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HYBRID NUMERICAL METHOD FOR SOLVING
THE HARMONIC MAXWELL EQUATIONS:
II. CONSTRUCTION OF THE NUMERICAL
APPROXIMATIONS

by

J. J. ANGELINI (*), Ch. SOIZE (*) and P. SOUDAIS (*)

ABSTRACT

Part Il of this paper deals with the numerical aspects of the mathematical
formulation, presented in Part |, for the solution of Maxwell's harmonic equations.
Linear isoparametric finite elements are used for external integral and internal differen-
tial operators. Three-node and four-node finite elements are used for the surface
and volume parts, respectively. Robust numetrical approximations were constructed

for the integral operators,

Keywords (NASA thesaurus): Electromagnetic wave — ._S‘catrer propagation —
Numerical method — Finite element method — Integral equations.

(*) ONERA, BP 72, 92322 Chitillon Cedex, France.
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I. — INTRODUCTION

The present second part of our three-part paper is
devoted to the numerical approximations of the
various operators used in the formulation developed
in the first Part, for solving Maxwell’s harmonic
equations. All of the notation remains the same.
Details can be found in [1].

II. — DISCRETIZATION OPTIONS

For the reasons explained in section II, 2 of Part I,
it is important to minimize the numerical costs of
constructing elementary matrices of the various finite
elements used in the formulation. So we chose finite
elements of the lowest possible degree that are com-
patible with the minimum required regularity, namely
isoparametric finite elements P,, which are triangular
for the surface elements and tetrahedrons for the
volume elements, for the integral operators and for
the differential surface and volume operators.

For the integral operators, we have constructed
numerical approximations that are good for any
geometrical configuration.

ItI. - ADAPTATION OF THE INTEGRAL
FORMULATION TO A NUMERICAL PROCESS

The integral formulation operators for the external
problem, defined by formulae (61) of Part 1, are
adapted by the finite element method.

I1,1. — FINITE ELEMENTS ON THE EXTER-
NAL SURFACE

ti,1.1. — Grid Generation for the External Surface

The surface 0Q; =T, T, is meshed with triangles.
These must, of course, comply with the usual com-
patibility conditions for [inite elements, which we will
assume to hold from now on. We will also assume
that the polyhedral surface defined by the grid is the
true surface 6Q; and will use the same notation for
each, to simplify,
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II1,1.2. — Triangular Finite Element P, and Approx-
imation Space

We cannot use P, clements because they result
in an approximation space that does not have the
regularity required for the integral operators of the
problem as hand. P, elements will do, however, and
the approximation space for all operators on €,
will be the space of affine functions by triangle, and
continuous on the surface 0€};.

We will use 7 to denote an arbitrary finite element
of the grid ¢Q,=T, JT, This is a triangle with
apexes M,, M, and M. The coordinates of the node
M; will be denoted (x;, v;, z;) in the cartesian frame
of reference introduced in section III,1 of Part I. The
notation T will designate the element, but also the
surface of R?® defined by the triangle (M,, M,, M,).
To simplify, we will use M to denote the vector OM;
of R* of components (x; y, z;). The area of the
surface element T (area of surface T) is:

| 7| =J ds=
T

in which || V|| designates the euclidian norm of Ve R>.

(M= MO)x(Ms-M)D| ()

N —

II1,1.3. — Element Size

The fixed wave number & is associated with the

2
wavelength A:‘T“. By hypothesis, the grid of 8Q,
i

is generated such that V7, /T <€ A. This hypothesis
will be of constant use in developing the numerical
process.

