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1 Introduction

For many years, numerous publications have been written on the Fokker-Planck
(FKP) equation method for studying the stochastic response of nonlinear dynamical systems
under random excitations (parametric and inhomogeneous terms). The first step is to obtain
the FKP equation. For most problems, this step is not immediate and a stochastic modelling
has to be performed. The second step is to solve the FKP equation which is a parabolic
partial differential equation with initial and boundary conditions. Generally, the exact
solution cannot be explicitly obtained, except for very special first or second order nonlinear
systems. For instance, one can refer to the the recent publication [1] written in the context of
the theoretical physics.

For the nonlinear dynamical systems (second order systems), the difficulties increase
because the diffusion operator is not a positive-definite. The exact solution can be obtain
only for the steady-state FKP equation related to the existence of an asymptotic stationary
solution (a.s.s.). For the mechanical applications, theorically this stool allows to study the
response of nonlinear oscillators to stochastic excitations in the diffusive Markov process
context [2,3,4,5,6].

(i) -The one dimensional nonlinear oscillator under an external stationary gaussian random
excitation has been studied extensively in the last two decades.

- If the external excitation is a white noise, the exact steady-state probability density
function (p.d.f.) is known in a sufficiently general case for the a.s.s. [7,8].



- If the external excitation is not a white noise, but a colored process, which is a
physically realizable stationary gaussian process, a Markov realization can be performed to
obtain the FKP equation [4,6]. Unfortunately, no exact solution exists in this situation and
an approximate method must be used to solve the FKP equation. For this reason, the
stochastic averaging method has been developped [9,10,11,12,13,14,15,16].

- In the case where there are simultaneously a parametric and an external stationary

gaussian white noise excitation,exact solutions for the a.s.s. are pratically non existent in the
litterature. Recently, in ref [18], the authors gave two examples for which an exact steady-
state p.d.f. is obtained from the steady-state FKP equation, in using the principle of detailed
balance.
(ii) - For multi-dimensional nonlinear oscillator under external stationary gaussian white
noise excitations, the situation is different and very little is known. The exact steady-state
p.d.f., related to the existence of an a.s.s., has been obtained for some specific multi-
dimensional nonlinear oscillators [1,2,17,19,20]. When a parametric gaussian white noise
excitation is present in addition to the external noise, only one simple example of exact
steady state p.d.f. is given in [18].

In the general case, no exact solution can be obtained and numerical methods must be
used. Unfortunately, the numerical methods for solving the F.K.P. equation in higher
dimension are very difficult to perform [17]. This is the reason why the F.K.P. method is
not used in this situation and approximate methods have been developped such as :
thestochastic linearization method [3,4,21,22,23,24], and the most general approximate
method, the direct numerical simulation method [25,26,27,28].

(iii) - The purpose of the present paper is to study the exact steady-state p.d.f. of the a.s.s.
of a large class of multi-dimensional nonlinear Hamiltonian dissipative dynamical systems
under parametric and external random excitations, using the F.K.P. equation method. The
dynamic system of concern may be linear or nonlinear ad has an arbitrary finite number of
degrees of freedom. The conservative part is a general Hamiltonian formulation for time
invariant nonlinear dynamical systems. The non conservative part has three terms : a linear
or a nonlinear damping term, an external random excitation which appears as the
inhomogeneous term, and a general random parametric excitation term which appears in the
coefficients of the unknowns. The parametric and external random excitations are second
order centered stationary gaussian wide-band stochastic processes. The band-width is
sufficiently high to reasonably allow be used of a white noise model. Therefore, the



modelling stochastic differential equation (SDE) is obtained in the Stratonovich's sense [29]
when the band-width of the excitation noises tends towards infinity.

In transforming, classically [29,30,6] the Stratonovich SDE into an Itd stochastic
differential equation (ISDE), one can use the basic tools for the treatment of diffusive
Markov processes [4,6,30,31,32,33,34,35]. Thus, the existence and uniqueness of a
regular solution of the ISDE with random initial condition can be studied. This point is very
important because the random parametric excitation causes some time variations of the
dynamic characteristics of the system. Therefore the stability of the system can be affected
and must be studied. On the other hand, after the existence of this unique regular solution
has been proved, it is necessary to study the existence of an asymptotic stationary solution
(a.s.s.). This point is difficult enough the prove in the general case from a mathematical
point of view. Only then, the steady-state p.d.f. can be viewed as the solution of the steady
F.K.P. equation. For the multi-dimentional Hamiltonian nonlinear dynamical systems
studied in this article, we shall build the exact steady-state p.d.f. . When random parametric
excitations vanish, the corresponding class of nonlinear dynamical systems contains the
results from ref [8,20]. When random parametric excitations exist, the corresponding class
contains the result from ref [18] concerning the multi-dimensional example.

Before presenting several examples at the end of section 2, we shall study the
integrability of the steady-state p.d.f. because, for the multi-dimentional case, the result is
not selfevident.

In a second part of this article (section 3), we shall give some complements for the
particular case where the Hamiltonian function has a radial form. In this case, one can
explicitly calculate the Fourier transform of the p.d.f. (characteristic function) and the
covariance operator.



2 Exact steady-state p.d.f. for a class of nonlinear
Hamiltonian dissipative dynamical systems under
parametric and external physical gaussian wide-band
noise excitations

2.1 Notations

Let x=(Xp,---,Xm ) be a R™ vector. We identify the x vector with the (m x 1)
column matrix of its x; components. The Euclidian space R™ is equipped with the usual

m
inner product ( x,y )= 3, X;yj ,x andy in R™, and the associated norm Il x Il = x,x }!/2.
=l
We denote (1) - by Mat (n,m) the set of all the (n X m) real matrices ; (2) - by

n m 1/2
[a]T € Mat (m,n) the transpose of [a] € Mat (n,m ) ; (3) - by |Ila1||=( Z Z [a]jzk) :
j=1 k=1

Let x,y — h (x,y) be a real function definred on R™ x R™. For z € {x,y) we shall
denote by d;h and 92h respectively the R™- vector and the (n X m) real matrix such that :

_oh o%h
(azh)j S —a"i; ; [a%h]-]k T azj aZk

A CP-function defined on R™ with values in R™ is a function which is p-times
continuously differentiable on R™

2.2 Canonical equations with physical gaussian wide-band noises

We consider a nonlinear dynamical system of dimension m 2 1, described in the
canonical form.
dQ(t)

Let Q()=(Qi),---,Qmn(t)) be generalized coordinates and Q(t)=T the

generalized velocity. We denote by P (t) =( Py(t) ,+ -+, Pn(t) ) the generalized momentum

canonically conjugated from Q(t). Let p =(p1,- -+, pm) and q =(q1, - - -, qm) be the variables

associated with the P(t) and Q(t) stochastic processes. We consider the following nonlinear

stochastic differential equation on R™ x R™ defined by :
Q=03, HQP)

. 1
P =-dg HQP) + FQ.P.,n ,[&1], -+ [E&1]) o



fort > 0, with the random initial condition :

Q0)=Q , PO)=P as 2
where :
(i) - The Hamiltonian function of the corresponding associated conservative system
(i.e. F = 0) is denoted by H . We shall assume that :
(i-1) :q,p = H (q,p) is a twice continuously differentiable function defined on R™ x R™
with valuesin R* = [ 0, + oo [, independent of time t ;
(i-2) : for all p and q in R™, the (m x m) real symmetrical matrix [312, H] is a positive-
definite ; :
(i-3) : the mapping p,q — [03 H] is bounded on R™ x R™ ]
(i-4) : function H is such that :
Inf H(g,p) = +eo if R— 4o 3)
ligi+ipli%> R?

