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A model and numerical method in the medium frequency range
for vibroacoustic predictions using the theory of structural

fuzzy

Christian Soize
Structures Department, ONERA, BP 72, F-92322 Chatillon Cedex, France

In linear dynamical analysis of complex mechanical systems, the structural fuzzy is defined as

the set of minor subsystems that are connected to the master structure but are not accessible by
classical modeling. The notion of master structure is presently extended to others elements such
as an external dense compressible fiuid strongly coupled with the primary structure. For the
low-frequency (LF) dynamical analysis, the modeling of the structural fuzzy is commonly made
with a system of masses. If the LF modeling of the structural fuzzy is applied in the
 medium-frequency (MF) domain, there are some large differences-between-ealeulations-and————————————
experiment. It is therefore necessary to take into account internal degrees of freedom of the
structural fuzzy. A global probabilistic modeling of the structural fuzzy is proposed to improve
the calculated estimates of the MF vibrations into the master structure and of the far field
radiated by itself in or out of context of the acoustic scattering. This paper reviews the author’s
previous work and introduces the type II probabilistic constitutive law. In this paper: (1) a
probabilistic modeling of the structural fuzzy is presented, (2) two probabilistic constitutive
laws of the structural fuzzy are constructed, (3) the modeling in the MF range for vibroacoustic
predictions using theory of structural fuzzy is developed, (4) the fuzzy solution in the MF range
is studied, and (5) numerical simulations on standard structures and on a submerged complex

industrial structure are show.

INTRODUCTION

This paper deals with vibroacoustic predictions in the
medium-frequency (MF) range. Typically we are inter-
ested in acoustic field radiated from a submerged elastic
structure locally submitted to internal dynamical loads, or
in acoustic scattering of an incident wave from a fluid-
loaded elastic structure. In this MF domain, the modeling
of the “secondary” mechanical subsystems attached to the
“primary” structure must be introduced to improve the
predictions. In this way, we have introduced the concept of
the structural fuzzy,' we have developed this theory'™
with an adapted numerical analysis,* which is based on
the MF method,%” and we have presented some applica-
tions for the validation.>® The MF method® that we have
developed to solve forced vibration,”  radiation
problems,7’3 and scattering problems,g'IO has been recently
used by Vasudevan'"'? to solve radiation and scattering
problems. In the same time the theory of structural fuzzy
has been revisited by Sparrow,'’ who has initialized new
research in the area of acoustic scattering from elastic
structures with attached structural fuzzy."

We present in this paper a survey of the theory of the
structural fuzzy for structural modeling in the MF range,
theory that we will present in context of sound radiation
and acoustic scattering problems, including in these devel-
opments a new probabilistic fuzzy constitutive law with
spatial memory and in presenting recent numerical simu-
lation of the far field radiated in water by a stiffened shell
cylinder with and without structural fuzzy.

I. GENERAL CONCEPTS OF MODELING USING
THEORY OF STRUCTURAL FUZZY

A. Concept of master structure and structural fuzzy

In the context of vibroacoustic prediction problems,
we will use the term master structure to designate the part
of the mechanical system that is accessible to conventional
modeling, i.e., the system whose mechanical properties, ge-
ometry, boundary conditions, and excitations are known
with sufficient accuracy and whose necessary modeling re-
quires implementation and leads to an analytical approach
or to a numerical approach at a cost that remains reason-
able. Presently, this concept of master structure extends to
other elements in addition to those involved in the primary
structural stiffness. Where there is strong interaction be-
tween the primary structure and dense external fiuid (sub-
merged structure), and, or, dense or light internal fiuids, it
is necessary to globally model the primary structure and
the fluids in order to analyze the dynamics. The system
that can be modeled in this way is the master structure. The
complement to the master structure with respect to the
complete mechanical system is designated as the structural
fuzzy. It is by definition the part that is not accessible to
conventional modeling because details are unknown or are
imprecisely known. The structural fuzzy consists of the
secondary mechanical systems “attached” to the primary
structure.

Typically, this concept can be used for the predictions
of the sound radiation from an elastic structure under dy-
namical loads, or for the predictions of an incident acoustic



wave scattered from a fluid-loaded elastic structure, where
there is a lack of knowledge about internal subsystems such
as internal geometry, boundary conditions, internal de-
grees of freedom (DOF), and about specific properties
such as mass, damping, and stiffness.

B. Physical role of the structural fuzzy

In the following we discuss modeling of weakly
damped structures, and the terminology frequency response
function means, if no more is precised, the linear relation in
the frequency domain between (1) forces applied to the
structure and (2) structural displacements or far field ra-

diated by the structure.

ally consists of taking as master structure the primary
structure, the fluids, the solid masses, etc., which are con-
ventionally modeled and a system equivalent to the struc-
tural fuzzy, modeled globally by pure masses. The pre-
dicted LF response functions which exhibit resonance
peaks due to the modes of vibration are generally well
correlated to experimental results, 16

In the MF domain, the conclusions are the same for
the particular case of a “pure” structure, i.e., where there
is no structural fuzzy in the above sense. Then, the com-
parisons between the predicted MF frequency response
functions and experimental results are
satisfactory.”®1%1%17 4 contrario, the problem is radically
different for the structures in the MF domain. Vibration
experiments give smooth morphology for the MF fre-
quency response functions, but traditional predictions
based on an equivalent pure mass modeling of the struc-
tural fuzzy, do not. The rates of dissipation that would
correspond to such smoothing are much too high to allow
this phenomenon to be explained by mechanical damping
alone. The apparent dissipation occurring on the master
structure is due to the energy transfer to the structural
fuzzy, which includes mechanical systems attached to the
master structure entering in vibration in the MF domain. It
is therefore the internal dynamical DOF of the fuzzy that
are involved, and a pure mass model can in no case account
for this phenomena. These observations mean that in order
to predict the MF vibrations in the master structure of a
mechanical system, we must model the dynamical effects
that the structural fuzzy has on the master structure.

C. Method for accounting for the structural fuzzy

Let us note that we are only to model the effects of the
structural fuzzy on the master structure through the com-
mon boundary. We therefore propose a probabilistic ap-
proach so that the conventional model (adapted to the MF
domain) of the master structure, plus the probabilistic
model of the effects of the structural fuzzy qualitatively
and quantitatively restore the average behavior of the mas-
ter structure of the mechanical system. Consequently, the
concept of structural fuzzy is introduced to account for
missing DOF in structural vibration problems with the
following constraint. We want to construct a modeling that
allows us to predict, not only the modulus of the direct and

crossed frequency response functions of the master struc-
ture in the MF domain, but also the associated average
phases. For instance the SEA method,'” which is well
adapted for the high-frequency (HF) domain, does not
give such an information on the phases.

The state equation, which governs the linear dynamics
of the master structure (formulated with velocity field for
primary structure), is expressed conventionally as an im-
pedance term in the frequency domain. Therefore, the dy-
namical effects of the structural fuzzy on the master struc-
ture must be modeled by introducing a boundary
impedance. As the model of the fuzzy is probabilistic, the
effects of the fuzzy on the master structure will be modeled
by setting a probabilistic boundary impedance of the struc-

In-the low-frequency (LF) domain, modeling gener- y,pg/ fiizzp. Therefore, the number of DOFE in the master

structure model is not increased by taking into account the
effects of the fuzzy.

D. Concept of probabilistic constitutive law of the
structural fuzzy

The probabilistic boundary impedance of the struc-
tural fuzzy is not intrinsic, since it depends on the local
geometry of the common boundaries on which the fuzzy is
“attached” and the DOF of the primary structure velocity
field on the same boundaries. We therefore introduce the
concept of probabilistic constitutive law of the structural
Jfuzzy which can be assimilated to an impedance. The con-
stitutive laws are used to construct the boundary random
impedance operator of the structural fuzzy. A basic problem
is the construction or identification of the fuzzy constitu-
tive laws according to the nature of the structural fuzzies,
i.e., the classes of fuzzy. We will give in Sec. III the con-
struction of two constitutive laws.

Il. PROBABILISTIC MODELING OF THE STRUCTURAL
FUZZY '

We summarize hereinafter the main ideas concerning
the probabilistic modeling of the structural fuzzy that we
have developed with mathematical details,"? with the view
of helping the reading of the next sections.

Let T be the common boundary between the structural
fuzzy and the master structure. Boundary I is assumed to
be known in the deterministic sense. We will denote by S
and S the parts of I such that §;={m,...,m,} is a dis-
crete set consisting of I points m;€I" and such that S is a
continuous set of generic points m of I'. The part of the
fuzzy relative to part S;, (resp. S) of I' will be said to be
fuzzy with locally discrete boundary, (resp. fuzzy with con-
tinuous boundary), because the connections of fuzzy to the
master structure are discrete, (resp. continuous).

