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HYBRID NUMERICAL METHOD FOR SOLVING
THE HARMONIC MAXWELL EQUATIONS:
I. MATHEMATICAL FORMULATION

by

J.J. ANGELINI (%), C. SOIZE (*) and P. SOUDAIS (*)

ABSTRACT

This article describes a mixed numerical method for solving harmonic Maxwell
equations in the classical electrodynamic context. This formulation allows us to
treat any body of general three-dimensional geometry, The body is considered to
consist of perfectly conducting or dielectric materials described by locally heterogen-
eous and anisotropic constitutive equations, and possibly with dielectric losses. We
present our developments in three parts, in three separate articles. Part | below is
devoted to the mathematical formulation. Numerical approximations are treated in
Part tl and, finally, Part Ill concerns (1) an iterative method for solving the linear
equations of the problem; (2) computer code development aspects; (3) applications
which validate the whole development. The developed formulation is hybrid. The
external problem is treated by integral equations. Local equations are preserved for
the dielectric parts of the body. A global variational formulation of the coupled
problem is developed, and enables us to apply the finite element method. Boundary
finite elements are used for integral operators connected with the external
problem. Localized finite elements are used for the internal problem. Irregular
frequency difficulties due to the integral formulation are analyzed in detail and an
efficient solving method is developed.

Keywords (NASA thesaurus): Electromagnetic wave — Scalter propagation —
Numerical method — Finite element method — [ntegral equations.

(*) ONERA, BP 72, 92322 Chétillon Cedex, France.
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I. — INTRODUCTION

The present article, the first in a series of three.
presents a hybrid numerical method for solving
Maxwell’s harmonic equations in the context of classi-
cal electrodynamics involving conducting or dielectric
objects of arbitrary geometry.

Due to the bulk of the explanations, we felt it
necessary to present this work in the form of a three-
article series. The first Part explains the mathematical
formulation. The second deals with the construction
of the numerical approximations, and Part 1T with
the iterative solver algorithm, the computer code, and
the numerical data validating the whole theory.

The formulation presented here draws upon our
developments in the related field of elastoacoustics
[31], in particular as concerns the treatment of the
irregular frequencies arising from the integral-equa-
tion formulations of the external problem [2].

Lastly, for the sake of simplifying the explanation,
we have omitted the functional framework [10, 25]
that would be necessary if we were to concentrate on
the mathematical analysis of the existence, uniqueness
and regularity of the solutions.

II. — FOUNDATIONS OF THE FORMULATION

I, 1. — UNDERLYING HYPOTHESES

We are interested here only in the three-dimensional
problem. The system we are studying consists of one
or more bodies of arbitrary geometry impinged by
a harmonic electromagnetic wave. The unbounded
external medium is assumed to be homogeneous and
isotropic, and to contain no currents or electrical
charges. Each body is a bounded region of arbitrary
surface geometry, consisting of an arbitrary set of
perfectly conducting or diclectric domains.

Each dielectric domain is defined by a single mater-
ial. and is assumed in principle to be anisotropic and
inhomogeneous, so that the permittivity, permeability
and conductivity tensors of this material do not
reduce to a scalar and, moreover, are continuous
Functions of space. They are discontinuous from one
domain to another, though. The magnetic losses can
be modeled by introducing an imaginary part in the
permeability tensor. Lastly, the equations are formu-
lated in the harmonic domains, so that we can take
into account the variations of these parameters as a
function of the frequency.
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What we want to find is the electromagnetic fields.
the charges and the currents in the dielectrics: the
surfice charges and currents on the conductors: and
the electromagnetic field in the external medium.

[1. 2. — CHOICE OF FORMULATION

There are a multitude of formulations possible for
the problem defined above [6. 10. 13, 14, 16. 18, 22,
23. 34]. The one we present here is a hybrid, i ¢. it
is based on an integral equation (and thus nonlocal)
formulation for the external problem. and also on a
differential (Jocal} equation for the internal problem.

This allows us to (1) consider the internal problems
under very general conditions. ie. anisotropic,
inhomogeneous materials with magnetic losses, and
so on; (23 have a body/external medium interface of
arbitrary geometry with conductors and dielectrics;
{3) avoid having to mesh the unbounded external
domain.

We are aware that the size of this type of three-
dimensienal problem leads to very high numerical
costs, if we decide to assemble the matrix of the
discretized system, because of the inputs and outpuls
generated in solving it. An interative method is used
to avoid this input-output load. To increase the
efliciency of this ilerative method, the formulation
has to be constructed in such a way as to yield an
operator having good properties. This is the objective
we set for ourselves. Moreover, an iterative method
without assembly makes it easy to implant the result-
ing code on massively parallel computers.

So the formulation we present here was constructed
in such a way as to (1) minimize the number of
unknown fields, or more precisely so we could elimin-
ate the electric field from the dielectrics and consider
only the magnetic fields; (2) get around the probiem
of the irregular frequencies induced by the integral-
equation formulation of the external problem;
(3) obtain a complex operator that would be sym-
metrical and accretive, for use in an efficient iterative
solver algorithm.

It will be seen that, while there are a multitude of
possible formulations, we found only one that would
give us a symmetrical accretive operator, considering
that we eliminated the electric field from the dielec-
trics and wanted some automatic way of getting
around the problem of the irregular frequencies.

This new hybrid formulation we have developed is
ireated by a variational method. This way, we can
apply a finite-element numerical process to the inter-
nal problem, with its differential operators, transmis-
sion boundary conditions on the dielectric interfaces,
and so on, as well as to the external problem, with
its integral operators on the surfaces. So we have




localized finite elements for the internal problem and
unlocalized ones for the external.

Once we have decided to solve the problem using
an iterative method without matrix assembly, we
should then expect to have to recalculate the elemen-
tary matrices at each iteration. But in fact, some of
these can be kept in storage in partially assembled or
elementary form, to reduce the numerical cost of the
floating-point calculations. This means striking a
compromise between memory space and computation
time. Moreover, certain fields concerning the external
problem are going to have to belong to the space
tangent to the external surface. Here again, to mini-
mize the numerical costs, we did not discretize these
fields in the tangent space but rather opted for a
cartesian representation. We will see in the present
article that the integral operators involved extract the
tangent part and project into the tangent space. So
the only effect this decision has is to increase the
dimension of the operator kernel. We will see in
Part 11T that the iterative solving method we use auto-
matically solves this problem too. So this approach
has no determental repercussions of any kind on the
solution.

However, we also have fields that we must force
to belong to the tangent space, in which case we use
Lagrange multipliers. We will do the same for the
functional constraints, which are zero divergence of
the magnetic induction and the transmission condi-
tions of the dielectric interfaces, as well as the bound-
ary conditions on the internal interfaces of the con-
ductors with the dielectrics. Of course an iterative
solver is needed that will be able to consider the
presence of Lagrange multipliers in the problem. A
method has been developed for this (see Part IIT).