I1,1.4. — Normal and Orientation

Let 527 be the unit normal to the planar surface T
such that:
— (My,—M)x(M;—M,)
“(Mz'“MJx(Ms_M;)H
1
| 7]

1y

(M= M) x(My— M) (2)

o

We define the element Wy=n|T| of R® which,
considering (1), is wriiten:

We=ng| Tl =~(M,~M)x(M,—M)eR* (3)

| —

The surface 20, is oriented so that the unit normal is
directed outward at dQ, We assume from here on
that the triplet M, M., M, is ordered such that the
normal n, defined by (2) is outward at é0Q,. This
ordered triplet M, A,, M5 defines the incidence of
the element T and we deduce from this the sense of



the curvilinear abscissa on the closest edge &7 of T

OT=M, My+ M, M,+M,M, (4)

I11,2, — P, INTERPOLATION FORMULAE

We will use (x, y, 2) from now on to designate the
cartesian coordinates of a given point M on T, where
we will use the barycentric coordinates A, A, A, for
parametering the surface;

M”_”}‘lMl+?“lM3+?M3M3ET
}L;+k2+l3:l1 Oé?»,-él,

(5-1)
Viel1,2.3} (5-2)

Let A, be a function on T with values in K3, and
At, A%, A} the values of A, in M,, M,, M,
A=A, (M)elk?, ie{l, 2,3} (6)
We then have:
Ap=t, Ap+2, A7+ 1y 43 (7N
We will use the same conventions for expressing a
function @, continuous on T with values in K3

IIL2. 1. — Integration Formula

If o, oy, o5 are three positive or zero integers, we
have the formula;
oyt ol ol
(o0, +a,+ oy +2)!

J A ARARP ds=2| T 8)
.

IIL2.2. — Barycentric Averages

We will use M, to denote the point 7 that is the
barycenter of the triangle M|, M,, M;:

M= ]T| J Mds= (M +M,+ M) (9

and we will use 4,eK? to denote the barycentric
average of A, on T

i 1
{17-=———J Apds= (A} + A3+ 43) (10)
|7 Jr 3

We then get the following relations:

JATdS= ' T 4, (11-1)
T

JA7.xi1d5=—W$47|, W’?=(WTX) {11-2}
-

J Ar . nds=4
T

. Wy (11-3)

47

HL2.3. ~ Calealation of the Integral over T of Differ-
ential Form d (A, dM)

Considering the orientation of the edge T, we set
from Stokes’ theorem:

J d(Ap. dMY= AL Vi+ A7 V3443 VL (12)
,
with ¥peR? for ie{ [. 2. 3}, and:
Vi= %(M —M,) (13-1)
g
;“—“E(M3 M) (13-2)
5(M - M,) (13-3)

[ML3. — FORMULAE FOR THE KERNEL OF
THE EXTERNAL PROBLEM

To state the expressions for the integral operators
explicitly in numerical form, we will need information
concerning the gradient of the kernel N (r) defined by
(34) in Part 1, the solid angle, the normal derivative
of the kernel and lastly its average value.

HL3.1. — Kernel Gradient

Once all of the calculations are made, this is expres-

sed:

M)

&)= = (1t jkr) e

grad‘N:g(r);ls(M’— {14-1)
(14-2)
I11,3 — Solid Angle

Let A be a fixed point of R®. And let o}, be the
solid-angle differential form, which is of class C* and

is closed in the complement of M:d’ ), =0., expres-
sed [17):

Wy = %((\ =X)dy A dZ’
T = AdY + (= 2)d A dy) (15-1)

or, using the definitions of section I¥,4.2 in Part I:

M—M(M’ M).n' ds’ (15-2)
Moreover, we have:
4 if MeQ,
f m;,={ oo MER } (15-3)
a0y 0 if MeQ,=R* Q,
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After the computations, we get the following formulae
that can be used directly in the numerical process.

For T#T"

QTT:[ Oy, =Sg{(My—My) .y}
T

3
><(2'ftw > cos"(af.a‘fﬂ)) (16-1)

i=1

p;Xp;_H .
P if || p;xpi #0
9% iy | | ool (16-2)
et o =0 if || pi*pisay| =0
pi=M;— M eR®
Sg(a)=wa~— for aeR* }(16“3)
|a]
For T=T"
Qp Tl:J\ (D;W'r=0 (16-4)
.