We introduce the following hypotheses concerning the
structural fuzzy. Each mechanical subsystem of the fuzzy
is assumed to have a linear behavior, is weakly dissipative,
and the associated conservative mechanical subsystem is a
linear dynamical system whose spectrum of natural vibra-
tion frequencies is discrete. In all the following we will
denote by  the angular frequency and the problem will be
formulated in the frequency domain using the Fourier



transform. To simplify the description, we will assume that
the coupling state variable of the master structure with the
structural fuzzy is a displacement field m—i(m,w) defined
on T with values in C3, or equivalently the velocity vector
field m—¥(m,0) =iwi(m,w), withi = y(—1) and where
we are using exp(iwf) time convention. The dual variable
is then a force density vector field m—f(m,w) defined on T’
with values in C*, Actually, we could reason on any other
pair of variables.

A. Fuzzy with continuous boundary

Let Z(m,m',0) be the probabilistic boundary imped-
ance of the structural fuzzy relative to S, such that:

W(w) in X, we have {((Z(w)i¥(o)#(0)))
= {{Zo(0)¥p(w),Wo(w))), where Zo(m,m",0) is the 3x3
complex matrix

Zy(mm' @) =®(m) Z(mm’,0)®(m’), (4)

which is called the probabilistic constitutive law of the
structural fuzzy relative to 8

Orthotropic fuzzy. The structural fuzzy with continu-
ous boundary is said to be orthotropic on S for a frequency
band B, if there exists m—®(m), i.e, a family of local
basis on S such that the matrix Zy(m,m’,w) is diagonal for
any o in B, and for any m and m’ in S. We then have
[Zo(m,m" )] x=612;(m,m’,w). The probabilistic consti-

%(m,m)=J Z(mm’,@)i(m'w)ds(m’), (1)
: s
where ds(m) denotes the positive measure on S. It is as-
sumed that for any @ in R and for any m and m’ in S:

(1) Z(m,m',w) is a second-order random variable de-
fined on a probabilistic space (27,7 ,7 ) with values in the
3% 3 complex matrices relative to the canonical basis,
where & is the probability measure on (&, ).

(2) There is the symmetry  property
Z(m,m’,m):Z(m',m,m)T, where the right exponent T
denotes the transposition of matrix.

(3) Finally, denoting by X the space of functions
m—sw(m) defined on S with values in C’ with integrable
square for ds, equipped with the scalar product

“"'“"”=L O oy T

where
3
(w(m),wm))= 2 w;(m)w)(m)
Jj=1

and where an overbar means the complex conjugate, we
will assume that for any function ¥(w) €X, the integral of
the right-hand side of Eq. (1) is defined &7-almost surely.

With these assumptions, the boundary random imped-
ance operator Z(w) of the structural fuzzy with continu-
ous boundary S, defined for any ¥(®) and w(®) in X by:

({Z()5(0), (o)) = fs fs (Z (" 3)¥ ("0

Xw(m,w))ds(m)ds(m’),
(2)

is Z7-almost surely linear and continuous from X to X.
With the operator notations, Eq. (1) can be written as:

flo)=Z(0)¥(0) =ivZ(0)i(o). (3)

Let w=(w; ,w,,w;) be the components of weX relative to
the canonical basis. For any point m of S, we associate a
local orthonormal basis related to the boundary S, and
note @ (m) as the orthogonal 3 X 3 real matrix of the linear
operator for transition from canonical basis to this local
basis, such that ®(m) ~'=®(m)”. For any ¥() in X we
associate V(@) in X such that ¥(m,w)=P(m)¥,(m,w).
Therefore, we deduce from Eq. (2) that for all ¥(w) and

tutive law for the orthotropic fuzzy is therefore the givenof ————

the family of second-order random variables with values in
C:{zj(m,m',m),jE{I,Z,S},meB,,,m eS,m'eS}.

Isotropic fuzzy. The above orthotropic fuzzy is said to
be isotropic if z,(m,m’.w)=z,(mm' 0)=z;(mm'w)
=z(m,m’,w). Then, the probabilistic constitutive law of
isotropic fuzzy is such that Zy(m,m".w)=z(m,m’,0)l;,
where [I; is the identity matrix, and where
{z(m,m'\w),0€ B, ,meS,m'eS} is a given family of
second-order random variables with values in C.

Anisotropic fuzzy. The structural fuzzy with continu-
ous boundary is said to be anisotropic on S for a frequency
band B, if it is neither orthotropic nor isotropic. In this
case, the probabilistic constitutive law is a family of
second-order random variables Z(m,m’,») with values in
the 3 X3 complex matrices.

Homogeneous fuzzy. An anisotropic (resp. orthotro-
pic, isotropic) fuzzy on S for B, is said to be homogeneous
if for all m and m' in S we have Z(m,m’,0)=Z(w) (resp.
z;(mm'w)=z;(v), z(m,m’,0)=z(w)). It can be noted
that in the orthotropic or isotropic case, the homogeneous-
ness on S does not necessarily mean that Z(m,m’,®) is
independent of m and m’, contrary to the anisotropic case.

Locally homogeneous fuzzy. A fuzzy is said to be lo-
cally homogeneous on S for band B, if there is a finite
partition of §: §=US; such that the fuzzy is homoge-
neous on each part S; of S.

B. Fuzzy with locally discrete boundary

Let J=3I and let Z,(w) be the JXJ complex matrix
of the random impedance operator of the structural fuzzy
with locally discrete boundary S;. It is assumed that
Z,(w) is a second-order random variable defined on the
probabilistic space (&,%,%7) with values in the J wJ
complex matrices and such that Z,(o)=Z J(m)T. Let
U,(0) =(8(m,,0),...,ii(m;,@)) with values in C’ the dis-
placement vector relative to S; and V(w)=ioU (@) the
velocity vector. Let F () =(f(@),...fi(@)) with values in
C’ the dual variable of U (@), where the f(w) have values
in C. Then the equation relating the velocity vector V(o)
to the force vector F (@) relative to S; is written:

Fio)=Z(0)V(0)=ioZ ) U/ o). (5)



lll. PROBABILISTIC CONSTITUTIVE LA
STRUCTURAL FUzzyY W'OF THE

In this section, (a) we recall the results concerning the
probabilistic constitutive law of the structura] fuzzy with
continuous boundary'* which can be used for an orthotro-
pic or isotropic locally homogeneous fuzzy. This law that
we will call in the following as the type I probabilistic
constitutive law, does not allow us to introduce an effect of
a spatial memory into the structura] fuzzy, this hypothesis
being consistent with the assumption of homogeneousness.
(b) We present an unpublished probabilistic constitutive
law of the structural fuzzy with continuous boundary, ref-
erenced in the following as the type II probabilistic consti-

such that for @ <Q,, the structural fuzzy behaves like a
pure mass as Seen by S;.

(2) An equivalent mass of the fuzzy per unit measure
of the boundary S, described by a random real positive
valued function o—u(w) defined for @ >0.

(3) A rate of internal dissipation of the structural
fuzzy described by a random function ew—£(w) defined for
3>, with values in 10,1

(4) A modal density of the fuzzy described by a ran-
dom real positive-valued function w—n(w) defined for
w>Q,. By definition, n(w)Aw is the number of natural
frequencies of the structural fuzzy in the vicinity Aw of w.
The distance between two natural frequencies of the fuzzy
in the vicinity of o is therefore 7(w) =1/n(w). Obviously,

tutive Jaw, which can be used for an orthotropic or isotro- for @ fixed, this frequency does not necessarily coineide -

pic locally uniform fuzzy with a spatial memory effect
inside the structural fuzzy. :

Note that, consistently with the results of Sec. IT A,
these two laws are defined by one quantity, z in the isotro-
pic case, or by three quantities, z;,2,,2; in the orthotropic
case. Actually, we will construct laws with scalar values of
type z. These laws will depend on mechanical parameters.
We will therefore be able to use it for the orthotropic case
by assigning different values to the parameters for each
local direction 1, 2, and 3.

A. Type | probabilistic constitutive law

The use of the concept of locally homogeneous fuzzy
allows the mechanical parameters of the type I probabilis-
tic constitutive law to be locally independent as regards the
space variables. Consequently, this law is defined by the
scalar valued impedance z(@) which does not depend on
the m space variable. The most elementary mechanical
model verifying the mechanical hypotheses introduced in
Sec. II is that of a simple linear oscillator excited by its
support. We have used this as underlying deterministic
basis for constructing the probabilistic constitutive law.
This obviously does not mean that the law obtained is only
suitable for simulating behavior of a structural fuzzy con-
sisting of simple oscillators. On the contrary, this law is
capable of representing the dynamical behavior of the com-
plex mechanical systems comprising the fuzzy. This is due
to the fact that the parameters of the simple oscillator are
modeled by random variables and the probabilistic law ob-
tained generates a random family of oscillators. The locally
homogeneous fuzzy hypothesis (see the end of Sec. II A)
means that all the points of the boundary S;CS=U ;S are
equivalent and in this case, the coupling force at a point m
of S;, due to the actions of the structural fuzzy on the
master structure, only depends on the velocity of the mas-
ter structure at this same point m. Consequently with this
law, the effect of the structural fuzzy on the master struc-
ture is ‘modeled by an infinity of DOF without coupling
between these DOF, and there is no spatial memory effect
inside the structural fuzzy.

