the numerical procedure being presented inte-
grally. The case of stationary and nonstationary
scalar Gaussian processes is a special case of the
results described.

The second part of the paper is devoted to an
application in the case of an isotropic homogeneous,
then nonhomogeneous field. The application was
chosen in the framework of aircraft response to atmo-
spheric turbulence. For this type of application, the
Gaussian assumption of the turbulent field is suffi-
cient [44, 69], and it is first attempted to restore
only the spectral tensor of the simulated field. This
quantity is sufficiently significant to analyze the non-
linear responses of mechanical systems. Under these
conditions, the atmospheric turbulence models des-
cribed herein do not necessarily verify all the con-
straints related to fluid mechanics.

II. — NUMERICAL SIMULATION OF HOMO-
GENEOUS AND NONHOMOGENEOUS
GAUSSIAN VECTOR FIELDS

II,I. — NOTATIONS

Let m be a positive integer. The Euclidean space
R™ referenced to its canonical base is equipped with

the usual scalar product {x, y )= 3 X;¥;
F=d

and the associated norm ||x || =< x, x »*/* where
.3 xm}: Jr’="(}’1; L me'

For x and yeC™, we note

x=(X4 ».

=3 xy; and |x||=¢x x)?
i=t

where 3 designates the conjugate of y. Let KR or
C, and n and m be two positive integers, We will
identify the vector space of linear mappings of K"
into K™ with the space of matrices Maty (m, n) with
m rows and n columns whose elements are in K. We
therefore have K"~ Maty (n, 1). Let 4sMat;(n, m).
We denote the transpose matrix of A as A7, the



conjugate matrix as A4 and the adjoint matrix as
m

A¥=AT. We will denote as tr4= Y 4, the trace of
=1

4 and will use the matrix norm [|A[=Y ¥ [4;].
J=1 i=1

IL1. 1. — Field indexing parameters and sets

In the discussion below, d will be an integer > 1.
We will denote as t=(t,, . .., t,) the generic point of
R? which will be the indexing parameter for the fields
considered. We will also use the notations
t'=(t} ..., t3) and u=(uy, ..., u,) in place of ¢
when we need several points.

Let Ty, ..., T; be d positive real numbers and T
be the subset of R* (a closed, bounded, rectangular
subset) such that:

T=[0, T,]x[0, Ty]x... %[0, T,] (1)

with measure
P

where dt is the Lebesgue measure on RY. We sat:

sl { Tos. 005 T 3)

The Greek letter « denotes an integer multiple index
with dimension d reserved for &

a=(ey, ..., 0)eNy  weN, (4)

For a fixed, ¢, denotes the point of R?

i b g (5)

£“=(t1. R

where £, , €R is the value of the j-th coordinate L
of ¢

IL,1.2. — Field pa;-ameters and spectral domain

Let Q, ..., Q, be d positive real fixed numbers,
We denote as {} the subset of R?

ﬂ=[—'91: QJX e X[—Qd, Qd] {6)

defined as the product of the subsets [-Q, Q] of R
called its edges. The compact part  of RY is the
support of the matricial spectral measures considered
and will be called the “spectral domain®.

Leto=(w,, ..., o) be the generic point of O < Re.
When we need another point, we will write

o'=(0], ..., ®). As above, we denote as

lo|=0,x... xQd=f_dm 0
Q

the measure of & where do is the Lebesgue measure
on R

The Greek letter B denotes an integer multiple index
with dimension 4 reserved for o

P=(By - .., BeN, BN, (8)
For P fixed, @, denotes the point of {:
y=(®y, py» - -+, O Ba) 9

where @, , is the value of the j-th coordinate ©; of
@.

I,1.3. — Subdivision of spectral domain

The establishment of numerical simulation for-
mulas for the fields requires introducing a subdivision
of spectral domain . We could take any subdivision,
but in this case, we would obtain a formulation which
would not be suitable for the multidimensional Fast
Fourier Transform (FFT) algorithms and the numeri-
cal cost of simulation would be high. In order to be
able to use the FFT, we must use a subdivision with
a constant step for each coordinate although possibly
different from one coordinate to another,

Let M;, ..., M, be 4 positive fixed integers and
Ny=2M,, ..., Ny=2M, be the d associated positive
even integers. We set:

N=N;x...xN,

10
N,-nf=1'nf{N1; ""Nd}‘ ( )

In the discussion below, we will denote as By the
subset of N such that (cartesian product of subsets
of i)

d
BP'.:]:[{O, I, 2, ...,NJ—I} {12)
i=1
Therefore if
ﬁEBN! BJE{O, 1, ey Nj_-I}] vjE{]'a L d}'

Foranyje{l, ..., d}, we consider the subdivision
of the edge [—Q, Q] with a constant step A; such
that:

A=2Q,N; =0, M;? (13)

whose meshes are the subsubsets of [~Q, Q] with
center:

1
=0+ {(Br43) 8 (14)
Bef0, 1, ..., Ny—1}



We then define the subdivision of (1 as the finite
union of subsubsets @ of Q with disjoint insides:

Q= U Qp (15)
BeBy
such that

Qp= H1 (@), 5,— A2, @), 5,+A4,/2] (16)
Jj=

2= [ do=a] U
2

where |A| is such thaf
|A]=A;x ... xA, (18)

It should be noted that subset @y of 1 is centered.

in point @, and that there is no subset centered in
the origin of §, which is a requisite for what follows.
Let A=(A,, ..., A) be the vector of R’ and
A||=(A, AY*? its norm (not to be confused with
A and [ A]].
We then have:

Nipy—+00 = ”A”—)O. (19)

Finally, for any mapping defined on {3, we will use
the following condensed notation

Y, [l
BeBy
Ny—1 Ng=1
=T ei T F®y g erertis p) (20)
fr=0 Ba=0

where ©; g, is defined by (14).

I,2. — HYPOTHESES ON THE FIELDS
CONSIDERED

Below, (4, &, P) denotes a probabilistic space, E
the mathematical expectation, and d and » two inte-
gers = 1.

We consider a Gaussian, second-order, centered
stochastic field X()=(X, (), ..., X,(t)) defined on
(4, &, P), indexed on an open set @ of R with
values in R" whose autocorrelation function
LU= R(EOD=EXBXE)): Ox0- Matg(n, n)
can be represented:

R{z, :’)=f
Rd
e<m Y 0 (1 0)S (@) Q (¢, o)*do  (21)

with the following hypothesss:

(H1): o+ S(w) is a function of R? in Mate(n, n)
with compact support & continuous on & and such
that for any ©weR? S(o) is a positive Hermitian

matrix:
<S(m)x?g)));i(m)*‘fxe£“} (22
and such that
S(—a)=S$ (o). (23)

(H2): t, o= Q (¢, @) is a continuous mapping of
0 x B¢ into Mat (n, n) such that for any oe:

20t —0)=0( w). (24)

For any compact set " < (@, there exists a positive
real constant C, which depends on #" and is inde-
pendent of © such that ¥t and tex,
Voel, Vp, ge{l, ..., n}

115 (& 0} =@, (7, 03)||§Cx|[r-—f|]} .
[ & @) | =W, (2, @) || SC [ 1|

where we have set

Dy (t, @)=]Q,, (&, ©) [exp (i, (2, ).

Comments

(i) Let X()=XR(&)+i X" (t) be a field with values
in C™ and m be an integer =1, where X?(t) and X’ (z)
have values R™

We can identify € to R? and X°(t) to
X()={X®(), X' ()} with values R, n=2m. Thus
the case of fields with values C™ can be identified
with the case R".

(ii) By hypothesis, X () has values R" and therefore
R(t, t)eMaty(n, n). Thus, the imaginary part of
integral (21) is identically zero and we can also write:

R, r.’)=Réj

Q
x el <™ =130 (1, @) S (@) Q (¢, o) da (26)

(iif) Hypothesis (22) requires function o~ tr S (@)
on R? to have positive real values and be continuous
on Q and therefore means that measure tr § (@) do is
positive-bounded on R?.

