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NUMERICAL METHODS IN ELASTOACOUSTICS FOR
LOW AND MEDIUM FREQUENCY RANGES

by

C.SOIZE , A. DESANTI andJ. M. David

ABSTRACT

A few numerical methods are presented for determining the dynamics and sound
radiation of structures at low (LF) and medium (MF) frequencies. After discussing
the main problems that have to be solved, we introduce mathematical models and
formulations for the LF and MF ranges. The second part of the paper is devoted to
the numerical methods. At the end, we discuss validation of the methods and
computer codes. The conclusions explain the purpose and limits of the numerical
methods, as well as future developments.



I. —INTRODUCTION

In this paper, we review the numerical methods
developed to predict the dynamics and acoustic radia-
tion of structures in the LF (low frequency) and MF
(medium frequency) ranges. The methods described
result from the research that has been conducted for
several years now by the Structures Department of
ONERA on the acoustic stealth of submarines and
supported by the DCN (STCAN, CERDAN, Bassin
des Carénes test tank) and by DRET Gr6. These
methods were also applied more recently to predict
internal noise in aircraft structures.

II. — DEFINITION OF THE PROBLEM
MECHANICS TO BE SOLVED

To analyze industrial mechanical structures, it is
advantageous to have predictive methods that can be
used in a sufficiently general framework. In this
section, we describe the main constraints and the
usual mechanical hypotheses, in order to situate the
problem and identify potential difficulties. Not all
aspects can be gone into, since the problem is so vast.
We assume that the fluids are dense. Therefore, the
fluid/structure interactions are large and the simplifi-
cations sometimes made for “light” fluids cannot a
priori be used. Obviously the methods that we
describe apply if the dense fluids are replaced by light
fluids, since only the densities change.

[I,I. — MECHANICAL CONFIGURATION
CONSIDERED

The structure is a 3 D elastic body (or a set of
bodies) with any geometry, all of whose dimensions
are finite, by contrast with certain model problems
for which one or more dimensions can be infinite,
such as a cylinder with infinite length. This deforma-
ble body is placed in a dense fluid (water) or a light
fluid (air), said to be external, which occupies an
unbounded domain of physical space. This domain
can generally be considered infinite or semi-infinite.
The body is either still or moving in translation. Only

may be fluids, called internal, that occupy bounded
domains (acoustic cavities) and that are dense or light.
Here we do not consider systems with dense internal
fluids with free surfaces in the presence of a gravity
field.

I1,2. — MAIN HYPOTHESES APPLIED

The dynamic behavior of the structure, the external
fluid and the internal fluids is linear around a static
equilibrium configuration taken as reference state:
The structural materials are elastic, dissipative,
inhomogeneous and often anisotropic (for instance in
the case of composites). For elastoacoustic problems,
the external fluid and the internal fluids can be consi-
dered inviscid and compressible, with small linear
irrotational movements. However, to model the prob-
lem, it is sometimes necessary to include dissipation
terms in the internal fluids, in particular near the
walls. Finally, if the external medium is semi-infinite,
it is assumed that the boundary condition is such that
it can be considered infinite subject to appropriate
symmetrization of the coupled fluid-structure system.

I1,3. — EXCITATIONS OF THE COUPLED
MECHANICAL SYSTEM

The excitations of the coupled system can be acous-
tic and/or mechanical in nature.

11,3.1. — Acoustic Excitations

The first type of acoustic excitation corresponds to
a system of incident waves in the external fluid. These
waves are diffracted by the body, inducing an un-
steady pressure field on it. By dynamically exciting
the elastic body, this pressure field generates an acous-
tic radiation specific to the structure in the external
fluid and a pressure field in the internal fluids. When
considering the elastic radiation of the structure, it is
an elastic target problem. When considering the pres-
sure field induced in the internal fluids, it is a problem
of externalfinternal acoustic transparency. The second
type of acoustic excitation corresponds to acoustic
sources in the internal cavities and the pressure fields
within the cavities and/or the radiation of the struc-
ture in the external fluid are considered. These are
problems of internallinternal and|or internallexternal
acoustic transparency. As regards the mathematical
formulations and the numerical analysis, all the cases



described can be considered with mechanical excita-
tions. discussed below.

11.3.2. — Mechanical Excitations

The mechanical forces applied to the structure may
be localized in space (concentrated forces) or distri-
buted (field of surface forces, for instance). They
generally correspond either to models of known
mechanical excitation sources considered external to
the coupled system analyzed, making it a problem of
predicting the responses, or to an arbitrary given used
to construct elastoacoustic transfer functions. Hydro-
dynamic excitations are part of the class of mechani-
cal excitations when the hydrodynamic problem can
be decoupled from elastoacoustic problem. For
instance, as an initial approximation, the turbulent
boundary layer wall pressure field due to a flow on a
structure can be considered as a mechanical excitation
independent of the induced elastic deformation.

1,4 - CHARACTERIZATION OF THE
COUPLED FLUID-STRUCTURE  SYSTEM
RESPONSES

As the behavior of the dynamic coupled fluid-
structure system is linear, the system can be com-
pletely characterized by frequency response functions
(or transfer functions). These functions, with func-
tional values, are used to calculate the response of
the coupled system to all types of excitations. For
elastoacoustics problems, frequency characterization
is privileged, not only for the excitations, be they
deterministic or random, but also and especially for
the responses. We are therefore mainly interest in
Sforced response problems and we will limit the discus-
sion to this situation. All the equations below are
written in the Fourier plane (frequency) and not in
the time domain.

For mechanical excitations, we are interested both
in the dynamic response of the structure, generally to
the acceleration fields, and in the pressure fields in
the fluids, used to determine the noise levels in the
acoustic cavities and the acoustic radiation in the near
field and far field of the external fluid.

For acoustic excitations, the parameters of interest
are obviously the same as above, but in particular:
the field scattered in the external fluid for elastic
target problems, the field radiated in the external fluid
for a problem of internal/external acoustic transpa-

rency and, finally, a pressure field in the internal fluids
for a problem of external/internal or internal/internal
acoustic transparency.

ILL5. — DEFINITION OF THE FREQUENCY
RANGES

The frequency range that must be considered in
elastoacoustics is very large. A distinction is made
between three frequency ranges: low frequencies (LF),
medium frequencies (MF) and high frequencies (HF),
for mechanical reasons (different mechanical
behavior, especially for structures), theoretical reasons
(theoretical difficulties increasing with frequency for
real mechanical systems) and numerical reasons
(requirement for intermediate or high power main-
frame computer systems). This concept of frequency
range is relative and would require a rigorous defini-
tion in the framework of the mechanical problem
discussed herein, but this would lead to excessively
long developments. We therefore assume that this
concept is understood, at least intuitively.

It can be said that the LF range is the frequency
band in which the response spectra of the coupled
fluid/structure system exhibit isolated spectral rays
indicating the presence of a modal structure underly-
ing an associated conservative system. This mainly
includes the first eigenmodes of the coupled struc-
ture/internal fluids system with the added mass effects
of the external fluid.

The HF range is the frequency range in which the
response spectra of the coupled fluid/structure system
do not exhibit any spectral rays or even local dispari-
ties. The behavior in this frequency range is very
“smooth”, indicating that the modal density of the
associated conservative system has a uniform fre-
quency that is very high. In this frequency band, the
structural boundary conditions play almost no role.

The MF range is the intermediate range where the
response spectra exhibit high irregularities indicating
that the modal density of the associated conservative
system is not constant but exhibits local highs and
local lows. In this band, all the structural boundary
conditions are involved a priori as well as the real
geometry and the real constitutive equation of the
materials, exactly as is the case for the LF situation.