11,3.3. — Integral of the Normal Derivative of the
Kernel

Using (14) and (15-2), we get

d N ,
—ds'=g (r) @)y
dn

(17
and deduce the following approximation from it using
(16). For any fixed 7" and any fixed T" (with T# 1"
or T=T"and for any fixed M=M,;eT:

d'N ., "
J —ds =J g(Mp, M)y,
o an T
g (My, Mp) Q7
g(My, Myp)=g(r(Mp, My))

(18-1)
(18-2)

I11,3.4. — Awverage Value of the Kernel

For any T and T" with T#T" or T=T", this
average value is defined by:

—WWLJ‘ f Ndsds
|77 Jr Jr

The approximation of (19) that we have constructed
not only preserves the symmetry but can also be
counted on when elements exist face to face at a
distance between barycenters that is smaller than the
characteristic dimension of the two elements. The

(19)

AN =

48

approximation is written:

1
N pp =Ny + 5(J?'T'+JT' T) (20-1)
Npp~ —jk (20-2)
e JRrOd. My _ |
Nypp = o (20-3)

r(My, MT')

=_I__J ds
7| Jr ¢’

For T+ 1", the integral of (20-4} is computed numeri-
cally by a Gauss method. For T=T', we get an
expression for (20-4) that is expressed using the log
function (see [1]).

r= | Mp—M|| (20-4)

‘ITT'

1IL,4. — P OPERATOR
This operator is defined by (61-1) of Part I as:

<13A,r9>=-j-:fj ©.(n% A)ds

a0,

So what we want is to compute, for an arbitrary finite
element T of Q)

« ik
(Prp Ay, @7 )= _% j op.(nxApds  (21)
T
Using (3) and (8) we get:
3
<PTTAT’ Pr)= Z Fe(A7).of (22-1)

=1
k 3
F"T(AT)=—’,—4 T (1435, W dLeC? (22-2)
24 1=

Wh=(Wrx) (22-3}

with §,=0if i#/and §,,=1 if =L
11,5. — T OPERATOR

The operators 1, and T, defined by (61-2) and
(61-3) of Part I are the restrictions of the operator I
to I', and Iy, such that

(TA,cp)=j ¢©.Ads

o0

For a given finite element T of dQ, the object is
therefore to compute
(23)

<TTTATs $T>=J @r.Apds

T

Rech. Aérosp. — n° 1992-4



Using (8), we get:

3
<TTTAT= Or )= ZFE-T(AT)'([)EF (24-1)
i=1

3
Fifd,)= %‘l Y (1+8)AheC? (242
=1

I1,6. — Q OPERATOR

The Q operator is defined by (61-4) in Part T:

@a0y=2 [ af
47 Ju; a0y,
(pxn).[(nx A% grad’ N)ds’

Let T be the “receiver” finite element and ¢, the
continuous function defined on 7 with values in R?
such that:

Or=h; 03 +A, 03 +h; 03, ©h=0r (M) (25)

Let T" be the “transmitter” finite clement and A,.
the continuous function defined on T° with values in
3 such that

Ap =k Ap+hy AL+ 4, 43, Ap=Ap (M) (26)

What we compute is:

47
(r > ng). [(ny. x A7) x grad’ N]ds"  (27)

~ ik
{(QrrAr Pr =—“I dsj
T ™

I, 6.1. — Expression of QTT

Using the properties of the mixed product and the
relation (14-1), and considering the fact that
(M'—M).np=0, for VM and M'e T, we get:

<QTTATB Pr>=0 (28)
II1,6.2. — Expression of Oy

For T# 1T, the Q operator extracts the tangential
part of ¢ and 4. So we must preserve the EXPressions
O©r X ng and np. X A7 when adapting to the numerical
process. Moreover, we know that the () operator is
algebraically symmetrical (see section VII, 4 in
Part I). As this symmetry is hidden, it must be
preserved when adapting to the numerical process.
We will therefore have to write it explicitly. Expres-
sion (27) is not easy to adapt for numerical purposes
because the expression to be integrated in the second
member is not in differential form. Moreover, if T
and T are two elements that are face to face
(n-=—ny) and the distance | My~ M| is small
compared with /7 or /77, then r™! is very large
and the computation would be very poorly condi-
tioned. So we must transform the second member of