Note that assumptions (i-2) and (i-3) yield the following inequalities for all p and q in

R™:
0< ([2H]z,z) <Crizi? ,Vze R™ , lizll >0 @)
where Cr is a positive real constant which does not depend on p and q.
(i) - The non conservative force F = (Fy,--- ,Fp) is expressed in terms of the canonical
variables and is written as : . .
FQPA il B =~ D (G Q + S0 -en X S1 5 01 VO QO 3
j=

with Q =3, H ( first equation (1) ), and where the three terms of the right hand side of
equation (5) are respectively : a nonlinear damping term, an external excitation term with a
possible parametric effect, and a general parametric excitation term. We have used in the
définition of F the following assumptions and notations :
(ii-1) : The (m x m) real matrices [S] and [G] are constant and [S] is such that [G] = [S] [S]T
is a positive-definite matrix; '
(ii-2) : Functions f and g are continuous on R*, with values in R** =10, + oo [ and g is
continuously differentiable;
(ii-3) : J is a positive integer, €n, is a real constant. When €, = 0 , the general parametric
excitation vanishes. For je (1,---,J}, qp— U® (qp)=U? (q,0pH) are given



continuous functions defined on R™ x R™ with values in R™. For all g in R™, functions

p = U® (g,p) are continuously differentiable. The functions UM, ..., UY) are such that :
1

Y 1 Ud@gp) I*=2 yH) ©6)
j=1

where 1 — ¥ (r) is a C!-function on R* with valuesin R* .
(ii-4) : The R™-valued stochastic process 1 (t) =(mny (1), ---Nm (t)) and the Mat(m,m)-
valued stochastic processes [E; (t)],-- -, [Ey (t)] are given second order centered, stationary
gaussian wide-band physical noises.

Let be L =m+Jm? . We assume that : (1) the I real-valued processes
(1]; , Gl s Lk e {1,---,m},je (1,--- J}) are independent stochastic processes ;
(2) processes M; , [;li tend towards the real-valued normalized gaussian white noises
denoted respectively by W? and W 1, when the band-width tends towards infinity. We let
W0=(W0, vors, Wom) and W =(le, — W’nll) We introduce the R ™-valued normalized
gaussian white noise W such that :

(W =([wT" s [ T [t [T [T @

Let W(t) =( Wy (1) , -+, Wy (1)) the R ™-valued normalized Wiener process on R .
Its Mat (L, 9\) - valued covariance function is [Cw (t,t')] = min (t,t") [I], where [I] denotes
the (Tl x9.) unit matrix. We know that the process W , defined by (7), must be viewed in
the sense of the theory generalized stochastic processes [6] as the derivative of W with

respect to t.
(iii) The initial condition (Qg,Pp) is a given R™x R™-valued second order random variable

which is independent from {(W(t) , t 2 0).

2.3 Stochastic modelling of the canonical equations

By assumptions, the stationary wide-band stochastic processes M and [&] have
sufficiently high band-width for a white noise model to be used. In these conditions, we
know [29] that the stochastic problem (1)-(2)-(5) is equivalent to the following Stratonovitch
stochastic differential equation on R™ x R™ when the band-width of the excitation
stochastic processes tends towards infinity :

d( %(3 )=3(Q(0P(0) dt +[3 (Q(1).P()] o dW(t) ®)



where the symbol o dW(t) means that the stochastic differential calculus must be read in the
Stratonovitch's sense [29,30]. The vector b (q.,p) € R™ x R™is such that :

I 3H

b (q.,p) = )
— 9H - f(H) [G] 3,H
The matrix [4 (q,p)] € Mat (2m, 9\ ) is given by :

(0]

[a(g.p)l= (10)
a(q.,p))
where [ O ] denotes the (m x I\ ) null matrix and [ a(q,p) ] is the (m X . ) real matrix:

[aq.p)l=| a©®(q,p)) a®(q,p)) --------- a®(q,p)) (11)

with a©@ (q,p)) € Mat (m,m) and a@ (q,p)) € Mat (m,m?) the matrices defined by :

a® (q,p)) = g(H) [S]
andforje (1,---,7J}:

[Sh1 U(.-i) (q,p)T ............ [STim U(.j) (q,p)T !

[a0) (q,p)] = —€m

| [STat U (@p)T «vevvnrenses [STom UD (q,p)"

The Stratonovich stochastic differential equation (8) can be transformed [29,30,6] into the
following Itd stochastic differential equation on R™ x R™:

d( gfg ) =b (Q(1),P(t)) dt + [ (Q(t),P(t))] dw(t) (12)
where the drift vector ? (3:P) € R™x R™ st by ;
b@ (q.p) 38
b (qap) = =( ] (13)
b® (qp) | |~ OaH - fED[G]3H +b° @p)

and where b° (g,p) = (bS (q,p), - - - » b% (q,p)) is the added R™-valued drift vector which is



written, forl e {1,..- ,m}, as :

m
b (q,p) =%k2 Y [a(@,p)k aa [a(q,p)hi
=] i=]

Using (11), we obtain :

b° (@p) =3{ g®) g @) + e} Y(H) ) [G] 9pH

where g' and Yy are respectively the derivatives of g and y with respect to H..