Therefore the LF and MF ranges require numerical
methods since it is necessary to solve the equations
governing the physics of the problem as accurately as



possible. MF methods can no longer be used for the
HF range in the current state of our knowledge and
today’s computers, and the numerical methods are
discarded in favor of other predictive methods for the
HF range, one of which is Statistical Energy Analysis.
Herein, we discuss only the LF and MF ranges for
which numerical methods are used.

II. — MATHEMATICAL MODEL
AND FORMULATION

Because of length restrictions on this paper, we give
only the mathematical formulation directly adapted
to the numerical methods we developed, since, for
this type of coupled fluid-structure problem, there are
several unknown fields and therefore several possibili-
ties for choosing those to be kept and those to be
eliminated. Even so, as will be seen, we have to
develop two formulations, one for the LF range and
the other for the MF range. In addition, the same
restriction led us to choose, with regrets, a very sym-
bolic description, but this presentation, even concise,
of the mathematical formulation appeared necessary
since it is the only way of introducing the numerical
methods. As was mentioned in Section II, it is assu-
med to simplify the discussion that the body is still
and that the external medium is infinite instead of
semi-infinite.

OLL. —
SYSTEM

GEOMETRY OF THE COUPLED

The Euclidean space R? is referenced to a cartesian
reference system x,x,x;. The generic point is
denoted x=(x,, x,,x;). The geometry of the coupled
system considered and the notations are defined in
Figure 1.

Fig. 1. — Geometry of the coupled fluid-structure system.

The external fluid occupies the open unbounded
domain L; of R® whose boundary is Z,=Z;, U Zj,.
The deformable structure occupies the open
bounded domain S of R*® with boundary
Zo=Z; UZs,UZ;. The internal fluid (union of
the internal fluids) occupies the open bounded domain
L, of R® whose boundary is ,=X, \UZ; . The unit
normal to £; and I, pointing respectively towards

the inside of Ly and L; is denoted N. Boundaries
Zg, and X, are undeformable.

I11,2. — EXTERNAL NEUMANN PROBLEM

To formulate the coupled fluid-structure problem
described in Section II with the geometry of Figure 1,
it is necessary to solve the following external Neu-
mann problem related to the Helmholtz equation:

mi
80+ 0=0 in L, M
C
%:v o B, %)
oD ®
— —i—® (=0, dl=0"Y,
Nz (r=% |@|=0("") 3)

r=||0x|| >+,

where @ is the velocity potential, ¢ is the speed of
sound and p is the density of the external fluid, and
where v is a normal velocity field defined on Z; with
values in C which depends on ®, where weR is the
angular frequency. The pressure p is given by the
equation:

p=—iop® in L;. 4

For any o fixed in R, problem (1) to (3) has a
unique solution [13, 30, 36] and there exist two linear
operators B(w/c) and R (x,®/c) such that:

d=B(o/c)v in g, (5)
®=R(x,0/c)v, VxeL;. (6)

The problem of constructing an approximation of
finite dimension of the two operators is generally
solved by numerical methods (see Sec. IV).

III,3. — CASE OF AN INCIDENT WAVE IN THE
EXTERNAL FLUID

The incident wave in L; is defined by a velocity
potential @, with values in C which verifies
equation (1). Boundary Z; is subjected to a displace-
ment field U whose support is Zp,, since Ly has a
fixed boundary. The total velocity potential @ is then
written:

D=0, +D,+,

where @, and @, are the diffraction and radiation
potentials that are written:

(IJd=B(mfc)(— %‘), ®,=iwB(w/c)(U.N).



From this we deduce the expression of the total
pressure field on X

P=PuTPs (7

o,
= +B =t hl 8
Pia pr{(bﬁ (m/c)( EN)} (8)
p,=0"pB(w/c)(U.N). 9

In any point x of Ly, the total pressure is written:
p ()= pi(x)+ (), (10)

where p;(x)= — imp(b,-_(x) is the incident pressure and
P,q(x) is the scattered pressure, written:

p,d(x)=R(x.(ofc)(imU.N— %%) (1

T

[11,4. — EXTERNAL HYDRODYNAMIC FOR-
CES AND COUPLING OPERATOR

Let us assume that there is an incident wave in the
external fluid. Let U be the displacement field of the
structure at frequency o defined on S with values in
C3. Let U be the field defined on X of support Iz,
and equal to the trace of U on Zp,. Let 8U be an
arbitrary admissible displacement field of the struc-
ture, defined on S and let 3U be its trace on . The
hydrodynamic force field f; applied to structure S
due to the action of the external fluid and defined by

<f}315U>=_J‘ (8U.N)pdo

Efl

1s written:
fe=fut o Bg(w/c)U, (12)

where f, is the hydrodynamic force field defined by:
(U= J OU.Npads,  (13)
:El

in which p, is given by (8), and where By (w/c) is the
linear external coupling operator that is such that:

{ Bg(0/c) U,8U)

- J p(8U.N)B(w/c)(U.Nyds. (14)
IE

If there is no incident wave, then f;, is zero and there
are only the hydrodynamic coupling forces with the
external fluid. Finally, it is known that the linear

operator —m” By (w/c) can be written:

—? By (0/c)= —0* Mg(0/c)+io Cg(w/c), (15)

where M (w/c) and Cg(w/c) are two real linear ope-
rators that are positive-symmetric on the Hilbert spa-
ces adapted to the problem. The first of these ope-
rators is the added mass operator and the second is
the infinite radiation dissipation operator.

1IL5. — FORMULATION ADAPTED TO THE
LF RANGE FOR THE COUPLED PROBLEM

For the LF range, it is numerically advantageous
to project the equations governing the dynamics of
the coupled fluid-structure system onto the truncated
basis of the first natural modes of vibration of an
associated conservative system with the required spec-
tral properties. Several conditions must be satisfied
and the formulation must be specially adapted. First
of all, structure S must be able to be assimilated, in
the LF range considered, to a medium with a visco-
elastic behavior with instantaneous memory, so that
the mass and stiffness operators are independent of
the frequency. If this model cannot be used as a
reasonable approximation, the formulation for the
MF range (see Sec. II1,6) must be used even for the
LF range, since the projection considered does not
have any real meaning. Secondly, the presence of
internal fluids requires a formulation of the structure-
internal fluid coupling that naturally allows identifica-
tion of an associated conservative system representa-
tive as regards the inertia and stiffness terms, for
which the spectral problem (eigenvalues and eigenvec-
tors) is correctly stated and can be solved by the most
efficient numerical methods. In other words, the
discretized spectral problem with finite dimension
must have the form:

(_mz[Mo]"'[Ko])k’o:Ua (16)

where [M,] and [K,] are two real symmetric matrices
with [M,] positive-definite and [Ky] positive. With
these constraints, an integral equation formulation
for the internal fluids is not possible, and we therefore
preserved the local equations and used a global varia-
tional formulation for the coupled problem. To
obtain a symmetric problem, we started from the
formulation suggested in [32]. The final formulation
obtained is summarized below and is developed in [16]
for the part concerning the internal fluids and the
condensation.



II1,5.1. — Model of the Structure

We denote the linear mass, damping and stiffness
operators as Mg, Cs and K respectively. They are
independent of ® considering the hypotheses. They
result from the conventional variational formulation
of elastodynamic problems and have the usual proper-
ties of symmetry and positiveness [9, 13, 20, 23, 35,
43]. To simplify, we assume below that K is positive-
definite. The structural impedance operators are then
written:

Zi()y=—o* M;+ioCs+Ks (17

We denote the element representing the mechanical
excitation applied to the structure and depending on
the frequency © as fs (see Sec. II).

