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Abstract. The grid integration of variable renewable energy sources implies that 

their effective production could be predicted, at different times ahead. In the case of solar 

plants, the driving factor is the global solar irradiation (sum of direct and diffuse solar 

radiation projected on a plane (Wh/m²)). This paper focuses on the 24-hours ahead forecast of 

global solar irradiation (i.e. hourly solar irradiation prediction for the day after). A method 

based on artificial intelligence using Artificial Neural Network (ANN) is reported. The ANN 

hereafter considered is a Multi-Layer Perceptron (MLP) applied to a pre-treated time series 

(TS). Two architectures are tested; it is shown that the most relevant is based on a multi-

output MLP using endogenous and exogenous input data. A real case 2-years TS is computed 

and the MLP results are compared with both a statistical approach (AutoRegressive-Moving 

Average model; ARMA) and a reference persistent approach. Results show that the prediction 
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error estimate (nRMSE) can be reduced by 1.3 points with an ANN compared to ARMA and 

by 7.8 points compared to the naïve persistence.  
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1. Introduction 

The deployment of Renewable Energy Source (RES) responds to strategic objectives, 

including independent and secured energy sourcing, air quality improvement and greenhouse 

gas emissions reduction. Therefore RES, and particularly for wind and solar energies, should 

significantly increase their share in the energy mix since conventional and renewable energies 

complement each other to a certain extent. The main advantage of PhotoVoltaic (PV) and 

wind energies is their inexhaustible aspects. Their main drawbacks are their variability (with 

respect to season, day/night, atmosphere state namely inherent absorption and scattering) and 

low ratio of energy produced over surface covered. The characterization of a RES (i.e. local 

wind or solar conditions) helps to design RES power plants in the development phase (Zhou 

et al., 2008, Mellit et al., 2009, Haurant et al., 2010 and Jenn, 2011). Furthermore, during 

exploitation phase, power generation prediction at various times ahead is required by both the 

electrical system operator and the producer, respectively for system management and 

portfolio optimization (Santarelli et al., 2004, Mwale et al, 2004, Ni et al., 2006, Ipsakis et 

al., 2009 and Chen et al., 2011, Franco and Salza. 2011). In operational conditions, different 

time-horizons are required, from short term to medium term (see Figure 1):  

- Real Time optimization: 15 min to 30 min. Ramp rates vary from one technology to 

another. Typically base load generation units (coal, nuclear) have a small ramp rate, whereas 

high peak load units (CCGT, gas-fired turbine) can be fully ramped up or down within an 

hour;  

- Infra Day market: a few hours. Electricity producers consider the latest forecast and 

finely optimize their portfolio; 
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- Day ahead market: next day by hourly step. Electricity producers optimize their 

portfolio. 

The energy mix management can be improved and critical events for the day coming 

can be anticipated if a skillful estimate of RES production 24-hours ahead for each hour 

(h+24 prediction) is available. Therefore, transmission system operator can take appropriate 

measures to overcome any critical events. Figure 1 summarizes the link between energy 

production and prediction horizon. 

 

Figure 1. Impact to the intermittent energies prediction horizons on the energy 

management 

In practice, the global irradiation (sum of direct and diffuse solar radiation on a plane 

; Wh/m²) forecast is the name given to the process used to predict the amount of solar energy 

available in the current and near terms. Although many methods have been studied and 

developed worldwide, they all require knowledge of the previous state of atmospheric 

variables to forecast the next trend. This paper deals with the 24-hours ahead forecast of 

global solar irradiation on a horizontal surface i.e. hourly solar irradiation prediction for the 

day after (Chaouachi et al., 2009). Conventional prediction tools are based on stochastic 

processes using Time Series (TS). TS is a sequence of data points measured successively in 

time and at regular time intervals in a consistent manner. According to the literature, Auto 

Regressive Moving Average (ARMA), Bayesian inferences, Markov chains, k-Nearest-
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Neighbors predictors and Artificial Neural Network (ANN) are among the most reliable and 

robust predictors (Hamilton, 1994, Abrahart and See, 1998, Michaelides et al., 2001, and De 

Gooijer and Hyndman, 2006). ANN and ARMA methods are often considered to be the most 

interesting prediction methods (Alados et al., 2007, Altandombayci and Golcu, 2009 and 

Balestrassi et al., 2009). Focusing on solar global irradiation, an optimized ANN or ARMA 

model can forecast daily and hourly time series with acceptable errors (Behrang et al., 2010 

and Voyant et al., 2012a). For more distant horizons (i.e. more than two hours in the hourly 

case or two days in the daily case) predictions are less skillful. Indeed, Hawking (1998) states 

that the overall elements of space-time are not especially related to each other. As an 

extension to this concept: the degree of correlation between events decreases when spatial or 

temporal distances increase. A proof is given by the Maximal Lyapunov Exponent (MLE; 