In light of all of this, we can choose finite elements
of the lowest possible degree to minimize the numeri-
cal costs, as shall be seen in Part II.  Considering
the minimum regularity required for the formulation
constructed, we chose P, elements (triangular patches
for surfaces, tetrahedra for volumes) for the integral
operators and the surface and volume differential
operaltors.

I, 3. — COMMENTS ON THE FORMULATION

For the internal problem, we eliminate, as we have
said, the electric field in each internal dielectric
domain. However, the weak formulation applied in
each of these domains yields the tangent electric field
on the dielectric boundary of the domain. So to
couple this domain with the external medium through
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the dielectric boundary, the integral equation formul-
ation of the external problem should yield the tangent
giectric field and the magnetic field too. Due to
the set of formulation constraints defined above, the
variables in the two integral equations obtained are
the external tangent electric and magnetic fields. As
these tangent fields are continuous through the dielec-
tric surfaces, they couple naturally with the internal
tangent electric and magnetic fields. Moreover, as
the integral equation operators extract the tangent
part and project it into the {angent space, we write
them directly with the internal tangent electric and
magnetic fields.

[t will be seen that these two integral equations
will be used to formulate the coupled problem, but
also to suppress the ambiguity due to the irregular
frequencies.

II1. — MODELING AND EQUATIONS

I, 1. — NOTATION AND UNITS

The space R® is referenced to a cartesian axis
system (x,, x,, ¥3). We use M or x to denote a point
in the {x,, x,, Xx;) coordinate system. Throughout
the following discussion, K designates 1]§ or C;

j=\/——j; A is the conjugate of A; A.B= 3 A;B,;

=1
HA||=(4.4)"% AxB is the vector product of
Ax Bel? and Mat, (m, m) is the set of mxm
matrices whose elements are in K. We use the quanti-
ties in homogenized units, i.e. the electric and mag-
netic fields have the same dimensions, which requires
us to state that:

E= /e,
D=
Jeo

J=-\/a js

E H=\/].l0 A
]

D9

B= B

JHo

e g,

{q=

in which the electric field £ has values in K3, as do
the magnetic field A, the electric displacement (or
induction) D, the magnetic induction B and the elec-
tric current density J, while the electric charge
density ¢ has values in K. We will be using g, and
I in their classical notation for the permittivity and
permeability in a vacuum, such that c*gypug=1, in
which ¢ is the speed of light in a vacuum., Those
quantities that are not topped by a circumflex mark-
ing are in homogenized units.
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I, 2. HYPOTHESES UNDERLYING THE
DEVELOPMENTS

Although the formulation below can be extended
without modification to multibody configurations, we
will simplify the discussion by considering the case
of a single multidomain body occupying the open
domain Q,. a bounded set of R simply connected.
and we have 0, =0, ) Q.. in which 8€; is the bound-
ary of €,

We use Q=R to denote the open external
domain, an unbounded domain of R>.

The domain €, is the union of two domains of
empty intersection, £,=Q, Q. UE, G,NOQ.=U,
and I is the union of the various boundaries internal
to £;, while Q, is the domain representing the union
of perfect conductive materials and €, the union of
dielectric materials, Q. and €, are not necessarily
connecied. It should be noted, though, that if a given
dielectric part is completely surrounded by a perfect
conductor, it does not enter inio the modeling.

The domain Q, is expressed as the union of dielec-
tric domains Q,, ne{l,...,N} open bounded

N
domains of empty intersection Q,= D Q, such that
n=1
for each dielectric Q, the permittivity and permeabil-
ity tensors are continuous functions on €, Conse-
guently, the domain Q, is a medium of materials
having characteristics that are piecewise continuous
functions.

In all of the ensuing developments, we will use the
following hypotheses [10, 12, 15, 34]:
ay External Medium €,

This is air, but will be assumed to be the same as
a vacuum. There is no volume charge density, so we
have in Q_:

D(,:E(,
B,=H, (1)
J,=0, ¢,=0

b) Perfect Conductive Medium €,

The electric and magnetic fields being zero within a
perfect conductive medium, there can only be surface
currenis and charges on the boundary £2.. So in £,
we have:

D.=E=B=H=J=0 }
¢.=0
¢) Dielectric Medium Q,

Each diclectric medium Q,, ne{l,..., N} can
have magnetic losses if so desired, is made of a mater-
ial exhibiting continuous, antisotropic paraeters, and
has some finite resistivity. The electric current density

Rech. Aérosp. — n° 1992-4
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is given by Ohm’s faw. We therefore have:
D=gFE
B=p*H
J=cF

with, at each fixed point M in Q,: e (M)eMatg (3. 3),
the dielectric matrix. which is symmetrical, real, posi-
tive definite (permittivity tensor) p* (M) e Mat (3, 3)
such that:

(3}

w* (M)=p (M)—ju, (M) {4

with p(M}eMatz(3,.3) the magnetic permeability
matrix, which is square, real, symmetrical and positive
definite, and p, (M) e Matg(3, 3) a square, real. sym-
metrical, positive matrix (it is identically zero il 2,
has no magnetic loss, and is positive definite if it
does).

Lastly, o(M)eMaig(3. 3) is a symmetrical, real,
positive matrix. I the material is isotropic, then
o=o"", in which o is the conductivity and ¢~ the
resistivity.

Remarks

(1) In the present harmonic formulation, ali of the
parameters may depend on the frequency without
changing the results any.

(2) It is recalled that, according to our hypothesis,
Mg (M), p* (M) and g M) are continuous functions
on Q.

I11. 3. — EQUATIONS FOR THE HARMONIC
DOMAIN

We introduce the wave number k:

k=

, ()

~ | E

in which ® is the angular frequency of the incident
wave. We assume throughout the following that & is
strictly positive.

@) For the external medium €. we write:

E,=E+E,
‘ {6}
H,=H+H,

in which {E,, H,) and (£,, H,) are the reflected and
incident electromagnetic field, respectively. The field
(E,, H) verifies Maxwell’s harmonic equations in £;

jkH,+rot E,=0
~jk E +rot H,=0
div H,=0
div E,=0

(7N

to which Sommerfeld’s outward radiation condition
at infinity must be added to obtain a unique solution.



This condition for r=||x||» + o is written [10, 15,
34]:

{rot E,)x x +jkE,ﬂo(l)
r r
. X |
rot Hr-i-ij,X—=o(w) (8)
, B

o) o)

using the classical notation in which yeR is the func-
tion that verifies |y * ()| -0 for y >0, and yeR
is the function that verifies |y~' O(p)|SC, with C
being a constant.