The model of this law can be summarized as the
following."”” The mechanical parameters of the law, which
depend implicitly on j, are:

(1) A deterministic cutoff frequency denoted by Q.

with a natural frequency @ (@) of the fuzzy. It is a prob-
abilistic model of the random variable mp(m) that allow us
to introduce the probability for w,(o) € (0,0 +dw).

The algebraic expression of the impedance z(w) in any
point meS;, deduced from the simple oscillator formula-
tion, is such that:

jwz(®) = —o*R(0) +inl (o), (6)
where for @€]0,Q2[, R and [ are such that:
R(w)=p(w), I(w)=0, (7

and where for @>Q,, R and I are written as:

o)V (o) (V(e)—1+4£(0))

R(o) = o 1P e @) @) (8
2o0p(e)v(v)é(w)
(o) =P+ @@ o
where we have noted:
V(m)=mp(m)/cu. (10)

- For each o fixed, the mechanical parameters are modeled

by mutually independent random variables such that:
(11)
(12)

plo)=p(0)(1+ Y (o)),

£(0)=£(0)(1+Y3(w)),

n(e)=n(w)(1+Y;()), (13)

where p(o), £(w), and n(w) are the mean values, where
the R%valued random variable Y (&) ={Y,(®),....¥Y (@)}
is such that for je{l,..d}, ¥;(0)=3""%4;(0)X;, with
d=3 and where X,,...,.X; are mutually independent uni-
form normalized random variables (i.e., centered with unit
variance) defined on the probabilistic space (&,.%,Z).
The control of the dispersion of these mechanical param-
eters is introduced by the function w—Ai(w)=(1,(@),
A g(@)) defined for @ >0 with values in ([O,I[)‘i. These
data define the probability density function py(,)(y;@) of
the random variable Y (@), with y=(p;,....¥4).

By construction we assume that the conditional prob-
ability density function of the random variable w,(®)
knowing that ¥;(w) =y is written as:



Po(a)| ¥y(0) (@50]33)

=[zn(w'yS)]ﬁll[w—n(my3).w+n(w.y3)](m)' (14)
where 27(w,y3) =[n(0) (1+y;)] "' and where 15(&)=1if
@€ B and=0 if @& B. Note that it is natural to introduce
Eq. (14) because, since the distance between two natural
frequencies of the fuzzy in the vicinity of @ is 27(w.y;),
knowing that ¥;(w) =y, the probability of presence of a
natural frequency on an interval with measure 2n(w,y;) is
equal to 1. Furthermore, if the modal density n{w) — + 0,
the conditional probability must approach the Dirac mea-
sure at point o, since the probability of presence of a nat-
ural frequency w,(w)=w then approaches 1. The model
proposed has these properties.

Ponctual mass

FIG. 1. Underlying deterministic mechanical schema for type II law.

Finally, we deduce the probability density function of
the R%*!-valued random variable (Y(m),mp( w)) which is
written as:

PY(M},@P(&?)(YF(E;L'J) =PY(w)(y;a)) ><1’-7cup(m) | Yl(wj(c'—-;;m]yl)'
(15)

For Q., p, &, n, and A given, the probabilistic constitutive
law of type I is described by the family of second-order
random variables {z(w;4),» >0}, defined on (&,%,Z),
with values in C, and which is completely defined (1) by
the mapping (Y(w),mp(m))Hz(m;A) which is deduced
from Eqgs. (6) to (13), and (2) by the known probability
density function defined by Eq. (15). Consequently, we
can calculate the probability law of the C-valued random
variable z(@;4). In particular, denoting by E the mathe-
matical expectation, the mean z(w;A)=E{z(w;A1)} is ex-
plicity calculated'? using Eq. (15), and is written as

ioz(w;A) = —0*R(w:A) +iol (0;A4), (16)

where R(wA)=FE{R(e;A)} and I(w;A)=E{I(0;A)}. If
we want to keep the exact nonlinear mapping of the ran-
dom fluctuation z(w;A)—z(w;A) that we have defined
above, the global probabilistic analysis of the vibration,
radiation, and scattering problems of the master structure
in presence of the structural fuzzy must be solved in using
Monte Carlo simulation method, due to the presence of
nonlinearities in the mapping. In this case the numerical
cost is too much expensive. For this reason we have pre-
ferred to develop a perturbation method joined to a second-
order analysis (see Sec. V), which requires to construct a
linear dependency of the random fluctuation iw(z(w;A)
—z(w;A)) in function of the random variable
X=(X,,X,X;). Consequently we have written the follow-
ing approximation Z(w;4) of z(w;4):
d
ioz(ed) =iwz(wd) + Y Xj(—cosz(w;}»)
j=1

where iwz(w;A) is given by Eq. (16), and where the
R-valued functions m—-Rj(m;A.) and o—I;(w;A) for
je{l,...d} have been calculated to minimize
E{|iwz(w;A) —ioz(w;A) |*}. For any o fixed and for any
je{l,....d} we have proved'? that:

Ri(w;4) =0, I;(w;A)-0, if [[A(e)]|,—0. (18)

The reader will be able to find all the explicit expressions of
R,1,R;,and I, for j€{1,2,3} in Refs. 1 and 2, but also in
the next Sec. III B in taking inside the corresponding for-
mula of the type II law, the special values g(w)=1 and
As(w)=0 for which the type II law gives in this case the
type I law.

B. Type Il probabilistic constitutive law

The type II probabilistic constitutive law models a lo-
cally orthotropic or isotropic fuzzy with spatial memory
effect inside the structural fuzzy, i.e., there is a finite par-
tition of §:5=US;, such that on each part §; of the
boundary, the constitutive law can be described by a
scalar-valued impedance z(m,m’,w) which depends a pri-
ori on the space variables m and m’. In addition we will
assume that the spatial memory effect is uniform and iso-
tropic on §;, which is to say that
z(m,m',w)=z(||m—m'|,») on the boundary S;. To ex-
plain the origin of this probabilistic constitutive law, we
now develop the underlying deterministic bases. Let us
note that these hypotheses allow us to consider the space
variable with only one dimension, and to replace for a
short while and for this construction, the boundary S; by
the real line R. Therefore we have m€R and ds(m)=dm.
At any point m of R, we associate a ponctual mass p with
absolute displacement «'(m,?), and we consider a density
of simple oscillators (see Fig. 1). Each of these oscillators
has its support connected to a point m’ of R, with absolute
displacement u(m’,t) and we will denote by k.(m,m’) and
c.(m,m") the density of stiffness and damping such that:

k(mm')=polg(m—m’),

ce(mm')=28pwg.(m—m'), (19)

where g, is an even positive-valued function defined on R,
with an integral over R equal to 1 and which is such that
the measure g.(m)dm on R tends towards the Dirac mea-
sure 8;(m) on R at the point 0eR if €—0. The parameter
€ will be directly correlated to the effective length of the
isotropic spatial memory around the point meS;. Let us
return to the present construction where S is replaced by



R. Let fc(m,t) be the real-valued force density field ap-
plied to the boundary and equal to the opposite of the
reactions of the oscillators. Then, the equations in the time
domain are:

& 3
pgp v (ma)+ fﬂ celmm’) = {u’ (m,t) —u(m',0)}ydm'’
+ fﬂ ke(m,m") (u'(m,t) —u(m',t))dm’=0,  (20)

a
c.(mm') R {u'(m',t) —u(m,z)}dm'

fe(m,t)=—f

R

a(w)=1, this value corresponding to €—-0 (no spatial
memory effect). On the other hand, if such an equivalent
local modeling exists, a(w) can be determined to minimize
the difference of mechanical power:
A2 () ={(flo)—F(a), (@), (29)
where fe(m,m) and f(m,cu) are given by Eq. (1) with
Z(m,m’',w) constructed, respectively, in using z, defined
by Eq. (23) and z,y, defined by Eq. (28). 4 priori, a(w) is
a complex-valued random variable and must be determined
statistically. It is not self-evident that the impedance de-
fined by Eq. (28) can model correctly a structural fuzzy
with spatial memory. We have checked that it is possible

7#@,11&10&(12131‘):1(1&&1@# . by studying the example of a straight beam; having a finite

(21)
Taking the Fourier transform with respect to ¢ of Eqs. (20)
and (21), using the properties of the function g,, eliminat-
ing the field #'(m',w) between the two transformed equa-
tions and introducing the velocity 6(m',0)=iwid(m’,0),
we obtain the relation:
Felmw)= j z(m—m'0)d(m’ w)dm’, (22)
R
which is the convolution product z.(..»)#*5(.,®), and
where z,(m—m’,w) is such that:

iwz(m—m',w)dm'=a()5y(m'—m) —a(w)*b(e) !

Xhe(m—m")dm', (23)
a(0) =2iokpo,+po), (24)
b(w) = —a’n+2iotpw,+po?, (25)
he=gg.. (26)
Iet wus note that if €e—0, the impedance

z(m—m',w)dm'—z(w)(m'—m), with z(w) defined by
Eq. (6) and, by Eqgs. (8)-(10), i.e,, if the length of spatial
memory tends towards zero, then the underlying determin-
istic mechanical system is the simple linear oscillator ex-
cited by its support and used in the modeling of the type I
law.