Cao, 1995) theory, beyond a characteristic time (computed from MLE and called Lyapunov 

horizon; LH), prediction is almost impossible. In Ajaccio and for an hourly global irradiation 

time series, the LH of predictability is estimated at about 24-hours (calculation by classical 

methodology based on auto-mutual information by Cao’s method (Cao, 1997) and correlation 

dimension by Taken estimator (Parlitz, 1995)). Beyond this limit, the stochastic models are 

valid but not relevant. The intrinsic characteristics of the series are not sufficient to accurately 

describe the distant phenomena. Therefore, 24-hours ahead global irradiation forecast cannot 

reach the same accuracy as a prediction over a shorter time horizon such that horizon h+1 or 

h+2. That is perhaps the reason why very few studies are dealing with this horizon. 

Nevertheless research recently gained interest in the h+24 time prediction horizon, especially 

using MLP approach (MultiLayer Perceptron), a feed forward ANN model that maps a set of 

input data onto a set of appropriate output data. Mellit and Pavan (2010) recommend using 

daily global irradiation (endogenous) and temperature (exogenous) as inputs to the model, and 
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a daily time based increment in the considered month. In the PhotoVoltaic case (PV), 

Cococcioni et al. (2011) have presented that the MLP with endogenous data can be used like 

tool for technicians of PV installation to correctly configure the forecasting model according 

to the particular installation characteristic. This present study considers also an MLP-

approach. This architecture choice is based on previous study (Paoli et al., 2010 and Voyant 

et al., 2011) and literature results (Reddy, 2003, Mubiru, 2008 and Mubiru et al. 2008). 

In next sections, this paper focuses on an h+24 prediction method that optimizes the 

trade-off between accuracy and complexity of the model. The following steps will be 

presented and assessed: architecture, stationarization, uni- and multi-variate modeling of MLP 

networks as well as ARIMA and persistence models. Results are discussed in the last Section. 

 

2. Available data and analysis  

Experimentation data were provided by Ajaccio’s meteorological center (Météo 

France), which coordinates are 41°5’N and 8°5’E (seaside, 4 m asl). It faces the Gulf of 

Ajaccio with mountain behind. Summer days are hot and dry, and winter days have mild 

temperature. During autumn and spring, violent storm episodes may occur. Experimentation 

data cover the period from 1999 to 2008. The data set has been split in two parts: a training 

data set covering the first eight years of data, and a test data set covering the two remaining 

years (2007 and 2008). The configuration of the MLP model is finalized through a so-called 

training phase. The training phase is used to set MLP model parameters, and the validation 

phase compares MLP model results to real data. Dealing with global solar irradiation, a day 

has been defined to last 9 hours and to range from 8 am to 4 pm (solar time). Missing data (< 
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4%) were replaced with the average of their corresponding hourly data at a given day over the 

period covered by the set of data. The selection of exogenous variables is based on the 

literature and previous studies (Raschke et al., 1987, Eltahir and Humphries, 1998, Baigorria 

et al., 2004, Lopez et al., 2005, Badescu, 2008, Crone and Kourentzes 2010, Voyant et al., 

2011). Figure 2 shows the Pearson cross-correlation between clear sky index (defined in 

section 4-3) and exogenous variables for the site of Ajaccio for a 1-day time lag. The cross 

correlation at lag 1 of Wd (wind direction) is the correlation between clear sky index at day d 

and Wd at day d-1. 
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Figure 2. Pearson cross-correlation between the clear sky index, and exogenous 

variables for Ajaccio stations. (wind direction Wd, peak of wind speed PKW, wind 

speed Ws, relative humidity RH, sunshine duration Su, rain precipitation RP, 

pressure P, differential pressure DGP, ambient temperature average Ta, night 

temperature Tn , max TM and min Tn temperatures and nebulosity N) 
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Only the most relevant parameters related to global irradiation or clear sky index have 

been considered in this study. The relevant parameters are:  

- the pressure (P, Pa; average measured by numerical barometer during one hour), the 

nebulosity (N, Octas) and the precipitations (RP, mm, five cumulative measures of six 

minutes during half an hour) for the nine considered hours ; 

- the daily mean value of pressure and its gradient (difference between the mean 

pressure of day d and day d-1), nebulosity and precipitations ; 

- the differential pressure between the first and last hours of sunshine. 

Next section gives a detailed description of the three considered approaches: MLP, 

ARIMA (reference estimator) and persistence (naïve estimator). 