By hypothesis, the incident electromagnetic wave
(E. H) verifies Maxweil’'s harmonic equations at
every point in space:

Sk Hi+rot E;=0

—jk Et+rot H=0 %
div H;=0 (
div E;=0

b) For each dielectric medium Q,, Maxwell’s equations
are written (in consideration of (3)):

Jku* H+rot E=0 (0. 1)
—jke* E+rot H=0 (10.2)
div (u* #)=0 (10.3)
div{e E}=g¢ (10.4)
Jkg+div(c E)=0, (11

in which we have let:

g (M)=g (M)~ j; g(M)eMate(3,3), (12)

in which the matrix g* (M) is symmetrical, complex
and invertible for any AMef),, because £(M) and
g (M) are two symmetrical, real, positive definite
matrices. We assume from here on that the function
M g* (M) and M p* (M) are continuous on each
domain £,

11, 4. — BOUNDARY AND INTERFACE CON-
DITIONS

IH, 4. 1. — Boundary Notation

Figure 1 gives an example of a body geometry with
the boundary notation we will be using.
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Modeled perfect conductor 0,
Unmodeled perfect conductor
entering only by its boundary

Dielectric £,

[P [‘(
— Iy
—— lyy

. [‘cd

Fig. 1. — Example of geometry.

a) Boundary Q, between the body and the external
medium. This is defined as 8Q,=T, T, in which
'y is the interface of the external medium Q, with the
union Q, of the internal dielectric media, and T
is the interface of the external medium Q_ with the
union €2, of the perfectly conductive media.
by Internal boundary I' ; the union of the interfaces
of the perfect conducting media with the internal
dielectrics.
¢) Internal boundary I'y,=\J T, between two dielec-
trics: the union of interfaces between the internal
dielectrics, in which T, is the interface between €,
and Q,.: T, =08, MaQ,.

Note. We assume there to be sufficient regularity
over all of the boundaries for the Stokes theorem to

apply.
HI, 4.2. — Notation Relating to the Surface Geometry

From here on, n, #', etc., will designate unit nor-
mals, i.e. ||n]|=1, ||a'|=1, etc. The normal to 3
will be external to ;. Let 8Q, be the boundary of a
dielectric domain Q,. For nef{l...., N}, we will
use /1 to indicate the normal at 8Q,, outward from Q,,.
So a boundary such that [, will carry two opposite
normals. We have n'= —n.

To simplify the writing, we will also use M to
denote the vector OM in R®. We have:

X, dx,
M= 1 x; 1, dM=| dx,
X, dx,_|

Let I' be a surface in R* of class C' oriented by the
unit normal #=(n,, n,, n;) at each point M of I'.
Let ds be the surface measure on I". Then if MeD
we have:

dxy Adxy=nds
dyyndx,=n,ds

dx, ndx,=n,yds.
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Let £ be a surface of the type éQ,=T Ul or I,
or I' ; (or any portion of these surfaces). For any
field M A (M) defined on T from values K3, we
say that:
A=A n+ A,
A=A.n
A..n=0

(13)

with A, (M) having values in [, the projection of
A(M) on n (M), and A, (M) having values in K3, the
projection of 4 {M) on the plane tangent (o ¥ at the
point M. The decomposition (13) of 4 is equivalent
to considering the direct sum of the space tangent to
Z with its orthogonal space. The normal » being
defined ds almost everywhere on I. the local relation
A (M) . n(My=0for MeZ is equivalent to

J‘ A (M) . n (M) ds(M)=0.
z

Remark. For purposes of notation, we will some-
times have to use A" and 4"

1, 4.3, — Transmission Conditions

We recall the transmission conditions at ihe
interface T between two continuous, perfect and dif-
lferent media € and Q' [10, 12, 15, 34]. We use n to
denote the unit normal at % external to  and #' = —n
(Fig. 2).

Fig. 2. — Diagram of principle.

The fields relative to Q (resp. Q") are denoted D,
E, Band H (resp. D', £, B', H"). The conditions at
the interface X are then:

(D'—D).n=g;
(H'— Hyxn=—J
(B—=B).n=0

(F—E)yxn=10

in which ¢y and J; are, respectively, the charge and
current densities concentrated on the surface X.

a) Conditions on the body-exiernal medium interface
Q

[

This interface consists of T, and I'; and the

Rech. Aérosp. — n° 1892-4,
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normal » is external to Q,. Using (2). we get on I'.:

H,.n=0 (14.1)
E.xn=90 ([4.2)
E..n=gr, (15.1)
H‘,Xn=—.frl_. (15.2)

The charge and current densities gr, and Jr_ concen-
trated on I, are not known. The conditions to be
imposed are therefore (14). Once we have solved. we
can caleulate gp_ and Jy, using (15), knowing E, and
H,onT,

We assume that there is no charge or current con-
centrated on the interface T',. so gr,=0 and Jp, =0.
Using the relations (3). we get for the interface |

Exn=FEXn (16.1)
H.xn=Hxn {16.2)
E,.n=(€l}.n (17.1)
H,.n={u* H).n. (17.2)

The transmission conditions (16) will be used for
the external-internal coupling, while (17) are used to
compute the other quantities of the problem after the
solution.

by Conditions on the T, interface between a perfect
internal conducror and an internal dielectric
Using (2) and (3), we get;

(p*H).n=0 (8.1
Exn=0 (18.2)
(€E).n=—gqr, (19.1)
Hxn=Jp . {19.2)

As before, the charge and current densities ¢r,, and
Jr,, concentrated on I', are not known. The condi-
tions to be set are thercfore (18). Once solved, we
can caleulate gr, and Jp-, using (19), knowing E and
HonT,

¢) Conditions on the T, interfaces between nvo inter-
nal dielectrics

These are interfaces between O, and Q..

The fields will be denoted H", E7, etc. (resp. H",
E", ete.) for those relating to , (resp. to Q).

Like for the I, interface, we assume that there is

no charge or current concentrated on the [,

interface, so that qr,,=0 and J. =0. Using
relations (3}, we get for the T, interface:

E'xp+E"xn'=0 (20. 1)

H'xn+ H" xn'=0 (20.2)

W HY . n+ (0 HY . =0 {20.3)

(" EMon+(e" E) . ' =0. (20.4)



The transmission conditions (20.1) to (20.3) have to
be set. Relation (20.4) is used after solving, to
compute the auxiliary quantities.

IV. — WEAK FORMULATION
FOR THE INTERNAL DIELECTRIC DOMAINS

Throughout the following, if 4 designates an ele-
ment of a certain functional space, then 84 will desig-
nate another element of this same functional space.

v, L. WEAK FORMULATION FOR A
SINGLE INTERNAL DIELECTRIC DOMAIN

We consider here the dielectric domain €, with #
fixedin {1,..., N}.