(27) to bring out differential forms that will be easily
adaptable to numerical computation, and in particu-
lar the solid angle differential form, to arrive at a
numerical formula that is stable in all cases (i. e. the
problem of face-to-face elements near each other as
we have just mentioned). After a somewhat lengthy
set of calculations that can be found in detail in [1],
we get the new form we want for (27) for T# 77,
which is written:

~ ik
{QrrAgp, (PT>=é“;{‘J {g(")(’:’:u(U-’TT')dS

TJT
=gy AU . np)ds' + (np. x Uy.d' (NdM") ds
—{npx U).d(NdM)ds'} (29-1)
U={pyxng) % {np % Ap) (29-2)
We can then construct the numerical approximation

of (29) using the theorem of the average along the
way, and we get [1]:

3
<QT‘I"AT” Pr)= E For (AT')-(Pir (30-1)

i=1

with ie {1, 2, 3} such that:
Fin (4r)= 2 g (01, M)
247
Q- p (1) Wh.— Qpp WE(n3)%] 4 T
+ W3 Vo) X (2. A7)
— n3[(nf- Ve p) % (W 4] } (30-2)

with g(My, M) defined by (18-2), W% by (11-2),
Q- by (16) and

"=y %) (30-3)
(P =nr@n,—TI (30-4)
3
Vi r= Z N(M, M) Vy (30-5)

=1
in which V% is defined by (13).
II1,7. — B OPERATOR

The B operator is defined by (61-5) in Part I:
(BA, ¢>=— J_J j Nd(p.dM)d (4'.dM").
A1 Jao; Jon,

Returning to the notation of (25) and (26), we com-
pute:

( ETT' Ay ©7)

=~J_fj Nd(pr.dM)d' (dy. dM') (31)
4n TJT

Rech. Aérosp, — n° 1892-4



It is observed that, in the framework of the P,
elements, J(pr.dM) is a “constant” on T, as
d' (A .dM) is on T'. So we apply the theorem of
the average, which is in this case exact:

1
<ETT'AT'= Q)= Z Fr’i’T (AT')-(PZ'

i=1

(32-1)
with Fip (A7)eC? for ie{l, 2, 3} such that:
. 3
Flp(dgp)=— EJ"}E“V”' V;( S Al V’T.) (32-2)
_ : =1

in which 77 18 computed by (20) and Vi by (13).

[11,8. — S OPERATOR

This S operator is defined by (61-6) of Part I:
ik’

4, ¢d=—
{ oy e

j ds{ Nds' (% n). (A" % 1)
aCk; 20

Using the notation of (25) and (26), we compute:

<§TT'AT': Qr )
- stj Nds' @y X itr) (Al xnp)  (33)
T ™

in

Using the theorem of the average and (11-2), we
construct the following numerical approximation:

3

<gTT’AT'= Pr = Z Flg(Ap). 07 (34-1)
i=1
with Fip (Ap)eC? for ie{l, 2, 3} such that:
i
F[TT (Ap)= -———./VTT WO W0 A (34-2)

in which the various terms of {34-2) are given by (10)
(11-2) and (20).