From a point of view of the modeling, the law that
would be based on Eq. (23) would not be completely sat-
isfying because, due to its nonlocal nature, it would induce
an increase in the numerical difficulties for solving the cou-
pling with the master structure. Our final objective is then
to construct an equivalent local law by introducing an
equivalent coupling factor that we will denote by a(w).
Therefore Eq. (22) is replaced by

F(m,e) =zeqy(0)6(m,0), @27

where the local impedance z.., (), which does not depend
on m for all meS;, is such that

0z (@) =a(0) —a(0)*b(0) " 'a(0), (28)

with a(w) and b(w) given by Egs. (24) and (25). We see
that the type I law is deduced from Eg. (27) in taking

length L, excited in bending mode, weakly damped, with a
structural fuzzy given by Egs. (22)-(26) with

ge(m)=€e"2(e—|m|)1;_.q(m), (30)
where c,=2¢/L represents the effective length of the spa-
tial memory, and where 4, £, and @, are modeled by the
random variables defined by Egs. (11)—(15). For each
value of @ we have calculated by Monte Carlo simulation
an estimation of the statistical mean of the random variable
a(w) which minimizes Eq. (29). We have shown in
detail'® that for the small values ¢,<0.04, we could replace
a(w) by the statistical mean of its modulus |a(w)|, be-
cause first the mean of the phase is close to zero and second
the root-mean square of the random variable |a(w)| is
much smaller than its mean. For ¢.>0.05, the above hy-
potheses are not so well satisfied, but in this case we have
proved!? that the structural fuzzy has practically no effect
on the dynamical response of the beam and consequently,
we can keep these hypotheses for the construction of the
type II law, for any value of the parameter c,.

Finally, the type II probabilistic constitutive law is
constructed by starting from the above deterministic mod-
eling defined by Eq. (28), where for each o fixed, the
parameters p(w), £(w), and n(w) are the random vari-
ables which are modeled by Egs. (11)—(13), and where the
equivalent coupling factor a(w) is the real positive valued
random variable:

a(w)=a(w)(1+Y(w)), (31)
where a(w) is the mean value that is a real function with
values in [0,1], and where ¥,(w) is the random variable
defined in Sec. III A. The probabilistic modeling of the
parameters is exactly the same as that for the type I law
and consequently Egs. (14)-(18) hold in taking in the
formula the value d=4. The approximation of the imped-
ance z,q, is always denoted by z(w;4), is constructed as
indicated in Sec. IIT A, and is given by Eq. (17) with
2(@;A) =E{z,q,(e2;4)} given by Eg. (16), where R, I,R;,
and I; for je{l,..,4} are explicitly given by the following
equations which are proved in Ref. 19.

For @€]0,Q1[, i.e., below the cutoff frequency, we have

R(eA)=p(w), (32)



I(w;4) =0, (33)
Ri(@;2) =3""u(w)A, (), (34)
Ri(@;A)=0, for je{2,3,4} (35)
I(@A)=0, for je{1,2,34} (36)

For we[Q,,+ ], i.e., above the cutoff frequency, we have

Jz(co,x,y) :_g(a))#] [x—»g(m) }Jo(m»x,}’),

1 (1+») (N (,x,p)
7z 0 ),

J3(m,x,y)=m~"4(1_,x2) D(w.x,)

Jilax,p) =yl (w,x.y),
Js(@,x,y) =£(w) ~x—£(w) [3(wxp),

R(od) =B () pR (@A), azy | S
RN PR | T ;) 2
R(0;A) =B (0;4) pR(w;2), (38) Pulody=y = B fai ),
e = l T f 2—1 /2,
Ry(w;d) =75 (w:d)a(w)ds(@;A), (39) LD 1]
3, o 2 1 0 3
R_;(m;l);y?(a;;ﬂ.)_g(&))_._@(@:ﬂ). (40) e
y N(oxy)=[U,(0y)+ W (0xp)]
Ry(wA) =B (o;0)a(w) [ko(@;d) +3(w54)],  (41)
X[U_(oyp)—W_(oxy)],
I(w;h) =Bh() p’(a4), (42)
D(m,xgy)=[U+(a)s)’)—W+(fﬂ,xd’)]
Ii(as1) =B(w;A) p' (@A), (43)
Bl 1 ) X [U_(ey)+W_(axy)],
Li(w;A)= A [37 K (@)A () (1 —a(w)
(@ Hw;d) [37 k(@) A3(0)(1—a(o)) U, (o) =200, (09) +1],
+ Jo(w;A) ], 44
g(w)_l(ﬂ) )] (44) Wi(m,x,y)=2(1—x2)l/2[1=i=T(fﬂsy)]-
L) =ri(@)e(@)i (@A), (43) " If we take the special values a(w)=1 and 44(»)=0 into
I(w:A) =B o) (o) [Jo(w:d) —k (@) ], (46) Eqgs. (32)-(46), we get the explicit formula for the type I

with
Bg(w)=wg(co)ﬁ(m),
Bilw)=2""ro'u(0)n(w),
BY(w;4)=3""4;(0)Bf (@), for j=14,
Bj(oA)=3"""4(@)By(w), for j=14,
YH(eA)=3"2(0) "'Bf (), for j=23,
VYilwh) =371 (@) " Bol@), for j=2.3,
pR(ed) =kp(wA) (@(o) —1)+a(w)s(w;h),
pl(wA) =k (0)(l —a(w))+al(w)fy(o;d),

1 1
an(@) T Ror (@) (1 —A(@)’

KolesAd) =

Ky () =4¢(0) [ron(0)] 7,
and where for k€{0,1,2,3,4,5}, we have

1 |
Jk(w;/l)=zf dyzj dys
el i
XJi(@,E(@) [14+42()y2]A35(@)p3),
with
To(@xy) ="' (1=x*)~"*(1+y)[arctan ¥, (w,x,9)
—arctan Y_ (w,x,y)].

Ji(a,x,y)=plo(wx,p),

law developed in Sec. ITI A. Let us note that the integrals
J(@;4) are computed by a numerical method.

IV. MODELING IN THE MF RANGE FOR
VIBROACOUSTIC PREDICTIONS USING
STRUCTURAL FUZZY

This section deals with the modeling and the mathe-
matical formulation in the medium-frequency range for
vibroacoustic predictions using the theory of structural
fuzzy. The formulation developed is specially adapted to
numerical methods for complex geometry and to analytical
analysis for simple geometry.

The physical space R’ is referred to a Cartesian refer-
ence system Ox,x,x; and we will denote by x= (x,%;,%3)
the generic point m of R®. The geometry of the coupled
system and the notations are defined in Fig. 2. The external
fluid occupies the open unbounded domain Dg of R? with
boundary 2. The primary structure is an elastic contin-
uum that occupies the open-bounded domain Dg of R?
with boundary dDg=3zUZgUZ,UT. The part I is the
common boundary between the structural fuzzy and the
primary structure. The internal fluid occupies an open
bounded domain D; of R? with boundary X;. We denote as
n the unit normal to d D external to Dy and we denote as
n’= —n the unit normal to Z; external to Dj.

A. Boundary integral equation formulation for the
exterior Neumann problem

To formulate the coupling between the primary struc-
ture Dy and the external unviscous compressible dense
fluid Dp, it is necessary to solve the following harmonic
exterior Neumann problem for Helmholtz equation:
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R’, which is written as G(x,x")=—(4|x
—x'|)~! exp(—i[|x—x'||w/c). The variational formula-
tion yields the following operatorial boundary integral
equation:”

0 A Aj[w
Q|| A, Al

where A, A, and A; are the linear operators such that, if
8¥ and 8 are any test functions belonging to the admis-

sible class of functions associated, respectively, with ¥ and
v, we have

el b v &Y ds’
((AﬂP,c‘S‘I’)):J‘ZE J-zg (EE) WV ds’ ds, (54)

(53)

FIG. 2. Geometry of the coupled system

Vi®+ (0/c)*®=0 in D, (47)
il = 48
a]] =v on E>» ( )
ae idw BN 2l ol
re— (r=%), |®|=007"), r=|x|-+,

(49)

where @ is the harmonic velocity potential, ¢ and p are the
acoustic fluid velocity and the density of the external fluid,
and 0 is a normal velocity field defined on 2z with values in
C which depends on o, where weR is the angular fre-
quency. The harmonic pressure field is such that

p=—iwp® in Dg=DgU3g. (50)

For all @ fixed in R, the problem defined by Eqs. (47)—
(49) has a unique solution®?® and there is two linear op-
erators B(w/c) and % (x,w/c) such that

®=B(w/c)i on Zg, (51)

D (x)=Z (x,w/c)D, (52)