(iv) The hypothesis of continuity of @ on @ x R¢
is not restrictive. Since § has compact support {, it
is sufficient for ¢, @— Q (¢, @) to be continuous on
OxQ. As the values of function ¢, 0 Q (t, @) are
not involved in 0 x (R™\ ), we can make a continu-
ous extension.



I1,3. — PROPERTIES
OF THE FIELDS CONSIDERED

I1,3.1. — CASE OF A HOMOGENEOUS FIELD

In all of Section IL3.1., we take @=R% As the
field is Gaussian and centered, a necessary and suffi-
cient condition for the field to be homogeneous (or
stationary if d=1 and also if d4>1) is for
R{t, t)=R(t—1") and therefore for Q (¢, w)=1, where
I is the unit matrix of Matg(n, #). Representation
(21) is then written

R(s—t’)=RéJq_e"(°" =73 S (o) do (27)

Q

and § (@) is the density of the matricial spectral meas-
ure of the second-order homogeneous field X(¢). It
is known that one necessary and sufficient condition
to have representation (27) is for the field to be
mean-square continuous and for the matricial spectral
measure M (dw) to accept a density S () with respect
to do.

The hypotheses introduced in Section II. 2 require
the following properties:

(P1) The function u+s R (u) is continuous on R?
and limy, -+ R ()| =0. It is infinitely differen-
tiable on R? and therefore field X(¢) is mean-square
infinitely differentiable on R

Functions S and S? are integrable on R,

Therefore, R? is integrable on R? but R is not
integrable on R? in the general case.

(P2) Field X(t) has continuous sample paths on
RY, almost surely. This property will be useful for
studying statistics on paths of the type sup||X(0)[),

teT

where T is defined by (1). The proof is obtained by
directly applying proposition A1.1 of Section A.1.iv
of the appendix,since, Q (¢, ®) being equal to I, (A1. 6}
and (Al.7) are verified and M (do)=5 (0)do and
suppS=_Q.

(P3) The hypotheses of Shannon’s theorem for the
fields are verified. For je{l,...,d}, we set
T;=nQ;! as sampling step for coordinate t, Let
a=(ay, ..., %)cZ be the multiple index of relative
integers of dimension 4. We set

t=(0; Ty, ..., 0T )ER?

as sampling points in ¢, and t=(t;, ..., t;) is any
point of RY. We then have [55]:
:
X(H=Y X@) HSEEM (28)
ezt =1 Q=T

Remark on the hypothesis of the compact support
of §: For certain applications, § does not have a
compact support. This is the case for instance of the

frozen isotropic atmospheric turbulence model. But
for physical fields, the total power

E(||X(z)[|2)=trR(0)=_[ tr S (o) do< + o (29)
rd

is finite: the field is second-order and S is integrable
on R%. Therefore ¥e>0, 38 defined by (6) such that:

0<J. trS()do<eE(|X@ . (30)
r! 0

We then conventionally approach S by 158, where
15 is the indicator function of Q on R%

The approximated field thus constructed is mean-
square infinitely differentiable on RY whereas the
initial field may not even have been mean-square
differentiable once. Thus, criterion (30) for determi-
nation of Q) is suitable if no mean-square differentia-
tion of field X () on R? occurs in the problem analy-
zed.

However, if the initial field X(¢) has a spectral
matrix density S which does not have a compact
support and which is such that:

L}[m||2nr5(m)dm<+co (31)

for p integer = [, property related to the existence of
mean-square differentials on R? of the field, and we
need the property:

J o]t S (@) do< +c0 (32)
ﬁd

for g=p, then criterion (30) for determination of Q
must mandatorily be replaced by:

J‘d_Hcoﬁz‘?trS(cx))dmgsE(l]X(t)ﬂz). 33

I1,3.2. — Case of a nonhomogeneous field

In this case, @ can be any open set of R* and
Q (t, ») depends explicitly on z. Function § is called
the density with respect to do of the structural matrix
measure and function
t, @ Sy (5, ®): 0 x R - Matg (n, n) such that:

Sx(t, @)=0(t 0)S(@)Q (¢ o)* (34)

is the instantaneous spectral density. The support of
oSy (t, @) is Q, uniformly in ¢, and ¢, o Sy {f, o)
is continuous on @ x{. The field is therefore effec-
tively of second-order since:

E(|X@)|)=trRG, 0

=Réj trSy (¢, ®)do< +co,

Q

Yied® (35)



The hypotheses of Section II. 2 imply the following
properties:

(P1) field X(t) almost certainly has continuous
sample paths on @. The proof is obtained by applying
proposition Al.1 of Section Al-iv of the appendix.
In effect, considering (25), (A1-6) is satisfied;

(P2) let t=(1y, ..., 1) eR? with1;== Q% Itcan
be said that function t, o Q (t, @) oscillates slowly
if, for any ¢ and any

wel), Q(t+7, @)~Q (¢ o).

In this case, the sampling in ¢ is controlled by the
support Q of §, as in the case of homogeneous fields
for which we use Shannon’s theorem. Below, we will
assume that this hypothesis is verified.

II,4 — CONSTRUCTION OF AN APPROACH-
ING SEQUENCE OF THE FIELD

114.1. — Splitting of §

The numerical simulation will be performed on an
approximation of the initial field, which is an element
of an approaching sequence converging to the initial
field.

According to (22), for any wef), S () is a positive
Hermitian matrix. Therefore, there always exists a
matrix H (@) Matg (n, ») such that:

S (0)=H () H (0)* (36)

and function @~ H (©) is continuous on .

Let r=rank § (®), for r<n we can always construct
H(w) by the general linear algebraic method based
either on the use of the base of eigenvectors of the
Hermitian matrix S or on the LU Gaussian reduction
in the supplement of the kernel which it is known
how to construct.

In the particular case where r=r, S (w) is positive-
defined and we can use Cholesky’s method,

For any te® and wel), we define matrix
H (¢, @)eMatg (n, n) such that:

HE 0)=0( o)H (). (37)

Function ¢, @+~ H (¢, ®) is continuous on @ x {.
Under these conditions, (26) is written:

R, z’)=Réj

Q
x el Con 1=t ) g (t, @) H (', 0)*do. (38)

If the field is homogeneous, we have
H (t, @) =H {w) independent of £

11,4.2. — Definition of the approaching sequence

We use all the notations of Section II.1. For N
fixed, we define a stochastic field
XO=Y@, ..., X¥(@) on (4, &, P) indexed on
O with values in R" such that for any pe{1, ..., n}

X¥@®=_/2]A Ré{ 2 2 Hybw)Z,,

q=1 PeBy
xexp(i®, p+i{t, @)} (39)

where

(@) {®, 3}, s K=nxN are random variables
defined on (4, &, P), uniform on [0, 27] and mutu-
ally independent.

() {Z,, 5}q p corresponds to the two following
possible choices:

Choice 1: The Z, g are constants equal to 1

Vge{l,...,n}, VBeBy, Z,,=1 (40)

Choice 2: The Z, p are random variables defined
by

Z, 8= /—Log‘l’q‘ 5 (41)

where {¥, ;} are K random variables defined on
(4, &, P), uniform on [0, 1] independent of one
another and of random variables @, ,.

Comments: The two choices lead to the same sec-
ond-order characteristics for field X¥ (). However,
the first choice gives a field which is not Gaussian
but which will be asymptotically Gaussian for
Ning = + 00, whereas for the second choice, XV is a
Gaussian field for any fixed N.