3. The prediction methodologies  

This section gives an overview of the principles behind MLP, ARMA and 

persistence prediction methods. The Multi-Layer Perceptron (MLP) is a type of ANN 

architecture and is the main typology described in this paper. The next section summarizes the 

main principles of this model and presents the considered test methodologies for the 24h-

ahead forecast (optimization, variable selection and stationarization). Forecasting methods 

based on persistence (naive forecaster) and ARMA models (reference forecasters) are also 

introduced and described.  
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 3.1 Artificial neural networks 

Although many ANN architectures exist (Coulibaly et al., 1999, Hu et al., 2002, 

Benghanem and Mellit, 2010, Cao and Cao, 2006), MLP remains the most popular 

(Cybenko, 1989, Hornik et al., 1989, Al-Alawi and Al-Hinai, 1998, Crone, 2005, Bosh, 

et al., 2008, Behrang et al., 2010). An MLP is made of several layers: one input layer, 

one or several intermediate layers and one output layer. Hidden and outputs layers are 

composed of artificial neurons. These functional elements are parameterized functions of 

variables called input (xj) multiplied by a weight (regression coefficients called    
 ). The 

transfer function (or activation function; g) is applied to the linear combination      
 , 

which leads to the following output:      ∑   
 
      

    
  . The   

  term is a particular 

weight called bias (it is an offset constant). The output vector of a considered layer 

becomes the input vector of the following layer until reaching the output layer. 

Depending on the signal intensity arriving to the activation function, the neuron will be 

« on » (the output is 1) or « off » (the output is 0 or -1). Note that other intermediate 

values are authorized outside the Boolean outputs ( [    ]    [   ] . It can be said that the 

activation function « fuzzifies » the outputs. In most cases, a single neuron is of no 

interest. However, interconnected together single neurons build a network of neurons 

which can solve complex problems such that classification, pattern recognition, time 

series prediction, etc. For TS forecast, the MLP input vector is made of a settled number 

of past values and the MLP output is the predicted value (Iqdour et al., 2006 and Paoli et 

al., 2010). Weighted coefficient and bias values (from the linear combinations of input 

layers) are set through the learning phase. The testing phase is used to test the robustness 

and the reliability of the model: the validation set is checked against results obtained with 

the model. The information flows from the input layer to the output layer. The most 
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commonly used artificial neural network is the feed-forward MLP with one hidden layer 

and one output layer (Hornik, et al., 1989, Ito, 1991). It is often used for modeling and 

forecasting TS (Jain et al., 1996, Moreno et al., 2008). Several studies (Kalogirou, 2001, 

Zhang and Qi., 2005 and Min et al., 2008) have validated this approach based on ANN as 

a non-linear model to describe TS. The principle of MLP for TS forecasting is detailed in 

Figure 3. The methodology is based on the sliding window principle. 

 

Figure 3. MLP and TS prediction with Ne inputs, Nc hidden nodes and one output  

In this case the output of the system is governed by Equation 1 and 2 (Ne inputs, Nc 

hidden nodes, one output, theweights, b the bias, f the activation function of the output 

layer and g the activation function of the hidden layer). 

 ̂      ∑   
  
     

      Equation 1 

     ∑       
  
      

    
   Equation 2 
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The MLP methodology is a non-linear regression model based on the interpretation 

of the past global irradiation values. The MLP used with one output node associated with 

the identity activation function: y = x (architecture frequently used) allows establishing a 

regression as described in the Equation 3. 

 ̂    ∑    ∑       
  
      

    
     

     
     Equation 3 

In this study, MLP has been compiled with the Matlab© software and its Neural 

Network toolbox. The main characteristics chosen and related to previous works (Voyant et 

al., 2011) are: the hyperbolic tangent (hidden) and identity (output) activation functions, the 

Levenberg-Marquardt (Dreyfus, 2004) learning algorithm with a max fail parameter before 

stopping training set to 3 (early stopping method limiting the overtraining). In this study, 

training, validation and testing data sets (Matlab© parameters) were respectively set to 80%, 

20% and 0% (Matlab© parameters) and inputs are normalized between – 0.9 and + 0.9. These 

three phases concern the eight first years of the global solar irradiation values covered in the 

set of data. The testing phase for prediction results uses the remaining last two years of the 

data set. It is critical to identify best-suited input variables to optimize the MLP. Therefore a 

systematic approach has been adopted by browsing all realistic configurations (the maximum 

number of parameters is limited). The final choice is based on the cross-comparison of 

considered configurations prediction error (mono-criterion analyze). The architecture with the 

lowest prediction error defines the final MLP topology. The considered error estimation is the 

nRMSE (normal Root Mean Square Error) defined by √     ̂        . In order to 

apply the MLP approach to the h+24 time-horizon, the h+1 horizon methodology has been 

transposed (optimization, learning and stationarization). To predict the nine hours of the next 

days, three alternatives were considered:  
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- MLP committee : nine MLP models each of them dedicated to one hour;  

- Multi-output MLP : a nine-output MLP model; and  

- A one-output MLP model used nine times (see Figure 4).  