1,9. — OPERATORS FOR COMPUTING THE
SCATTERED ELECTROMAGNETIC FIELD

Here we must adapt the operators Ry (M), R, (M)
and R, (M) defined by (78) in Part I. Let M be a
fixed-point in Q,, 7' the “transmitter” finite element,
Ay (resp. By the continuous function defined on 7
with values in €* such that:

} (35-1)

Ap=h  Ab+hy A2+ Ry A3,

A= Ap (M)
Br=M, Bl‘}-i- Ay B2 42y B}, } (35-2)
Byp.= B (M)

Rech. Aérosp. — n° 1992-4
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We then have:

RLT.(]IJ)AT.=J‘ AF. d Nds

o dn’

Rz.T'(mAT'=j A x d' (N dM')
-

Ry, (M) BT-=jkj NBj.ds’

T

Using the theorem of the average, (17) and (18), we
get the following numerical approximation:

Ry ¢ (M) Ap=g(M, Mp)Qyp- Ay (36-1)
Ry (M) Ap=Ap XV ype (36-2)
R, (M) BT,zjk| T|N(M, Mz} Br (36-3)

with g(M, M) given by (18-2), Q. by (16) by
replacing the point M, by the point M, and:

V= Z N(M;, M)V (36-4)
with V. given by (13) and A and B by:
1
Ap=—— J Ag.ds (37-1)
7| Jr
1
BT J By.ds (37-2)
i

1t will be noted that the reiations {37) can be expressed
using (10), but we will also need integral expressions
because we will not directly know the value of certain
fields at the grid nodes of 24,

I1,10. — COMPUTATION OF AVERAGE
VALUES OF THE FIELDS OVER THE EXTER-
NAL SURFACE

Relations (36) use average values A4 and Bp. of
Ap and By on T’. Relations (79) of Part 1 show
that the fields in question are H, and E, on 0%, the
expressions for which are given by relations (75) and
(76) in Part I

We spell out the computation of these average
fields in the following sections.



H1,10.1. — Expression of the Average Fields on the
External Surface for Computing the Scattered Mag-
netic Field

Using (75) and (76) from Part I, and taking 4= H,
and B=nxE,, we get directly:

T'el.: dp=(H, )r
= (=17 @ ny) (Hy Jp—p % (Hyg)p (38-1)
By =y X (Ey )p-=0 (38-2)

T'ely: An=(Hoor
=(I+ (0 @ n7) (45— D) (Hpg)ye (38-3)
By.=np % (E, r-=np X (Bydr+ (Egr  (38-4)

[11,10.2. — Expression of the Average Fields on the
External Surface for Computing the Scattered Electric
Field

We therefore have A=E, and B=nx H, and we
use (75) and (76) from Part I to get:

T'e l-c 4'1"' = (&,L)T'

~(I=np @ np) (B dr — 1 % (B o) (39-3)
Bp=np X (H, Jp=np X (Hyp  (39-4)

[I,11. — m, AND m; OPERATORS

The m, and m, operators are defined by (62) in
Part I. The operator m can be considered such that:

{mA, 61)=J 8 A.nds

f=94

and for a given finite clement T of 9Q; we then
compute:

{mpp Ag, (L) > = J‘ My (Ag.np)ds.  (40)
-

We obtain the following expressions adapted for
numerical computations:

3

(mpp Ay, (8¢ )= 3 Fy(d7). (3N (41-)

i=

51

in which Fi.(4)eC for ie{1, 2, 3} such that:

3
Fi(a)=Y (L%)(A;,. Wy (41-2)

=1

with W given by (3).

IIL12. — OPERATCRS FOR COMPUTING THE
FAR FIELD

Here we want to adapt the operators of equations
(82) from Part 1, to compute the reflected electro-
magnetic far field #, and ,, asymptotically. The
calculations are spelled out in [18]. Only &, is com-
puted since #, is deduced immediately from it
According to (82-1) of Part I, we need only to put
the following integral in numerical form:

- (zoﬁf A s “2)

in which .47, is defined by (80) in Part I and A’ is
written:

A =ux{wx E)y-{I—u@u]{(H,xn"). (43)
The theorem of the average is not used here, but we
compuie the integral of (42) numerically using a
seven-point Gauss method. The fields #" X £, and
Hixn' are given by the relations (14-2), (75-2) and
(16-2), (76-3) of Partl, and are computed at the
Gaussian integration points using the interpolation
P,

IV. — NUMERICAL FORM OF DIFFERENTIAL
OPERATORS FOR THE INTERIOR PROBLEM

These operators, introduced in section IV of Part |,
will be adapted to the numerical process by the finite
element method. The problem is therefore to con-
struct elementary matrices.