For some simple shapes, these operators can explicitly be
constructed.”™?* For the general case in the MF range,
numerical methods based on boundary integral equations
are necessary. Several boundary integral equation formu-
lations related to 2 can be used to construct the operators
B(w/c) and # (x,w/c), but we know?*>?* that Egs. (47)-
(49) are always a unique solution for all real @. However,
some boundary integral equation formulations do not yield
the solution for a set of discrete frequencies, that we will
call the “irregular frequencies.” Of course, for this irregu-
lar frequencies we know that the Fredholm’s alternative is
verified.?> In practice, for any general geometries of g,
the values of these irregular frequencies are unknown be-
fore performing any calculations. Consequently, for the
general case, we used the following boundary integral
equation®’ that eliminates automatically the numerical dif-
ficulties induced by the irregular frequencies. Let G(x,x")
be the fundamental solution of the Helmholtz equation in

Yxe DE'

((A0,80)) = — f Gi' 86 ds’ ds, (55)
3p JEg
1 ) d'G
((A3W,65>>=—f ‘Péuds—f f — V' 85 ds’ ds,
2 zE ZE EE a’n
(56)

where ds is the surface measure borne by X, where the
“prime” is related to the point x" and where A} denotes the
algebraic transposition of the operator A;. Using differen-
tial geometry calculus and Stokes’ theorem, Eq. (54) can
be written as:**

((Al\l’,tS‘-I:'))=—jI .l.}: G(d(8¥ dx),d' (V' dx'))
E Y ZE

o
+—Cy J- G{nn' )V’ 6V ds’ ds,
ip J g

(57)

where d and d’ denote the exterior derivative operator with
respect to x and x'. The complex-valued boundary integral
operator defined by Eq. (53) is algebraically symmetric
but not Hermitian. For all fixed @R and for all suffi-
ciently smooth field § defined on 2z, Eq. (53) gives the
unique solution @ of the exterior Neumann problem and
yields the construction of the operator B(w/c) defined by
Eq. (51). Let us note that the right-hand side of Eq. (57)
allows us to use the space of all the continuous functions
on X for constructing the numerical approximation by the
finite element method. Finally, the radiating operator
A (x,0/c) defined by Eq. (52) for all x in D is written as:

R (x,0/c) =R (x,0/c)+ R, (x,0/c)B(a/c), (58)
where Z,(x,w/c) and #,(x,w/c) are the two linear oper-

ators such that:

.@,(x, ?)5= Gi' ds', (59)
c g

’

e D o o
ﬁz(&?)Q:—J;E an’ 5.

Where 2 is a slender surface of revolution, an asymptotic
method was developed” and it allows a decrease in the
numerical costs.

(60)



B. Actions due to acoustic scattering from the
structure ,

Let us consider the mechanical system under the ac-
tion of an incident acoustic wave in Dg and any applied
forces. Let x—U(x,@) be the total displacement field de-
fined on Dg with values in C’ of the primary elastic struc-
ture at frequency . Consequently the boundary 2 is sub-
mitted to the displacement field x—ii(x,@), which is the
trace on Zz of the field U. The incident acoustic wave is
defined by a velocity potential ®; with values in C, verify-
ing Eq. (47). Let @ be the total velocity potential verifying
Egs. (47)-(49). The Neumann boundary condition on Zg
defined by Eq. (48) is such that #=iw (@,n). Then, we can

verifies Egs. (47) (49) with the Neumann condition on
3 ;:00/dn=5—0P/dn. Therefore, we deduce from Eq.
(51) that ¢> “'B(a)/c){lm(u n)—3ad/dn}. We deduce
from Eq. (50) the expression of the total pressure field on
PP

b=pu+b, e
w 3‘13,

Du= —iwp{fb,-+B (;) (—E‘)] (62)

Br=0w’pB(w/c)({in)). (63)

At any point x in D, the total pressure is written as:

P(x.0)=p(x,0)+p(x,0), (64)

where p,(x,0)=—iwp®,(x,0) is the incident acoustic
wave and p,(x,w) is the scattered pressure which is such

that

A w 3 A

p,(x,w):é?(x, E) :w(u,n)—g .
Let 8U be an any C’-valued admissible displacement field
defined on Dg of the primary structure and du its trace on
Zg. Then the C*-valued force field fE applied to the pri-
mary structure and due to the action of the external fluid is
defined by the equation:

0P;
(65)

(Ez,5U)) = — L (Sundpds,
E

where j is given by Egs. (61) to (63). Therefore, we can
write
fr=f4+0™Bel0/0), (66)

where f‘,—d is the external force field due to the action of the
incident wave on the structure and which is such that

{(Fg,8U))=— | (Sun)pyds, (67)

g

with j; given by Eq. (62) and where Bg(w/c)is the exter-
nal fluid coupling operator which is such that

((nf( )Usu)>=_ L p(5u,n)B (%) ((,n))ds.
E
(

68)

C. Modeling of the primary structure

The primary structure is an inhomogeneous, aniso-
tropic, linear viscoelastic solid continuum Dgs. Let
x—U(x,@) the C-valued displacement field of this pri-
mary structure defined on Ds. Let Mg, Cs(@), and Kg(w)
be the mass, damping, and stiffness real linear operators,
constructed by the variational formulation, and which are
positive-definite symmetric.”*°>* The dependency on  of
Cs; and Kg is due to the presence of viscoelastic
materials.”**** Then, the impedance operator Zg(w) of
the primary structure is such that

i0Zs(0)=—*Ms+ioCs(w) +Ks(o). (69)

——————write ®=&;+P;; where the scattered velocity potential @, We- will denote as fs the element that represents the applied

mechanical forces on the primary structure and which de-
pends on the frequency w.

D. Modeling of the internal fluid

The internal fluid D; is compressible, with density p;
and acoustic velocity ¢;. It is assumed that there is a source
term QI in the internal fluid D; and we denote as j; the
pressure field in D,=D,U3,;. For the MF modeling, the
formulation is written with a velocity potential ®; which is
the solution of the following internal Neumann problem:

div([14+ioB (@) V) +(0/c) *®=pr'0; in Dy,

(70)
[1+i08(w) =iw(li,n) on Z;, (71)
pr=—iop/®; in Dy, (72)

where 1 is the trace of Uon= ;- Coefficient 3, is real and
depends on x and w. For B;=0, we have an usual inviscid
compressible fluid (acoustic fluid). For certain models in
the MF range, it is advantageous to have an inhomoge-
neous dissipation term depending on the frequency to sim-
ulate loss phenomena in the neighborhood of walls of the
acoustic cavity or in certain parts of the fluid domain D;.
For modeling an inhomogeneous dissipation, we writte
B,(x,m):v(x,m)cfz, where v(x,w)€R™ has the dimen-
sion of a kinematic viscosity coefficient.

Let 65U and 6@, be any test functions belonging to the
gdmissible class of functions associated, respectively, with
U and @, and 8u is the trace of 6U on Z,. The variational
formulation yields the excitation source §;, the fluid-
structure coupling operator H; such that

(d7,60)) = L 0,59, dx, (73)
I

(Hf0, 80y = [ prlbun)®sds (74)
%

and the impedance operator Z;(w) of the internal fluid

such that

i0Z(0)=—0"M;+ioC/w)+K;, (75)

with M;, C;(@), and K;, the mass, damping, and stiffness
real symmetric positive operators defined by



((MD;,60,)) = fﬂ prc 60, dx, (76)
I -

({C(0)D;,69))) = JD piBi(@) (YO, V(6d,))dx,
I
(77)
((K;®;,69,)) = J.D pr{V®,V(5®)))dx. (78)
7

E. Modeling of the structural fuzzy

The structural fuzzy is applied to the part I" of bound-
ary dDs. Using the developments of Secs. II and III, the

_ boundary impedance operator of the structural fuzzy, de-

noted as Z and related on the C*-valued velocity field ioU
of the primary structure Dg, is constructed by using the
different probabilistic constitutive laws related to the
classes of fuzzy of the actual problem. Taking into account
_ the form of the Egs. (16) and (17), Z; will depend on @
and on the vector-valued dispersion parameter
w—A(0) =(A,(@),...A (@)) with values in ([0,1[) L CRE,
where L is a given positive integer. For any fixed o,
Zr(w;A) is a complex operator-valued second-order ran-
dom variable defined on the probabilistic space
(&, ,7 ), which is algebraically symmetric and which is
such that

Zr(w;d) =Zr(o;4) +Z,(w34), (79)

where Zp(w;4) =E{Zr(w;A)} is the mean which is such
that

i0Zr (0;4) = —’Rp(@;4) +iolr(a;4), (80)

and where Z?(co;i) is the random fluctuation which is
such that
L
iwZ, (0A) = Z X (—o™Rrj(0A) +iolr j(@;4)),
e (81)

with X,...,X; some real-valued centered random variables
defined on (#,%,% ), mutually independent, with unit
variance and uniform probability law. By construction [see
Eq. (18)], if [|[A(@)]|,—0, then Zp(w;A) —»Zr(w;4). Fi-
nally, for any , Rr(@;4) and Ry ;(w;4) for je{l,..,L}
are real symmetric operators, and, Ir(w;A) and Ip, j(m;zl)
for je{l,..,L} are real symmetric positive operators.