IL5. — PROPERTIES OF THE FIELDS OF THE
APPROACHING SEQUENCE

IT,5.1. — Second-order properties

For any fixed N, the stochastic field X¥(¢) defined
has the following properties regardless of whether
(40) or (41} is chosen for Z, @

(i) it is of the second order and, for any te®, we
have:

E(|X@)=[A] T 18z, op)<+o (42)
PeBy

(i) itis centered, and its autocorrelation function ¢,

¢ R, )=EX* O XY ()T) : 0 x O — Maty (n, n)



is written:

RY(, t)= Réj a niid

"4

xQ(t )M (do)Q (¥, w)* (43)

where M¥(dw) is the measure on R® with values in
Matg (r, n) such that:

M¥dw)={A| ¥, S (0p} 8, (w) (44)
feBy
and
d
B = 1(3 Boj.py (45)

where 8, , is the Dirac measure on R in point o; B
for coorcfmate mjeIR of @.

(iif) field X¥(¢) is mean-square continuous.

(iv) if ®=R? and Q(t, w)=1, field X" (¢) is mean-
square homogeneous.

Proof: for any y and y’ in R, we have:
E(cos(y+®, ¢)=0 (46)
E(cos(y+ @, p)cos (V' + D, )

1
=841 dppns o o—-y) (47)

for choice 1 (40)
E(Zi a=1 (48)
for choice 2 (41)

E(Z} ﬂ)=J. (/—Log¥)d{=1. (49)
Qo

By writing H (s, wg)=|H(, @p)|exp(i6,,(t ©p),
relation (39) can be written:

XN(t) /2[&[ Z > |HM(I mﬁ)|Z
g=1 BeBy

xcos ({t, @) +8,,(t, 0g)+®@, p) (50)

considering (46) to (49) and since @, 4 are indepen-
dent of ¥, 4, it can be seen that E (XV ())=0, and
therefore that the field is centered and we obtain:

E(X; (0 X, ()

= lAl Z 2 alq(t’ mﬂ) Ha'q(t'= mB)I

a=1 feBy

xcos((t—t', mp) +6,,(t, ©g)—8, ,(t', p))

=Ré{] Al T H, o) T, 7 oy

q=1 BeBy

x exp (i { @g, r—r’))}

Since
0@ o) S(w) 0@, o)*=H(, o) H{, o), we
obtain (43)-(44). We infer (42) from (43)-(44). Since
By has a finite cardinal, RY is continuouns on @x @,
proving point (iii).

Finally, since X" (t) is a centered field and, in case
(iv), R¥(t, t)=R¥(t—1t) depends only on t—¢’, the
field is mean-square homogeneous, which proves
point (iv).

I1,5.2. — Properties in law

(i Choice 1: if the Z, g are defined by (40), for
any fixed N, the stochastn: fleld X¥ (1) is not Gaussian.

(i) Choice 2: if the Z, , are defined by (41), then,
for any fixed N,

— the stochastic field XV (¢) is a Gaussian field;

— if, in addition, ®=R? and Q (¢, ®)=1, then field
XV (t) is homogeneous.

Proof: Let us begin by proving point (ii). For any
¥y, we set:

U,p=./—log¥, scos(®, g+, 2 (51)

Then, random variables {U, ,},, are mutually
independent and for any g and B fixed, random varia-
ble U, 5, which is centered and which has a covariance
of 1/2 according to (46), (47) and (49), is a Gaussian
random variable. Considering (50), we can infer that
XM is a Gaussian field. (It can be demonstrated
that U, , is Gaussian by calculating its characteristic
functwn for instance.) In the case @=R? and
Q (t, w)=1, according to IL,5. 1.-iv, X" is mean-square
homogeneous. But since it'is Gaussian, it can be
inferred that it is homogeneous (in law).

The proof of point (i) is inferred from point (ii).

1,5.3. — Properties of the sample paths

(i) Choice 1: The Z, 5 are defined by (40). For
any integer m=1 and any compact set o of @, there
exists a positive constant C,- independent of N such
thatVtand t'in o and VN

T E( X O-X @) 52)

and field X" (£), which is not Gaussian, almost cer-
tainly has continuous sample paths on @.

(ii) Choice 2: The Z, 5 are defined by (41). For
any compact set # of @, there exists a2 positive
constant C, independent of N such that ¥¢ and ¢ in
A and VN

E(X0-X@)|P)SCe|t=r > (53)



and field X" () which is Gaussian almost certainly
has its continuous sample paths on @.

(iii) Homogeneous case: if 0=R* and Q (¢, w)=1I,
and whatever the choice, ! or2, the paths
tj—> X" (¢, a), a€ A are periodic functions with period:

TP=2&{124)"%, je{l,....d}. (5%

By setting T°=(T}, ..., T)eR?, t—X¥(t, a) is a
periodic function on R with period T°.

Proof: (i) The result is a direct result of proposition
A1.2 of Section Al.vi of the appendix for the non-
Gaussian case. Hypothesis (A1, 11) is verified since ¢,
w—H(t, @) is continuous on @x{ and hypothesis
(A1.12) results from (25)-(37).

(ii) The result results from proposition Al.1 of
Section Al.iv of the appendix for the Gaussian case,
knowing that (A1.5) is given by (43). Equation (53)
is none other than (A1.8) of the proof of proposition
Al. 1.

(iif) The proof is trivial.

I,6. — STUDY OF CONVERGENCE OF THE
APPROACHING SEQUENCE

We constructed an approaching sequence XV of
field X.

The numerical simulation will be carried out on an
element X™ of this sequence for N fixed. It is therefore
necessary to study convergence of XV to X. We will
establish three types of results.

— The first concerns convergence of the second-
order values.

— The second is relative to convergence in law
(weak convergence) of the sequence of fields X¥ to
the Gaussian field X

— Finally, the third result, finer than the above,
shows weak convergence on the continuous functions
with compact support, used to insure convergence of
the statistics on the sample paths.

I1.6. 1. — Convergence of second-order quantities

For any N, field X" (t) is centered like field X (¢).

The results are as follows for second-order quanti-
ties (valid for choices 1 and 2). For any ¢t and ¢’ in @:

(i) the sequence {Q(, ®)M"(dw)Q(t, w)*}y of
measures converges narrowly for N, — + co to meas-
ure Q (¢, ©)S (@) Q (¢, w)*dow

(ii) the sequence R¥ (1, t') converges to R (1, t°).

(iii) if, for any p and ge{1, ..., n}, the functions
o s(@)=[Q (t, ®)§ (®)Q (', w)*],, are in C"(O, C),
with r=1 or 2, then the speeds of convergence are

-r

m N¢.

Proof: For any t and ¢’ fixed in @ and p, q fixed in
{1, ..., n}, the function se C®(Q, C). We use lemma
A2.2 of Section A.2. (ii) of the appendix. Point (i)
results directly from it, as do points (ii) and (iii) by
taking 5" (0)=s(w)exp(i{w, t—t' D).

1,6.2. — Convergence in law of the approaching
sequence

(i) Choice 1: (a) the sequence of non-Gaussian
stochastic fields X¥ converges in law (or weakly) to
the Gaussian field X when N,y — +c0.

(b) if 0=R% Q(t, ®)=I, mean-square homogen-
eous converges in law to the homogeneous Gaussian
field X.

(if) Choice 2: (a) the sequence of stochastic Gaus-
sian fields X¥ converges in law to the Gaussian field
X when Ni;— +co.

(b) if 0=RY, Q (t, w)=1, the sequence of homogen-
eous Gaussian fields XY converges in law to the
homogeneous Gaussian field X.

Proof: (i) the proof of (a) is given in Section A.3
of the appendix. The proof of the result is in the
central limit theorem. The proof of point (b) results
from point (a) and the fact that a Gaussian field
mean-square homogeneous is homogeneous and vice
Versa.

(i) The proof is trivial since sequence X" is Gaus-
sian and centered and RY (¢, t') = R(t, t") according
to IT.6.1 {ii).