IV.l. — VOLUME AND SURFACE FINITE ELE-
MENTS FOR THE INTERNAL BOUNDARIES

IV.1.1. = Meshing of Internal Interfaces

The external interface 8Q; has been meshed with
triangles. The internal interfaces are of two types:
r,and I, (see Part I). Al of these internal inter-
faces are meshed with triangles exactly like the 04,
grid. We assume that the usual comptability is ensu-
red between the grid of 80; and that of the I',, and

Rech. Aérosp. — n° 1992-4



I, surfaces (matching of edges with the various
intersections of these surfaces).

IV.1.2. — Grid of Dielectric Volume Domains

Each dielectric domain Q, has a boundary ¢Q, (see
Part T) which is now meshed with triangles, since it
is the union of the surfaces 6Q, NI U T, 80, N T,
and 6Q, N I, which are all meshed.

Each domain Q, is then filled with tetrahedra and
the volume grid of €, on dQ, coincides with the
existing grid of 6Q,. This ensures compatibility, and
the surface grid of 8Q, consists of the triangular faces
of the tetrahedra.

So there is only a series of nodes on the surfaces
aQ, N (I, UT,) and dQ, N T, and there will be two
series of geometrically matching nodes (the triangula-
tion nodes of I',,. are doubled up) overlaying each
other on the I, =0d, M2oQ, surfaces, in order io
construct the Ty, operator defined by (28-4) in Part 1.

Notation Convention for all of Seetion IV:

We have to develop the caculation of the elemen-
tary matrices for the internal operators linked to each
Q, domain. To simplify the notation, we drop the »
superscript whenever there is no possible confusion,
writing Q, H, 8H, p*, g¥ Bhg, 8A,, instead of @,
H* 3H", p*, g*, 8k oy -

On the other hand, to deal with the T}, operator
for I, ., we have to keep the i and »’ subscripts.

nn'r

IV.1.3. — P, Tetrahedral Finite Element and Approx-
imation Space

We take P, elements. The approximation space
for the internal operators on Q will be the space of
affine functions by tetrahedron, and continuous in Q
(it is each €, here, as the H field is discontinuous
through the T, boundaries). This choice is compa-
tible with the approximation space for the operators
of the external problem on dQ,, since the tetrahedral
elements P, yield triangular P, elements for each of
their faces.

We will use V to denote any finite element in the
grid of . This is a tetrahedron whose apexes will
be referred to as M,, M,, M, and M,. The notation
¥ will designate the element, but also the part of R3
defined by the tetrahedron (M,, M,, M;, M,).

The volume element ¥ will be denated:

|V|ﬂj dx=i|de!| (44-1)
v 6

det={M,—M,, My—M,, M,—M,] (44-2)
in which [...,...,...] always designates the

mixed product.

Rech. Agrosp. — n° 1992-4
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We introduce the following condensed notation:

I
Nt = E(Ma_Ma)x(Mz_Md,)
e

!
N2= —(My— M) % (My—M))
det
: ()
N3= — (M, — My} % (My— My)
det
1

’(M1_M3)X(M2—M3)
(g

Ni= —
d

For je{l,2 3.4}, NieR3. The vector M is normal
to the face opposite the node j.

IV.2. — P, INTERPOLATION FORMULAE

On V¥ we use the barycentric coordinates

Aps . Ay, Ay to parameter V:
M=h M +r, My +hy M+, MeT (46-1)
Athy Ry HA =1 }

46-2
0=hsl, Vie{l, 2.3, 4} (46-2)

Let ¢ be a continuous function on ¥ with values in
K3, and @', @2, ¢°, @* be the values of ¢ at M,
M,, M, and M,

o'=oM)ei®,  ie{l.23.4]. (4N

We then have:

¢=)“1‘P1+7\2(P2+7“3(P3+?‘*4(P4 (48)

As before, we have the following integration formula.
If o, o5, @5 and @, are four positive or zero integers:

j AT A2 233 Ae ds
14

oyt oyl og!