The diffusion matrix [8' (@p)l=[(@p)] [a (q,p)]T € Mat(2m,2m) is written as:

0 0
[c (q,p)] =

O o(@p

where O denotes the ( m X m ) null matrix, and where
[ @.p)] =[a (@,p)] [a (q.p)]" € Mat (m,m)

In talking into account the definition (11) of [a(q,p)] , we see that :

J
[o (g =2, [a® (q,p)] [a® (g,p)IT
j=0

Finally, the explicit calculation of the above axpression yields :
[0 (q.p)] =( g2 +2 €& yH) ) [G]

2.4 Existence and uniqueness of a regular solution, and
FKP equation

(14)

(15)

(16)

We assume that the Itd stochastic differential equation (12) with the random initial
condition (2) , has a unique solution (Q(t),P(t)) which (1) is a R™ x R™-valued
diffusive Markov process ; (2) is an almost surely (a.s.) continuous stochastic process ; (3)is
defined a.s. for t 2 0 (one says that the process does not explode). Let T be the transition

probability of the process (Q(t),P(t)) which is such that :

Bq,Bp - T(qopo;t;Bg,By)

= Proba ( Q)e By, PM)eB, | Q) =qo,PO) =po) , 1>0
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where By and B, are some arbitrary Borel sets of R™ , and qo and po any R™ -vectors.
In addition, we assume that the probability distribution of the initial r.v (Qq,P¢) has a
density on,Po ( q,p ) with respect to dq dp.

Hence for every t 2 0, the probability distribution of the random variable (Q(t),P(t))
has a density p(t,q,p) with respect to dq dp , which is given by :

p(tq,p) dq dp = f [ T(qo.po;t;dq,dp) py p (do.Po) ddo dpo
R™ R™

The density p satisfies the FKP equationon R™ x R™:

] m(a @), 0 (p))lm 92
Zp+ ) [s— TR -1 oli) =0 17
=P glaqk(pbk] 5o 0 07) Zi.]‘Zﬂapia\m(p[]k) (17)
fort >0, with the initial condition :
p(t.q.p) — PQo.Po (q,p) as tlo _

When all the results hold, we shall say that (Q(t),P(t)) is a regular solutibn of
problem (12)-(2).

(i) - Explicit form of the FKP equation

Let u and v be two regular functions defined on R™ x R™ with real values. We
introduce the Poisson bracket notation :

[uv] =(0dqu, dpv)—(dpu, dgv) (18)
Using (13), (14) and (16) , the FKP equation (17) can be written as :

?prk[p,H]—divpL(p) =0 ,t>0 (19)
where divp L = i 2 Ly , and where L(p) is a R™ -vector :
=1 9Pk
L (p) =( fH) + L 1(H) ) p [G] 3H + 1n(H) [G] app (20)

with h: R* = R™™ the C!-function such that :

h(H) = g2(H) + 2 &%y (H) 1)
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and h'(H) = d h(H) / dH . These properties of h result from 2.2, ii-2 and ii-3 .
(i) Critera for existence and uniqueness of solutions defined up to
explosion time

Concerning the critera for the existence and uniqueness of the diffusion process
(Q(1),P(1)) , solution to problem (12)-(2) , in the uniform Lipschitz case, we refer to
[30,31,34] . But these criteria are not sufficient for the present case and other mathematical

tools are necessary.
(ii- 1) Let us suppose the functions b and [3] to be continuous on R™ x R™ with the

following properties :
(P1) : For all fixed positive real number R>0, and for all (q,p) and (qo,po) with
ligh? + lipl2 < RZ, ligoli2 + lipgl? < R?, there is a positive constant KR such that :

Il b(g,p) - b(qospo) I12 + Ill &(q,p) - A(qo,po) II? < Kg (llg-qoli2+Ip-poll? )
Il b(g,p) I? + 1 A(q,p) I? < Kg ( 1+1igi +lipii?)

(P2) : Let I be the differential operator on R™ x R™ such that foru: R™ x R™ - R we

have :
m

%E 1kaplapk

i,k=1

bi:q) Bu (p) au

.'Gu-—Z(

k=1

We suppose that there exists a regular function q,p,t — V(q,p,t) defined on
R™ x R™ x R™ with values in R™, which satisfies the two conditions :

drA>0: V(gpt, %V(q,p,t) - (3v)(q,p,t) <A V(g,p.t) (22)

V(q,p,t + oo + oo 23
uq||’+up¥]£ﬁ.:>o @pt) - T &)

(R1) : With all above assuptions, the stochastic problem (12)-(2) has a unique solution
(Q(1),P(t)) which is a R™ x R™-valued diffusive Markov process, a.s continuous, and

which does not explode (see [36,6]).
(ii-2) Using (13), (14), (16) and (21) we obtain, after calculations :

22v] sk | sk (24)
([0

=

BV= [VH]—II‘- (4f - ) ([STT 3pH , [ s]fav)+%h

k=1
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where S¥ is the R™-vector such that S}‘ = [S]jk . Note that in the particular case where
V = @(H) , with ¢ a C2-function on R with real values, relation (24) yields :

BV =(1oh - lodt-)) N[STToH I + Lo'h 3 ([a2a] s, s¥) (25)
k=1

with ¢'(H) =d ¢(H) /dH . We have used the Poisson bracket property :

[p(HD) , H] = ¢'(ED [HLH] =0 26)

(ii-3) For example, we see that the result (R1) holds under the following conditions on f
and h:
>0, 3¢cp>0; Vr2ry , h(t)<cpr
In>0; Vr2r , 4ffr)-h(r)20

e2)

The proof is easy to perform. Let us consider the Lyapounov function
V(q,p) =H(q,p) + &, independant of t , with o a positive real constant. The condition (23)

is satisfied in view of (3) . The relation (25) and the inequalities (4) yield :

v s-}I(4f - ) I[STT o H I* + % h Crlil S lIi2 (28)

It is clear that condition (22) is satisfied for all q and p in any closed and bounded
subset of R™ x R™ . Therefore, in taking into account (3), we can limit the proof of

condition (22) to the case H 2 sup (rg,r;) = Hp . For H 2 Hy, using (27), we get from (28) :

BV <AV with x=%coc1-msm2.

2.5 Existence of an asymptotic stationary solution and steady-
state FKP equation

We shall assume that the regular solution (Q(t),P(t)) of problem (12)-(2) tends in
probability for t — + oo , to a R™ x R™-valued stationary process (Qs(t),Ps(t)) . Hence we

have :

ps(q,p) = lLm p(t,q.p) (29)
t—>too
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where ps(q,p) is the probability density function (p.d.f) on R™ x R™ of the random
variable (Qs(t),Ps(t)) for any fixed t . The steady-state p.d.f Ps satisfied the steady-state FKP
solution associated with (19) :

[ps,H]-div, L(ps) =0 (30)
with the normalization condition :
f f ps(@,p)dqdp=1 (31)
R™ R™
where L is given by (20) .
Remarks :

(1) The following result (see ref. [36,30,6]) allows us to check the existence of an
asymptotic stationary solution.

If there exists a unique regular solution and in addition there exists another C2-function
q.p — V(g,p) on R™ x R™ with values in R" such that :

Sup (BV)@p)=—Cr , CR—o+e as R +ee (32)
liglz + !Ipl!2 > R?

then a unique asymptotic stationary solution exists.