I1,6.3. — Weak convergence on continuous functions

Let 2 be any compact part of @, for instance
subset T defined by (1). Let C°() be the space of
continuous functions on & with values R equipped
with the uniform convergence norm:

viect ), |Ifll = sug lf] (55)

let pe{l, ..., n} be fixed. For instance, it might
be desired to know whether a random variable

sup| XN ()| converges in law to random variable
te X
sup | X, (r)[ or even if the second-order characteristics
te X

converge. This type of result cannot be inferred
only from the convergence in law of the approaching
sequence X" to X established in Section II.6.2. More
is required and it is the following result:

Let g be a continuous function of C°(¥) in R.
We then have:

2, LM (59)

Ning = + o

Z (g (XV))

Proof: In Section II.3., it was shown that field
X(t) almost certainly had its continuous sample paths



on @. In addition, it was demonstrated in Section
I1.5. 3 that for choices 1 and 2 and for any fixed N,
field X~ () almost certainly had its continuous sample
paths on &.

In addition, according to the results of I1.5.2, we
know that XV converges weakly to X.

But, since inequalities (52) (for choice 1) and (53)
(for choice 2) are uniform in N, weak convergence is
inferred on C° (o£).

Applications: The functional g (f )=sup,.»|f(®)]is
the norm ||| f]|| of f on C°() and it is therefore a
continuous functional. It can be inferred that:

2(sup|X¥(0]) =  Z(sup|X,@)]) (7
teX

teX Nipf = + o

IL,7. — NUMERICAL SIMULATION FOR-
MULAS

II7.1. — Homogeneous case. Rapid simulation for-
mula by FFT

(i) General case: We consider the case @=RY
Q (t, ®)=1 and therefore (39) is written as follows for
pe{l, ...,n} and N fixed:

X ()= \/ﬁRé{ Y T B a2, g

g=1 PeBy

xexp(id, g+idt, coﬂ))} (58)

where H (o) is defined in I1.4. 1.
According to Shannon’s theorem (II.3.1.P3), it is
necessary to sample coordinate ¢; of ¢ at frequency

i =2 Sfmax, j Where fooo = 2.

Therefore f; ;=17 "

More generally, we introduce the parameters
v;=2m; m; integer 21 and coordinate t; is sampled
at fi, =V faax, ;)=V;;(27) "', The sampling step 3,
is written 8,=f;"}, i.e. using (13):

8=2x(,A)7%, je{l,...,d} (59)
Ny=12v,N, v;=2m,
mz1, je{l,...,d} (60)

Let Ay be the subset of N? such that:

d
Aﬁ: H {0, 1, 2, “r ey Nj—l}- (61)
i=1

Therefore, if the multiple index

wedg  oe{0 1, ..., N—1}

foranyjin {1, ...,d}.
The sampling points for coordinate ¢; are therefore:
we{0, 1, ..., N—1} (62

ti'v =j=qf 6]’

and considering (5), the set of sampling points for ¢
is:

te=(ty.qpp - s bac  GEAf (63)
The set of sampling points for o is:
(Dﬁ:(mllpl, Y (Dd. Bd)’ ﬁEBN (64}

with (12) and (14).
It can be noted that according to (54), the period
T? for coordinate t; is written T5=4=/A; and since

(N;,—1)8;~2n/A,, it can be seen that choice (62) is
correct since a half-period is used. A simple computa-
tion for e Az and e By gives:

d

{Op L,y ==27 Z o (v —2N)™h
d

+2n Y oB; N7t (69)

=1
Since N;2 N, A¢2 By, and for fe Ag we set:
if PéBy

xP=0
¥P= 21 H, (o) Z, sexp(i®, q) if BeBy. (66)
i=

Then relation (58) is written for any ae Ag:
xX¥e)=/2ARé { X (@)

d
xexpli —2im Y otj(vjl—(?.ﬁfi))]} (67)
f=t
where

@)= 3% x‘;}exp[

Bedy

d
2fnaj;3jr~‘f;*] (68)
=1

Li
where XV, given by (68), can be computed by FFT.

(ii) Particular case: folded formula: We introduce
the following additional hypothesis relative to the
symmetry of the field: Vje{l,...,d},¥p and
Vge{l, ..., n}. We have:

Hy @y, o0y =@ .00, )

=Hp (0 oy @ ooy @), (69)
Then, with M; such that N;=2M » We set:

M;=v; M,
d

Ag=T]{01, ..., M~1}

j=1

vp=2m; m;21

d
BMz H{Lz, n--nMj}
=1



3;=2n(M,;A)"",
AJ=Q‘, Mj_ L,

8,0 =%9;
@;, p;= By 4

and, as in (66), for fedy;:, we set:

x{Bp) = 0 if B é B.‘{
xP'= Y H,(0)Z, sexp(i®, p) if BeBy.
q=1
Then for any ae Ay;:, we have:
X (t)= J2ZARE{ X} (@)} (70)

d
X(o="Y xg”exp[ 3 Zz'fmJ-BjM;‘] (71)
BeAsr J=1
where X7, given by (71) can be calculated by FFT.
(i) Comments: The introduction of parameters
Vi, ...y Vg makes it possible to preserve the FFT
algorithms, even if a finer solution is desired for
coordinate ¢; than for coordinate @; For m;=1, we
have v;=2 and N;= N, which is the conventional case.

II.7.2. — Nonhomogeneous case

In this case, we must use (39) with H, (; o)
depending on t. The same expansion can be made
as in the homogeneous case, but in this case, x
defined by (66) depends on « and (71) can no longer
be calculated by FFT. However, if the field remains
homogeneous for certain coordinates and nonhomo-
geneous for others, approach (70)-(71) is useful since
it allows part of the computations to be made with
partial FFT for the homogeneous coordinates.

III. — ATMOSPHERIC TURBULENCE MODEL
AND SIMULATION

Below, the aim is to use a model not to determine
the properties of atmospheric turbulence from the
standpoint of fluid mechanics but to calculate the
response to turbulence of nonlinear mechanical
systems such as an aircraft using a turbulence model
where only the second-order quantities are significant
and in which the Gaussian hypothesis is acceptable,
as was stated in the introduction.

[II,1. — STATEMENT OF THE PROBLEM

A simplified turbulence model, called cylindrical, is
often used [9, 58] to compute the responses of an
aircraft. Recently, after measurements made in flight
[69], it was observed that this simple model gave

results which were farther from the experimental
responses than the isotropic turbulence model, in par-
ticular for aircraft with a long extension. However,
this turbulence model, which gives good results when
the aircraft is flying at constant altitude, is no longer
suitable at low altitude [0, 300 m] and in particular
during landing and takeoff phases, since the loss of
isotropy and homogeneity due to the closeness of the
ground must be taken into account.

In this section, we illustrate the methods described
above by constructing simulations of atmospheric tur-
bulence, modeled first by an isotropic homogeneous
field then by a model of an isotropic inhomogeneous
field that we will construct.

Below, the three space coordinates (x, y, z) are
denoted (t,, t,, ty) and the associated wave vector is
denoted (©,, ®;, ;)=

I11,2. — MODELING OF TURBULENCE BY AN
ISOTROPIC FIELD. SIMULATION

Atmospheric turbulence is modeled by a stochastic
deld X(6)=(X\, t;, t3), X3(ty, 25 13)y X3(ty, 12, £3))
indexed on R? with values in R3, Gaussian, homogen-
eous, independent of physical time (frozen turbu-
lence), second-order, centered whose matricial spec-
tral measure accepts a density given by [2, 25%:

s@m-feb( o2 )

drfol*\ o
where I is the identity matrix of Matg(3,3),
55 _T(56) o

_35 (o] /o)
f(“m“)— 9 \/ET'(IB) o, (I+(Hm|[fm,)2)”f6

o’=E(||X(®|]>) and v, is a reference wave number.