111.5.2. — Model of the Internal Fluids

To simplify the discussion, we assume that for the
LF range, the dissipation terms in the internal fluids
are negligible compared with the other terms. If this
is not the case, these terms can always be added
afterwards without any difficulty. The displacement
potential ¥ and the pressure field P for the internal
fluid (union of the internal fluids) verify the following
equations:

P=o’p,¥ in L, (18)
1 1 !
At 2P=4Q in L, (19)
Picr Pi
E:\P=[_I,.N on X, (20)
dN

where the density p, and the speed of sound ¢, are
assumed constant in each subdomain of L; defined
by an internal fluid, where Q is an acoustic source
term and where U, is the displacement field defined
on X, whose support is I, since boundary X, is
fixed and which is equal to the trace of U on Z;,..

111,5.3. — Equation of the Coupled Structure-Internal
Fluids-External Fluid System in the LF Domain

The global variational formulation of the coupled
problem gives the following equation in operational
form:

(—m2M(m,»“c)-i—icoC(m,’c)+K)X=F (21)
where

) fstfa
‘ F= 0 : (22)
4 —o’q,

Mg+ Mg (w/c)
M (0/c)= 0 0 D s (23)
AT DT _TKJ
Cs+Ce(wfc) 0 0
C(o/c)= 0 0 0f (29
0 0 0
Ks 0 0
k=0 G 01} (25)
0 0

where 4. D, G and g, are such that if 3U, 8P and
8W are arbitrary admissible fields associated with U,
P and ¥ respectively, we have:

<A‘P,8U>=—'[ p,(ﬁ__U,.N)‘PdU, (26)
In
<D‘P.5P>=J‘ —15‘P5de. 27)
L[cf
(GP.5P>='( 12P8de. (28)
L Pr€y
(K,‘P.B‘P)=JI p,grad¥.grad 8% dx, (29)
Ly
(q;,S‘I‘)=J~ Q8%¥dx. (30)
Ly

The three linear operators M (o/c), C(w/c) and K
are real and symmetric. The conservative problem
associated with equation (21) is written:

(—0*M(w/c)+K)X=0, (31)

and it is not yet stated satisfactorily for the following
reasons:

(1) Operator M depends on ®/c by the external
fluid added mass term. The first solution consists
of considering the associated incompressible external
fluid (¢ - +o0) and we have M (0). This approach
entails a nonnegligible extra numerical cost, since it
requires first solving an exterrial Neumann problem
related to the Laplace equation and which, in any
case, does not do away with having to solve the
external  compressible  problem  defined in
Section I11,2. The second solution consists of not
taking the added mass effect into account (i. e. we set
Mg (w/c)=0) for constructing the modal projection
base sought. We use the second solution since all
the applications we conducted show that this method
is very efficient, as convergence is rapid in the LF
domain considering the number of base vectors cho-
sen.



(2) We assume that the added mass term M (w/c)
momentarily vanishes for construction of the projec-
tion base. Then operator (23), independent of o, is
not positive and the numerical problem does not have
the required form (16) To overcome this difficulty,
it is necessary to eliminate field ¥ from equation (21).

(3) To eliminate ¥ from (21), it is necessary to
inverse K,. Let us take WV =H"'(L,)/R, where R is the
set of constant fields defined on L;. Then, since the
continuous linear operator K, from V into V', defined
by bilinear form (29) on V x V, is injective, it is inver-
tible (whereas it would not be if we did not consider
the quotient space), and its inverse is denoted K;'.
It should be noted that this leads to a few additional
numerical difficulties (see Sec. IV) but which cannot
be avoided.

With this set of hypotheses, we can then eliminate
¥ from (21), and reintroducing notation (15) yields
the formulation for the LF domain governing the
coupled structure-internal fluids-external fluid system:

(—w*My+ioCy+ Ky—0? By (0/c) Xo=F, (32)

where:
U +fu— 0 AK !
XC.= 1 F0=[f5 jﬂ' i 71! ql]’ (33)
P == DK; qr
+AK; AT AK7IDT
o R Wi I "
DK;' A DK;'D

J B (w/c) 0 _[Cs 0

Bo((!)/C)=|: EO’ 0:\- C0'|:05 ol

K, 0

K=|> |

0 G
It should be noted that if we can assume all the
internal fluids to be incompressible (¢, » + o), then
D and G are identically zero and we obtain an inde-

pendent equation in U (first row of (32)), which con-
siderably simplifies the problem.

(35)

I11,5.4. — Spectral Problem of the Associated Conser-
vative System

This is the following problem, associated with (32):
(—0*M,+K,) Y=0. (36)

Considering the above hypotheses, the mathematical
analysis [13] of problem (16) shows that the spectral
problem is correctly stated. The spectrum, which is
countable, consists of a series of positive real num-
bers:

0soigois. . .,

and the associated eigenvectors Y, Y, ..., form a
basis of the Hilbert space of the problem and are
such that:

(Mo Y, Yy =m;8;, (37)
(Ko Y Yy =m0 8y, (37)

where the m; terms are real positive constants related
to normalization. Solving problem (36) by the finite
element method leads to a numerical problem of
type (16). Each (w,, ¥) pair corresponds to an eigen-
frequency and an elastoacoustic eigenmode of the
conservative coupled structure-internal fluids system
in the absence of the external fluid.

111,5.5. — Projected Equation of the Coupled Struc-
ture-Internal Fluids-External Fluid System

For any w in R, problem (32) has a unique solution
whose regularity can be studied [13, 27]. For the LF
domain, we construct an approximation X, of this
unique solution X, by writing:

X,=Y 4 Y, (38)
=1

J

where n is the number of eigenvectors chosen and
where the y; terms with complex values are the new
unknowns, called generalized coordinates. Based on
equation (32), we then obtain the following matrix
equation on C™:

(—o?M,]+ie[Cl+[K]- 0B, (/) X=F, (39)
where X is the column matrix of the y; terms, and:

[Mn]jk:nzjajk~ [Cn]jk=<C0 Yk' Yj >' } (40)
[K,]io=m;of 8

0 ! Bl 2
[F);={ Fgs ¥ )5 (41)
(B, (0/c)];={ By (w/c) Y*, ¥ ). (42)

The main numerical aspects are discussed in
Section IV,

11,6, — FORMULATION FOR THE COUPLED
PROBLEM ADAPTED TO THE MF RANGE

In the MF frequency range, the conservative system
associated with the structure with its internal fluids
(without the external fluid) has a modal density with
local highs and local lows when the frequency varies
in the MF band. This property can moreover be
considered as an informal definition of the MF range.
as was indicated in Section IL.5.



The numerical costs related to calculating a large
number of frequencies and eigenmodes of high rank
on a system with a very large number of DOFs
(degrees of freedom) are high, and all the numerical
problems which then arise have not so far been com-
pletely solved. In addition, in the MF domain, struc-
tural materials such as many composites, for instance,
generally have a viscoelastic structure so that the
operators for the structure depend significantly on
the frequency, preventing a constant approximation.
Under these conditions, there is no longer a unique
spectral problem representative of the system over a
wide MF band. Under these circumstances, projec-
tion of an associated conservative system onto a trun-
cated basis of eigenvectors no longer seems suitable.
It is therefore unnecessary to obtain a formulation
allowing this eigenvector calculation, and the LF for-
mulation of Section IL,5 for internal fluids can be
dropped for a much simpler method using gyroscopic
coupling between the structure and the internal fluids.
There is nothing to be changed for the external fluid,
since the formulation remains valid. As for the LF
range, we do not use an integral equation formulation
for the internal fluids since, in the MF domain, we
are often led to introduce a dissipation term that is
not actually homogeneous in the internal fluids, in
particular near the walls, for modeling purposes.
Below we summarize the formulation developed for
the MF range [42] and which seems quite satisfactory
to us.