G
lo

b
 R

ad

x9

Reconstructed day

Hours

 

Figure 4. Method based on the nine consecutive MLP forecasters at h+1 horizon 

 

The first method is derived from the observation that cloud occurrences and mist 

appear often at the same hours. The second approach is more conventional and assumes that 

global solar irradiation for each hour is related to previous measurements. The last method is 

intellectually simple, each prediction is considered chronologically like inputs of the network. 

Considering the prediction error increases exponentially when predictions are set as network 

input as it is explained in APPENDIX 1, only the two first alternatives have been studied. The 

details of the two chosen methods are: 
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- MLP committee: one predictor is dedicated to one hour only. Nine time series are 

extracted from the original TS (one time series per considered hour). The input vector is a set 

of chronologically ordered measurements related to the same hour at previous days. 

Figure 5 gives a good illustration of the nine time series (focus on 14:00 time series). 

Its prediction is then equivalent to a daily horizon forecast, and the input vector to predict 

time 14:00 on day d+1 is made up with observations at time 14:00 on days d, d-1, …, d-Ne. 

The predicted day can be reconstructed by concatenating the nine sunshine hours predictions 

(Figure 6.a). 

-Multi-output MLP: This approach is a conventional methodology based on the 

sliding window principle. Measures of global irradiation are chronologically ordered to build 

up the MLP input vector (Figure 6.b). 

 

Figure 5. Daily decomposition and reduction of the hourly TS by nine daily TS. The 

considered hours are 8:00 to 16:00, the yellow circles represent the 14:00 TS for the 

days d,d-1, d-2 and d-3 
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Figure 6. Reconstituted daily global radiation with nine independent predictors (a) and 

one MLP with nine outputs (b) 

 

3.2 Other forecasters  

In this paper, the MLP methodologies defined in section 4.1 (Figure 6) are compared to the 

persistence approach, which uses the last measure as prediction output, and conventional 

stochastic ARMA approach, which is the most commonly studied predictor for TS modeling 

(Brockwell and Davis, 1991 and Bourbonnais and Terraza, 2008). Both are based on an 

approach similar to that of Figure 6.a and daily decomposition. Nine concatenated predictions 

form the global solar irradiation for the day after. Note that these methodologies are 

compatible with the clearness or clear sky index (see the section 4.3). Equation 4 presents the 



16 

 

persistence principle where a second order correction is operated to take into account the 

theoretical global radiation difference between time t and t+1. 

 ̂       
        

      
 Equation 4 

The ARMA model is based on two elementary models: the MA model (moving average 

model, Equation 5) and the AR model (autoregressive model, Equation 6). They are defined 

like a regression on the last residues and the last measures. 

          ∑                        
    Equation 5 

         ∑            [    ]           
    Equation 6 

A more general so-called SARIMA model is issued from AR and MA models. It is defined in 

Equation 7. The ARMA model (the most popular for TS prediction) is a particular case of 

SARIMA with seasonal parameters P, D and Q set to zero. 

                                 
                             

     Eq 7 

3.3 The need to make the TS stationary  

The TS transformation to make the series stationary (a transformation hereafter 

called pre-treatment) has been discussed for instance in the literature (Brokwell et al., 

1991). This methodology must be applied to the ARMA process (Bourbonnais and 

Terraza, 2008) and to MLP TS prediction (Zhang and Qi., 2005). According to Hornick 

et al. (1989) and Cybenko (1989), any network can be considered as a compact universal 

approximator. Furthermore, they are asymptotically stationary and are not characterized 
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by a divergent behavior or a variance increase over time (Hornik et al. 1989). In practice, 

to use an MLP, the input data must be stationary (Ito, 1991), or slowly varying. However, 

a MLP network can also simulate a non-stationary process, if and only if, it operates on a 

finite time interval. In this case, the system cannot learn all the characteristics of the 

studied process, and the predictions made outside the training sample and associated 

performances will be poor. One of the solutions to overcome the problem of non-

stationary data consists to transform the initial TS to make it stationary (Crone, 2005). 

The stationarization method used in this paper is based on the ratio to trend (Bourbonnais 

and Terraza, 2008). When the top-of-atmosphere irradiation is used, the clearness index 

(k) is generated (Mellit et al., 2009) and when a ground clear sky model is used, the clear 

sky index (CSI) is generated (Ineichen, 2006 and 2008, Voyant et al., 2012a). These 

methods based on the coupling between MLP and knowledge models permit to switch 

from a black box approach to a so-called “grey box” approach (Dreyfus, 2004). The 

global methodology to make TS stationary is defined in the Figure 7. 
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Figure 7. Ad-hoc methodology and the procedure impact on the TS trend  

This section described the global methodology of a prediction based on an MLP 

approach. Next paragraph gives a methodology to increase the MLP performance with a 

meteorological data set as input.  