The density S does not have a compact support.
Therefore, we will simulate the field whose spectral
matrix density is 15 S (@)

We can then directly use equation (58) to construct
field simulations. In order to check the results, we
construct a spectral matrix density estimator, whose
expectation is given by:

7
Su@=02m 2/~ T, X (@) X7 (@), 15p, ¢<3

k=1

where

X (@)=(T, T, T5) "4

Ty (T3 T2
X f J X9 (2y, t5, 13)
o o 0

¥ e—I(ml ty tay 1y tagta) dll dtz dfg,



where X¥(t,, 15, t5), ,€[0T)], je{l,2 3}, is the
result of the kth simulation of field X and 4" is the
total number of simulations.

Trace (S (w))
0,261

|

0.2

0.1

— Analytic spectrum

* Part of the spectrum estimated
by simulation

5 15 25 3B
16 x 16 x 16 points—200 draws

llwll/we

Fig. 1. — Isotropic turbulence.

Figure 1 shows the analytic and estimated power
spectral measure of the field, i.e. the trace of matrix
S (@), which is 2 function of only the wave number.

We used 16 points per coordinate to construct the
simulation, with the mean of the estimator calculated
on 4 =200 simulations, and the spectral domain
truncated to obtain a sufficiently fine spectral resolu-
tion for the estimator.

III,3. — CONSTRUCTION OF A MODEL FOR
ANISOTROPIC TURBULENCE IN THE
ATMOSPHERIC BOUNDARY LAYER [0-300 m]
AND SIMULATION

The model we propose recomstructs an instan-
tancous spectral density from the experimental data

Sx(t @)=0(, 0)5 (@) Q (¢, w)*
for the turbulent field. Such an approach was des-
cribed in a simpler framework, using a different simul-

ation method [20, 21]. Having the instantaneous
matricial spectral measure, we can write equation (21)

R, )= Hfse““"'"”Q(fs ©)S (@) 2, o)*da
B

and use the methods described in the first part to
simulate the field. We will first establish the math-
ematical framework used to construct the model.

II1,3. 1. — Hypotheses on the turbulent field

The field of atmospheric turbulence in the bound-
ary layer [0-300 m] is modeled by a Gaussian field
indexed on R® with values in R, centered, mean-
square continuous, horizontally homogeneous, i. e. for
the first two coordinates of point t=(, t,, 3} of
space. The autocorrelation function therefore verifies
the property:

R(t, ¢)=R{t;—t],t,—1t5, 13, 15). {73)
We denote as ®(w,, t,—t}, ta, t5)eMatc(3, 3) the
one-dimensional spectral matrix density defined by:

R(tl_r’I’ rz_ttz, IS! ta)

=f eimlﬁl_'hq)(mh ty—ty, ty, t3)do;.  (74)
R

The  transverse spectral matrix  densities
¥(w,, 0, t3, t5)eMat(3,3) can be defined in the
same way by:

Rty —ti, ta—15, b5, 13)

= glon g —t)+img (=)
r?

¥ (0, 0, 15, t3)do, dw,.  (75)
Functions ® and ¥ are then related by the relation

D (@, t3—1t5,t3, t5)

i j ¢ DY (0, 0y, 15, 85) do,. (76)
=4

With these spectral densities we associate the
transverse correlation matrices p and y with values
in Matg(3,3) and the phase angle matrices « and 8
with values in Maty(3,3) such that for j and
ke{1,2,3}

Pi, j (@4, 82— 15, £3) Py (04, 0, 13, £3) @ (04, 0, £, £3)
i I (ij (&)17 t?."" tIZ: :35 t3) |2 (77)
Dy (@, t,— 15 83, 83)
=exp [fey, (0, t;—13, t3)]
|y (@, 1,15, £, 23) |
Yiej (@1, @, £, £5) W (@1, ©, 23, 85) ¥ (004, 005, 85, £5)

o l ‘Fk.i (mb 0)2, t.‘i: fa) ]2 (78)



Wy (@, 0, 5, 15)
=exp(i 0y (@, 0y, t5,13))
| lika(m.l: ml} I3! t’a) f w

II,3.2. — Existence of a spectral measure

We introduce the following hypothesis which we
will assume verified below:

Hypothesis H: We assume that the functions ¢,
t% HY(mh Wz l"3! tg) and t3: f’a I—ie(u),_, g, [Ss té)
depend only on ty=t;—t;. We then denote them as:

.“3'_’7((91!032: 13); T3I—>9(m1, B3y "a) (79}
Let I' be the function with values in Matc(3,3)
such that:
T (0, 02, 13) = (¥4 {®;, ©3, )2
xexp(i eicj (©1, ®2,73)) (80)
Then, considering hypothesis H and (79), I appears

to be the complex coherence function relative to ¥
and for k and je{1,2,3} we have

Wi (@, @, 13, 15) =T (@, @z, t3—15)
X [¥x (@1, @3, T3, £3) Py (@4, @5, 15, 3)]Y2 (81)

If, for any o, and o, in R, functions
T3 T (04, ©,, T2) and 03— T (®,, ®,, ;) are integra-
ble on R, with

(o, 05 0) =127
XJ e_“"3'3r(0)1, 032, ra}df3 (82)
hird

then, there exists a function
{t3, @} Q (5, ©): RxR® — Matg(3,3)

and a function o § (0): R? = Mat.(3, 3), verifying
(22) and (23) for any weR? and such that:

R(, )= Hj gi<mimt)

xQ (t3, 0) S (W) @ (13, w)dw  (83)
where Q (t;, ©) is the diagonal matrix such that:
(O (23, O)iy=8s [Fix (@1, 02, 85, £)]* (84)
where &;; is Kronecker's symbol and:
S (@)=T(0,, 0, o,). (85)
In effect, according to (81), we have:
Wy (04, 0, 23, 15) =, (@4, @, t3, £3)2

x J. giesits =) f‘kj(mh @5, ©3) oy
R

¥ (@4, 0y 85, t5)12.

Substituting this last equation into (75) yields (83)

to (85). Property (22) is general and (23) results from
the fact that the field has real values.

Remark: In the problem stated, the functions which
will be known are y and 8. Matrix S (®) is therefore

constructed from (85), (82) and (80), i.e. for j and
ke{1,2,3}

[S (@)];=1/2 Wf elests Yij (@4, ©, L B
R

exp(i 9::; (@, @, 75)) d13  (86)

I11,3.3. — Application to low altitude turbulence [0-
300 m]

The available experimental data on low altitude
atmospheric turbulence mainly consist of the one-
dimensional spectral densities @y (0, 0, t3), [15, 16,
33, 41, 42, 50, 57, 62]. Empirical models [10, 14,
20, 21] are also available to describe the behavior of
the transverse correlations py(o,,t,—t3,t;) and
phase angles ag (@, t,—1t5 1), ke{1,2,3}. More
specifically:

P (O, Bz — 15, 1) =exp(—1/2m A 0, | [, —13])
(87

) (89

% (@1, t =5, 13)= =B, @y (2, —

where quantities 4, and B, are functions of altitude
£y which can be assumed constant at low altitude,
which we will assume below.

From equations (76) and (77) we infer, using (87)
and (88)

Wi (04, @, L, t3)=Ak|031 l [1/4 A7 of

+47% (@) Be+®,)%] 7 By (05,0, 25 25).  (89)

Currently, there are no experimental models avail-
able for the transverse correlations vy, (@, ©,,ts, t3)
and the associated phase angles 8,;(a,, 0, 5, 13).