=6|V| .
(o, 4o, Fogta, +3)

(49)

IV,2.1. — Computation of Gradient. Divergence and
Rotational Operators

Let @ be a function of the type (48) on V' with
values 1. The gradient of ¢ is written using (45):

4

Vo= Y o' .N.
i=1

(50-1)

Let ¥ be a function on ¥ with values KK* of the type
(48). The divergence and rotational of ¥ is written



using (43):

4

divw= Y ¥ N (50-2)
i=1
4

rotW= 3} Nx¥, (50-3)

=]

V.3, — NUMERICAL EXPRESSION OF THE M"

For a dielectric domain Q,, the M* operator is

defined by (21) of Part I as:

n

<M"H", 6H » =jk2J (w* H).8H dx

nll

—jj ((e*1" ' rot H).rot 3H dx
n”

in which p* and g* are the complex symmetrical
(3 x 3) matrices defined by (4) and (12) in Part I, and
are continuous on £),. Let V be a finite element of
Q,, and A, and 8 H, be the functions defined on ¥
with values in C3, of the type (48). What we then
have to state is:

< My Hy, 6HV>=jk2J (E*HV)-SHde
v

—jj ([e*]"trot H,) . tot 8 H, dx  (51)
v

Using (49), (50-3), we deduce the expression we are
loaking for:

4
<My HY 8H, > =) Fl,(H,).8H, (52-1)
!

=1
With (49} for le{ 1, 2, 3, 4} such that:

1 = ! 2 l+8” Es
Ryt =i171 X e (0

+ [N} g N } H, (52-2)

[N]=(N'x) (52-3)
=g (M) [ =[eF (M) (52-4)

in which A/, designates the barycenter of the element
V.

IV, 4. — NUMERICAL EXPRESSION OF THE
Div" OPERATOR

For a dielectric domain €,, the Div® operator is
defined by (28-2) of Part I as:

< Div' H, kg » =J Shg div (w* H) dx.

Q

Let ¥ be a finite element of Q,, and let A, and &3,
be the continuous functions defined on ¥ with values
in C* and C, of the type (48). What we calculate is:

< DiVY Hy, §hy » :j Shy div (uf Hy) dx  (53)

14

Using (50-2), we get:
4

< DIVl HY, 8y, » = Y FL(H,). 80, (54-1)

=1

with, for /{1, 2, 3, 4} and F}, (H,,)eC, and indepen-
dent of /, such that:
4

1 o
Fy(H)= [[VIZ @iV (542)

i=1

IV,5. — NUMERICAL EXPRESSION FOR THE
T;,.. AND U, OPERATORS

IV,5.1. — U2, Operator

This operator is relative to the surface I',,, which
is the union of the interfaces between the perfect
internal conductor €, and the internal dielectric Q,.
It is defined by (28-5) in Part I as:

(UL H, 8y )= J Bheg,u (W*" H') 0 ds.

Ced

We will therefore use T to denote an arbitrary
three-node P, finite of I'_,. This element is oriented
in accordance with the convention adopted in
Section I11,1.4, so that the normal to T, ny, defined
by (2), is directed toward the middle of the conductor
Q.. We then have to compute:

(Uz Hyp, BKT>=J Shr(W*Hy).npds  (59)
T

with H; and 8\, being the continuous functions on
T with values in C? and C, respectively, of type (7).
Using (8), we get:

3
(UpHy, 8 >= 3% FL(Hp). 80, (56-1)
=1

with, for /e {1, 2, 3} and F'(H,)eC, such that:

2148, .
Fy{Hy)= Z( J;f")(t_l* HY). Wr  (56-2)
i=1 e

with W, defined by (3) and pi=p*(M;) where M,
is given by (9). -
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IV,5.2. — T, Operator

This operator is relative to the surface T, which
is the interface between Q, and Q,.. It is defined by
(28-4) in Partl, Le for (n, #") fixed in A" (sce
section [V-2 in Part [):

< Trm:' H’ akrrm' >
= kJ. (RL H'—RE H").8h, ds
Ty

RE,, =(r@mp*"—(nx)
RY =" @n)p*" + (1 x).