1I1.6.1. — Model of the Structure

We denote the linear mass, damping and stiffness
operators of the structure that depend on the fre-
quency ® as Mg(o), Cs(®) and Kg(o). For each
fixed ©, they have the usual properties of symmetry
and positiveness (see Sec. IIL,5.1). Normally, for
viscoelastic materials, only Cg and K depend on o,
but not My [23]. However, for certain composite
structural elements, such as honeycomb sandwich
panels, the homogenization techniques associated
with kinematic reductions introduce terms that are
homogeneous to a mass and that depend on the
frequency [19]. This is why we introduce a depen-
dence of Mg on @ in the model. The structural
impedance operator is then written:

Zs(0)= — 0> Mg(@)+io Cs(o)+ Ks(@).  (43)

Again, as in Section IIL5. 1, we use the notation fs
for mechanical excitations.

ML.6.2. — Model of the Internal Fluids

The formultion is written as “velocity potential™.
It is denoted @, and verifies the equations [42]:

(IJZ
—= %
&1

div({ | +iwk (o)} grad®,)+

|
=" Q inL,. (49
Pr

)
{1+iml(m)}%ﬁ=imlj,.N on L. (45)

The pressure field P is given by the equation:
P=—iop,®, in L,. (46)

The notations p;, ¢;, U; and Q have the same meaning
as in Section I1[,5.2. Here we introduced a simple
but inhomogeneous dissipation model which has the
flexibility required to satisfy the needs of models in
the MF domain. Is there is no dissipation, A (©)=0
and we obtain an inviscid, compressible, irrotational
fluid where @, is a real velocity potential. To model
an inhomogeneous dissipation, we write:

rMe)=v(w)c; 2, (47)

where v depends on the space and frequency, has
values R* and the dimension of a kinematic viscosity
coefficient.

I11,6.3. — Equation of the Coupled Structure-Internal
Fluids-External Fluid System in the MF Domain

The global variational formulation of the coupled
problem gives the following equation in operational
form:

Z, ()X, =F;, (48)
where Z, (w) is the linear impedance operator:

Z(0)=—-o*M (0)+ioC;(0)
+ K, (0)— o By (0/c), (49)

and where we set:

7 U | e fstfa | (50)
@, 4r

Ml(m){MSO(“” f;ﬂ,} \
I
Cs(w) =
C @)=
e [—AT —C,(m)}i .
x@="%" |

0 —K



where By (o/c). A, K; and ¢, are the quantities defined
in Section II1,5.3 and where M, and C,(w) are the
linear operators such that for any admissible field
6®; on L; we have:

(M;@,,80,)=| Lo, 50, dx, (52)

L Cr

(Ci(w)D,, 00, >

=J~ pri(w)grad @, . grad 8@, dx. (53)
Ly

For any o in R, there is a unique solution of (48)
and it is known how to analyze its regularity as a
function of the givens [13, 27]. It should be noted
that we changed the signs of the second line of
equation (48) by blocks so that complex operator
Z, (w) was algebraically symmetric, as this property
is very useful for the MF numerical method described
in Section IV,

I1,6.4. — Taking the Structural Complexity Into
Account in the MF Domain

In a structure, a distinction can be made between
the part accessible to the conventional modeling, cal-
led the master structure, and the part inaccessible
to this conventional modeling and that we call the
structural complexity or fuzzy structure. The fuzzy
structure concept is introduced in [39]. It consists
of multiple mechanical subsystems connected to the
master structure and which generally govern its func-
tionality. Numerical methods are used to construct
an approximation of impedance Z,(w) defined
by (49). Therefore, in the current state of our know-
ledge, this can only be done for the master structure
coupled with the internal and external fluids. In the
LF domain, we partially take the fuzzy structure into
account in the mass balances and only the inertial
effects of the fuzzy structure are therefore modeled,
which is legitimate. In the MF domain, the mechani-
cal subsystems of the fuzzy structure no longer behave
like pure masses but are themselves dynamic systems
coupled with the master structure. The master struc-
ture is therefore subject to a loss by coupling due to
the transfer of vibrational energy from the master
structure to the fuzzy structure, which induces an
apparent dissipation that can cause strong smoothing
of the frequency response functions of the master
structure. From the standpoint of predictive
methods, it is not attempted to identify the fuzzy
structure dynamics but to construct unconventional
global models of the fuzzy structure to improve the
predictions of the dynamic behavior of the master
structure. For instance, in [39, 8], we propose a
model of the fuzzy structure and its processing that
results in introducing an impedance with values in

the random operators Z,(®). Equation (48) is then
replaced by:

(Z(0)+Z, () X, =F,. (54)

There are then two types of problem. The first
concerns construction of a mathematical model of
Z,(w) which, in our opinion, must be based on a
deterministic mechanical model certain of whose
parameters are modeled by random variables for
which the probabilistic characteristics must them-
selves be identified by statistical methods. The second
concerns the method used to solve random operator
equation (54) assuming the probabilistic model of
Z,(w) to be given. This type of research was started
in [39, 8] but much still remains to be done consider-
ing the difficulties of these aspects.

IV. — NUMERICAL METHODS

The LF and MF numerical methods discussed
below are derived directly from the two mathematical
formulations described in Section III. These formula-
tions are even an integral part of the method insofar
as they were developed for that purpose and with
a constant concern for being numerically effective.
However, these formulations alone are not sufficient,
since two fundamental problems remain. The first
concerns effective construction of an approximation
of finite rank of all the functional operators introdu-
ced. This is conventionally the space discretization
phase of the system. The second concerns solving
the discretized equations, i.e. (36) and (39) for the
LF domain, and (48), possibly with variants like (54),
for the MF domain. To avoid repetitions, we begin
by exposing the part of the methods common to the
LF and MF domains then continue with the specific
features for each domain.

IV,l. — NUMERICAL METHODS FOR THE
EXTERNAL NEUMANN PROBLEM

Here we are concerned with numerical analysis
of problem (1)-(3) used to construct the required
approximation of the coupling operator B(w/c) and
the radiation operator R(x,®/c) defined in
Section I11,2. Considering the results of Sections 11,3
and II1.4, if we are able to construct these approxi-
mations, we can directly deduce approximations of ()
the inhomogeneous excitation term f; using (13)
and (8) if there is an incident wave, (b) the external
coupling operator Bp(w/c) using (14), and (¢) the
radiated pressure in the external fluid using (11) in
presence or in the absence of an incident wave, know-



ing the approximation of the displacement field U
of the structure. A suitable formulation must be
available for this purpose.

IV.1.1. = Additional Information on the Formulation

(a) Integral equation formulation for the case of a
surface Ty of any geometry. If the closed surface X
has an arbitrary geometry, the solution of problem
(I)-(3) in an unbounded homogeneous medium can
be sought using an integral equation formulation
which is well adapted to this situation [13, 30]. There
are several possible integral equation formulations.
Although problem (1)-(3) always has a unique solu-
tion for any o in R, certain of these formulations do
not supply the solution for a series of real values
of w, called irregular frequencies. The Fredholm
alternative obviously works for these values of @ [13].
In practice, for arbitrary geometries, the values of
these irregular frequencies are not known before cal-
culation and it is therefore preferable to construct
integral formulations which automatically get around
this difficulty related to the formulation. Such an
approach was developed in the general case by [1]
and was validated. This is the approach we chose.
Finally, for certain geometric situations where the
domain simultaneously involves thin parts and mas-
sive parts, for instance a propeller, we developed a
formulation based on [1] but which also allows us to
replace the upper and lower surfaces of a thin domain
by a single mean surface while preserving the interac-
tion terms between the thin parts thus modeled and
the massive parts. These aspects are covered in [34].

(b) Asymptotic formulation for a surface g with a
slender geometry. The formulation used in (), which
is valid for the general case, induces sufficiently high
numerical costs to make it worthwhile to attempt to
decrease them if possible. When surface X, is slender,
asymptotic methods whose small parameter is related
to the slenderness can be used. We then obtain
formulations which have much lower numerical costs.
We developed and validated such a formulation
in [12] for the LF domain and in [6] for the MF
domain.