We define the hilinear form H™WP'— M"(H", ¥7)
on C(Q,, CHx C'(Q,, C?) by:

Ml (H", \{ﬂx) mjkz J\ (H*" H‘ll) . lp" (n"_\'
QH
"“jj ([e*]7! rot H"y.rot W'dx. (21)
QH

Then the weak formulation for the first of Maxwell’s
equations (10. 1) yields, for any differentiable 84" of
Q,in C

MU (HY, 8H™) +kj SH" . (nx EM)ds=0. (22)

&0y
We have:

del

Im([e*] )=klo+k’ec "el™! = B.

The matrix (M) e Matg (3, 3) is symmetrical, definite
and posilive, so we can say that:

Re M"(H, My=a,(H, H)+b,(H, H) (23.1)

a, (H, H’)=k2J (u, Hy. H' dx (23.2)
Q"
b, (H, H')=J (B rot H).rot H dx. (23.3)
o

Since for any MeQ,, u, (M) and B(M) are, respec-
tively, positive and positive definite matrices, we con-
clude that:

Re M"(H, F)=0. (24)
If the diclectric Q, is lossy, then p, (M) is positive
definite for any M e, and this implies a, (f, ) >0
and therefore Re M®™(H, H)>0 for any nonzero A.
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So in this case it is not necessary to set the constraint
(10.3) for the dielectric Q,. But if the dielectric €,
is not lossy, then:

g, =0 and Re M™{H, HY=b,(H, H)
and constraint (10.3) must be set [10], which we
will do using a Lagrange multiplier for the reasons
mentioned in section I1, 2,

In this latter case, we use g tO denote the
Lagrange muldiplier, which is continuous of &, in €.

IfT,; =T ..M &Y, is not empty, the boundary con-
dition (18.1) is included by introducing a Lagrange
multiplier, denoted %, ,. which is continuous of T'; ,
in C. and the condition {18.2) is entered directly in
(22).

If I, 69, is not empty, on the other hand, it is
the transmission conditions {16.1) and (16.2) that
are entered in (22} instead.

IV,2. — TREATMENT OF TRANSMISSION
CONDITIONS BETWEEN TwWO INTERNAL
DIELECTRIC DOMAINS

Let N be the number of T, type interfaces. The
paired subscript (n, #") is assumed to be ordered and
describes the subset 47 of

fh o NPx{1, . N,

the cardinal of which is M. It 15 the first subscript,
n, that corresponds to the normal 1 at I',,. and which
is used to orient the interface I',. (that is, there are
two normals on I',.: n and #"= —n). Thus

rd(i’ = U 1-mr' .

(n.nVe

For the transmission conditions on the interfaces I', .,
we proceed as follows. The component E7 of the
tangential electric field on I, is unknown, so it must
be conserved and we are then one equation short.
So we use the transmission condition (20.2) for the
tangential compenent of the magnetic fields as an

equation that will be written weakly on the
interface T',,- and we then have the right number of
cquations. Condition (20.3) relating to the normal

magnetic induction at I, must been be taken as a
constraint,. We will use a Lagrange multiplier for
this, denoting it ?L}'-ml,, and which Is a continuous
function on T, with values in C.

To condense the expression, we are then led to
define the field Ar, . This is continuous on I',, and
has values in C* such that:

—1Y T L—
}"f’,,"‘ 7“1_Hl|‘ et E]T' }\’rrm' k'rml' My

and we must also introduce, for any MeT’,,., the two
linear operators Ry (M) and Rf, (M) of €* in C°,
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such that:

RY (MY=[(n (M@ (M) (M)—n(M)x] (25)
RE L (M)=[(n(M)®n (M) p*" (M) = n (M)} x ]
=[(n" (M@ (M) u* M)+ (M)x]. (26)

It will be noted that R (M) and Ry
ferent, event though n= —n’',
case. p*" is different from p*".

(M) are dif-
because in the general

IV, 3. — WEAK FORMULATION FOR THE
COMPLETE INTERNAL PROBLEM

Starting with the weak formulation (22), for each
dielectric domain of equation (20.2) written weakly
on each I",, interface, we get the weak expression for
a linear equation and we show that the associated
linear operator is symmetrical, complex and has a
real kernel.

The constraints have to be added to this equation.
Their Lagrange multipliers are Ao, Ay .. and Ap
Since the part of the operator associated with (70 ])
and {20.2) is real, we can replace its transport by ils
adjoint, and can then regroup it with the operators
associated with the constraints by using the definition
of Ap . in (25) and (26). We then arrive at the
following operational weak expression:

« M H, 8H » + « Divid, , 0H »
+2j < PykE, ., 0H)
+< | ) }\’rd“ﬂ 6H>+< cd {.d’ 6H> 0 (’)7 l)

{ Tpp H, Bhp,, =0 (27.2)
« Div H, 8hg, » =0 (27.3)
< ed H’ 87\‘(7:1 > = 05 (27 . 4)

in which M, Div. Py, Tp,, and U, are the linear
operators defined by the following bilinear forms:

N

< MH, 8H>= Y M'(H" 8H"),

n=j

(28.1)
« Div H, 3kg, »

J. Sk, div(u*" H')dx, (28.2)
Qll
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N
> j BH™ (nx E, Dds. (28.3)
=1 Fu, n

{Trpy H 0050

- 3

ety

k J‘ (R?-mr' H"
|

— R H").8hp,,.ds. (28.4)

< chi H‘ 8hcd>
N
=3 J Sheg (W H " dds, (28.5)
=1 JTea n
in which ‘4 designates the algebraic transport of the
linear operator A, and A* its algebraic adjcint
(A*="4).

H, hgp. A, and A, are the functions defined on
Q. Q. 'y, and T, the restrictions of which are A",
lﬂ sy, and Ay, at Q,, QT and [y . We will
note for example that if H, is continuous on Q.
then H is discontinuous on £,

To couple the internal problem with the external
one, we need to make the trace of H appear explicitly
on I, Calling this trace H,,. We write the following
block decompositions:

M M, . H
M H=|: bbb b, int :I I: hd }5 (29)
Minl,b Mim. int Hint
H ha
—_ hd —
H—|: o } S (30)
mi
;\‘cd

With these notations, the symbolic operatorial form
of the system of equations (27) is:

Mbb Mh. int ’//;:: int Hba'
Mim. b Mim. int "{/?:u. int Hl'm
Ay Al i 0 Aint
2Py E 0
+ 0 =101, (3
0 0
with:
ME o =UDIVE, T, 0] (32}
A i = (D) 0, UZL (33)
The operator M is symmetncal and complex. We

have ‘M =M and therefore My, ="My e



V. — INTEGRAL EQUATION FORMULATION
OF THE EXTERNAL PROBLEM

V1. — NOTATION

Let M and M be two points in R  Let
r=||M'—M|| be the distance from M to M’ and
e N(r) such that:

I

N(p)=— e~ I* (34)
-

Then N(r) verifies the Helmoltz equation and the
radiation to infinity condition in the sense of the
distributions, at fixed A

KEN+A' N=—4nd,, M eR?, (35)
We recall the property:
grad N= —grad' N (36)

In all of the following, the differential operators are
primed when the derivatives are taken with respect
to the point M’ (otherwise they are taken with respect
to the point M). Similarly, a primed quantity is one
that is a function of M’ (and otherwise it is a function
of M). N is an exception, as it depends on M and
M.