The surface I',. is oriented as in section III and is
meshed by three-node P, finite elements. Let T be
an arbitrary element of T, whose nodes are M,, M,,
M,. We choose this orientation so that the normal
ny defined by (2) is directed from Q, toward Q,.. We
introduce two P, finite elements denoted T, and T,
such that T, coincides with T and with one face of a
tetrahedron of Q,, and such that T,. coincides with T
and with one face of a tetrahedron of €,. The
normal of T, (resp. T,) is np, =y (resp. ny, .= —nr).

This is equivalent to doubling the grid of T,
Geometrically, the T, and T, elements coincide, so

n

what we compute for any finite element T of I, is:

< TT HTa 6?\‘7' >
=k J (RY Hy,~ RY Hy,) .8hpds  (57-1)
T

(57-2)
(57-3)

RY=(nr ® np) u3"— (ny %)

RY= 017 @ ) 5~ (17 %)
with 8k, Hy, and Hy  being three continuous
functions on 7 with values in C*, of type (7). Using
(8), we get:

3

<TTHT=67‘T>= EJF{T(HT)-SM~ (58-1)
I=1
with Fi.(H)eC?, for le{1, 2, 3} such that:
2 /1+8
Fr(H)=k|T| ), (“EE)(R?H?,._R"T'H},,.) (58-2)
i=1

V. — COMPLEMENTARY REMARKS CON-
CERNING THE TREATMENT OF EDGES AND
THEIR INTERSECTIONS

Let us recall that each dielectric domain £, is
meshed on its own, so the edge &, of Q, might
consist of interfaces of the type Ty Do and Iy .
We are concerned here with the treatment of edges
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consisting of the intersection of the outer sarface with
a surface separating two internal media (6, N\ T
or an m rlm')'

cd, n

V1. — a,NT,, , TYPE EDGE

We proceed by continuity with the I';; , interface.
The nodes of this edge belong to the dieleciric and
the unknowns are Hy, and E;. But we need to
know nx H,_, at the nodes of this edge for the integral
operators. So we use the transmission condition
(16-2) of Part I between Q, and Q, concerning the
continuity of the magnetic tangential.

V2. — 8Q,NT,, TYPE EDGE

nn’

On an edge like this, the electric and magnetic
fields are continuous. That is, we assume that the
surface is locally C, on this edge so that it admits a
tangent plane on the edge, and we use 1, to denote
the unit normal to 8Q; at a given node on the edge.
The tangent part of Hj, and Hj, is continuous
through [y:in,x Hyy=n,%x H, and n,x Hyy=n,*% H,,
whence n, % (Hi,— H},) =0, making H%,— HY, colinear
at n,.

Moreover, calling # the normal to ', at this node,
we have nx Hy,=nx Hy,, whence Hj,— H}, is coli-
near at .

Yet n,#n (the tangent planes at I', and I',,. are
assumed not to be identical), which implies
Hyy= Hyg..

An analogous line of reasoning applies to the elec-
tric field, so we have E£% .= E% _, in particular.

e, 1

V,3. — INTERSECTION OF SEVERAL EDGES
ON THE OUTER SURFACE

The procedure of V,1 and V.2 applies here too.
The only difference stems from the fact that there
may be more than two nodes matching at this point
of the edge intersection.

VI. — CONCLUSION

We have given explicit expressions for the numeri-
cal form of the various terms in the formulation
developed in Part [. These expressions minimize the
numerical cost, considering the constraints we adop-
ted (see section IT of Part I) while maintaining the
reliability of the approximations for the various pos-
sible geometric configurations.

The validation of these approximations is presented
in Part IIL
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