IV,1.2. — Approximation of the Coupling and Radia-
tion Operators

(a) Case of integral equation formulation. The finite
approximation of the coupling and radiation ope-
rators is obtained by constructing the weak formula-
tion associated with the integral equation formulation
of Section IV, I(a), then using a finite element

method so that only surface X; has to be meshed.
Two versions were developed. The first [1] uses P,
and Q, finite elements, and the second [34], developed
recently and which covers the case of multiconnected
thin and massive domains, uses P, finite elements.
We thus construct the matrix of the finite approxima-
tion of the coupling operator which is complex, sym-
metric but not Hermitian, and dense, as well as the
corresponding approximation matrix of the radiation
operator. These two matrices are functions of w/e.
It should be noted that the numerical cost is due to
the requirement for solving a complex linear system
with N right-hand sides, where N is equal to the
number n-of eigenmodes-used for-the LF method (see
Sec. I11,5.5) and N is the dimension of the linear
system (we therefore invert a matrix) for the MF
method. If surface X, has a cyclic geometry, the
numerical costs are significantly decreased by taking
it into account [34].

(b) Case of asymprotic formulation. In this case
[6, 12], the coupling operator is directly expressed by
an integral operator relative to X instead of an
inverse, as was the case for the general method. To
discretize this integral operator, we use a P, and Q,
finite element method and we directly obtain the
expression of a matrix of finite approximation of the
coupling operator without having to solve a complex
linear system with several right-hand sides, contrary
to case (@) above; this applies to both the LF and the
MF formulation.

IV,2. — NUMERICAL METHODS FOR SPACE
DISCRETIZATION OF THE STRUCTURE AND
ITS INTERNAL FLUIDS

We use the finite element method to construct finite
approximations of the structural impedance operators
of equation (17) for the LF model and (43) for the
MF model [2, 3, 9, 13, 24, 35, 46]. This is the only
method that allows the strucfures to be discretized in
all their variety, both geometrically and as regards
the materials and boundary conditions. As for the
internal fluids, for the reasons mentioned above, we
also use the finite element method. For the LF
formulation [16] (or the MF formulation [42]), the
elementary inatrices for the different types of finite
elements (surface and volume) are constructed from
operators 4, D, G and K, defined by (26) to (29)
(operators M, () and C, () defined by (52) and (53)
respectively).



IV.3. — NUMERICAL SOLVING METHODS
FOR THE LF DOMAIN

(a) First we construct the approximation matrices
for the operators of the structure and its internal
fluids using the method described in Section IV,2. It
should be noted that construction of the approxima-
tion matrix for operator M, defined by (34) requires
condensation to eliminate ¥, and, as was mentioned
in Section II1,5.3, there is a difficulty related to the
inversion of K. To construct the quotient space, and
so as not to have to modify the formulation of the
elementary matrices of the-internal fluid finite ele-
ments, we chose a Lagrange multiplier technique to
impose the constraint. These aspects are developed
in [16].

(b) Then we calculate the first n eigenvalues and
eigenvectors of a problem of type (16) corresponding
to the approximation of the spectral problem (36).
The algorithmic method of iterations in subspaces [3]
is well suited to this type of problem, since the number
of DOFs of the structural model with its internal
fluids is much higher than the number n. We can
then deduce the matrices defined by equations (40).

(¢) We then calculate matrices [B, (w/c)] for values
of w/c covering the LF band considered using the
methods described in IV,1. This allows us to con-
struct an approximation of function @ — [B, (®/c)] on
the LF band using spline functions.

(d) We solve the complex linear matrix
equation (39) on the LF band considered. The fre-
quency resolution chosen can be high since the
dimension n of the system is very small and the
numerical cost of the solution is therefore negligible.

(¢) We then have all the information we need to
finish solving the problem. It should be noted that
the total numerical cost is due only to the spectral
problem (b) and the construction of function
o — [B, (0/c)] of point (¢) in the general case, except
for slender surfaces for which the numerical cost of (¢)
is negligible compared with the cost of point (b).

IV,4. — NUMERICAL SOLVING METHODS
FOR THE MF DOMAIN

The methods of Section IV,1 and IV,2 are used to
construct a numerical model of the coupled structure-
internal fluids-external fluid problem in the MF
domain, i.e. obtain the matrix equation associated
with (48) on C™, where m is the total number of
DOFs of the model. It is written:

(Z, ()] [X,]=[F], (35)

where

[Z, (0)]= —0*[M, (0)]+io[C, (@)]+[K, (@), (56)
(M, (0)]=[M, (0)]+ B, (w/c)]. (57)

For any ® in R, matrix [M, ()] is complex symmetric,
matrices [C, (®)] and [K, (w)] are real symmetric and
the complex symmetric matrix [Z, (©)] is invertible.

For the MF domain, it is generally necessary to
identify the frequency response of the coupled system
over a wide frequency band, with a frequency resolu-
tion that must remain relatively high, i.e.
equation (55) has to be solved for a large number of
values of @. In addition, to capture dynamic pheno-
mena in the MF band, it is necessary to refine the
meshes by comparison with a model suited only to
the LF band, which means that the number m of
DOFs of a numerical MF model is high. These two
constraints mean that with today’s computers, it is
not realistic to consider solving the complex matrix
system (55) with dimension m for all the values of ©
that must be considered. We feel that the direct
approach is currently prohibitive and must be
replaced by a more efficient indirect method. We
therefore developed an MF method [37, 38, 41, 42],
the main points of which are recalled below.

IV.4.l. — MF Solving Method

The problem is to solve linear system (55) over a
large frequency band with m high. The MF method
consists of writing the wide MF band as a union of
narrow bands B, and solving the problem on each
narrow band using a mixed method with two time
scales. The short time scale associated with the center
frequency of the narrow band is solved analytically
in the Fourier domain without introducing numerical
errors, and the long time scale associated with the
width of the narrow band B, is solved by a numerical
method in the time domain.

(@) Narrow Band MF Signal. Let

B,=[Q,— Aw/2, Q,+Aw/2]

be a narrow MF band with center frequency Q,>0
and bandwidth Ae such that 0 <Aw<2Q,. The band
[-Aw/2, Aw/2] is denoted B,. Let 1, be the long
time scale and 1 be the short time scale such that:

(38)



By definition, B, is a narrow MF band if:
o490 (59)
Tc Qv i

Let H,(B,)={F,eL*(R,C") supp F,=B,} be the
Hilbert space of functions r—F, (f):R— C"™ with
integrable square:

I1E, 2= j |F, ()| de< + oo,
R

and _therefore the Fourier transform (FT) of
o= F, (0):R=C"™ which has an integrable square
and is such that:

Fv(m)=.[ e”1®tF (D dt,
R

2
o

A= -1

has a compact support B,, i.e. that:
F,(0)=0, VYo¢B,.

With any F,eH,(B,), we can associate a signal
FyeH, (B,) such that:

Fo(1)=F, (1)exp(—iQ,1). (60)
Accordingly, for any ®' in B, we have:
Ey(0)=F,(o'+Q),

which shows that F, is a low frequency signal on B,
which has only one time scale, the long scale 1.

(b) Frequency Approximation of the Operators. The
frequency response function of the coupled system is
identified in the MF domain by solving problems of
the following type. Calculate the solution of equation

[Z, (@)] X, (@)=F, (), (61)

where [Z, ()] is given by (56) and where F,e H,,(B,).
Then, the hypotheses on function w—[Z, ()] imply
that the solution of (61) is such that X, e H_(B,). We
associate the following equation with (61)

(—0?[M]+io[C]+[K]) ¥, (@)=F, (o), (62)
where

M=, Q)  [CI=[CQ)], } (63)
(K=K, (Q,)]-

Then, if functions wm[ﬁ?ltm)], [C ()] and [K, (o)]
are continuous on R, for £>0 fixed as small as desi-

red, there is a bandwidth Aw such that we have:
!”)f’\,— f’v ||| <E.