V.2, -
COMPUTE THE
MAGNETIC FIELD

INTEGRAL EQUATIONS USED TO
EXTERNAL  ELECTRO-

The first step in the integral equation formulation
is to obtain the integral relations that express the
electromagnetic field radiated at any point M in the
open, unbounded set £2, as a function of the electro-
magnetic field on the surface &€, These relations
will also later be used to compuie the electromagnetic
field reflected into Q, (near and far field), once the
coupled external-internal system is solved. These
relations are established in [3] and are written:

4n H,= J (H; &y ds' — H,xd' (NdM")
a0 dan’

— ke N(E,=n") a’s’), YMeQ, (37.1)

4 Er=J (E:, &N ds' — E < d' (NdM")
0, i’

+ jle N (H, % ') ds'), Y MeQ, (37.2)
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V,3. — INTEGRAL EQUATIONS USED TO
COMPUTE THE ELECTROMAGNETIC FIELD
ON THE EXTERNAL SURFACE

The second step consists in constructing the limit
of equations (37) as M approaches the surface 8Q,.
We then obtain the integral equations on 8Q, that
are established in [3], and which are written:

2 H,— f (" x H,)x grad’ N ds'
&0Q;

+{(H,.n") grad’ N dy’

—JjkN(E, xnr)dsy=4=n H, (38.1)
2R E,— f (7' x Eyxgrad’ Nds'
[ile ]
+ (k)" {(rot’ H.}.n") grad’ Nds'
—~ kN < HYydsYy=4nE. (38.2)

The notation j[.indicates that the main part of the

integral is taken, /. e. f =J . It will be noted
a0 Jea™M

that, for the third term of the integrals in (38), the
integral can be taken in its usual sense, since the term
is regular.

V1. — WEAK FORMULATION
FOR THE EXTERNAL PROBLEM

The purpose of this section is to construct the
integral operators of the external problem from the
weak formulation of equations (38), and also to give
the main algebraic properties. For the functional
properties, the reader may refer to {6, 10, 13].

VLI, — NOTATION

Let 4, =C'(8Q,, R®) be the space of functions ¢!
defined on 2Q, with values in R®. The scalar product
is defined on %"

A, B {4, B>=J A(MY. B{M)ds (M),

o8

Let %5 be the complexified form of %,. The bilinear
form A, Br->{A4, B) on %, %%, is extended on
%S x%{. For a given field A%, we use decomposi-
tion (13) and define & such that:

C={A.e€; (A, n>=0},



and we use €° to denote the complexified form of %.
We will also be needing the identity operator [ on
%°. This operator is such that, for any 4 and B in
%°, we have (IA, By=(A, B).

VI,2. — WEAK FORMULATION FOR THE TWO
INTEGRAL EQUATIONS ON THE EXTERNAL
SURFACE

Starting with equations (38), for any @, &% we get
their weak formulation as:

_"I;—(”xHe’ (pr>

k
g

J ds (@, > m).[(n" x H,)x grad’ N} ds’
41 0

+ L J dsf [rot" E,). '|(@, % n). grad” N ds’
T Jag; &0

ikz v ¥ i
e ds N(p,*xn) . (E, . xn')ds
4n Jao, a5y ‘

=—k{nxH,p > (39.1)

;<ane T (Pr>

+ * J deE (@, * n).[(n" % E,) % grad’ N] ds’
dn a0 a0

—WLJ. ds% [(rot’ H'). 1) (¢, % ) . grad’ N ds’
41 Jaq, 20

jkz (d r r
P ds N xn) . (H,xn')ds
47 Jan, a0

=—k{nxE, 9. (39.2)

The two weak equations (39) are written symbolically
in the following operatorial form. For any @, €%

Mj<(P+Q)Hw (Pr>m<(B_S)Ec‘r’ (pr>

=—2j{PH; ¢, (40.1)
—j{(PH+QVE, ,, 9. ) +{(B~S)H,, 9.)
=—2j{PE, ¢.). (40.2)

with, for any A €% and for any ¢, %"

{PA, (pt>m—ij Q.. (nx A)ds {4n

= &0}
(04, 9.7 j f (@, xn)

X [(n" % A"y x grad’ N]ds" (42)
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(B4, 9.
=— LJ J Nd(p,.dMyd (4 .dM") (43)
A Joa, Joo;
{84, 9.)
j"{z ’ i ¥
=—"— ds Nds' (@, xn) . (A" xn"). (44)
4r o0; a0y

the following property will be observed. Ir
Ope{P, 0, B, S}, we have for any Ae%; and
¢, eC":

{O0p4, ¢.7=(0pA, ¢, (45)

in which A4, is in 4°. We can therefore consider
these operators on %*, and as such, P is algebraically
antisymmetrical:

(46)

and the operators 0, B and S are algebraically sym-
metrical:

‘0=, 'B=B, S=5S. (47)
The reader may find further details on these develop-
ments in [3], in particular the way the operator B is

put in the form (43).

VII. — WEAK FORMULATION
FOR THE COUPLED PROBLEM

VII,1. — UNKNOWN FIELDS IN THE

COUPLED PROBLEM

For reasons that will be explained when we study
the irregular frequencies in section VIHI, we will be
considering the following unknown fields for the
assembled coupled problem:

E, o=nxE, €% on I'yonly (£, 4.#=0) (48.1)
H. ,=nxH, €% on [ only(H, ,.n=0) (43.2)
E,.e%¢ on I'only(E, .. n=0} (48.3)
H,.e% on I only(H, . .n=0) (48.4)

H,,€%€; on I';jonly,
where H,, is the trace of Hon I, (48.5)
H,, and &, inside . (48.6)



VIL2. — NEW BLOCKED EXPRESSION OF THE
INTEGRAL EQUATIONS FOR COUPLING
PURPOSES

The field A can be expressed in blocks (30) and
the field A, on I, U T, is written:

Hz[ﬂ,,d} Y {Hm}
Hinl ¢ Hc.d
with H, . (resp. H, ;) being the restriction H, to I,
(resp. [',).