3.4 The MLP and the multivariate analyze 

Section 3 has shown that some exogenous data are correlated with the CSI. These 

data can then be used to optimize the MLP architecture and improve prediction results. 

The ability to consider exogenous parameters as inputs is specific to MLP, and is not 

possible with standard ARMA (or persistence). The next section presents results obtained 

for models parameters optimization and their prediction results. The goal is to build an 
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h+24 global solar irradiation predictor from the naive model (i.e. persistence), the 

reference model (ARMA) or the MLP models. 

4. Results  

Considering that the aim of this study is to find the best compromise between 

accuracy and complexity of the models, results are exposed step by step. The first results 

presented in this section are the optimal MLP and ARMA models for the h+24 time horizon 

after the optimization process. In a second time, in order to avoid heavy computation time for 

MLP and ARMA architectures optimization and final results, only endogenous data are 

considered. Finally exogenous inputs are taken into account and their benefits are evaluated.  

4.1 MLP and ARMA optimization 

The optimization mainly consists in determining input variables and hidden nodes. 

Data used for models optimization cover the period from 1999 to 2006. Years 2007 and 2008 

are used to compare results of MLP, ARMA and persistence models. Set parameters are: one 

hidden layer using the hyperbolic tangent as activation function and the Levenberg-Marquardt 

optimization algorithm (Suratgar, 2005). Selection of endogenous variables for the input layer 

is based on a systematic approach, which consists in testing all possible combinations 

between 1 to 20 input nodes and 1 to 20 hidden neurons. This selection process has been 

applied to three TS: the original TS (without stationarization process; X), the clearness index 

TS (k) and the clear sky index TS (CSI). No other stationarity rules, e.g. seasonal adjustments 

(Bourbonnais, 1998), have been tested due to the high level of complexity compared to the 

h+1 or d+1 cases [Voyant et al., 2012]. Table 1 shows results of the optimization process for 

the nine MLP described in Figure 6.a. For Ne inputs (  [1,20]), Nc hidden nodes (  [1,20]) and 
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one output, the nomenclature used is Endo
1-Ne

xNcx1. In order to prevent the risk to optimize 

the MLP based on a local minimum during the training step, four simulations are carried on 

for each Nc and Ne values (only average is represented).  

 networks X  k  CSI 

MLP 

committee 

nine 

networks 

8:00 Endo1-3x4x1  Endo1-3x4x1  Endo1-11x8x1 

9:00 Endo1-10x4x1  Endo1-8x3x1  Endo1-8x3x1 

10: 00 Endo1-11x4x1  Endo1-20x2x1  Endo1-20x2x1 

11:00 Endo1-3x8x1  Endo1-2x4x1  Endo1-3x3x1 

12:00 Endo1-20x1x1  Endo1-20x1x1  Endo1-20x1x1 

13:00 Endo1-12x7x1  Endo1-19x1x1  Endo1-1x14x1 

14:00 Endo1-18x2x1  Endo1-20x1x1  Endo1-3x19x1 

15:00 Endo1-11x5x1  Endo1-12x1x1  Endo1-4x10x1 

16:00 Endo1-13x3x1  Endo1-1x1x1  Endo1-6x5x1 

Multi-

outputs 

MLP 

Only one Endo
1-27

x1x9  Endo
1-27

x1x9  Endo
1-27

x2x9 

Table 1. Optimization of the nine independent MLP and the multi-output MLP 

For the single multi-outputs MLP (Figure 6.b), optimization results are also given in 

Table 1 (Ne   [1,27], Nc   [1,27])). The 27 inputs visible for the three modes (X, k et CSI) 

correspond to three days of nine hours each (=3x9). Considering this table, no rule seems to 

exist. The endogenous inputs and the hidden nodes numbers present large variations. Note 

that the use of the CSI seems to increase the number of hidden neurons. Concerning the 

ARMA models, according to tests results and literature (De Gooijer, 2006), only the 

AutoRegressive part seems to be relevant. It seems that the Moving Average part has no 

positive influence on the prediction error. Models optimization is based on the analysis of 

autocorrelograms (correlation dimension (Hamilton, 1994)). A student test (Bourbonnais and 

Terraza, 2008) on the index p of the AR(p) regression coefficients called i (for i   [1,p]) 

shows that only the first lag is significantly different of zero (Figure 8). Although there are 
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some particular points e.g. lag 3 of the 8:00 TS, by desire to homogenize, make efficient and 

simple, a lag one configuration for the nine models (AR(1)) is adopted. 