We can therefore replace problem (61) by problem
(62)-(63). Signal Y, whose FT is ¥, belongs to
H,(B,) and verifies the following differential equa-
tion:

MY, (0+[C] Y, (0+ K] Y, (D=F,()). (64)
Since Y, and F, both belong to H,, (B,), there are the

two time scales, 1, and 7.

(¢) Analytic Processing of the Short Time Scale. By
making the translation ©=0'+Q, with ©'eB, and
we B,, we obtain for any 0 eB:

(0% [MJ+i' [DJH[Z]) Ty (0)=F (@), (69)
where
[D,]=[C]+2iQ,[M,],
[Z,]= - Q¢ [M,]+iQ,[C]+[K],
and where Y, and F,, which are such that:
Fo()=e ™' F, (1),
Y =™ Fy(),

FO (") =Fv(co’+(1v).
Yo(0)=7,(0'+Q,),

are in H,,(B,).

(d) Numerical Processing of the Long Time Scale.
The low frequency signal Y,eH, (B,) which is a
solution of (65) and is associated with the mean fre-
quency signal Y, e H, (B,), verifies the following low
frequency time-difference equation:

(M Yo () +[D] Yo () +[Z,] Yo ()=Fy(1). (66)

This LF equation is solved by the Newmark
scheme [3] which is an unconditionally stable step
numerical integration method. We thus introduce a
usual approximation error at this solving level but it
should be noted that the error concerns only slow
variations of the signal and conventionally remains
small.

(e) Explicit Expression of the MF Solution from the
Solution of the Associated LF Problem. Introducing
the conventional family of functions of the Shannon
theorem:
sin(m (/1 —k))
Jur—k)’

the MF signal Y, e H, (B,) is written:
Yv (I) = \/?L ei ﬂv‘ Z YO (k TL) (pk (f) (67)

kelZ

0 ()= kel,



Its Fourier transform with compact support B, is
given explicitly by the equation:

¥, (@)=1,1g (0) Y, Yo(kt)e *L@ ™. (68)

keZ

Equation (68) is used to calculate the FT Y, of the
MF solution ¥, from the sampled LF time solution
{ Yo(kty), keZ} alone.

IV.4.2. — Case of Stationary Random EXxcitations

Certain acoustic or mechanical excitations are of
the stationary random type and the stationary
dynamic response of the coupled system is investi-
gated. Let [T, (0)]=[Z,(@)]"" be the complex sym-
metric frequency response matrix (m X m). The spec-
tral density function w— [Sx, ()], @[Sy, (®)] from
R into Matg (m,m) is then given by the equation:

[Sx, (@)]=[T (@][Sp, (@)][T, (@)]*,  (69)

where [Sp, (@)] is the matrix spectral density of the
stationary excitation process. Direct computation
of (69) over a broad MF band has much higher
numerical costs than in the deterministic case for
reasons explained at the beginning of Section IV,4
and also because with this form, it is necessary to
completely invert the impedance matrix (56) for each
value of ®, then to calculate the product of three
complex (m X m) matrices. It is therefore highly desi-
rable to have a method that gets around this diffi-
culty. This is what we have done [40, 42] by reducing
the initial problem to solving a small number of
deterministic MF problems using the MF method of
Section IV,4. 1.

IV.4.3. — Taking Mechanical Subsystems Identified
by Their Boundary Impedance into Account

It is often useful to be able to introduce in a finite
element model a subsystem described by a boundary
impedance resulting from measurements or already
given by the numerical model. In the general case, a
boundary impedance cannot be interpreted as the
impedance of a dynamic system governed by a
second-order differential equation with constant
coefficients due to the elimination of internal degrees
of freedom of the subsystem considered to the benefit
of its boundary degrees of freedom. It is obviously
always possible to couple such a boundary impedance
with the impedance of the finite element model in the
frequency domain, but it is then necessary to calculate
the solution for each frequency and the MF method

described in Section IV,4.1 giving acceptable numeri-
cal costs can no longer be used. To overcome this
difficulty, we therefore developed [7] a method that
allows the MF method to be used even in this case,
by introducing a representation by differential equa-
tions and hidden variables.

1V.4.4. — Taking Random Operators into Account

This situation is encountered, for instance, when
modeling the structural complexity as was indicated
in Section I11,6.4. For any o belonging to a wide
MF frequency band, it is then necessary to solve the
following matrix equation associated with (54):

(Z, (] +[Z, ()] X, =F,, (70)

where [Z, (©)] is a complex deterministic matrix and
[Z,(w)] is a random matrix. Using a method [39, 8]
based on the Neumann series expansion of the ran-
dom operator, we were able to simplify the numerical
solution of this problem to solving a limited number
of deterministic MF problems by the numerical MF
method described in Section IV,4.1.

IV,5. — FREQUENCY COUPLING METHOD IN
THE MF DOMAIN

For many reasons, generally related to construction
of the model and use of a large model, a dynamic
system is often considered as the assembly of N
dynamic subsystems (substructuring). In addition,
to study dynamic systems in the MF domain, the
Frequency Response Function (FRF) of each sub-
system can be determined by a model or by exper-
imental identification. With this FRF then available
for a wide MF frequency band for each subsystem,
it is then attempted to predict the dynamic behavior,
in the frequency domain, of the system resulting from
the assembly of the N subsystems. The problem thus
stated is not as simple as it looks for the following
main reasons: (1) if the FRF is given by measure-
ments, noise is present; (2) at a given frequency, the
matrix FRF on the boundary of a subsystem is not
necessarily invertible for mechanical reasons or due
to the presence of noise, which prevents calculating
the boundary impedance at this frequency and there-
fore conventionally assembling this subsystem; (3)
assuming that it was possible to assemble all the
subsystems at a given frequency, the matrix may very
well not be invertible; (4) in presence of noise, the
approach can no longer remain deterministic, and we



then want to predict the upper and lower envelope
of the frequency responses of the assembled system,
associated with a mean frequency behavior of this
assembled system and a confidence interval; (5) even
assuming there is no noise on each FRF, the complex-
ity of certain models and the model uncertainties
mean that average information is systematically
sought with the associated envelopes, as under
point (4) above.

We developed [18] a direct frequency coupling
method and a mean frequency coupling method cor-
responding to the deterministic approach and to the
statistical approach respectively, as was just men-
tioned. Since the second method is based on the first
one and considering the importance of this type of
approach, we describe the direct frequency coupling
method that we developed and that overcomes all the
numerical problems of inversion, while continuing to
privilege global assembly to the utmost using the state
variables of each subsystem.

IV,5.1. — Givens

Our givens are N subsystems (SS) denoted SS;
Ie{1,...,N}. Each SS; is described by an FRF
o [H! (0)], defined on a wide frequency band with
values in Matg (n, + my, n;+m;), accepting splitting by
blocks:

[V’I (m)}=[h’{1(w) H’u(wq [H (m)} an
Vil LHy (@ Hi@)] [P
where V% (@)eC™ are the n; internal degrees of free-
dom (DOF), V% (@) e C™ are the m; boundary DOFs,
F!(w)eC™ are the known excitation terms applied
to the internal DOFs and F%(w)eC™ are the boun-
dary terms which are either givens when the FRF of
this subsystem SS;, considered isolated from the other
SSs, is identified, or unknowns which cannot be
known until the assembled system has been solved,
since it is coupled with the other SSs. Generally, the
components of V7 (®) represent displacements, veloci-
ties, accelerations or pressures, the components of
V! (@) represent displacements, the components of
F!(w) and F,(w) represent forces. Finally, by
hypothesis, the complex matrix [H” (0)] is assumed to
be symmetric.