(2) For example, under all conditions of section 2.2, and if, in addition, the hypotheses
(27) on f and g are satisfied, one can prove the existence of the asymptotic stationary
solution. The complete proof of this point is lengthly because several cases must be
considered and cannot be given here.

2.6 Exact steady-state p.d.f

The exact steady-state p.d.f is built by searching the solution of equation (30) in the
form ps(q,p) =@ (H(q,p)) . Hence, using (26) and (20), we have [ps,H]=0 and
Lips) = [G] 3H with y = (£ + h"/4) ¢ +he!2.

Therefore, equation (30) is verified when @ is the solution of equation y =0, and :

H(q,p)
Cn ) j P o f(r)dr) (33)
0

(q,p) = —==00—o
Pe h (H(q.p))

exp
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where Cy, is a positive real constant defined by the normalization condition (31) , and where
h(H) is given by (21).
Remark :

Conditions (ii) of section 2.2 yield that equation dp H(q,p) = q can be solved locally in
pforqand gin R™. Let p = A (q,4) € R™ be the solution. If we assume that A can be built
for all g and g in R™ and that ¢ — A (g,q) is a continuouly differentiable R™-valued
function defined on R™ , then the steady-state p.d.f pqfq.q) of the random variable

(Qs(t),Qs(®)), with respect to dg dq , is given by :

PQ.0(a.9) = ps(q.Alg.q)) x Ja (q.9) (34)
where J, is written as :

Ja (q.4) =| det [3;A(q,)]] (35)

with [ 93Alk = ? the Jacobian matrix.

qk

2.7 Study of the integrability of the steady-state p.d.f

The integrability of the p.d.f Ps is not evident to verify whenm>1. Therefore, we
give here after a useful criterion which allows us to study it.
Let o 2 0 be a real constant. Let Mg, be the positive number such that :

Mg = I & fm‘“( ligli? + lipli2)* ps(q,p) dq dp (36)

For a =0, Mp =1 is the normalization condition. If & is a positive integer, My allows to
study the existence of the moments of ps . For example if M; < + o, the random variable
(Qs(t),Ps(t)) is of second order. Let ¢ : R* — R™ be the function :

) T
@(r) = h(r) 12 cxv( =2 J; h(y)! f(y) dY) 37
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Using relation (33) we can write ps(q,p) = cm ¢ H(q,p) ) and forany o 20 :

Mg =Cpy Ng (38)
where Ny > 0is written as :

No = igli2 +ipli2)* o(H(q,p)) dq dp 39
fm‘“ fm“'( ql? +lipl2)* o(H(q;p)) dq dp (39)

We see that 0 < cp < + oo if Ng <+ oo, because c,y = Ny ! and No>0. Consequently we
have : ‘

Vaz20, Ng<+oo = Mg<+eo

bccause,ifNu<+oo,wehaveNB<+oo for 0 <P <, and in particular,

Ng<+o = No<+oo = 0<cp<+oo
We introduce the following assumption on the H function, which involves necessarily

the property (3):
(i) There exists three real constants : Rg= 1, ¢o>0 and 0 > 0 such that

H(qp) = co (Nigh?+1pi2 (40)

for any (q,p) € R™x R™ such that ligi? + lipli2 > R

We have the following result :

(i) If assumption (i) is verified and, if for a fixed a 2 0, there exists any positive value of
the real constant {2 0, such that :

m f&+m+8 o1 =¢ (41)

T —+oo
where ¢ is a real constant such that 0 < ¢ <+ o , therefore we have My < + oo .

Proof :
Let By be the closed ball of R™ x R™ :

Bo={qe R™,pe R™; ligl2+ lipl’<RZ |
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and U the unbounded open set :

Uo={qe R™ pe R™; !IqI12+Hle2>R02}_
Onecanwritt Ng=Ng+N& , Ng>0 , Ng>0 , with:

Ng = I f J@pdgdp ; N&= f f J(g,p) dq dp
By Uo

and J(q,p) = (ligi? + IIpli® f* o H(g.p)) -
For any o >0, we have 0 <N < + o because J is a continuous function on the

closed ball Bg . For any real i > 0 , we can write the inequalities 0 < Ng < Igx I; where:
(1) Io is the finite positive real number :

IO = dq dp -= Szm— <+ oo
(g2 +lIpi2) ™ +#* 2 R

Up

where Som =2 T™/I(m) is the area of the unit sphere in R>™ and where I denotes the

gamma function.
(2) 1, is the positive number such that :

Il = Sllp(q'p) € Un‘ ( ”('.[{)"2 * “PO"2 )a+m+u. q H(q’p)) ’ i

In using (40) , we see that I; < + o if the condition (41) is verified.

Example

Let us consider the very simple case : functions f, g and h are such that f (1) =1 ,
g (1) = go, h (r) = g2 + 2 &2 r with fo and o two positive real constants. The Hamiltonian
function is written as H = %([M] pp )+ %([K]q,q ) where [M] and [K] are two (mx m)

real symmetric and positive-definite matrices. The calculation of (36) yields :

5 _.1- f
o@=(gd+2¢e2r) (z“é (42)



17

In using the criterion (41) with 6 =1 etc>0,we0btainu=—a—m+%+f0/e,§ . The

condition 1 > 0 yields Mg < + o if x + m < % + %— . We see that a second order solution is
Em
obtained if the dimension m of the discrete dynamical system is such that m < fo/e — 1/2 .

2.8 Examples of multi-dimensional nonlinear oscillators under
external random excitations

In this section we give some examples of multi-dimensional nonlinear oscillators under
external random excitations only .
(i) Example 1 : General case
The canonical equations (1) - (5) are written in this case (€ =0) :

Q=0, HQP) (43)
P=-9, HQP) - f(H) [G] Q + g [S]n(®)

and the function h , defined by (21) , is such that h = g2 . Note that the parametric excitation
vanishes completely if g is a constant function. Using the remark of section 2.6 , we have :

4=0H@p) ; p=AlgdeR" (44)
Let H(q,q) be the real-valued function on R™ x R™ such that :
H(gd)=Hl,AlQd) 45)
and FF (q,q) be the R™-valued function defined on R™ x R™ such that :
F(q.9)=F(q,A(.4) ; F(q.p)=9Hq.p) (46)

With these notations, the canonical form (43) is equivalent to the following second order
nonlinear differential equation on R™ :

4 AQY+1(H)[G]Q+F(QQ = dB)SInw “7)
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For this multi-dimensional nonlinear oscillator (47) , we have the expression (33) for the
p.d.f of the random variable (Qs (t),Ps (t)):

(@p) = ——m 2 j i (1) £(r) dr) (48)
, = X _— T
PS{OP) = H(gp)) © 0 &
and (34) for the r.v (Qs (6),Qs (©) :
' : H(q.9)
. Cm Ja(QsQ) -2
5 (q,4) =—F——=*exp -2 I g(n)“ f(r) dr) (49)
Pag g(H@9) 0

with J, given by (34).

