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Porous media, Fast diffusion equations and the existence of
global weak solution for the quasi-solution of compressible
Navier-Stokes equations

Boris Haspot *

Abstract

In [15, 18, 19, 16], we have developed a new tool called quasi solutions which
approximate in some sense the compressible Navier-Stokes equation. In particular it
allows us to obtain global strong solution for the compressible Navier-Stokes equa-
tions with large initial data on the irrotational part of the velocity (large in the
sense that the smallness assumption is subcritical in terms of scaling, it turns out
that in this framework we are able to obtain large initial data in the energy space in
dimension N = 2). In this paper we are interested in proving the result anounced in
[20] concerning the existence of global weak solution for the quasi-solutions, we also
observe that for some choice of initial data (irrotationnal) the quasi solutions verify
the porous media, the heat equation or the fast diffusion equations in function of
the structure of the viscosity coefficients. In particular it implies that exists classical
quasi-solutions in the sense that they are C> on (0,7) x RY for any T' > 0. Finally
we show the convergence of the global weak solution of compressible Navier-Stokes
equations to the quasi solutions in the case of a vanishing pressure limit. In partic-
ular we show that for highly compressible equations the speed of propagation of the
density is quasi finite when the viscosity corresponds to u(p) = p® with @ > 1 and
that the density is not far from converging asymptoticaly to the Barrenblatt solution
of mass the initial density po.

1 Introduction

The motion of a general barotropic compressible fluid is described by the following system:
Op + div(pu) = 0,
Bu(pw) + div(pu @ u) — div(u(p) D(w) — V(p)dive) + VP(p) = pf,  (L1)
(p;w) =0 = (po, uo)-

Here u = u(t,z) € RY stands for the velocity field, p = p(t,z) € Rt is the density

and D(u) = 3(Vu +! Vu) the strain tensor. The pressure P is such that P(p) = ap”

with v > 1 and @ > 0. We denote by pu(p) and A(p) the two-Lamé viscosity coefficients
depending on the density and satisfying:

u(p) >0 2u(p) + NA(p) = 0. (1.2)
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Throughout the paper, we assume that the space variable x € R™. In this article, we
are going to investigate the existence of global weak quasi solutions for the system (1.1),
a notion which has been introduced in [18, 19, 15, 16] in order to prove the existence of
global strong solution with large initial data on the rotational and irrotational part for
the scaling of the equation (see the remark 4 for this notion of scaling).

Before entering in the heart of the topic we would like to explain more in details the notion
of invariance by scaling for compressible Navier-Stokes equations. Up our knowledge these
results are new and we are going to explain one of the major difficulty relied with the
notion of scaling.

Scaling of the equations

A natural way to understand the equations of fluid mechanics correspond to search self
similar solution, it means that there is a scaling of the variables after which the system
become stationary solutions. Precisely it holds when we set:

p(t,x) =t~ “F(xt™"),

u(t, ) =t~ Gzt ™)
The exponents «, a1 and 3 are called similarity exponents, and functions F' and G are
the self similar profiles. In particular « and «; are the density contraction rate and

the space expansion rate. In the sequel we shall assume that u(p) = pp® and A(p) = Ap?
with 6 > 0. Simple calculus give when we set 1 = xt=7:

Op(t,x) = =t~ HaF(n) + BVE(n) - n),
div(pu) =t~ div(GF)(n).
Next we have:
pPoyu = —t_o‘_o‘l_l(oélF(U)G(ﬁ) + Bn - VG(n)F(n)),
pu - Vu =t~ F()G(n) - VG(n),
2udiv(p’ Du) = 2t~ %=1 div(F° (n) DG(n)),
V(pdivu) = ¢t~V (FO (1) divG(n)).
and finally:
Vp! =4t~V PET () VF(n) =t *7 PV (aF (n)?).

If we assume that:
at+ar+p=a+1,
at+ar+1=a+2a01+ 4,
a+t+ar+1=0a+a; + 28,
a+o+1=ay+p,

which is equivalent to the following system:
al + B = 1a
0 —-Da+258=1,
a(y—=1)+B8=01+1.