To simplify the presentation, we will now rewrite
(40.1) and (40.2) in operatorial form using the block
breakdowns and coupling boundary conditions
defined by (14) and (16). Starting with equation

(40.1) and using the breakdown (6) of H,, and the
definition (48.2) of H, ,e %", we get:

["PC‘.'J'QCC ch ] I:HG.C:I
Qdc Pd’d + Qdd‘ Hbd

_|:Ji(Bcd'“Srd) Ee.t:|+|: _.ik]cc Hr,0i|
J(Bu—Su) E,. . 0

(49)

0
50
[2P{I¢1Hi_dj| ( )

in which H; _and H; 4 are, respectively, the restriction
of H; 1o I', and T,

We rewrite equation (40.2) directly by stating
explicitly the boundary conditions, which yields:

I:Bcc-Scc Bcd_Scd:[ !:HG.CJ+|i O }
By — Sd'c B~ Sd,r Hy, —JjP dd Ec. T
f —2jP_E,
_|:JthxiEe,t:|=[ _].'P“. l.r::|s (51)
FCuEe. . —2jPuE; 4
“"J.k Taa 0 JO- Pyt Qud J (Bae—Su)  J(Bu—Su)
0 _J'k Ir:c (Bcd - Scd') - P(‘c + Qcc chi'
0 0 Br.’d - de Qd’c P fray Qdd
O O ‘Qdc Brr: - Scc Bcd' - Scd
0 0 IPdd + Qd‘d ' (Bcd - Scd) B~ de + Mbb
0 0 0 0 My, i
|0 0 0 0 Ay im

It will be noted that the first two block lines of
system (54) decouple. These will be used to calculate
H o=nxH, onl_ and E, j=nxE, on ', It might
seem that there is some redundancy in this system
(34) but in fact this is not a{ all the case, as this
formulation will be used to eliminate the irregular
frequency problem due to the integral equations on
I, \UT.. This problem is discussed in section VIIIL.
The systemn {54) is therefore solved for the (5% 5)
solution block in E), H, ., Hy H,, and &, . This

leads us to introduce the following notation to clarify
the presentation:
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where we have used £; ,and E| , to denote the restric-
tion of E; to I', and T, respectively. Starting with
the second block line of equation (51) and using (6)
and definition (48.1) of E, ,e%*, we gel;

J(Bye— Su) He Hj(Byy— Sad) Hyg

+(_Pdd+Qdd) E(‘.T—.i/(]d(fEr.0201 (52)

Note: The blocked form of the P operator in equa-
tion (50) uses notation that is misleading in that, as
the function @, is continuous on 8Q;, a coupling block
should normally appear. Of course all of the terms
will be considered when we adapt the formulation to
the numerical process. However, for the time being,
this sleight of hand makes for easier reading, and this
is why we use it everywhere, even for the block form
of the other integral operators in (50), (51) and (52).
VIL3. - OVERALL ASSEMBLY OF THE
COUPLED EXTERNAL-INTERNAL PROBLEM

We are going to construct a complex, symmetrical
operator by introducing the new field £, such that:

EV

et

= ~JE, . (33}

The equations of the problem are the three integral
equations (50), (51) and (52) for the external domain,
and equation (31) for the internal. The problems are
assembled by putting the equations in the following
order: (52), the first equation of (50) and then the
second ol {50), the first equation of {(51) and then the
second, with the first equation of (31} and finally the
second and third equations of (31). Considering the
fact that

Qo= "Cles Pu=—Py
and B, — S, ='(B,~S.,). using (46) and (47) we get:
0 0 _E,,.D_ T 0 ]
0 0 H, i}
0o 0 EY, 2P, H,,
0 0 He. e | = - 2./' Pcc Ei. ' E (54)
Mh. int d//r’zk. int Hbd - 2_f Pau Ei. d
Mim. int L’/{?:ﬂ. int Him 0
‘//lim. int 0 — --)\"iﬂ!— — 0 —
0 Ey.
0 HL’ C
prt = « ;o X= B
Ay i Hyy
”//:7'1! inl Hinl
2Py H;
= ——2‘{.PCCEI'.C (55)
—2jPuE 4
0
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With this notation, the (5 % 3) solver block of (54} is

written:
®
|:A m [X:lﬂ[g} (56)
m 0 Xint 0

It is shown that the complex operator A is algebrai-
cally symmetrical:

A='A (57)

that its nonzero kernel o7 is a real vectorial subspace,
and lastly that A is accretive, i.e. that:

RE(AX, X )20, ¥ XL (58)
It is even shown that for any X ¢ker A, we have
RE(AX, X >0, (59)

It will be noted that the global operator of (56) is
neither symmetrical nor hermitian.

VIl,4. — INCLUSION OF CONSTRAINTS DUE
TO THE WRITING OF THE COUPLED PROB-
LEM IN CARTESIAN REFERENCE

Formulation (54) assumes (48.1) to (48.4), i.e. that
H, ,and H,  are in the space tangent to [, and that
E, , and Ey, are in the space tangent to I, The
integral equations (40.1) and (40.2) used to construct
system (54) each correspond to two scalar equations
on a variety. For the adaptation to the finite element
method on this variety {see the Part II of this paper),
to keep from complicating the finite element formuia-
tion (as we indicated in section IL,2), we will use a
description in cartesian coordinates x, x,x; of the
E, o and, H, o, E; . and H, , fields, which will give
us three unknowns per mesh node for each of these
fields. We should then require that £, 4, H,  £. .
and H, . be in the space tangent to the variety, i.¢.!

E . ¢.n=0,

r

H, o.n=0,

£, .n=0 sur I"d. (60)
H, ..n=0 sur I',

But in fact, we will see below that it is possible to
simplify this. For any 4€%{ and for any pe¥, we
find the linear operators P, I, I, O, B and S, by
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the following bilinear forms on %9 x €4.

-~ il
<PA.@>=-J;I ©.(nx A)yds
- ey
Jk
=+ 1 A.(uxe)ds (61.1)
-~
<ch’¢>=j ¢.Ads (61.2)
Fe
Tutvo)=| o.dds @13
Tq

(04, w>=£[ dSJ
dn a0 asy

{@xn). [(nxAYxgrad Njds" (61.4)
(BA, ¢

E_J;j J Nd(o.dMyd' (4 .dM') (61.5)
o0y J ey

dn
(34, 9)

.jkz () I s
=—"— ds Nds' (pxn).(A"xn"). (61.6)
T Jaoy ay

Algebraically, the P operator is antisymmetrical, i.e.
‘P= — P, while the operators I, 7,;, O, B and § are
symmetrical but nonhermetian. Moreover, definitions
(61.1) and (61.4) to (61.6) show that the operators B,
J, B and § extract the tangent part from the cartesian
fields and project it onto the tangent plane.