(i) Example 2 : Particular nonlinear dynamical systems
Let [M(q)] be a symmetric real (m x m) matrix such that for all g in R™ , [M(q)] is
positive-definite, and q — [M(q)] ! is a C?-function bounded on R™ . We assume that the

kinetic energy of the dynamical system is written as :
T@d) = 5 ( Mald.q) (50)
In this case, the generalized impulsion p=9d4T is given by :

p =[Mqlq = Alq.9) (51

Lety (q) be the Cz-potcmial function on R™. Therefore, the Hamiltonian function is such
that :
H@p) = +(M@]'p.p)+v@ , (52)

The relation (45) yields :
H@d = H{MQ@ldd) + v@ (53)

and the equation (47) of this nonlinear oscillator is :

4 (M) + (H)[G] @+, w(Q = BH)(SIn® - (54)

The steady-state p.d.f is given by (48) or by (49) with J, (q,q) =|det[M(Q)]] .
We can apply this result to obtain the following multi-dimensional cases.
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Let [M] and [K] be two symmetric real (m X m) positive-definite matrices ; Let f and go
be two positive real constants and oty = Jf% .Let H and H be such that :

&
H@p) = 5 (M-1p.p)+ 1 ([Klq.q) (55)
H @9 =4 (Md.4)+ 5 (Klq.q) (56)

- For the linear oscillator :

M]Q + 6[G]Q + [K]Q = go[SIn® S - 75
we have the gaussian case :
PQq @4 = Cm exp(-2ao H(gd) |

with H given by (56) .

- For the nonlinear damping :

M]Q + fH)[G]Q + [K]Q = go[SIn(®) (58)
with H given by (56) and f by :
f(H)=-fo(1-((MQQ)-((K]QQ)) (59)

we have :
P04 @d) = Cn exp{2a0 H (1-H) |

- For the cubic restoring force case, the potential function on R™ is defined by :
Y@==To([Klq,q) + +T1{[Klq,q)? (60)

where T and T are two positive real constants. The equation is :

MQ + H[G]Q + (To+T:{[K]Q,Q))[KIQ = go[S]n® (61)
and we obtain :
PG (@4 = Cn exp{-2ag H(qq)

with H given by (53) - (60) with [M(q)] =[M] .
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(ili) Example 3 : Extension of example 2

We can generalize example 2 by considering a more general form of the kinetic energy (50)
of the dynamical systems :

T@d = 1 (M@]d.4 + (B@.4) +C@

such that T (q,4)20 for all q and ¢ in R™, [M(q)] as in example 2, B(q) € R™,
C(q) € R . In this case the generalized impulsion p = 94T is written as :

p=[MQ@]q+B@ = A9
The Hamiltonian function is defined by

H(qp) = %([M(q)] -1 (p-B(q),p-B(@) + 2([M@]"! (p-B(q),B(@)) + C(@) + ¥(q)

and relation (45) yields :
H @49 =7{M@]44) + 2(B@.4)+C@ + V@

2.9 Examples of multi-dimensional nonlinear oscillators under
parametric and external random excitations

In using relations (44) to (46) , we can write the second order nonlinear differential
equation on R™ , equivalent to the canonical form (1) - (5)

 § ! _
4 AQQ +E)[G]Q+ FQQ +&n X [S][& 0] U QO =@ [S]n® (62

=1

which is the equation (47) with additional parametric random excitations. For this multi-
dimensional nonlinear oscillator under parametric and external random excitations, the exact
steady-state p.d.f ps is given by (33) and p.d.f pq,g by (34) - (35) .



(i) Example 4 : Nonlinear oscillator with linear conservative part
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We consider the linear and nonlinear dynamical systems with linear associated

conservative part.

Let [M] and [K] be two symmetric real (m xm) positive-definite matrices. The
functions H and H are given respectively by (55) and (56). Letr — k(r) be a Cl-function on

R™ with values in R™. Taking J = 2 and defining the U ® functions by :

UP(q, =k(E) M2 q ; UP(q,q) =k@E)[K]"2q

we obtain :
UU)(q,p) = k(H) [MI 2p ; U®(qg,p) = k(H) [K]'?2 q

Relations (6) and (21) yield the expression of the function h :
h (@) =g2r) +2 €% r k1)
In these conditions the equation (62) is written as :

M1 Q +{ £(H)[G] + en k(H) [S] [E1()] MI'2 ] Q
+{ [K] + e k(H) [S] [E20] [K]'2 | Q= g(H) [S]n®

and the exact steady-state p.d.f is given by :

Ps (q,p) = Cn ¢(H(q.p))
orby: '
P @P) = Cn o(H(q,0)
with :

-

¢@=h@ 7 exp ( - 2fr f(y) h(y) ! d)’)
0

We have A (q,q) = [M] g and consequently, J, defined by (35), is a constant.

Note that if we have the relation :

fi(r) = o h(r) % h'(r)

(63)

(64)

(65)

(66)

(67)
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with ot a positive real constant, and where h'(r) = dh(r)/dr we obtain :
e@=exp(—20pr)

and ps ( resp. PQ,g) is a gaussian p.d.f in taking into account (65)-(55), ( resp.(66)-(56) ).
As shown in ref. [18] on the example of an particular one dimensional nonlinear oscillator ,
we can obtain for the multi-dimensional oscillator (64) under a suitable combination of the
parametric and external gaussian excitations, a gaussian steady-state p.d.f for the random
variable (Qs (t),Ps (1)) -

- We can apply the results (64) to (67) to obtain the extension of (57) and (58) with
parametric random excitations. Let fy and gg be two positive real constants.

« For the linear oscillator with parametric excitations :

MIQ + {£o[G] + &n [S] [E:®] M2 } Q

+{ K1 +&n [S] 5201 [KI'2 | Q = go[SIN®) (68)
the steady-state p.d.f, given by (65) - (67) , is written as :
.
ps(@.p) =Cm(gd +2e3 H(ap) ( 2 2 (69)

with H given by (55) .