The solution of the previous system is:

-1 1—7 20—y -—1
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With this choice on the parameter a, a1 and 5 we then get the profile equation:

«

aF(n) + BV E(n) -n—div(GF)(n) =0,
a1F(n)G(n) + Bn - VG(n)F(n) — F(n)G(n) - VG(n) + 2udiv(F? (1) DG(n))
+V(F?(n)divG(n)) — V(aF(n)7) = 0.

Remark 1 A first remark consists in observing that there is no scaling invariance when
0 =n.

An other way to express this scaling invariance is to consider a classical solution (p,u)
of the system (1.1) then we easily check that:

(pr,wr) (t, ) = (1%p(1t, 1P2), 1% p(It, 1P ),
is a solution of (1.1) for any [ € R when «, ay and 3 verify (1.3).

Remark 2 We shall say that a functional space E embedded in S (RN) x (S (RM))N
is a critical space for (1.1) if the associated norm is invariant under the transformation
is a critical space for (1.1) if the associated norm is invariant under the transformation
(po,uo) = ((po)i, (uo);) for any l € R. In particular we observe that:

verifies a such property (we refer to [13] for the definition of Besov space) .

Remark 3 Let us point out that when u(p) = pp and A(p) = 0 with v > 1 (the case
N 2 N

. e 1. . . .
of the shallow-water equation) then B;OO x 322,00 s a critical space invariant by the
scaling of the equation. In particular let us mention that it is the same scaling invariance

for the initial velocity ug than for the incompressible Navier-Stokes equations.

N 2 N 2
N_2 N g4 2
. . . . . 2 ~+1 2 ~y+1
Let us mention that in the case of constant viscosity coefficients then By oo X By o

is a critical space for the scaling of the system (1.1).

Remark 4 To finish we would like to mention as it has been observed in [8] that there is
no tmvariance by scaling when we wish to work with density far from the vacuum, typically
po = 1+ qo with qo in a Besov space. However in [8] Danchin makes abstraction of the
pressure term and define a other notion of critical space for the compressible Navier-
Stokes equation when the initial density is far away from the vacuum. More precisely we
can remark that (1.1) is invariant by the transformation:

(po(@), uo(@)) = (polla), Luo(lz))  (plt, ), ult,z)) — (p(1*L, L), lu(i’t, l2)

N
up to a change of the pressure law P into I>P. In particular 322,1 xBé\fl_l 18 norm invariant
by the previous transformation and is critical. This notion of critical space seems well



adapted to the case of initial density far away from the vacuum and is also relevant at
N

least for the initial velocity since Bffl is also critical for the incompressible Navier-
Stokes equations. Let us mention that with this notion of critical space we have proved
the existence of global strong solution with large initial data by involving in particular the
existence of quasi-solutions.

Let us give now some assumption on the viscosity coefficient with which we are going to
work.

Condition on u(p) and A(p)

In this paper we are interested in studying the notion of quasi-solution developed in
[18, 19, 15] for general viscosity coefficients following the algebraic equality discovered by
Bresch and Desjardin in [5, 6]:

Mp) = 2p1 (p) — 21(p)- (1.4)
We shall define in the sequel the function ¢(p) by ¢ (p) = 2 p(p ) and the function f(p)
by f(p) = ﬁgpl (p). With this choice of viscosity coefficients Bresch and Desjardin
have obtained a new entropy for compressible Navier-Stokes equations (1.1) giving a
L (L*(RY)) control for any T > 0 on the gradient of the density (more precisely on
VPVe(p)). In particular it allows us to prove the existence of global weak solution
with a specific cold pressure. Indeed compared with the case of viscosity coefficient
the pressure term is quite simple to deal with by using Sobolev embedding since we
have uniform estimate on \/pV¢(p) in L (L?(RY); however a new difficulty appears
coming from the degenerescence of the viscosity coefficient. Indeed we lose the control
of Vu € L2((0,T) x RY) what makes delicate the treatment of the term pu ® u (in
particular the L! strong compactness) because the vacuum. In order to overcome this
difficulty Mellet and Vasseur in [26] obtained new entropy on the velocity which gives
them a gain of integrability on the velocity. With this new ingredient they are able in
[26] to to prove the stability of the global weak solution for compressible Navier Stokes
equations with such viscosity coefficients and with classical v law pressure P(p) = ap”
with a > 0 and v > 1.
We are going to detail here the assumptions on the viscosity coefficients which allow to
Mellet and Vasseur to get additional informations on the integrability of the velocity. We
shall suppose the following inequalities on p and A, let v1 € (0,1) and 5 > 0 such that:

/

1
A (p)] < o (p), (1.5)
vip(p) < 2u(p) + NA(p) < vap(p).

Remark 5 If we assume that u(p) = pp® with o > 0 then the relation (1.4) gives:
Alp) = 2(a = 1)up®, (1.6)

and:
2u(p) + NA(p) = 2(1 + N(a — 1)) u(p)- (L.7)
In this situation we have v1 = vy = 2(1 + N(a — 1)).



Let us briefly make some comments as in [26] on the conditions (1.5).

Remark 6 The condition (1.5) is crucial in order to obtain the estimates (3.32) and
(8.31). In particular we can observe that the second condition in (1.5) is similar to the
classical assumption on the Lamé coefficient 2u(p) + NA(p) > 0 when p(p) = pp® and

A(p) verifies (1.4).

Remark 7 The lower estimate in the second inequality in (1.5) is trivial when \(p) > 0,
while the upper estimate is trivial when A(p) < 0. Together this provides:

[A(p)| < Culp) Yp > 0.

This inequality and the first inequality of (1.5) will be crucial for estimating the limit of
V(A(pp)divuy,).

Remark 8 Condition (1.5) and (1.4) implies that:

N-1+4 4 N-1+%2
+2§N(P)§ +3 Yp > 0.
Np 1(p) Np
It provides:
Cpl W HaN < pu(p) < Cp N FIN Wp > 1,
1 1 vo N N 1 1 vl (18)
Cp' " vtan < p(p) <Cp'wtaw Vp <1,

Let us now recall briefly the definition of the quasi solutions introduced in [15, 18, 19|
(in the sequel we shall give a more accurate definition).

Definition 1.1 We say that (p,u) is a quasi solution if (p,u) verifies in distribution
sense:

3} .
ik + div(pu) =0,

;(PU) + div(pu ® u) — div(2u(p) Du) — V(A(p)divu) = 0, (1.9)
(psu) =0 = (po,uo)

As we explained previously this notion of quasi solution is interesting in the sense that it
allows to exhibit large initial data in the sense of the scaling of the remark 4 (in particular
we assume no vacuum on the initial density) providing global strong solution for com-
pressible Navier-Stokes equation (see [15, 16] for more details). An other way to express
the things is that the quasi solutions preserves a structure of irrotationality of the system
by taking into account the non linear term coming from the convection terms. Indeed
in this paper we are working around the quasi solutions which exhibit regular effect of
type heat equation, and by combining the lagk of scaling invariance on the pressure we

are able to choose large initial data g9 € 327,1 with pg = 1 + ¢o. In particular we are
able to prove the global existence of strong solution for (1.1) with large initial data in
the energy space when N = 2. For other results on the existence of strong solution with
critical initial data for variable viscosity coefficients we refer to [7, 13, 14].