The N subsystems are assembled by their boun-
dary DOFs by introducing ¢ master DOFs
U(w)=(U,(®), ..., U,(0))eC? The assembly equa-
tion is introduced by the data of N matrices:
[P,] € Maty (n;, q), verifying the compatibility condi-

N

tion: Y [P,]"[P/] is a positive-definite matrix, and
7=1

such that:
Vi(0)=[P,] U(o). (72)

The given excitations of the assembled system are
forces Fi{(w)eC™, Ie{1,....N} and forces applied
to the ¢ master DOFs

Q(w)=(Q, (v). . ...Q, (0)eC".

IV.5.2. — Subsystem Coupling Method

Subsystem SS, is said to be regular at fixed fre-
quency o if matrix [H3,(0)] is invertible; otherwise,
it is said to be irregular. By reordering the indexing
at frequency ®, we denote the indices of the regular
SSs as Ie{l,...,Ny(w)} and the indices of the
irregular SSs as JE{NO (@)+1,...,N}. The number
N, (w) depends on ®. It can be zero (all SSs are
irregular) or equal to N (all SSs are regular). To test
the numerical invertibility of matrix [H%,(w)], we
condition it and then we use a Gauss elimination
algorithm with double pivoting (rows and columns).

(a) Solving of Regular Subsystems. For each regu-
lar subsystem SS;, Ie{l,...,Ny(w)}, we calculate
the boundary impedance matrix:

(D ()] =[HS, (@)] ' eMatg (my,my),  (73)

and the boundary forces due to the forces applied to
the internal DOFs:

E' (0)=[D' ()] [H3, (@)]F | (@eC™.  (74)

(b) Solving of Irregular Subsystems. Relative to all
the irregular subsystems SS,. Je{ Ny (@)+1,...,N},
we introduce the vector F,(0)eC™ of unknown
boundary forces F} (0), Je {Ny(@)+1,...,N}, such
that:

F’;’G (w)+1 ((D)
Fy(w)= : (75)
F3 (w)

Then, for any
Je{No(w)+I, s .,N},

we can construct matrices [IT;]e Matg (n,, r (©)) such
that:

FJ; () =[I1,] F; (o). (76)

(c) Assembly of the N Subsystems.
It is then shown [18] that at frequency w, the



unknown vectors U(m) and F, (o) are the solution of
the following matrix equation:

(A (@)] X (0)=R (o)

expressed by blocks:
[ZUU (@) Zyr (m)} |: U (w):| = [G v (fﬂ)} (78)

Zir (@) Zpp(@)] |[F(0)] LGr(w)
where:
No(m)
[Zyp(@)]= ), [P]"[D" (@)][P],
=1
Zep(@)]=— Y [L][H ()] [,
J=Np () +1
N
[Zys(@)]= Y  [PITLL
J=Ng(w)+1
Ng ()

Gy(@)=Q@+ ¥ [PITE (@),

Gr@)= Y [ [H; (@][F] (@)

J=Np(w)+1

(d) Solution. To solve linear system (78) or (77) in
condensed form at each frequency ®, we begin by
numerically calculating the rank & (®) of the complex
symmetric matrix [A (w)]eMat(r(@)+q.r(@)+q)
using an algorithm based on the Gauss elimination
with double pivoting and applied to the conditioned
matrix. If k(®)=r(w)+g¢, then (77) has a unique
solution, constructed by solving the linear system by
Gauss elimination with double pivoting. If
k(w)<r(w)+g, it is checked whether R(w) belongs
to the image of the linear operator A (©) whose matrix
is [A (w)] on the canonical basis. If it doesn’t, there
is no solution and the system of external forces
applied is not compatible with the connections, which
should not occur if the problem is correctly stated.
If it does, there are solutions. This situation cor-
responds to the case where there is a surplus of
connections between subsystems for this frequency.
We then construct the solution which is in
(Ker A (0))*. This amounts to automatically releasing
the surplus links at this frequency o.

V. — SOFTWARE AND APPLICATIONS

V,1. — VALIDATION OF THE METHODS AND
SOFTWARE

We developed software codes based on the methods
described in Sections III and IV, to make computa-

tions on a variety of models. The central codes are
SYDYLI [14] for the mean frequency coupling of
dynamic subsystems described by frequency response
functions and ADINA-ONERA [15] for hydroelas-
toacoustic analyses of coupled structure-external
fluid-internal fluids systems, covering the axisymme-
tric and 3D cases and allowing analysis in the LF
and MF domains. These codes can be implemented
on computers of intermediate power and were optimi-
zed for CRAY XMP and CRAY 2 vector computers.

The methods and software were validated as they
were developed by comparing them with explicit
solutions of model mechanical problems and by com-
paring them experimentally with more representative
mechanical systems for which there is no explicit
solution. For instance, we used [25, 26, 31, 33] as
measurement data base, and there are many valida-
tions of the methods and software in the literature
(1,6, 7,8, 12, 16, 18, 19, 34, 37, 40, 41, 42].

V.2. — APPLICATIONS

We describe two applications with experimental
comparisons. One is relative to the LF domain and
the other to the MF domain.

V,2.1. — Application in the LF Domain

The mechanical system is a 3 D inhomogeneous
structure made of composite materials (the geometric
form is illustrated in Figure 2) submerged in a dense
fluid (water) occupying a domain of space that can
be considered unbounded. One of the objectives
is to calculate the values of the first LF resonance
frequencies of the structure in the fluid and the asso-
ciated far-field radiation. For this purpose, we used
the C2 3D LF hydroelastoacoustic software
system [17] based on the formulation described in
Sections II1,2 to III,5 and the numerical methods
described in Sections IV, to IV,3. The hydrody-
namic operators for coupling with the external fluid
and far-field radiation are calculated by the general
integral equation method and made numerical by
the finite element method (see Secs. IV,1.1 (a) and
IV,1.2 (@)). Meshing of surface ) by P, and Q,

E

finite elements is illustrated in Figure 2.

The mesh includes 6,400 elements. The structural
model constructed by the finite element method leads
to a model with 21,000 DOFs. The measurements
used to make the comparisons with calculations were
taken from [31].
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Fig. 2. — Mesh for hydrodynamic calculations.

Table I illustrates the numerical results obtained and
shows the computation/measurement comparison
expressed as a percentage on the values of the first
resonance frequencies of the structure in water and
the associated values of the pressures radiated in the
far field. The LF hydroelastoacoustic analysis was
made in 100 frequency peints based on a representa-
tion of the structure by its first 20 vibration modes
(modes of the associated conservative structure and
in a vacuum) on a CRAY 2. The complete analysis
required a total of five CPU hours and a memory
space of 128 Mwords to 192 Mwords depending on
the stage of the analysis.

TABLE |

Computation/measurement comparisen of the resonance
frequencies of the coupled system and its far-field radiation

100 (Measurement-Computation) o
x a

[

I Measurement
| R Eissoisin Far-field
e AN | fefation
1 e (in dB)
First bending 12% —20%
Second bending 11 % 20%
Torsion -23% 24 %
First ovalization —51 % -09%

V.,2.2. — Application in the MF Domain

The mechanical system is a submerged submarine
for which the dynamic response and far-field radia-
tion are to be calculated for a medium frequency band
kae[2.,9] (reduced frequency) and for excitations
applied to certain of its internal structures. This
analysis was made in three phases. Phase 1 concerned
development of a model of the submarine by sub-

systems. Phase 2 involved calculation of the fre-
quency response functions (FRF) of the different sub-
systems (considered isolated). Phase 3 consisted of
frequency coupling of the subsystems in the MF
domain for hydroelastoacoustic analysis of the com-
plete submarine.