In using the result of the example of section 2.7 , we see that the r.v ( Qs (1), Ps (1) ) is of
second order if m, fo and €n, verify the inequality : m < fo/g2 — 1/2. The steady-state p.d.f
PQ,g (9.9 is given by the right hand side of (69) in replacing H (q,p) by H (q.q) given by

(56) .
« For the nonlinear damping with parametric excitations :

™M Q +{ £ (M QQ)+([KIQQ)-1)[G] + en [S] [E:(®] M2 }Q
+{ [K] + &n [S1 [E200] [KI'2 ) Q= go (H) [S]n®  (70)

the steady-state p.d.f is written as :
bli+8)-1 2f,
s @p)=Calsf+2¢d Hap)2' 2 2xep(-2RH@n) o
€m
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In using the criterion (41), we see that all the moments of the r.v (Qs (t),Ps (t)) have finite
values . Conformably to the preceding result, we have a gaussian steady-state p.d.f, for this
nonlinear dynamical system, if the constants fy, go and €, verify the equality :

ﬁ]_(l.}.ﬁ):l
o3\ ed) 2

(i) Example 5 : Nonlinear oscillator with nonlinear conservative part

Let be H (q,p) the Hamiltonian function defined by (52) of the nonlinear dynamical
system of example 2. Let k be the function defined in example 4, and [K] be a symmetric
real (m x m) positive-definite matrix related to a normalization of the potential function .

Taking J = 2 and defining :

UY (q4) = k (H)[M@1'2 g

U? (g4 = k(H Wy (@ ([Klq,q)~! [KI'2 q

the equation (62) is written as :

4(MQ] Q) + (£ (H) [G] + e k(H) [S] [E10] MQI2) Q

+ 3 W(Q + em k(H)RW(Q ([K]1Q, Q)" ! [S] [E2(0] [KI12Q
= g (H) [S]n(® (72)

with H the function defined by (53) .

The exact steady-state p.d.f ps (q,p) is given by (33) with h defined by (63) and H by (52) .
* We can deduce the cubic restoring force case (61) with parametric excitations. The
potential function is given by (60). The equation is :

M Q+ (0 [G] + e [S] (£:10] (M1'2) Q
+{(TeT(K1QQ)) K +en g/ Tor LTi(IKIQQ) 181 620] (K1 | Q
= g[S]n® (73)

with fop >0 and go >0 . The exact steady-state p.d.f ps (q,p) is given by (69) with H
defined by (52) - (60) in taking [M(q)] = [M] .
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3 Complements for the radial Hamiltonain case

In this section, we give some complements for the case where Hamiltonian function H
has a radial form.

The radial case concerns the class of nonlinear oscillator with linear conservative part
and also a large class of nonlinear conservative parts. There is a great interest for studying
this case, because all the multiple integrals on R™ x R™ can be explicitly calculated for any

finite dimension m, to obtain the normalization condition, the characteristic function and the
covariance operator.

3.1 Definiton of a class of radial Hamiltonian functions

In all this section 3, we shall consider the nonlinear stochastic differential equation (1)—
(5) and we shall suppose that all the assumptions of sections 2.2 to 2.6 are verified. Hence,
the steady-state p.d.f ps (q,p) is given by relation (33).

Let [M] and [K] be two positive-definite symmetric real (m X m] matrices. Therefore,
the bilinear mappings d1,d2 — ([Mld1,d2) and q1.92 — ([K]qi,q2) are inner
products on R™, and we can write :

u=[K1"2 q ; ([Klqq)=([K]'? q[K]'2 q) = Hui? |
v=IM2 g 5 (Mad)=(M" 6,M™ ¢) = Iviz | (74)

The radial form of the Hamiltonian function H is defined by

H(p) =1(Mpp) + A(L(Klaa) ) )

where r — A (r) can be any mapping from R™ to R such that all assumptions on H
introduced in section 2.2 be verified.

The generalized impulsion is written as : p = [M]q = A (q,q) and the steady-state p.d.f
PQ,g on R™ x R™ is given by (34) - (35) :

Po.d (1) Con 2 f i h()! £(r) dr (76)
04 = —2—— exp| - )" f(r
i V1 (H(qd) 0
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where Cp, is the positive real constant defined by the normalization condition :
f f PQ.Q (@:9) dgdg = 1 (77
R™ R™
The functionr — h(@) : R*¥ - R 7 isgivenby (21):
h@) = g2(@) + 2e Y0 (78)
and function H : R™ x R™ — R is defined by (45) :
H (@) =1{Md.d)+A(1(Klaq)) (79
3.2 Explicit form of the steady-state p.d.f

Let rj,r » Ho(r,r2) and 1,12 = U(r;,r2) be two functions from
R*x R* to R™ such that:

Ho ur) =A(Le2 )+ 17 (80)
(ry.29) 1 2J'H°(n’r2)h()lf()d) @81)
I, I2) = exp| — -
S s v ey i e o) e
Therefore, we have :
H (g4 = Ho ( ([Klq.q)'?, (M4,q)'?) (82)

rlmfz) k((Klq,q)'?, (M4,4q)?)dqdq (83)
PQq (@4) dq dd = Y det[MK] o

f f il el u(ry,ry) dry drp
0 0
+oo

where I'(z)= f t=letdt isthe gamma function.
0
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Proof :
(@ Letx—s(x) : R™ > R be a function that depends only on r = Il x Il . We denote

such a function s(x) =S (I x Il ) withr — S(r) : R*—= R . We have :

+oo

f s(x)dx=£——1rmn—- f S@) r™ldr (84)
i Mm/2) 4

(b) The equalities (79) and (80) yield (82) .
(c) Taking into account (81) and (82) , the p.d.f Pg,g given by (76) is written as :

P06 (@) dadd = Crp(((Klq,q)l?, (M4, q)?)dqdg (85)

The normalization condition (77) yields :

c.;,1=] ] w((IKlq.q 02, (M4, 4)")dg dd
R™ R™

Using (74) and applying the theorem on integration with respect to the measure image, we
can also write

Cil= (det[MK])‘mf f p (Il livil ) du dv
R™ R™

We obtain (83) in using (84) and by substitution in (85).
3.3 Moment of total energy

Let &5 (t)=H (Qs (t),Qs (t) be the R*-valued random variable at any fixed time t,
related to the dynamical system in its steady-state. The moment of order j of the r.v &g (1) is

written as : .
E(8s@®i)= f f H (q.4) pog (@4) dqdg
Rm Rl‘l‘l
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For fixed j , the moment can be infinite. Using (74), (83) and (84), we obtain :

400 +oo
f f Ho(rp,r2)d ™! of™! p(ryrp) dry dro
E(8s(®i)= (86)
+o00 +oo
f f 1™ e p(ry,rp) dry dr
0 0

3.4 Charasteristic function

For every fixed t, the characteristic function of the R™ x R™-valued random variable
(Qs (®.Qs (1)) is the mapping &, B = Pog (o.p) from R™ x R™ to € which is defined

by:
E{ exp[i(a,Qs(t))+i(B,Qg(t)))]

ff o Hoal+i(Ba) po - (0) dadg 87
mm Rm

I

PQ.4 (0.B)