 

Figure 8. Autoregression coefficients of the nine AR(p) with the CSI forecasting 

mode (the red line is the significance limit) 

4.2 Univariate predictions  

Prediction models defined in section 5.1 are tested using Ajaccio meteorological 

center 2007 and 2008 data. Table 2 shows relative errors for the nine daily series approach 

using ARMA and MLP models and for the multi-output model using the MLP model only. 

The nRMSE shown are related to the daily mean of global solar irradiation. 

Models  Annual Winter Spring  Summer  Autumn 

Persistence 35.1 54.8 35.2 28.0 40.4 

ARMA 
k 29.1 44.6 29.2 24.0 33.2 

CSI 28.6 44.2 28.6 23.1 32.8 

MLP 

committee 

k 28.5 44.6 28.8 22.9 32.8 

CSI 28.2 44.1 28.6 22.4 33.2 

Multi-

outputs MLP 

k 27.9 44.2 27.9 22.2 32.7 

CSI 27.8 42.8 28.4 22.0 31.3 
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Table 2. nRMSE (%) of predictions with the nine independent networks, with the 

mupti-output MLP and AR model (bold characters are related to the best results) 

Sophisticated approaches such as ARMA or MLP give far better results than the naive 

persistence predictor, especially at wintertime. The unskilled performance of the persistence 

model is due to the choice of the prediction horizon. Indeed, the persistence model is tailored 

for short-term time horizons. If we consider sub-hourly or one-minute time horizons, the 

probability of climate conditions at time t to be very close to climate conditions at time t-1 is 

high. In most cases, the MLP predictors have better results than the ARMA models. But the 

difference is small, except for summertime where the MLP presents a +0.7 point 

improvement compared to the ARMA model. In most cases, the best predictions results are 

obtained when the CSI has been applied to the TS. As a complement, Table 2 also presents 

results from the multi-output MLP approach.  

The use of a stationary process introduces a significant difference in the prediction 

results. Indeed, except for spring, the CSI approach gives better results than the original 

approach which does not apply any stationarization process to the TS. Moreover, using one 

MLP only (nine outputs) improves the accuracy of the prediction. In the CSI case, results are 

improved by +0.4 point over the two-year period; during winter time, the gain is lower than 

1.5 points. Using measures covering the entire sunshine duration of the day, rather than one 

considered time, improves the MLP results since extra information is brought into the model. 

For example, if yesterday at 08:00 the sky was cloudy but cleared away afterwards, then: 

- in the case of multi-outputs MLP, this occurrence will be smoothed by the information 

brought by the other eight hours of the day. The cloudiness of the sky will have a minor 

impact on the prediction for time 08:00. The noise is averaged on the nine sampled hours; 
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- in the case of the nine MLP, the information of cloudy skies at 08:00 yesterday will  

have a major influence on the prediction of time 08:00. 

Figures 9 and 10 illustrate the comparison between the two best predictors of each type: 

nine ARMA with one output and one MLP with nine outputs and the use of the CSI mode. 

These Figures only show the predictions related to the 12
th

 hour (one prediction per day).  
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Figure 9. Best predictors comparison concerning the 12:00 TS. (a) the daily profile 

of the MLP predictions and measured TS, (b) the daily profile of the ARMA 

predictions and measured TS 

   

Figure 10. Best predictors comparison concerning the 12:00 TS. y=x graphical 

comparison of MLP model, AR model and persistence model 

The squared nature of the prediction error (nRMSE) taken during the optimization phase 

allows to decrease the large differences but to increase the number of smaller error (Ahlburg, 

1992, Voyant, 2012). It is certainly for this reason that for ARMA or for MLP, the predictions 

seems to describe a smoothed curve, “no risks taken” with small deviation from a central 

average value. During winter, the persistence model gives a prediction with a large variability 

and becomes unusable, whereas ARMA and MLP behave similarly. During summer, the three 

predictors present similar behaviors, but these results are local and cannot be generalized. 

Ajaccio is a seaside location with low nebulosity in summer. To improve the results for other 

seasons, the use of exogenous data could be useful (Paoli et al., 2010 and Sfetsos and 

Coonick, 2000).  

In the next part, multivariate regressions are proposed and exogenous data are 

introduced in the models to study their influence on the quality of the prediction. 
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4.3 Multivariate prediction 

Unlike ARMA and persistence models, which are restricted to endogenous input data, 

MLP allows the use of exogenous input data (see section 3.4). These new models are based on 

the networks optimized for the endogenous case (see section 4.2). The exogenous variables 

are selected using the Pearson correlation coefficient (Hamilton, 1994). Among all the data 

presented in Section 2, one can observe that pressure gradient, daily difference pressure and 

rain precipitation at step d are not correlated enough to the global radiation at step d+1. Thus, 

these data are not included in the input nodes of the MLP. Therefore, in addition to the 

endogenous data as stated in section 3, the input vector may include the pressure (at lag one) 

between 8:00 and 16:00 (nine components), the nebulosity for the same hours for the lag one 

and two (eighteen components) and the daily mean nebulosity at lag two (two components). 