F. Probabilistic equation for fluid-structure
interaction with structural fuzzy

Using Egs. (66), (69), (73)-(75), and (79), we ob-
tain by assembling, the equation of the vibrations of the
master structure (i.e., primary structure with external and
internal fluids) with its structural fuzzy, which is written
with the operatorial notation as

10| Zina () + Zioy (0;4) W (0) =F (0),

where the state variable W and the excitation term F are
written in block form as

(82)

(83)

?

ﬁ « f' +E‘d
® ] Y
1 qr
where the impedance operator Z_, (@) of the master

structure is such that

-

10Z g5 (0) = — ™M, +iwC (0) + K (o) —0*By(w/c),
(84)

with M;, C(®), K,(w), and By(@/c) the operators writ-
ten in block form as

M 1 M_g CS(GJ) —-H[
w)= 0 —Mz]’ Ci(w)= _H —C,(m)]’
(85)
Ks(w) 0 ~ [Bgle/c) 01
K](CU)= 0 --'KI], BO(C‘)/C)= 0 0]’
(86)

and where, thanks to Eq. (79), the boundary impedance
operator of the structural fuzzy is written as

quz(m;}') =quz(m;i) +Zna(w;A), (87)
where Zg,(@;A) =E{Z,,(w;A)} is the mean that is writ-
ten in block form as
Zr(w;A) 0

0 0]'
with Zp(w;A) given by Eq. (80), and where Z,,4(w;4) is
the random fluctuation such that

L
i0Z ga(@;) = Y X{—0'R;(0;A) +iol;(w;A)),
e (89)

the operators R;(w;A) and I;(w;4) for je{l,..,L} being
such that

Zs,(0;A) = (88)

0 0 0 ol

(90)
Let us note that the operator io(Z (@) +Zs, (@;4)) is
complex symmetric but non-Hermitian.

Rp (e;A) 0O I (@A) O
Rj(fﬂ;j-)=1 ot ]a (s =[ K ]

V. FUZZY SOLUTION IN THE MF RANGE

To construct an approximation of finite dimension of
the operatorial Eqgs. (82) and (65), we use the finite ele-
ment method.?****** Boundaries =z, Z;, and T are
meshed with finite elements: (1) which are compatible on
> with the finite elements of the primary structure”'7
and with the finite elements of the external fluid coupling
operator,”'®? (2) which are compatible on 2; with the
finite elements of internal fluid,”®'® and (3) which are
compatible on I with the finite elements of the boundary
impedance operator of the structural fuzzy.’ To simplify
the writing in the following, we will keep the operatorial
notations before discretizing the operators.

To obtain an efficient numerical method for construct-
ing the fuzzy solution in the MF range of Egs. (82) and
(65), two main problems have to be solved. The first one



concerns the effective construction of the random solution
of the probabilistic Eq. (82). The second one is to use an
adapted MF analysis that avoids computing the solution at
all discrete frequencies by solving directly a linear equation
frequency by frequency, because the finite element models
that represent a realistic fluid-structure interaction prob-
lem with structural fuzzy in a wide medium frequency
range, have very large number of degrees of freedom and
we want to decrease the numerical cost. This kind of prob-
lem is well known and the reader will be able to find some
explanations of this situation for instance in Soize®” and

Vasudevan.'?

W(w:d) =W (w;d)

+§1 2

(k)
XJ kwf

@A) 1,
(98)

with % = + o, where W@ (@:1) is the solution of the
deterministic linear equation:

i0Zo(w:A) WO (034) =F(0), (99)

and where Wﬁ" J,-k{o:u;l) for k>1 are the solutions of the
following recurrent deterministic linear equations:

A. Construction of the random solution

Let B=[w;,@00.] CR™ be the MF band of analysis.
Considering Eq. (87), we can write Eq. (82) as

i [ Zo( @A) + Zegra(0:4) IW (0) =F(w), (91)

where Zy(w;A) is the deterministic impedance operator,

Zo(;A) =Zpa (@) + Zgy (034), (92)

and where Z_, 4(w;A) is the random operator due to the
fluctuations of the structural fuzzy and defined by Eq.
(89).

We have proved' that, with some usual smooth hy-
potheses that are sufficient for the applications, and if the
vector-valued dispersion parameter A of the structural
fuzzy is small enough in norm, i.e., if there exists A, suffi-
ciently small such that

0 < sup||A(@)]| . <o, (93)

weB
then we have the following results: (1) Eq. (82) has a
unique solution almost surely for any weB; (2) for all
weB the operator Zy(e;A) is invertible; (3) setting

we can write Eq. (91) as

i0Zo(oA) [1-T(w;4) |W(0) =F (), (95)

and for any weB we have the Neuman’s expansion:**

[1-T(w;4)] = Z T(w:A) (96)
the series of the right member of Eq. (96) being almost

surely convergent.
Therefore, the random solution of Eq. (82) can be

written for any w€B as

+w

W)= 2 T(wA) iwZo(aA)]~'Flw).  (97)
k=0

Substituting Eq. (94) into Eq. (97) and using Eq. (89), we
deduce that the random solution given by Eq. (97) admits
the expansion:

iﬂJZO(&J;A')Wfif,)___'jk(m;A) =f75'f,)...,jk(m;’l}' (100)
I},S'f,)....jk(m;l) =—| —mszk(@;i) +iol; (;4)]
XWED  (034), (101)

with the convention that w”‘] @A) = WO (w;4) for
k=0. Of course, the recurrence is limited to a finite integer
#">1, and we will say that we have constructed the solu-
tion of order J%". Full mathematical details about the con-
vergence of the solution in function of 5 and %" can be
found in Soize.! As soon as the deterministic fields
Wf,i" j (@A) for 0<k<Z" are known by calculation for
any weB (see Sec. V B), we deduce directly from Eq. (83)
and without computation the deterministic fields
U (@A) and cb,“" (0;4) for 0<k<.¥’. Therefore,
we deduce the J"- order expansmn of the following factors.

(1) The displacement field U(w:A) of the primary
structure Dy and its trace @i(w;4) on Z¢

Uw:4) =09 (w:1)

o L
5 2 Y XX, U0 (o)),
k=1 | j1omjp=1

(102)

and, hence, the velocity field :aU(aJ A) and the accelera-
tion field —w?U(w;A):

(2) The pressure field in the internal fluid D; by using
Eq. (72):

BrlwA) =P (w;4) + E Z XX,
k=1 [ jimafe=1
xXppy) (@), (103)
with p Am (mﬂ) - “"”P}q’(k) (m)u) for O<k<H

{3) The scattered pressure m the external fluid at any
point x€ Dy due to the incident acoustic wave and to the
other actions, by using Egs. (65) and (102):



B(x,0;4) =p% (x,0;1)

5
+P[ z Xy X80 ()
=1 i

O(x01) =2 (x ;)

(i (@;4),n) ——]

ﬁs(k) j (x,0;1) =.@(x,w/c){fﬂ)(ﬁ‘(ff,)__,,

sled)m},  (104)
for 1<k<.% . Let us note that Eq. (104) yields also the
radiated pressure due only to the actions of the applied
force f on the primary structure and of the source term @,
in the internal fluid if the incident acoustic wave vanishes,

B. Brief remarks about the method of analysis in the
MF range

Taking into account Egs. (99) and (100), we see that
the equations that we have to solve are all of the following

type:
iwZo(0)W(0) =F(w), (108)

for weB, where the unknown is W(m). We can write
—0’By(w/c) = —0™My(w/c) +ioCy(w/c),  (109)

where My(w/c) and Cy(w/c) are some real symmetric op-
erators, and where By(w/c) is the external fluid coupling
operator defined by Eqgs. (68) and (86). Then, thanks to
Eqgs. (80), (84), (88), (92), and (109), Eq. (108) can be

1e if &;=0. In this last case, d®,/dn=0in Eq. (104), and
,-d—O in the Eq. (83) which defines F.

We see that Eqs. (102)-(104) are of the same type
and consequently, any scalar observation of the mechanical
system (for instance a coordinate of the acceleration of the
primary structure at a fixed point, the pressure in the in-
ternal fluid or the scattered pressure in the external fluid at
a fixed point) will be denoted by F(w) and will be a
C-valued random variable that depends on the parameter A
and that admits the % -order expansion:

x
Ho)=F o)+ X E X; X B0 (@)
k=1 ] u'k—
(105)

For the applications we are interested in three types of
quantities associated with #(w).

(1) The first type concerns the real part, the imaginary
part and the square of the modulus of 7(w), i.e., the fol-
lowing  mappings w—Re{fw)}, w—Im{f(e)},
w—|Fw) |2

(2) The second type is related to the average of quan-
tities calculated over a small frequency band of bandwidth
bw, and defined by

w+bw/2

(f)(m')=(5«_-;)—1f Rz, (106)

w——b6w/2
and concerns, as the first type, the real part, the imaginary
part, and the square of the modulus of (7)(w), i.e., the
following mappings w—Re{(F)(w)}, etc.