Phase 1: Model Development

Mechanically, the system considered was initially
divided into 19 subsystems: the pressure hull sub-
system SS, and 18 subsystems SS; consisting of the
internal submarine structures. Subsystem S, is a
structure consisting -of the plating (cylindrical- shell
with a variable section), all the frames (circumferential
stiffeners), the internal bulkheads and the unbounded
external fluid coupled to it. As this three-dimensional
(3 D) subsystem S8, is axisymmetric from a geometric
and a mechanical standpoint, it is subdivided into
24 subsystems corresponding to the symmetric parts
SS;. . and the antisymmetric parts SS,, , of the 12
circumferential indices n=0,1,2, ...,11 of the Fou-
rier series expansion with respect to the polar angle
0 of the cylindrical coordinates (r,0,z), where the
z coordinate coincides with the axis of revolution.
Subsystem SS, is therefore synthesized in 3 D from
the 24 axisymmetric subsystems:

11
SS,= U {SS, ,® S8, .}

n=0

since the 18 internal structures SS; are purely 3 D,
they can only be coupled in 3 D. For this type of
approach, see [41, 42] for instance.

(a) Modeling and Condensing of a Subsystem SS ,
or §S,,, For each fixed circumferential index n,
only the generatrix plane is meshed by axisymmetric
finite elements (FEs). For the generatrix plane alone,
the model includes 4,500 structural DOFs (axisymme-
tric hull FEs) and 200 axisymmetric FEs for calculat-
ing the radiation and external fluid coupling ope-
rators. To use the frequency coupling method descri-
bed in Section IV.,3, each subsystem of type SS; , or
SS,, , is condensed with 64 axisymmetric boundary
DOSs and 16 internal pressure DOFs in the external
fluid, also axisymmetric.

(b) Condensing of Synthesized 3 D Subsystem SS..
As explained above, subsystem SS, is 3-D and is
obtained by 3-D synthesis of the axisymmetric sub-
systems. The condensed synthesized model SS, has
400 3-D boundary DOFs and 90 internal 3-D pre-
ssure DOFs in the external fluid.

(¢) Modelling and Condensing of Each Subsystem
S§S, Among the 18 subsystems SS;, 16 subsystems
58, je{1....,16} model tubes and are processed



by an analytic elastodynamic circular cylindrical thin
shell theory. Each subsystem SS;; is condensed with
20 3-D boundary DOFs for coupling with the synthe-
sized 3-D proof hull SS,. The last two internal
structures, S§;, and SS;;, which are 3-D and have an
arbitrary geometry, are modeled by the finite element
method. The model of the first structure has
4,000 DOFs and is condensed with 16 boundary
DOFs for coupling with synthesized 3-D pressure hull
SS,. The second has 850 DOFs and is condensed
with 60 boundary DOFs for coupling. Both have
three internal DOFs.

Phase 2: Calculation of the FRF of Each Subsystem

The frequency resolution chosen for calculation of
all the FRFs corresponds to a division into 1,000
reduced frequency points of the band kae[2.,9.]
which is processed by the MF method of Section IV.4
as four narrow bands.

Calculation of the FRFs for each subsystem SS, ,
and §S,, ,7n=0,1,2,...,11 was carried out with the
C5 axisymmetric MF hydroelastoacoustic software
system [17] in which the main code is ADINA-
ONERA and which is based on the formulation
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Fig. 3. — Experimental test/numerical model compariscn on the
pressure level radiated for excitation on SSib.

described in Sections I11,2, 11,3 and IIL.6 and on the
numerical methods described in Sections IV,I, IV.2
and 1V 4.

The hydrodynamic external fluid coupling and far-
field radiation operators are calculated with the
asymptotic formulation adapted to slender geometries
and analyzed numerically by the finite element
method (see Secs. IV,1 (b) and IV,1.2 ().

Calculation of the FRFs for each of subsystems
SS;, and SS;, which are 3-D structures without
coupled fluid must carried out with the ADINA-
ONERA software based on the formulation described

in Section II1,6 and the numerical MF method descri-

bed in Sections IV,2 and IV 4.

Finally, the FRF calculations for subsystems SS;,
je{l,...,16 } were carried out using specially devel-
oped code based on direct numerical analysis of an
analytic theory using an explicitly known modal
representation.

Phase 3: Frequency Coupling of the Subsystems Descri-
bed by their FRF

Frequency coupling of the above subsystems in the
MF domain to make the hydroelastoacoustic analysis
of the submarine was carried out using the SYDYLI
code [14] based on the method described in
Section IV,5. To decrease the very large volume of
the data base, frequency coupling was carried out
only for one frequency point out of five, i.e. for 200
reduced frequency points in the band kae[2.,9.].
This third phase of the analysis was actually carried
out in two steps. First, we made a 3-D synthesis
of subsystem SS., then we coupled S5, with all
the internal  structures: SS;,, S§S; and SS;;,
je{l,.. . 16}

i

Results Obtained and Comparisons with Experiments

The entire analysis required 20 CPU hours on a
CRAY 2 and 16 CPU hours on a CRAY XMP 416.
The results obtained [15] are illustrated in Figures 3
and 4, showing the comparisons between measure-
ments made by the CERDAN of the DCN with the
predictions of the model. Figure 3 shows the far-
field radiated pressure level in a fixed direction of
space for a localized excitation on an internal DOF
of subsystem SS;. Also for a localized excitation on
an internal DOF of subsystem SS,,, Figure 4 shows
the far-field radiated pressure level on a fixed direc-
tion of space for the experimental test and in two
neighboring directions surrounding the direction of
the test for the numerical model. A relatively marked
directivity effect can be seen.
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Fig. 4. — Comparison between experimental test and numerical
model (a) and (b) on the radiated pressure field for an excita-
tion on SSiv.

VI. — CONCLUSIONS

We described the bases of numerical methods used
in codes with an industrial vocation and which are
used to make predictions concerning the dynamics
and acoustic radiation of structures in the LF and
MF ranges. The current limitations of the numerical
methods for coupled fluid-strucfure problems that we
discussed are mainly due to the structures and are
amplified by the presence of fluids when dense. For

instance, the HF domain cannot be analyzed by the
numerical methods described. The limitations are
due to several factors, the main of which are as
follows in our opinion.

(1) The first factor is not related to the numerical
methods themselves but to the level of knowledge
concerning structural mechanics: (a) dynamics and
model of the materials, certain structural elements
such as composites and finally boundary conditions;
(b) problem of modeling the fuzzy structure which
arises except in the LF domain and more generally,
the representativity of the models.

(2) The second is related to the problems in imple-
menting the numerical models, mainly for construc-
tion of finite element meshes and supply with mech-
anical data for structures. These difficulties are sub-
stantially increased in the MF domain with respect
to the LF domain and are one of the reasons of the
current failure in the HF domain.

(3) Finally, the last factor is directly related to
computer facilities, power, memory space and flexibi-
lity of use of scientific computers. The mathematical
formulations and numerical methods developed to
best solve the problems raised depend on the com-
puter facilities available at a given time. Considering
how fast computers are evolving, the methods should,
and it seems to us, be constantly improved. This is
true for instance of (@) numerical methods for solving
the external Neumann problem related to the
Helmholtz equation, based on integral equation for-
mulations, as regards management of memory space
and numerical costs of construction and solving with
a priori dense matrices; (b) general problems of the
finite element method for structures, for which itera-
tive solving methods without actual assembly can be
considered.

Finally, to conclude, seems to us that now that
numerical methods are available for LF and MF
elastoacoustics, it would be desirable to develop
uncertainty models on the data to improve the relia-
bility of the predictions, introduce optimization tools,
develop model readjustment methods not only in the
LF domain but especially in the MF domain and
finally, begin to reconsider all the methods to take
into account the probable evolution toward massively
parallel computers.

Manuscript submitted February 26, 1992.
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