By analogy with the above models, we introduced
hypothesis H and selected the following form:

Yaj (@, @z, 83 —15)
1 "
=exp|i—~ﬂc,‘j|ml+co2[Iza—ta|:| (90)
Be; (@, @g, 83, t3)= — Dy (0, + @) (8, —15)  (91)

where C,; and D,; are real constants independent of
altitude ¢,

The results of Section I1.3.2 apply, hypothesis H
being verified and functions 15+ I'; (0, ®;,73) and
my—»l‘,u(ml, ,, ©;) being integrable functions. In
this case, matrix S () is obtained by calculating (86)
and we obtain for k and je{1,2,3}

[S (@))i;=Cy;| 0, +0,|[1/4 C} (0, + @)
+4n? (Dy; (g +m,)+0)] N (92)



Matrix Q(t;, @) is given by (84) and (89). The
diagonal terms, which are the only nonzero terms,
are then written as follows for ke{1,2, 3}

O (t5, @) =4, l @,y I[l/444§ o}
+47%(0; B+ 0,)*] 7 Oy (04, 0, 85, 25).  (93)

IIL3.4. — Practical considerations

(i) It can be seen from equations (93) and (92) that
functions Q (t;, ®) and S () are not defined for the
zero wave vector ©=(0,0,0). This is due to the fact
that the experimental spectra @, (0,,0, t,) are known
only for | @, | 2@, o(~ 10~ ?rad/m).

We will extend S () and Q (25, ©) by continuity on
subset [—®, o, @, o] It is then clear that function Q
verifies properties {24) and (25).

However, it can be verified that these functions are
integrable in a neighborhood of this point.

(i) The construction of the model does not depend
on the form of the experimental spectra. It can
therefore be used for various meteorological situa-
tions. It does however depend on the form (87), (88),
(90) and (91) of the transverse correlations and phase
angles. In addition, it must be verified that the choice
of constants 4,. B,, Cy, and D,; makes matrix § ()
positive Hermitian. Assuming that these quantities
are independent of the altitude makes the model more
particularly suited to the case of turbulence in a
neutrally stable meteorological situation caused by
strong winds: in effect, these constants vary more
rapidly with altitude in the case of convection turbu-
lence.

(i) Example of experimental spectra: Empirical
models of one-dimensional spectra @, (0,0, t3)
describing a turbulence in neutral situation near very
rough ground (for instance in airports near cities) can
be found in [16, 10, 35, 62, 41]. They are written

Dy, 0, £5)
=105/4nu} t;[.44+332n¢5|0, |15
®,;(®,,0,¢t5) (94)
=17/4nu t5[.38+9.52nt,|0, ]
D33 (0,,0,¢3)
=2/4nu} t5[.44+5.3(t3]| 0, | /213!

where u, is the friction speed.

(iv) Determination of Constants [20, 21, 50]:

As an initial approximation, it can be assumed that
the lateral component of turbulence is independent
of the other two components:

C12=Cy;=C33=C;,=0.

In the above references can be found:

Cip=19, Cip=T5,
Cymld, CizmCii=18
Dyy=1, D=2 D=2
Dyy=Dy =1, A,=19.

For constants 4, and B,, for which no experimental
measurements are available, we arbitrarily set the
following values, for the sole purpose of numericaily
checking the simulation method:

AJ‘:C“ fOr k=2,3

and
B,=D, for k=1,2,3.

Figure 2 shows an estimate of the one-dimensional
spectrum of the second component of anisotropic
turbulence for a fixed altitude ¢,, compared with the
empirical spectrum, ®,, (@,,0, t;).

CONCLUSION

We described the general results obtained on the
numerical simulation of Gaussian vector fields. The
applications of numerical simulation algorithms pro-
posed for the case of isotropic, homogeneous turbu-
lence and anisotropic inhomogeneous turbulence
show the efficiency of the methods developed. Fur-
thermore, we propose a constant spectrum model
for turbulence in the 0-300 m atmospheric boundary
layer. What now remains to be done is to supply
the model with constants characterizing the various
transverse correlations and phase angles of turbu-
lence, which requires experimental measurements in
certain cases.

APPENDICES

A.1 STOCHASTIC FIELD
ALMOST CERTAINLY HAVING CONTINUOUS
SAMPLE PATHS

Let d and n be two positive integers 1. Vector
spaces R’ and R" are equipped with the Euclidean
scalar product noted ¢ ., . » and the associated norm
noted ||. [|. Let (4, &, P) be a probabilistic space
and E be the mathematical expectation.

Let X()=(X, (), ..., X,(2)) be a stochastic field
defined on (4, o, P), indexed on an indeterminate
open set @ of B! with values in R".

Field X (f) almost certainly has continuous sample
paths if, for P-almost every aed, paths
t=(ty,...,t)—X(t, a) are continuous functions of
0 in R,
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05 0.75 m"!
Comperison of analytic and estimated spectrum
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68

05 0.76 m™
Comparison of anzalytic and estimated spectrum
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Comparison of analytic and estimated spectrum
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0.5 0.75m™
Comparison of analytic and estimated spectrum
128 x 32 x 32 points—700 draws

Fig. 2. — Anisotropic turbulence. One-dimensional longitudinal spectrum.

The following result, which is a generalization of
Kolmogorov's lemma for the case of fields (d>1)
gives a very useful sufficient condition.

(i) Sufficient condition in the general case [63]: If
there exist two positive constants 1 and A and, if for

any compact set 2" of 0, there exists a third constant
Cx such that:

E(|x@-x) ]

ZCe|t-t |,  VYered (Al.])

then process X (¢) almost certainly has its continuous
sample paths on 0.

(i) Remarks: (1) On R?, all the norms are equiva-
lent. We can therefore take the norm

Ixh=( 5 )

which gives the Buclidean norm for p=2.

Condition (Al. 1) can therefore be replaced by the
following condition, with A= 1:

¥ E(|X%,0-X%00P)

ilp
§ igp<+c, (41.2)

SColt—t' P YareX. (AL3)



(2) Condition (A1.1) or (Al.3) is sufficient.

It is not necessary, but no hypothesis was intro-
duced on the law of the field. This field can be non-
Gaussian, homogeneous or nonhomogeneous, If X(t)
is a Gaussian field, we can use (Al.1) or (A1.3), but
in this case, it is possible to weaken the condition if
the Gaussian character is taken into account. We
then obtain the following classical results:

(iii) Sufficient condition in the Gaussian case [35]:
If X(t) is a second-order Gaussian field for which the
mean function t— m. (t)=E (X () is continnous from
@ into R", if there exists a positive constant n and if
for any compact set o of (@, there exists a second
positive constant C,- such that:

E(|[x(®-X) P
SCy|Log(|t—7|

y e (A1)

for any ¢ and ¢’ in ¢, with ||t—¢t'|| =0, then X(¥)
almost certainly has its continuous sample paths on
o

(iv) Proposition Al.1: Let
X(t)=(X1 (t)v =aay Xn (ID

be a stochastic field defined on (4, «#, P), indexed
on an open set @ of R? with values in R", Gaussian,
second-order, centered, whose autocorrelation func-
tion

t, 'Rt t)=EXEOX[)T): 0x0— Matz(n, n)

can be represented:

R, t’)=Ré[

me

x e <® 2 0 (1, 0) M (do) @ (¢, ) (A1.5)

with the following hypotheses:
(H1) M (do) is a measure on R with values in
Matg (1, n), such that for any Borel set B of RY

M(B)=

B
MR <+co.
(H2) t,o—Q(t,®) is a continuous mapping of
@ x R into Matg (1, n} such that for any compact set
A of O

M (dw) is a positive Hermitian matrix and

supj ol 0Gw) * M(dw)
teX Jgd

=Cle<+o0 (Al.6)
and for any ¢t and ¢’ in %~

J 0t 0)—2(,») *|Mdo)
!Rd

£E3

t—t'|]* (AL.7)

where Cl and Ci are positive finite real constants
depending on .

Under these hypotheses, field X(f) almost certainly
has continuous sample paths on 0.