(3) The third type concerns the energy & (w) of 7 in
the subbands [0 —8w/2,0 +8w/2] defined by the formula:
w+dw/2

%’,(m)=(217)_1j |#(@) |? do. (107)
w—0bw/2

We can calculate all the desired statistical moments of the
random variables of the first, second, or third type, by
using Eq. (105) and the usual results concerning the trans-
formation of finite vector-valued random variables.*"*? In
particular we are interested in first two second-order mo-
ments, i.e., the mean value and the root-mean square of
these random variables. For instance, for the first-order
expansion (% =1), the calculations are algebraically sim-
ple but sometimes fastidious and are not reproduced

here.>?

written as
(—o™(0) +i0C(0) +K(0))W (o) =F(w), (110)

where M(w), C(w), and K(w) are three real symmetric
operators that can be expressed in terms of the previously
defined operators: Mg, Cs(w), and Kg(w) (primary struc-
ture operators), M;, C;(w), K, and H; (internal fluid
operators), My(w/c) and Cy(w/c) (external fluid opera-
tors), Rp(w;A) and Ir(w;A) (structural fuzzy mean oper-
ators). For solving Eq. (110), we use the MF method that
we have developed® and that has been validated in previous
works. €12 This method avoids computing the solution
W(m) at all discrete frequencies by solving directly the
linear Eq. (110) frequency by frequency. It is based on
specific time integration and transform techniques and al-
lows us to compute the solution W(m) at all discrete fre-
quencies, but with a numerical cost that is much smaller
than the numerical cost induced by the direct frequency
per frequency method or by the direct time-integration
method. Let us note that this MF method yields the real
and the imaginary parts of W(m), i.e., the modulus and the
phase, at all discrete frequencies. Consequently no new
approximation or no new average is introduced at this level
of the present construction. Full details about this MF
method applied to an equation of the type (110) are given
in Soize*™ and a brief review is given in Soize.'®!

VI. NUMERICAL SIMULATIONS AND APPLICATIONS

This section deals with three applications. The first
and second one are relatively simple structures in a vac-
uum using type I and type II probabilistic constitutive
laws, and give some elements which validate the theory of
the structural fuzzy. The third one concerns a highly com-
plex structure submerged in water for which the radiation
problem is studied. All the results presented hereinafter
have been performed at ONERA with a general finite ele-
ment structural code in which the fluid—structure interac-
tion (external and internal fluids), the theory of structural
fuzzy, and the MF method for constructing the solution in
the MF range have been implemented. The third example
has been performed on a CRAY computer. All the results
presented correspond to a first-order expansion of the ran-
dom fluctuation of the solution.



A. Beam in a vacuum with type | structural fuzzy

(1) The master structure is a homogeneous cantilever
beam running along the x axis, having length L=2 m,
clamped at x=0, free at x=L, with constant cross-
sectional area 10~* m? mass density 31400 kg/m’,
Young’s modulus 2.1x 10" N/m’ bending inertia 10~*
m* and structural damping rate 0.003. The frequency band
of analysis studied is B=[0,1000] Hz. It is excited in bend-
ing mode in the (x,y) plane by a point force applied at
x=2 m, with unit modulus and flat spectrum over all the
band B. For the MF analysis method,®’ the band B is
partioned into 10 MF narrow bands. Each MF narrow
band has a bandwidth Aw =27 100 rad/s.

(2) The structural fuzzy is applied on all the length of
the beam and is modeled by a homogeneous orthotropic
fuzzy with continuous boundary, constructed with the type
I probabilistic constitutive law. The input fuzzy parameters
of this type I law have the following values for each MF
narrow band (see Sec. IIT A): u=5.196 X 10~3 kg/m with
dispersion parameter A,=0.4, £=0.002 with dispersion pa-
rameter 4,=0.001, and 75'.!=2._'I'56><10_2 (rad/s)~" with
dispersion parameter A;=0.4.

(3) With the theory of the structural fuzzy, the master
structure is modeled by straight two-node beam finite ele-
ments, and the type I law orthotropic fuzzy with continu-
ous boundary, by two-node line finite elements.

(4) The solution of reference is constructed by the
Monte Carlo simulation method. The structural fuzzy is
modeled by N simple oscillators for each MF narrow band
of bandwidth Aw, acting in the y direction, and which are
homogeneously and randomly attached along the master
structure. The value of N is such that® n = \/_A_’/ Ao which
yields N=300. Each oscillator is a damping-truss element
with a critical damping rate £,=0.002 and a concentrated
mass py=6x10"* kg such that’ p=u, JN/L. Conse-
quently, we see that on each MF narrow band, the ratio of
the mean mass of the structural fuzzy over the mass of the
master structure is only 2.86%. The master structure is
modeled with 300 straight two-node beam finite elements.
All the parameters and the location over the beam of each
oscillator are simulated using the probability density func-
tion defined by Eq. (15).

(5) Figures 3 and 4 are relative to the y acceleration of
the beam at x=1.4 m. Let us recall that excitation is at
x=2m. Fig. 3(a) and (b) concerns the acceleration ener-
gies calculated by Eq. (107) with Sw=27X5 rad/s, and
Fig. 4(a) and (b) are relative to the real and imaginary
parts of the acceleration response, calculated by Eq. (106)
with =27 x5 rad/s. On Fig. 3(a) and (b), we show the
mean response and the root-mean square in dB of the mas-
ter structure with structural fuzzy. The agreement between
the response of reference performed by Monte Carlo sim-
ulation (thin line) and the response obtained by the theory
of structural fuzzy (thick line) is excellent for the mean
reponse and for the root-mean-square response. Figure
4(a) [respectively (b)] shows the mean response (thick
line) and the root-mean-square response (thin line) in
m/s? for the real part ( respectively, the imaginary part) of
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FIG. 3. (a) Mean values and (b) root-mean-square values, in dB, of the
transverse acceleration energies over a 5-Hz bandwidth, at x=14mof a
cantilever beam in a vacuum excited by a unit transverse load applied at
x=2 m, without structural fuzzy [thin broken line on Fig. (a)], and with
a type I structural fuzzy performed by Monte Carlo numerical simulation
(thin lines) and by the theory of structural fuzzy (thick lines).

the response obtained with the theory of structural fuzzy.
Finally, one can see in Fig. 3(a) the response of the master
structure without fuzzy (thin broken line), and which is
typically modal, but despite this and the weak mass distur-
bance introduced by the fuzzy, the smoothing of the reso-
nance peaks is very large.

B. Beam in a vacuum with type Il structural fuzzy

(1) The master structure is a homogeneous beam run-
ning along the x axis, having length L=2 m, simply sup-
ported at x=0 and at x= L, with constant cross-sectional
area 10~* m? mass density 20 000 kg/m’, Young’s mod-
ulus 2.1 10" N/m?, bending inertia 10™'? m* and struc-
tural damping rate 0.003. The frequency band of analysis
studied is B=[300, 600] Hz. It is excited in bending mode
in the (x,y) plane by a point force applied at x=1 m, with
unit modulus and flat spectrum over all the band B. For
the MF analysis method,%” the band B is partioned into 3
MEF narrow bands. Each MF narrow band has a bandwidth
Aw=27x 100 rad/s.

(2) The structural fuzzy is applied on all the length of
the beam and is modeled by a uniform orthotropic fuzzy
with spatial memory (its a fuzzy with continuous bound-
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FIG. 4. (a) Real part and (b) imaginary part, in m/s%, of the transverse
acceleration averaged over a 5-Hz bandwidth, at x=1.4 m of a cantilever
beam in a vacuum with a type I structural fuzzy, excited by a unit trans-
verse load applied at x=2 m. Mean values (thick lines) and root-mean-
square values (thin lines), obtained by the theory of structural fuzzy.

ary) and constructed with the type II probabilistic consti-
tutive law. The input fuzzy parameters of this type II law
have the following values for each MF narrow band (see
Sec. ITI B): p=8x10"* kg/m with dispersion parameter
A,=0.1, £=0.003 with dispersion parameter 1,=0.001,
n=2256%10"2? (rad/s)~' with dispersion parameter
A3=0.1, and for the mean value of the equivalent coupling
factor a, the values defined by the graph of Fig. 5, which
depends on the narrow frequency band and on the length
of spatial memory ¢,=2¢/L that we have introduced in
Sec. III B. The corresponding dispersion parameter is
A4=0.001.

(3) With the theory of the structural fuzzy, the master
structure is modeled by straight two-node beam finite ele-
ments, and the type II law orthotropic fuzzy with contin-
uous boundary and spatial memory effect, by two-node line
finite elements.