The impact of exogenous data on prediction quality is indicated in Table 3 (here only CSI 

mode is used considering it was the best pre-treatment) in terms of nRMSE related to the 

daily mean of global radiation. 

Models  Annual Winter Spring  Summer  Autumn 

Persistence 35.1 54.8 35.2 28.0 40.4 

ARMA 28.6 44.2 28.6 23.1 32.8 

MLP 

endo 

MLP committee 28.2 44.1 28.6 22.4 33.2 

Multi-outputs 

MLP 
27.8 42.8 27.4 22.0 31.3 

MLP  

endo-exo 

MLP committee 28.0 42.4 28.8 22.4 31.9 

Multi-outputs 

MLP 
27.3 42.4 27.8 21.7 31.3 

Table 3. Impact of the exogenous data on the prediction quality for the nine MLP, and 

the multi-output MLP (bold characters are the best results) in the case of the CSI pre-

treatment 

Exogenous variables contribute positively to multi-outputs MLP, the largest 

improvement being reached in the case of the 9-output MLP. During winter the gain is 1.7 
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points, and during autumn results are improved by 1.3 points. However during spring and 

summer, the error has barely decreased of 0.2 points. Figure 11 presents the detail of hourly 

errors for the best-case MLP (one network with nine outputs, CSI and exogenous variables), 

ARMA (nine AR with one output and the CSI) and the persistence models. 

 

Figure 11. Hourly error (RMSE and nRMSE) of prediction for the MLP 

(foreground and hatched), ARMA (second ground and white) and the persistence 

(background and grey) 

The trends of the RMSE and nRMSE curves are completely different. In the case of 

nRMSE, the normalization is carried out using the quadratic mean of the TS (8:00…16:00). 

The largest RMSE is reached at 12:00 for the three tested predictors (between 160-200 

Wh/m²). The nRMSE obtained with MLP and ARMA is ‘quasi-uniformly’ distributed 

between the nine hours studied, while for the persistence, the nRMSE is more important 

during the low global irradiation hours. The RMSE of the three predictors don’t exceed 200 

Wh/m². Only in the MLP case, the nRMSE is lower than 28%. 

 

5.  Conclusion  

In this paper, we have shown that MLP modeling of the global solar irradiation TS 

can be applied to the h+24 time horizon prediction. The results shown demonstrate a higher 

accuracy with MLP models than with the persistence method. They are also consistent with 
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Mellit and Pavan (2010) conclusions, and allow a generalization of their approach. With this 

work, the ANN is now justified for a new location, with different architecture, an ad-hoc 

stationary process and results confronted to naïve and reference estimators (respectively 

persistence and ARMA models). Indeed, the use of MLP to predict the h+24 global radiation 

horizon is interesting but the chosen architectures and stationarization modes, and how to use 

the multivariate analyze, modify greatly the results. Different levels of complexity can be 

implemented, namely: multi-output MLP (with or without exogenous data), MLP committee 

(with or without exogenous data) or ARMA model. Even if the choice between the three 

methodologies is scientifically difficult; an industrial decision maker can probably find a 

positive financial impact for a gain of 1.3 points in case of MW installations. Note that for the 

three methods, the complexity of the methodology is not really a barrier to its use, one time 

the learning phase done the model is applicable during a lot of years. The ANN and ARMA 

can be seen like a simple non-linear regression very easy to implement, even with a simple 

spreadsheet. This paper has been restricted to two architectures. As a perspective to this study, 

the implementation of hybrid architectures may lead to more accurate results. It would 

probably be interesting to combine the two approaches, by integrating data related to other 

hours or predictions related to other hours within the input layer of the MLP. Similarly, the 

use of other exogenous input data (including numerical weather forecast or other types of 

physical measurements) should be further investigated.  
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7. APPENDIX: The error decomposition 

The purpose of this appendix is to demonstrate that the use of a one-output MLP nine 

times (Figure 4) is theoretically unjustified. In a simple case such that the h+2 time horizon 

prediction, this methodology provides under certain assumptions, worse results than a 

methodology based on the MLP committee (Figure 6.a). Considering a single MLP trained 

over a given data set,    being the measures available and  ̂  the prediction of this value 

simulated with the MLP, the MSE, performance of an estimator ANN is given by (E is the 

expected value): 

     {     ̂   }  
 

 
∑      ̂   

 
    Equation 8 

In the following, the error decomposition will be applied to the simple case of the 

error generated for the 2-hours ahead prediction. 