Proof: we have:
E(|X@®-X)|P
=tr {R(t, ) +R{t, )R t)—R(, 1)}

=Ré‘{‘ tr{ A, ¢, 0) M(do) At 0)*}
Hd

gf At o) 2 M(do)
Did

where:
A, 0)=0 @ 0)e '™ -0, o)
=[0 (1, 0)—Q (', @)e ¢
HEO-DQ (1, 0)
but since
[t —1[2=2(1—cos{w,u})
<2¢@u)?s2o] |u?
we have
A t,0) £ Q¢ w)—-0(, w)

+ 2=t

for a and b real and positive, and considering (Al. 6)
and (A1.7), we infer that for any ¢ and ¢ in "

E(|X0-X)|PSCellt-t | (AL.8)

el 2,0

where
Ce=4C+2C%

for
[ull >0, [juf?|Log(lls]D[*—0<1.

The application of (A1.4) gives the result.

(v) Remark: If, in proposition Al.l, we take
¢ =R? and we assume the field to be homogeneous,
then we have (A1.5) where Q (¢, @)=1 is the real unit
matrix and M is the matricial spectral measure.
Under these conditions, (A1.7) is automatically satis-
fied and a sufficient condition for X(f) to almost
certainly have its continuous sample paths on R? is
to have (A1l. 6) which is equivalent to:

j |oPtrMdo=C<+c (A1.9)
IEd

considering the properties of the matricial spectral
measure.

(vi) Proposition A1.2: Let Q be the compact part
of R? defined by (6), where N is defined by (10).



By is defined by (12), @, by (9)-(14), |A| by (18).
We use notation (20).

Let XN()=(XY(®),...,XY(t)) be the stochastic
field defined on (4, o7, P), indexed on any open
set @ of R? with values in R", such that for any
pe{l,...,n}k

Xw=_/2]A Ré{z Y H,, (o)

g=1 peBy

xexp(idbq_ﬂ—i-i{t,m;,}}} (A1.10)

with the following hypotheses:

(H1) the @, 4 are K=nx N random variables, uni-
form on [0, 2 n], mutually independent;

(H2) for any p and ¢ in {1,...,n}, functions
w— H,, (¢, ®) are continuous from @ x Q into C, and
for any compact set ¢ of @:

sup _|H,,(t, )| SCy¥ (A1.11)
o

teX,oe

this means that the H,, are bounded on 2" x Q.

For any £ and ¢’ in o, there exists C% >0 indepen-
dent of o such that:

[ [ Hp & )| = | H,, ()] [<Cfle— |

AlL.1Z
6, )0, sy sCxe—r] TP

where
H,, (¢, @)= |H,, (r, )| exp(i8,,(t, @)). (A1.13)

Under these hypotheses, we have:
(1) for any integer m=1, 3C,>0, such that V¢
and t'esf and VN:

Z E(| XY (-XY ) PSChllt—1|*™ (AL1.14)

p=1

which means that upper bound (Al.14) is uniform
in N;

(2) Field X¥ () almost certainly has its continuous
sample paths on @.

Proof: Criterion (A1.3) allows us to initially con-
sider a component X, (1), pe{l,...,n} of X(o).
Considering the expression (Al.13), for any t and ¢’
in @, we have:

Z=XY () -X3 (t)
¥
= { Ay cos(a,+ @)+ B, sin(b,+ D) }

k=1

where we introduced the condensed index k=(g, B),
ke{l,...,K}, K=nN, and where we set:

B, =0, 55 A= /2[A] (| W, (1, 0p) | — [, (', 0p)|)
B,=—2_/Z[A]|H,, (¢, 0p) |sin(1/2[{t—F, @5 >
+8,,(t, ) —8,,(t', ®p)])
a;,= {t,m9> +9n(t, ma)

bk= 1/2[( t+t’, (DB> +epq (f, CDB)-i-GM(E’, CI}B)].

For any m=1, we have:

t 10,
ZHr= X _@m! H o ar19)
i1+ ... +ig=2m 11! cas IK!k=1
where:

Jo=A,cos(a,+®)+ B, sin (b, +@,).

Since random variables @,, ..., @y are mutually
independent, the same is true for Jy, ..., Jg and we
have commutation E[[=[]E. In addition, for

k k

i,=2r+1 odd, we have E(J¥)=0. Sum (Al.15) then
has only the contributions for which we simultane-
ously have i, i,, .. .,ix even numbers. This yields:

B} = i

bt o i QA - X2

X
x [T E(J29).
k=1

We have the following upper bound for any &:
EWES(| Al + | Be )™

Considering (Al.11) and (A1.12), for any ¢t and ¢
in X%, we infer:

E(IPMZ( 2AC,|e=r| Pt *0, Vi
where

Cr=Cl4+Ciy (C¢+ sup | o))
me

In addition, since (2)! 24!, we have:

2m)!

E{@yrys==- %
LR i1+ ... +ig=m

m! = . 5

7 JECREN e 3 [P 21A] C bl 2+ . . . +ig)
il!...iK!(V «lle=])

as well as the identity:
m! X m
Cy= Z —=( Z 1) =K™,

ii+...,+ig=m 11!"'21(! k=1



Therefore, for any ¢ and t'e 4", we obrain:

2Zm

% E{@)) < Cell v

where C is the constant independent of N:

Cer=(m) "' x2m)tx2"n"*!1x |Q|"x CI"

since |A|K=|A|Nn=|Q|n, according to (7), (10),
(13) and (18), which proves point (1) of the proposi-
tion. The proof of point (2) is inferred directly from
(Al.14) and (A1.3).

(vii) Remark: Since functions H,, are continuous
on 0 x €, if they are independent of ¢, then conditions
(Al.11) and (A1l. 12) are antomatically satisfied.

A.2. Convergence Lemmas: We establish two con-
vergence lemmas which allow us to prove convergence
of the second-order quantities of the approaching
sequence.

We use all the notations of Section II. 1 of the text.

(i) Speed of Convergence Lemma A2.1: Let
o—f (©) be a function defined on 0 with values in C
continuously differentiable p times where p=1-or 2:
feC?(Q, C). Then, there exists a finite positive real
constant Co>0 such that ¥ N we have:

I fl@ydo—|A]l T o) SCollAlP. (A2.1)
Q

BeB,

This means that |A| Y, f(op) converges to
peBy

_f(®)do when Nie— + o0 [i.e. |Al| >0 according

a
to (19) of the text] with the speed of convergence N.f

since we have:
d 32 T2/2
lal=| £ 221" @2
=1 Nj
Proof: We begin by demonstrating the result for
p=2
Let (V) (@)=08, f(@), ..., 3, f(@)eC? be the
gradient of fin ® and ki (w)e Mat. (d, d) be the Hes-
sian matrix of fin w such that:

[h(@));;=6:8; f (@) (A2.3)

where d; denotes the partial derivative with respect
to the j-th coordinate o; of @=(®,, ..., ©)eR%: let
R{w, w,y)eC such that:

R0, )=/ (0)—f (0p) =< (V f) (@), 0~
—12{h{wg) (0—wy), 0—wy> (A2.4)

According to Taylor’s formula, Ye>0, 3r>0 such
that for || @ —agf| <7

|R(0—op)| Sello—o| (A2.5)
In addition, [using (15) to (18) of the text] we can
write

f_f(co)dm=m| 5 £
O

BeBy

+ 2 | (f(@—flehdo (A2.§

BeBnJOp

Using (A2.4), we infer from (AZ. 6) that:

Int= | f@)do—|8] £ f@) (A2.7
Q feBy
is written:
Int=Int, +Int, +Int,
Intj= Y R (o, opdo
BeByvQp
(A2.8)
Int,= } | (V)@ 0—05>de

feByJgp

Int;=1/2 ¥ { b (0g) (0—p), (@—w) ) do.
BeByJQp

We introduce the change of integration variable:
O=0;+ 0 (A2.9)
and we set

d
Qo=111[-4/2 A/2
i=1

Ry (05 ©)=R(w;+0', 0p).