(4) The solution of reference is constructed by the
Monte Carlo simulation method. The structural fuzzy is
modeled for each MF narrow band of bandwidth Ae, by N
oscillators following the discrete model'® associated with

FIG. 5. Mean value of the equivalent factor & of the type II probabilistic
fuzzy constitutive law for a simply supported beam of length L=2 m in
a vacuum, as a function of the fuzzy spatial memory length ¢,=2¢/L
expressed in percent, and statistically estimated with the Monte Carlo
simulation method. Results for different frequency bands: [300, 400] Hz
(thin line), [400, 500] Hz (thin broken line), [500, 600]Hz (thick line).

the continuous model defined by Eqgs. (19)—(26), the law
of the coupling memory used being defined by Eq. (30).
These oscillators with spatial memory act in the y direc-
tion. In fact the equivalent coupling factor @ of the Fig. 5
has been determined as we have explained in Sec. III B.
The value of N is such that'® n = \ﬁ\-’/ Aw which yields
N=201. Each oscillator with spatial memory has a critical
damping rate £,=0.003 and a concentrated mass
po=1.128 X 10~* kg such that'® g=po [N/ L. Let us note
that in Eq. (19), parameters £, and 4 are denoted respec-
tively as £ and p. Consequently, we see that on each MF
narrow band, the ratio of the mean mass of the structural
fuzzy over the mass of the master structure is only 0.56%,
i.e., less than 19%. The master structure is modeled with
200 straight two-node beam finite elements. All the param-
eters and the location over the beam of each oscillator are
simulated using the probability density function defined by
Eq. (15) with d=4.

(5) Figure 6 gives the y acceleration of the beam at
x=1.2 m with structural fuzzy with spatial memory, and
concerns the mean value in dB of the square of the mod-
ulus of acceleration at discrete frequencies, with a resolu-
tion of 10 Hz. The agreement between the responses of
reference performed by Monte Carlo simulation for two
lengths of spatial memory ¢,=1% (thick broken line) and
¢,=3% (thin broken line), and the responses obtained by
the theory of structural fuzzy ¢,=1% (thick line) and
¢.=3% (thin line), is satisfying.

C. Far field radiated by an highly complex
submerged structure with structural fuzzy

We are interested in this application to calculate in the
MF range the acoustic field radiated by a complex struc-
ture with structural fuzzy, immersed in water and excited
by mechanical forces applied to the structure.

(1) The primary structure is a slender steel shell cyl-
inder having a large number of transverse stiffeners, a few
transverse walls, and several internal three-dimensional
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dB, at discrete reduced frequencies, pressure which is ra-
diated in the far radial direction passing by the point my.
Figure 7(a), (b), and (c) shows, respectively, the levels
for the M p, Fr, and F , forces. On each figure, the thick
line represents the response of the master structure with
the structural fuzzy, and the thin line the response without
structural fuzzy. Figure 7(c) shows that the structural
fuzzy has a small effect on the pressure levels because in
this case the orthotropic fuzzy acts in the radial direction
of the shell while the axial excitation F, induces mainly
axial dynamical deformations in the shell, and conse-
quently, this structural fuzzy has a small effect on the lev-
els of radiated pressure. However smoothing of the peaks is
preserved in the three cases.

FIG. 6. Mean values in dB at discrete frequencies of the square of the
modulus of the transverse acceleration at x=1.2 m of a simply supported
beam of length L=2 m, in a vacuum, with a type II structural fuzzy
whose a is given by Fig. 5 in function of the fuzzy spatial memory length
c.=2¢/L, and excited by a unit transverse load applied at x=1 m. Re-
sults performed by Monte Carlo simulation for ¢,=1% (broken thick
line), ¢,=3% (broken thin line), and by the theory of structural fuzzy for
¢.=1% (thick line), ¢,=3% (thin line).

subsystems. The radius of circular sections of this stiffened
cylindrical shell and the shell thickness are variable. This
primary structure is globally a three-dimensional structure
with an axisymmetric part. The master structure is this
primary structure submerged in an unbounded external
dense acoustic fluid (water). The medium frequency band
of analysis studied is B,=[0.8, 1.25] that we have expressed
in terms of the reduced frequency w,=w/wg, where wpg is
the ring frequency of the stiffened cylindrical shell. Three
kind of external loads denoted as My, Fz, and F, are
applied to the same point m; of the cylindrical shell and are
respectively a moment about the tangent to the circular
section passing by m;, a radial force along the normal to
the surface of the shell passing by m; and an axial force.
Each force has a unit modulus and flat spectrum over all
the band B,. For the MF analysis method,®’ the band B, is
partioned into 4 reduced MF narrow bands. On each MF
narrow band the ratio of the mean mass of the structural
fuzzy over the mass of the primary structure is only 0.2%,
i.e., less than 1%.

(2) The structural fuzzy is applied on all the inner side
of the shell and is modeled by an homogeneous orthotropic
fuzzy with contimuous boundary which acts in the radial
direction along the normal to the surface of the shell and
which is constructed with the type I probabilistic constitu-
tive law. The input fuzzy parameters of this type I law have
the following values for each MF narrow band (see Sec. III
A): p=28 kg/m? £=0.001, n=10"2 (rad/s) ', with dis-
persion parameters A,=4,=A4;=0.001.

(3) With the theory of the structural fuzzy, the master
structure (primary structure and external fluid coupling
operator), and the structural fuzzy with continuous
boundary, are modeled by finite element method. Taking
into account that the dispersion parameters of the struc-
tural fuzzy are very small, we are going to present only the
results concerning the mean of the responses.

(4) Figure 7 presents the levels of mean pressure in

VIl. CONCLUSIONS

(1) In the area of the physical modeling of highly
complex mechanical systems and in the medium frequency
range, the theory of structural fuzzy that we have pre-
sented in this paper and which is based on a probabilisic
approach, is useful: (a) to model globally all the structural
details which are known but which are not accessible to
conventional modeling while keeping a usual deterministic
modeling for the master structure. In this case, structural
fuzzy is the result of the natural complexity of the struc-
ture or is due to the implementation of a voluntary disor-
der in the master structure for some dynamical behavior
reasons; (b) to model a structure whose some structural
details are unknown or are imprecisely known, for instance
a lack of knowledge about the presence of subsystems and
some uncertain data. In this case, structural fuzzy is not
due to the impossibility to model conventionally a large
number of known structural details as in the previous
point, but is due to the fuzziness in the knowledge of the
structure; (c) to simplify the modeling of a structure, the
master structure being always conventionally modeled, but
some substructures being voluntary suppressed and re-
placed by fuzzy substructures in order to include an auto-
matic sensitivity analysis to input parameters of the mod-
eling.

(2) In the area of the construction of the structural
fuzzy theory that we have presented: (a) Structural fuzzy
is modeled by a boundary random impedance operator and
does not increase the number of degrees of freedom of the
master structure modeling. (b) This theory allows us to
preserve and to predict modulus and phases of master
structure responses, i.e., to study the wave propagations in
the primary structure and in the internal and external
acoustic fluids. Consequently we have a theory for solving
in the MF range the forced vibrations, the radiation and
the scattering problems, in presence of structural fuzzy.
(c) Boundary random impedance operator is constructed
with some probabilistic constitutive laws related to the
classes of fuzzy. Two probabilistic constitutive laws have
been developed from two different elementary determinis-
tic mechanical models. The first one represents a structural
fuzzy with no spatial memory effect inside the fuzzy, while
the second one has this memory effect. These two laws are
easy to use in a modeling and depend only on usual me-
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chanical scalar parameters, called input fuzzy parameters,
and which are the input data of these laws. For each input
fuzzy parameter, a mean value and a dispersion around the
mean are given in input. The validity of these two consti-
tutive laws was analyzed by numerical simulation on a few
standard structures in previous works"** and in the
present paper. It should be noted that we introduce in this
paper a new type of fuzzy, characterized by a type II prob-
abilistic constitutive law. (d) An important problem still
remains open to further developments and concerns the
possibilities to fit the input fuzzy parameters of the two
proposed constitutive laws on the basis of statistical data
from experiments on real structures or on the basis of per-
turbed numerical models of mechanical subsystems.3 (e)
Another problem is opened and concerns the choice of the
uniform probability density distribution for the input fuzzy
parameters.

(3) In the area of the fuzzy solution in the MF range,
the method that we have developed avoids the Monte
Carlo simulation which would be for this kind of problem
much too expensive. This method is such that: (a) the
effects of the structural fuzzy on the master structure ap-

pear as a mean impedance of the structural fuzzy plus a
random fluctuation around its mean due to the dispersion
of the input fuzzy parameters; (b) the mean impedance of
the structural fuzzy adds to the impedance of the master
structure, and the resulting impedance is exactly treated
without introducing any approximation; (c) the random
fluctuation part is treated as a perturbation of the already
known solution for the master structure with its mean
fuzzy. For sufficiently small value of the dispersion param-
eters, the first order expansion of the random fluctuation of
the solution is sufficient. If it is not the case, a higher-order
expansion can be used; (d) all the statistical moments of
the response can theoretically be calculated. In practice the
computer code that we have developed calculates only the
mean value of the solution and the variance, i.e., the devi-
ation from the mean, using a first or a second-order expan-
sion. We have verified on beams, plates, and shells in vacuo
with structural fuzzy’ that for a dispersion of the input
fuzzy parameters going at least up 50%, first order expan-
sion was reasonably sufficient.

(4) Finally in the area of the applications, we have
studied several cases for simple and highly complex struc-



tures with structural fuzzy, in vacuo, or submerged in a
dense fluid, and studying in this last case the radiation
problems. A contrario a large area is opened concerning
applications for acoustic scattering from dense fluid-loaded
elastic structure with structural fuzzy. Studies have begun
in this way.”'”
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