Because of the presence of the irregular frequencies,
the kernel of the operator of (56) as well as the kernel
ker A are nonzero for certain values of k (which are
untknowns before any calculations are made). So we
will have to use a method for selving the discretized
linear system (56) that can operate under these condi-
tions. The algorithm presented in Part IIT of this
paper satisfies this property and constructs the uncon-
strained fields of the solution sought in ImA. For
these {E, H,.} fields, ImA reduces to
Im{8—8)+Im(P+ Q) and is therefore in the tangent
plane. There is then no need to introduce the two
Lagrange multipliers associated with the constraints
EY..n=0 on T, and H, . .n=0 on I. The
{Ey o H,  } part is well constructed in the space
tangent to the varieties 'y and I', by the solver algo-
rithm.

On the other hand, we do have to introduce the
constraints E, ,.n=0 on I'y and H,_4.n=0 on T,
because the 7,, and T, operators do not project in the
tangent plane. Let A5 and A4 , be the Lagrange
multipliers used to set these constraints. For any
continuous A, (resp. Ay of T, (resp. I',) in C3?, and
for any continuous 8, (resp. 8, of ', (resp. I',) in
C, we define the operators m, and m, by the following



forms:

{m. A, Bh = J B\ A, nds
Te

{my Ay, 8?»,,)2[ Shg Ay nds. (62.2)

Ty

Then, for the cartesian representation, the first two
equations of (54), which are used to calculate E,
and H, ,, become:

— kT, ‘'my, 0 0 E, ,
my 0 0 0 KE,,' .
0 0 —jkI, ‘m, H, o
0 0 m, 0 Mty o
Iy
0
= , (63
g b
0
with
Fy==j(—PutQu) E. .
_j(Bn‘c_Sdc) He,c—-j(de'#de) Hbd (64 1)
FC= _(Bcdmscd)Ec‘:'r
—(—Pcc—i—Qcc)He‘c_chHbd. (642)

It will be noted that each of the block diagonal
operators of (63) is symmetrical complex. Lastly,
with the cartesian representation, the system (56) to
be solved is written:
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R g%
A m X _ s , 65.1)
m 0 Aine 0
with
de_ gdd Qdc ﬁdd+ Qdd 0
erc Ecc - §cr Ecd’ - scd 0
[ﬁdd+qtdd r(gcd_ ~cd) Edd_gdd+Mbb My, it
0 0 !Mb. int Minl,i L
(65.2)
2Py
- —-2;P _E
§=| "l | (65.3)
—2jPuEi s
0

VIII. — IRREGULAR FREQUENCIES
AND METHOD OF SOLUTION

We are going to show that there exists 4 countable
set of real values of & for which the operator of {36) is
singular. These values are the “irregular frequencies”
introduced by the integral formulation retained for
the external problem, whereas we know that the prob-
lermn always as a unique solution for any real & [10].
We will also be showing that the formulation con-
structed (54) can be used to construct this unique
solution, even when k is an “irregular frequency™.

To study this problem, we will be considering the
following two configurations:

- Configuration I. External reflection on a perfect
conductor: 8Q,=T_, I',=¢}.

— Configuration 2. External reflection on a dielec-
tric: 60, =1 .. I'.=.

VIIL 1. — REVIEW OF THE SPECTRAL PROB-
LEM OF THE VACUUM CAVITY

To analyze the irregular frequencies, we need to
recall certain data concerning the internal cavity
resonances of a vacuum domain €; with “conducting”
boundary [10, 15, 34]. We consider the Maxweli
equations in £

ik H®+rot E°=0 .
M . in Q, (66)
—jk E'+rot H'=0
with the following boundary conditions on &Q;.
a) Eleciric type modes (E): The boundary conditions
on dQ; associated with (606) are:

H®.n=0 (67.1)
EOx =0 (67.2)
E° .n=gq, (67.3)

with ¢ being the charge surface density on &€2; that
we assume to be nonidentically zero. The spectrum
of eigencalues & of the discrete roblem (66)-(67),
consisting of real positive values, is denoted
Fp={ky ky ...}.  The associated eigenvectors,
which are real, are the “electrical” type electro-
magnetic modes (H°, E%).

by Magnetic types modes (H): The boundary condi-
tions on &€, associated with (60) are:

H® n=0 (68.1)
Elxp=0 (68.2)
E%.n=0, (68.3)
In the same way, we will use &, ={k\, ky ...}, to

denote the discrete spectrum of the real positive eigen-
values & of the problem (66)-(68), and the electro-
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magnetic modes (H°, E°), which are also real, are set
to be of the “magnetic” type.

Remark: For a sphere of radius R (54), the values
of ke & are solutions of

d
—— (ky Rj,(k, R)=0,
dk§(1 Jalky R))

and the values of ke.%, are solutions of

Jalky RY=0,

nel,

nel,

with j, being the first species spherical Bessel function,
of order n.

VIIL2. — INTEGRAL FORMULATION ASSOCI-
ATED WITH THE VACUUM CAVITY PROB-
LEM

A calculation analogous to the one for the external
problem leads to following equations, which are writ-
ten symbolically with the operators defined in
section V:

J(P=Q)H = (B—$)E*=0 69.1)
J(P—Q)E°+(B—S)H*=0. (69.2)

By setting the boundary conditions (67) or (68) we
get:
J(P—QO)YH’=0 (70.1)
(B—S)H=0. (70.2)
— If k¢ &\ )&, then j(P—Q) and (B—S) are
not singular, and the solution is H°=0, E*=0.
- If ke, U &y, then j(P— Q) and (B—S) are
simultaneously singular (kerj{(P— @)} and ker (B—35)).
We will also show the result as in [3].
For any clectromagnetic field, (H,, E)) verify the
Maxwell equations in Q.

Jk Hi+tot E;=0 } in Q, an
—jk E;+rot H;=0
| kI —(P-Q)  j(B-Y) 0
0 —j(B—=25) P+ 0 0
0 J(P=0Q) B—5+My, M, inc
0 0 My, e Mo im
| 0 0 "/lb,int '-’f"'{im.x‘u_

First configuration: k¢ %\ J %y Then the operator
is regular and there is a unique solution such that,
for the component E, ,, we have E, ,=E, .

Second configuration: ke ¥\ )%y, There exists a
nonidentically zero H° that verifies (70) and such that
we have (72.2), i.e. { PH;, H*»>=0. It can be seen
that the Fredholm alternative again applies since the
kernel of the operator (74) consists of elements of the
type (0, H°, 0, 0), which are orthogonal to the second
member of (74). There therefore exists a solution to
equation (74) of the form (£, ,, E, ,+H° H,, H,.
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If E°xn=0 on 3¢, then we have:

{nxE, H'>=0
{n*xHy, H>=0

(72.1)
(72.2)

VIIL3. — CONFIGURATION 1. PROBLEM OF
EXTERNAL REFLECTION ON A PERFECT
CONDUCTOR

In this case, we have dQ,=TI",, I',=¢ and the
system (54) reduces to (dropping the ¢ subscripts);

[—jkl *(P—Q)}[ ]{ 0 ] 73)

0 B8 —2jPE,

First configuration: k¢ ¥\ ) %y Then B~ S is reg-
ular and there is a unique solution. For the com-
ponent H, we get H,= H,.