(A2.10)

Considering (A2.5), 3C,>0.

|Ro (@, )| <€, [l |2,
VBeBy, Ya'eQ, (A2.11)

Accordingly:

2dm’=NClJ | [|? de
Qo

ijsc, % | o

pelBy

yielding:

[Int|sCy/122¢| Q||| A2 (A2.12)



In addition, for any N fixed, we have:

Int;= ¥ | (Vo) o >de'=0

Be By Qo

(A2.13)

sinceJ. wjde’=0,vje{l, ...,d}
Qo

Similarly, since j o; 0;do’=0, for any i#j, we have:
Qo

d
Int;=1/2 3} [h(mﬂ)}jjJ‘ (0)?do’
Qo

peBy j=1

=1/24[A| T A7 T [h(oply

i=1 BeBy

Since @~ h(w) is continuous on compact set
§,3C,>0:

[[h(@p);| SCoVje{1, .

"’d}’(A21.14)
Y peBy

We infer that:

|Int;| SC,/242¢]Q}|| A2 (A2.15)

setting:
Co=1/122¢|Q|sup(C;, C,/2)

and considering (A2.8), (A2.12), (A2.13) and
(A2.15), we infer (A2.1) for p=2. For p=1, the
demonstration is the same, limiting Taylor’s expan-
sion to the first order.

(ii) Lemma AZ.2 for convergence of a sequence of
measures: Let o+ s(w) be a continuous function of Q
into C and p{dw)=s5(w)dw be the measure on 0 with
values in C defined by density s. We have:

p(ﬂ)=J_u(dm)=r, [r]<+o. (42.16)
(9]

Let {u¥(dw)} y be the sequence of measures on Q
with values € such that:

i (do)=|A] T s(op)8,,

peBy

(A2.17)

where 8“ is the measure defined by (43). We have:

u”(ﬁ)=J_ wWdo)=|A| ¥ s(ogp=r",

0 BeBy

[r¥] < +co. (42.18)
Then:

(1) The sequence of measures {u"}, converges
tightly to measure p on § when N — +co (the tight
convergence implies the weak convergence), and there-
fore the numerical sequence on C{r™}y converges to r,

(2) If seC*(Q, C), for any p=1 or 2, the speed of
convergence is in N f.

Proof: (1) By definition, the sequence {p" }, tightly
converges to p if YoeC®(Q, C), the numerical
sequence on C:

o= @it (42.19
Q

converges to:

M(<P}=J_Ep(m)u(dm) (A2.20)
Q

however,

u(m)*—-J ¢ (w)s (@) do

Q

u"(@)=IAIBZ; @ (@) s (@)

since function orf(@)=0(®)s(w) is continuous
from Q into C, we know that for Ny, — +00, we
have:

Al ¥ f(eg)— J:f(m)dm.

BeBy Q

Taking ©(w)=1, Voell yields r¥ - r;
(2) The proof is obtained directly by applying the
above speed of convergence lemma A2. 1.

A.3 CONVERGENCE IN LAW
OF THE NON-GAUSSIAN
APPROACHING SEQUENCE

We again use all the notations of Section II of the
text. First, we give a few brief reminders useful to
proving the results.

(1) Definition of convergence in law of the approach-
ing sequence: Let a(1), ..., a(L), L be the multiple
indexes of N, where L is an indeterminate positive
integer, with a(D=(a; (D, ..., ¢;(D)eN? ¢, (DeN.

We then say that the sequence of stochastic fields
{ X¥(£) } indexed on O with values in R¥ converges
in law to stochastic field X(¢) indexed on @ with
values in RY for N, — + oo if the system of marginal
laws of field XV () tightly converges to the system of
marginal laws of field X (¢), i.e. if for any LeN and
any finite family (¢, ), . . ., t,() of points of R?, we
have:

LX) - X a))

Y 2X(ta) - X)) (A3.1)

Niag =+ + @



where #(.) denotes the law of the random variable
in the argument (.).
(ii) Use of Paul Lévy's theorem: Let v,= =(v 4,
0, JER" and v=(v,, ..., v)eR"™™, We denote
55 pios B v (V) the characteristic function on RY* with
values C of the random variable
(U= (tagiy), - - » XY (¢, ) with values R

Fy@=E{exp(i(U% v}  (A3.2)

Then, according to Paul Lévy's theorem, if the
sequence of characteristic functions {Fy}, simply
converges to a function F defined on R™ with values
C whose real part Ré F is continuous at the origin,
then F is the characteristic function of a random
variable U with values R™

F(o)=E {exp(i(U, v>} (A3.3)
and we have:
gum =, ) (A3.4)
Ninp =+ +
(iii) The central limit theorem [49]: Let Y,, ..., Y,

be K random variables defined on (4, &, P) wath
values R, second-order, mutually independent.

Forke{1, K} let my=E(Y,) be the mean of
¥,, 6i=E {(Yk m,,) } its variance and P, (dy,) the
probability law in R of centered randon variable
Yy—m,. Laws P, ..., Py can be different. Let S,
be such that:

K
8¢=Y of (A3.5)
k=1
Then, if Y£>0, we have:
K
lim 1/5% ¥ WP(dr)=0 (A3.6)
K= +4wm k=1 |y |>e 55
the law of the random variable:
K
1/Sx ¥ (Yy—my) (A3.7)
k=1

converges tightly for K— + oo to the reduced Gaus-
sian law LG (0, 1) on 4.

(iv) Convergence in law of the approaching sequence
Jor choice 1: The approaching sequence X” is defined
by (39) for choice I, ie according to (40)
Z,3=1,Vq VB. Let K=nxN and k=(g, B) be
the condensed index. We set:

Ay, 1,=[H,, (ta gy ©p)]
by, BT ={t m; 935>+9p.; (£ p @5)
@, p=D;

Y,=_/2A Z Z U, p Ax 1, €08 (D + by )

1=1 p=1

{A3.8)

then, according to (50) and since Z, p=1, we have,
with the notations of paragraph (ii) above:

K
UV, 0>=7Y Y, (A3.9)
k=1

Since random variables {®, }, are mutually inde-
pendent, the same is true for random variables { ¥, } k
In addition, for any ke{l, ..., K}, m=E(Y)=
according to (46) and, conszdermg (47), & simple com-
putation gives:

K
EQUY, 033)=7Y o2=S5! (A3.10)

k=1

where we used the notations of the central limit theo-
rem.

Developing the left member of (A3. 10) yields
B &
=Y L <R¥(tgp te@dtp vy (A3.11)
t=1 r=1t

When Ny -+, K— +00, and according to
I1.6.1 (ii), R¥(t, ¢') - R (¢, t). Therefore, by denot-
ing as

=(X(egh -- -, X (2, @)

the random variable with values B*%, which is such
that:

=E({U, »)?
L &
=Z | 3 CR{Eupy tag) U ) (A3.12)
1=t r=1
we have
m 8§2=82 < +co. (A3.13)

K-+

Considering (A3. 13), (A3. 6) is verified if;

K
lim ¥ Int,—0

K=+ k=1

where

Int, =f Vi Pe(dyy)
Yi|>eSg

considering (A3.8) and by setting:
ye(0)=_ /2[A] Z Z U1, pAx, 1, €08 (9+b;, 1)
i=1 p=1

we have:

r
Intk=1/2nj Lo >esi) O (@) ¥ (@) do.
0



Inequality | V(@) | >¢ Sy is also written:

L n
Z z U;‘ PAk.lp Cas ((p-’-bk.‘p) >8/ f2]A[SK

I=1 p=1
But we have:
|Al=2‘|Q|/N

therefore ¥e>03 N (g) such that ¥ N> N (g) we have:
el /2|A|Sx>2n. Therefore Yk, Int,=0, and we
can apply the central limit theorem (iii), which, com-
bined with Paul Lévy's theorem, shows that law
Z (U) tightly converges to % (U) where U is a Gaus-
sian random variable, which shows the tight conver-
gence of the sequence of fields XV to the Gaussian
field X
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