With the preceding assumptions, pq( is a real valued function on R™ x R™ which is
written as :

pod @B =@ (Kl a,a)?, (M18,8)?) (88)

with Ry, R; — @ ( Ry,R7 ) the real valued functionon R x R such that :

®(Ry,Ry)=[ 2 Tw+1)]*D;? Ny(Ry.Rz) (89)
with :
v=%’—1 (90)
+ oo+ oo
Dv=f f eV p () dndr 1)

0 0
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+ 00 + oo

NV(RIrR?.):[ f rV 1l v+l Iv(r Ry Jv(zRo) u(r 1,r2) dridr;  (92)
5 B (r1R1)Y  (r2Rp)Y

and where J,, is the Bessel function :

' 1
Jy(x) = . f (1 ——tz)(v—m) cos tx dt
Tn D(v+1R2)

Proof :
@ Letbex—s®x)=S(Ikl) : R">C ,r»s@® : R*>C . fse L1 (R™,C)

(integrable function), the Fourrier transform $ (y) is defined for any y in R™ by :

3(y) = Sliylly = f e- .3 S(lIxl) dx (93)
Rm

withR - S(®R) : R* — @ the function such that :
SR 2m) 31 [T R) S(r) dr 94
S =227 | (RS0 94

(b) Using (74) - (83), and because [K] 12 and [M] -1?2 are two symmetric real matrices,
function EQ.Q which is given by (87), can be written as :

(mp) f f u( it v ) exp { i {[K] 12 oeu )+ ([M] -2 B,v ) | du dv
R™ R™

+oo0 f+oo
4 Jtmf f Ilm'_l l'zm_l 48 (1’1 ,1'2) dr; drp

EQ.Q (G'SB) =

Because pis a R "-valued function , we can conjuguate the equality (93) and we obtain (88)
- (89), using formula (93) - (94) for the u and v variables.



Remark 1 concerning the marginal laws :

Let us note that v# -1, -2, ..., and then we have :

O 1 i x0
X' Q¥ T(v+1)

Hence we deduce from equality (89), that :

+ oo + oo
@ (R,,0)=2 T(v+1) D, f f eyt oot DORD 0 ) ey dry
0 0 (r1R1)

(o] (O,Rz) =2Y I'(v+1) D, f 1'12“""1 1'22‘”'1 b A o e’ § 18 (rl,rg) dry drp
o Jo (r2Rz)

Remark 2 concerning the derivatives of the characteristic function

We have the formula : _

_d_(Jv (X)\ __Jv+1 (x)
dx

xv /- xV
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95)

(96)

o7

(98)

Using (95), (98), and also the relation [{z+1) = z I\z), one can calculate the following

partial derivatives of @ at point R} =Ry =0
oD _ oD ol
E(O’O) = E(O’O) =0

0D

m(@,ﬂ) =0

oR

99)

(100)

2D " AT 1™ s v
___(0,0)-_—LZ(V+I)DV ), P k@) dndn oD
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02® ! 1
&?(O‘ ) = ~3%4D)

+ o0 [+ oo
Dv_lf [0 12 eV p(ry,rp) drpdry  (102)

We shall use these relations in the next section.

Remark 3 concerning the numerical calculations of the characteristic function

Let us introduce the following notations :

Y(z,2') = 1
i Nz)Nz)

Y (v+i+k, v+1+k')
Y(v+l,v+l) iy

+ o0 f+ oo
f f r 22 227y (ry,12) dry dra (103)

Uxy =

Hence, the function @ , defined by (89) can be calculated by the series :

®(R1,R;) = 2 Z ETIE'T —le}k[—lRf)k Cli e (105)

The result (105) is proved by substituting into the right-hand side of (92), the
ascending series of the Bessel function :

1 +o0 _1_7_2)"
1, @) ={1z) 24 ! 106
= (22) kz:;', k! T{v+k+1) i

3.5 Covariance operator

In this section we shall consider the R™ x R™-valued random variable (Qs (1),Qs (1))
for any fixed t. We shall assume that this random variable is of second order.
Let © and 8 be two positive real variables. Relations (87) and (88) yield :

£ exp (160 Qs®)+ 8 (@s00)) | = @( 0 (K] o )2, 6 (M1 8.8 ')
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In taking the partial derivatives with respect to 6 and 6 and for 6 and B — 0, , we obtain
forall aand B in R™ :

E (2.Qs0))= -i{K] a,a)'” 5%(0.0) (107)
E ((B.Gs9)) = ~i(iM-1p.8 )2 %{0.0) (108)
E((Qs0)(BA®)) = - (K17 oo} (M1 8 ) 52 2-(0.0) 109
E ((0Qs®)?)= - (K] ) £2 00 (110)
R,
E((8Qs0))= - (M-158) £200) (11D
dRy

(i) Taking into account the relations (99), (107) and (108), we see that the random
variable (Qs(t),Qs(t)) is centered.

(ii) Inthese conditions, the covariance matrix [Cs] € Mat (2m,2m ) of the r.v
(Qs(1),0s(®) can be written as :

Cx CQQ
[Cs] = (112)
C @® Cx
where : .
[Cool =E[ Qs Qs®T] ; [Cog) =E[ Qs Qs (113)

are two symmetric positive real (m x m) matrices which can be defined by the quadratic

forms on R™:

a—-([Coga,a)=E((a,Qs®)}) (114)

B—([Ceq]B,B) = E((B. s f) (115)
and where

[Coa] =E [ Qs s [Coql =E[ Qs Qs®)] (116)
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are two real (m x m) matrices such that :

(Ceal =[Cod” ar
the matrix [Cog] beeing defined by the bilinear form on R™x R™:
B —([Cogl B ) = E((a,Qs) (B, Q1)) (118)
Using the relations (100) to (102), (109) to (111) and (113) to (118) we obtain the following
results : '
[Cadl =[Cia] =10] (119)
[Cql = Zm[K] (120)
[Cog) = Zm[M] -1 i (121)
with :
=lX(m+1,m—1) I . =_1_X(m—1,m+1)
Zm =i X (m-1,m-1) ’ Lm = X (m-1,m-1) (222)
and where X (p,q) is written as :
+ oo [+ o
X (p.q) =IO J;) rf 1! p(ry,rz) drydrp (123)

Remark
The (Qs,Qs) stochastic process being stationary, we know that [Ceg] +[Cog] =[0].

Taking into account the general property (113), we get :

[Codl =~ [Cod 24

Therefore, [CQQ] is an antisymmetric matrix. But, relation (124) gives (119) only when
m = 1. For the multi-dimensional case m > 1, result (119) is not a general property for the
second order vector-valued stochastic processes.