At first, instead of considering the nine MLP with one output (Figure 6.a), let’s 

consider the system with only two MLP, each forecasting a series (called     and   ). The 

series are supposed to be stationary. The decomposition scheme of the initial series    

(  [   ]) may be written from the two series   
         

   (  [     ]): 
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The decomposition is also valid during the prediction, as shown in Equation 10. 
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The MSE definition implies that: 
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 Equation 11  

If the series are stationary and if the two prediction methodologies are equivalent the 

two predictions errors are equivalent. In this case, the global error is calculated considering 

that                 . 

               Equation 12 

The result is equivalent for one MLP with two outputs building two series of 

prediction, the first for only the h+1 horizon and the second for only the h+2 horizon.  

If now, one MLP with one output is considered (like in Figure 4, but with only h+2 

horizon), the h+1 prediction is taken as input to forecast the h+2 prediction. The prediction 

becomes the input and the approach is then similar to a loop. The scheme decomposition of 



30 

 

the prediction may be written from the two series  ̂ 
     and  ̂ 

     (  [     ]) as shown in 

Equation 13. 
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For this prediction the MSE is described by: 
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    Equation 14 

After some modifications on the decomposed expression, it follows: 
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    Equation 15 

Considering the MSE
A
 expression and the precedent equation,         becomes: 
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}  Equation 16 

This equation is equivalent to: 

        
 

 
                 Equation 17 

To compute the prediction  ̂ 
    it is necessary to use the prediction  ̂ 

   , the 

       is greater than       . Considering that                     with    . 

The total MSE is equal to: 

        
 

 
                       

   

 
        Equation 18 
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In the h+2 case:                . Therefore, there is no interest in using the 

loop approach. Next part of the appendix focuses on the h+9 horizon ranking and on the 

prediction error behavior (divergence) for the loop methodology based on one MLP with one 

output.  

As seen previously, the MSE for the MLP system and the multi-outputs MLP are 

decomposed by the same scheme. For these two predictors and for the h+2 time horizon, the 

total MSE is lower than the error obtained with the MLP built with one output (loop 

methodology; the h+1 prediction is taken like input to forecast the h+2 prediction, etc.). This 

result is valid if an hourly prediction is equivalent to a daily prediction (same noise and same 

stationarity) and if all the hourly TS used are equivalent for the prediction process. With all 

these hypotheses the result (                 can be generalized to the h+9 time 

horizon. 
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 networks X  k  CSI 

MLP 

committee 

nine 

networks 

8:00 Endo1-3x4x1  Endo1-3x4x1  Endo1-11x8x1 

9:00 Endo1-10x4x1  Endo1-8x3x1  Endo1-8x3x1 

10: 00 Endo1-11x4x1  Endo1-20x2x1  Endo1-20x2x1 

11:00 Endo1-3x8x1  Endo1-2x4x1  Endo1-3x3x1 

12:00 Endo1-20x1x1  Endo1-20x1x1  Endo1-20x1x1 

13:00 Endo1-12x7x1  Endo1-19x1x1  Endo1-1x14x1 

14:00 Endo1-18x2x1  Endo1-20x1x1  Endo1-3x19x1 

15:00 Endo1-11x5x1  Endo1-12x1x1  Endo1-4x10x1 

16:00 Endo1-13x3x1  Endo1-1x1x1  Endo1-6x5x1 

Multi-

outputs 

MLP 

Only one Endo
1-27

x1x9  Endo
1-27

x1x9  Endo
1-27

x2x9 

 

Table 1. Optimization of the nine independent MLP and the multi-output MLP 
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Models  Annual Winter Spring  Summer  Autumn 

Persistence 35.1 54.8 35.2 28.0 40.4 

ARMA 
k 29.1 44.6 29.2 24.0 33.2 

CSI 28.6 44.2 28.6 23.1 32.8 

MLP 

committee 

k 28.5 44.6 28.8 22.9 32.8 

CSI 28.2 44.1 28.6 22.4 33.2 

Multi-

outputs MLP 

k 27.9 44.2 27.9 22.2 32.7 

CSI 27.8 42.8 28.4 22.0 31.3 

 

Table 2. nRMSE (%) of predictions with the nine independent networks, with the mupti-

output MLP and AR model (bold characters are related to the best results) 
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Models  Annual Winter Spring  Summer  Autumn 

Persistence 35.1 54.8 35.2 28.0 40.4 

ARMA 28.6 44.2 28.6 23.1 32.8 

MLP 

endo 

MLP committee 28.2 44.1 28.6 22.4 33.2 

Multi-outputs 

MLP 
27.8 42.8 27.4 22.0 31.3 

MLP  

endo-exo 

MLP committee 28.0 42.4 28.8 22.4 31.9 

Multi-outputs 

MLP 
27.3 42.4 27.8 21.7 31.3 

Table 3. Impact of the exogenous data on the prediction quality for the nine MLP, and the 

multi-output MLP (bold characters are the best results) in the case of the CSI pre-treatment 

 