Second configuration: ke S \) &, Then B—S is
singular. The H, part of an element of the kernel of
the operator of (73) necessarily belongs to the kernel
of B—§ and verifies (70), which shows that the H,
part of this clement is zero (J is bijective). The
elements of the kernel of the operator in (73) are
therefore of the form {0, H°}, with H° verifying
(70), and we have (72.1), i.e. { PE, H®)=0. The
Fredholm alternative then applies. There exists a
solution { H, o, H, } to (73) in the form

Hr,(]
H

£

{He o W} ={H, o H+{0, B},

The solution to (73) gives a unique solution for
H, 4 but not for H,.

VIIL4. — CONFIGURATION 2. PROBLEM OF
EXTERNAL REFLECTION ON A DIELECTRIC

In this case, we have 80;=T,, I'.=F and the
system (54), when the 4 subscripts are dropped and
we use 'P= — P and (53), reduces to:

0 E. s 0
0 E... 2PH,
A E Hy |=| —2/PE (74)
Jﬂ?;t. int Hi 0
0 Mimt 0
M) with H° being an arbitrary element in

ker (B—8)=kerj(P- Q). So the solution to (74)
yields a unique solution for E, ,, Hy,, H, and A
but not for E, ..

ints

VIIL,S. GENERAL CONFIGURATION.
EXTENSION OF RESULTS

The general problem is governed by equation (54).
We will assume that the results obtained in
sections VIIL3 and VIIL4 for the two limiting cases



remain true for the combined case §Q,=1", {_J I'; with
I.#@ and T £ . Consequently, for YiAeR, the
operator of (54) is not necessarily regular, but the
solution to the linear system (54) vields the unique
solution for E, o, H, . Hy, and H,, %;, and offers
no way of finding E . or H, .

IX. — COMPUTATION OF CHARGES,
SURFACE CURRENTS AND THE REFLECTED
ELECTROMAGNETIC FIELD

IX,1. — COMPUTATION OF THE ELECTRO-
MAGNETIC FIELD ON THE EXTERNAL SUR-
FACE

The H; and E; fields are known everywhere in the
space, so their trace on dQ); is known. According to
the preceding, all that we can compute for any
keR** are:

E o=n%xk_,
Hr.(}:”X Hr.c

Hy,=trace of H on I',

on Iy

on T,

We must therefore establish relations for computing
H, and therefore H,= H,+ H; on 6Q,, and also £, on
08);. For details, refer to [3].

a) On the conductive part T, we have:

H, =(I—n®mnH  —n*xH,, (75.1)
nxH, =nxH,_ ~H_, {75.2)
E,  ds={jk)" ' nd{((H; .—nx H, o).dM)(75.3)
b)Y On the dielectric part T’y we have:
H, =+ n@n) " — D) Hy
E, ,ds=(k)" ' nd(H,,.dM)
+(I—n@n) E; ;ds—nX E, yds (76.2}
nxE, j=nXE . tTE (76.3)

(76. 1)

IX,2. — CHARGE AND CURRENT DENSITIES
CONCENTRATED ON THE CONDUCTIVE
PART OF THE QUTER SURFACE

Let Jy, and gr, be the current and charge densities,
respectively, concentrated on I',. We then have:

Jp,=nxH,  computed from (75.2) (77.1)
q,-cds=(EE‘C.n)ds=(jlc)“1d(HE_c.de). (77.2)
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IX,3. — COMPUTATION OF THE REFLECTED
ELECTROMAGNETIC FIELD

IX.3.1. — Scartered Electromagnetic Field at a Given
Point in the External Domain

Considering {37.1) and (37.2), we are led to intro-
duce the following integral operators. For any fixed
M in Q,, for any bounded field 4 of éQ; in C*, and
for any bounded field B, of 8Q; in C* and in the
space tangent to 40, we define the operators R, (M),
R, (M) and R4 (M} such that:

Rx(M)A=j A'd Nd's' (78.1)
0 dn'
RZ(M)A=J A X d' (NdM") {(78.2)
oy
R5 (M) szkj. NB ds' {78.3)
8%

Then the equations (37.1) and 37.2), which are used
to compute H, (M) and E,{M), respectively, and any
fixed point M in Q,, are written:
dnH (M)=R, (M)H,— R, (M) H,

+Ry(MY(nx E) (79.1)
4m E,(M)=R, (M) E,~ Ry(M)E,

~Ry{(MY(nx H,) (79.2)

in which:

H, is given by (75.1) on I, and (76.1) on [, for
Ry (M) and R, (M);

n% H, is given by (75.2) on I, and (76.2) on ', for
Ry (M);

E, is given by (75.3) on I',, and (76.2) on ['; for
R, (M) and R, (M);

and finally nx E, by (14.2) on T, and (76.2) on [,
for Ry (M).

1X,3.2. — Scattered Electromagnetic Farfield

Strictly speaking, formulae (79) can be used to
compute the electromagnetic field, near and far.
However, the numerical formulations that we will
be establishing in Part JI of this paper raise a few
difficulties for the field at great distances, and we
then prefer to use an asymptotic form, which recalils
the farfield form, or relations (79). We have drawn
up asymptotic expressions that are detailed in [33].

We consider a direction of observation defined by
the unit vector veR>* and consider an observation
point M that tends toward infinity in the v direction.
We let R=||OM|| and r= || MM'|, in which M" is
some given point of 90, The method consists in
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constructing the asymptotic kernel . ¢, defined by:
C o ikt OM)
S =eT e (80)
and we show that:
. e—jkr
A7,= Hm ReR (81)
R - x ¥

Starting with (79) and with the limit (81) we get the
expressions for the asympiotic fields:

i ik
&= lim E, Re*f=— il J 4,
R~ x 4n a0
x Lux (' x E)~ [T~ u@uj(H,xn") }ds' (82.1)
#,= lim H, Re*K=— ﬁj A
4n Jon,

R— x

X Lux(n' < HY+[I—u@u](E,xn') }ds'  (82.2)

We show that the asymptotic farfield has a local
plane wave structure:

ux &, =4, (83.1)
uXH,=—4, {83.2)

X. — CONCLUSION

We have established a hybrid formulation mixing
local and integral equations for the harmonic domain,
which automatically gets around the problem of the
irregular frequencies and also leads to a complex
operator having the right properties of symmetry and
accretivity, which can be used in an efficient iterative
method for solving the problem.

The remainder of these explanations concerning
numerical analysis, the iterative solver algorithm, the
general 3-I) cade (HEM 3 D), and the validation with
examples are presented in Parts {[ and IIL

Manuscript submitted June 27, 1991, accepted Febru-
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