33

3.6 Examples
(i) Example 6 : linear oscillator under external random excitations

We can use the gaussian stationary response of the linear oscillator (57) to check the

formulas established in sections 3.1t03.6.
For this oscillator, H is given by (56), therefore A(r) =1, Holr,r2) = % (r2 + 1) and

Wry,r2) = gg' exp (— (1'12 + 1y )) with o = fy g5
(a) Using the formula :

400
f rol g-gr? gr = -—F(“ﬁ; (125)
0 2a,

one can calculate (83) and we obtain :

Poo(a.d)= ( r'fdet[ MK] exp{-oo(([Klqq)+(M44))) (126)

(b) Using always (125), the calculation of (104) gives Clyge = og &),

In applying (105) and in using the summation of the series D , , (k!)"! xk = exp (x) ,
we get ©(R1,Rz)=exp ( —(409)! (R12+R22) ) Finally, we deduce from (88) the gaussian
characteristic function :

PogleB)= exp { —;}x;k K] )+ (M B,B)) ) 127)

(c) Using Iz+1) =z Iz) and (125), the relations (122) give Zm = Zm =(20) 1. Thus,
we deduce from (120) - (121) :

Cd-pLIT ¢ [ -Ep4t am
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(i) Example 7 : Linear conservative part with nonlinear damping under
external random excitations

Let us consider the nonlinear oscillator (58) - (59) . Functions A and Hy are as in the
example 6, and we have L (r1,r2) = go! exp { 2 aig Hp (1-Ho) }
We introduce the two special functions [37] :

/2
TS | . -1 g(H V)
[0 sin#1 0 cosv-10 d6 2 B 5 (129)
+oo
f e'xn'é'kz R*-12 R = x4 I‘(a«il) U (a,x) (130)
0 2
where :
+
B(x,y) = B(y,x) = PR ITE o) 2 (131)
24 ¥ 2\ x+y
I (x+y) 0 (1+2)

is the Beta function (Euler's integral of the first kind), and where U(a,x) is the parabolic
cylinder function. We can calculate X (p,q) defined by (123), using the polar coordinates
rp=rcos O , rp=rsin 0, and the relations (129) - (131). We get :

q+1) (p+l)

2 g0 r(p+q+2)

+co
X(p,q) = f exp agrz-%g-r”)dr

The above integral can be calculated with the transformation g r* = R* and using (130).
One has :

1 1
X(p.q) = (q+ )WEZ ) U(P+q+1 —Yag : (132)

(o) 2



35

(a) Starting from (132) with p=q =m- 1, we deduce from (83) the steady-state p.d.f :

 (q.6) = —YIUMK] (VOO0 |™ o sy exp (200 H (1-H)) (133)
pQQqQ) U(m—%—,—fa_ﬂ)(n )m 1
with H given by (56).

(b) The covariance matrices are given by relations (119) to (121). Using (132), relations

(122) yield :
1
MR e Lo da)

T -} o)

(134)

(c) Itis interesting to determine the asymptotic behaviour of Zm when m tends towards
infinity. For fixed x, a>0, we have [37] :

i
U (a,x) = M e -2 x + vy(a)
"3+
4 2 (135)
vi(a) ~ % if a— +eo
On the other hand, we have for z — +eo:
Lz}l ~ z=12 (136)
. F(Z +§-)
Using (135) and (136), the relation (134) yields :
o N Erie 1 ( 14/% )

(d) Characteristic function can be performed in using (105). See for instance the following
example 8.
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(iii) Example 8 : Nonlinear cubic restoring force under random external

excitations

We consider now the nonlinear oscillator (60) - (61). The function H is given by (79)
with A(r) = To r + T; r2 In these conditions, we have W (r1,r2) = Wy (r1) x Mo (r2) with:
Hi(r) = exp ( —0gTp 12 - 12~ o Ty f14) 5 Ma(r2) = gol exp(- 0 1?)

where 0g = fo go2. In this case, X(p,q) defined by (124), is written as :

X (p.a) = X1 (p) X2(q) \
r{eit :
Xi(p) = ( 2 )&1 U(Iz_”,y)e'!’h
2(Vap Ty ) 2
rlatl
X2(q) = go! -——( ﬁﬂ)
2092
e v

(a) The steady-state p.d.f (83) is written as :

3 m/4
Poala.d) = SHIHE] (a" T‘) e~Tl4 exp(-200 H)

b it

(b) Using (138), the covariance matrices are given by (119) to (121) with :

fn = 7

[ 3o

(138)

(139)

(140)
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The asymptotic behaviour (for m — +o0) can be obtained for Zmin using (135)-(136):

3 L 1 _142% &)
m-— + s dom TTeT Tm exp( 3 m T (141)

1

The characteristic function is given by (88), where the function @ can be calculated by
relations (103) to (105). Using (125) and (138), we get :

sl Big® I
O(R Ry =€ 430 > Y (142)
k=0

el e ™)
ok 4o Ty

_U(EE ]
o]

Note that Ay can be calculated by recurence on k.

Ax

(iv) Example 9 : Linear oscillator under parametric and external random

excitations

Let us consider the equation (68). Functions A and Hy are defined as in example 6, and
we have :

ll(l'l’l'z) = (g()2+elg(r12+r22))-ym : Ym = %—+£05
Em

In the following we shall assume that the stationary response is a second order stochastic
process. Therefore, the result of the example of the section 2.7 yields m <y — 1.

Using the polar coordinates r; =r cos@ , r; =rsinf, we can perform, with the help of
(129) and (131), the calculation of the integral (123) which defines X(p,q). We have :

_ rE e )

2
go*'= T ()

X(pa) = + ()7 (143)
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(a) Using (143), the steady-state p.d.f (83) is written as :

fo) - raaa ()" T (12 mig)
Poaa:4) = ¥ det[MK] (1t 802) Fr—m) 1+2g02 H(q.9)

with H given by (56), and where :

) (- 1) (= 2)ee e =+ ) 1)
F(Ym_m)

(b) The covariance matrices are given by (119) to (121). Using I(z+1) = zI{z) and
relation (143), the calculation of relations (122) gives :

e __ - 1 g0’ 2
Zn = Zn = 355 e

3.7 Conclusions

This paper deals with the study of a large class of multi-dimensional Hamiltonian
dissipative dynamical systems under parametric and external random excitations. We have
obtained, for a gaussian white noise modelling of the random excitations, an exact steady-
state probability density function for theses systems. When the Hamiltonian function of the
conservative part has a radial form, one can explicitly calculate the constant of the
normalization condition, the characteristic function and the covariance matrices, for any
finite dimension of the system.

The examples given in the paper show clearly the effects of nonlinearities and random
parametric excitations. On the other hand, the results which have been obtained show also
how the normalization of this kind of stochastic dynamical systems, should be chosen for
studying them in infinite dimensions.
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