We now are going to investigate the existence of such quasi solution for the viscosity
coefficients verifying (1.4) when the initial data is assumed to be close from the vacuum,
typically po € L'(RY). More precisely as in [15] we are going to search in a first time
irrotational solution under the form u(t, x) = Ve(t, x) for the system (1.9). Let us assume
now to simplify that:

w(p) = pp® witha >0 and A(p) = 2(a — 1)up®, (1.10)

with a > 1 — % in order to insure the relation 2(p) + NA(p) > 0. We observe here that
wu(p) and A(p) verify the relation (1.4). In this case we will verify that at least for suitable
initial data on pp then it exists a explicit solution to the problem (1.9) written under the
form (p, =V (p)) with p verifying the porous media or the fast diffusion equation when

a#1:
(1.11)
p(07 ) = po-
In a very surprising way it means that the quasi solutions are directly related to the
porous or the fast diffusion equations. Moreover we will show that when we work with
highly compressible Navier-Stokes equations (which correspond to the case where a goes
to 0 with P(p) = ap”), then the properties of porous media or fast diffusion equations
are more or less preserved for the solution of (1.1). Before giving more details on your
results, let us give few words on the porous and fast diffusion equations.

{ Oip — 2ulp™ = 0,

Porous media and fast diffusion equations

Let us consider the equation (1.11); the case v > 1 (the porous media equations) arises
as a model of slow diffusion of a gas inside a porous container. Unlike the heat equation
a = 1, this equation exhibits finite speed of propagation in the sense that solutions
associated to compactly supported initial data remain compactly supported in space
variable at all times (see [30]). When 0 < a < 1, the opposite happens. Infinite speed of
propagation occurs and solutions may even vanish in finite time. This problem is usually
referred to as the fast diffusion equation.

Let us recall that there exists a theory of global strong solution for initial data pg €
LY(RY) (see the section 2 for some reminders). M. Pierre in [28] has extend this last one
in obtaining the existence of unique global weak solution with bounded Radon measure
as initial data. Let us mention also that the porous media equations are invariant by
scaling, more precisely we can introduce a notion of self similarity (for more informations
we refer to the chapter 16 of [30]). The notion of scaling consists in searching some
solutions under the following form:

plt.a) = t7F( ).

with « and (3 to be determined. In our case v and 8 have the form: v(a — 1) + 25 =1,
and F verifies the following equation:

AF® 4 nVF +~F = 0.

In this case we said that p is a self similar solution of type I or a forward self similar
solution. In particular we can construct self similar solution such that the initial data is



a Dirac mass (as in the theorem of M. Pierre in [28]) and such that for ¢ > 0 our solution
conserves a constant mass. This is the so-called Barrenblatt solutions (here o > 1) that
we can write under the following form:

— Y wi R G s SN,
Un(t,x) =1 F(tﬁ) with F(x) = (C 50 lz|%)$

with C > 0 and v, = N(aj—vl)+2’ 8= N(a—11)+2' In particular we have the conservation of

the mass [ Uy, (¢, z)dz = m with m depending on C' and the initial data corresponds to
the Dirac mass mdg.

We recall that asymptotically in time all the global weak solution with L' initial data
converges to a Barrenblatt solution determined by his mass ||ugl||;1 (we refer to Friedman
and Kamin [12], Vazquez and Kamin [22, 23] and Dolbeaut and Del Pino [11]). As we
mentioned previously at the difference of the heat equation e = 1, when @ > 1 the porous
media equations exhibits finite speed of propagation in the sense that solutions associated
to compactly supported initial data remains compactly supported in space variable at
all times (see Aronson [1]). This is due to the structure of the elliptic part that we can
rewrite under the form adiv(p®~1Vp), then the nonlinear diffusion coefficient takes small
values when p is small. The situation is different in the case of fast diffusion equation
0 < a < 1, indeed in this case infinite propagation occurs and solution may even vanish in
finite time. Let us mention that when « is in the interval (0, m.) with m, = max(0, %)
then it can appears a phenomena of extinction of the solution in finite time. In particular
it implies a lost of the initial mass when pq is in L' (it implies also a lost of the regularity
of the solution). We refer to [31] theorem 5.7 for a necessary condition of extinction, in
particular the solution belongs in an appropriate Marcinkewitz space M, (RY).

Let us mention that in the case o € (mg, 1) the situation is quite different as the mass
is preserved which implies no extinction in finite time. Moreover we have self similar
solutions also discovered by Barrenblatt that we can writte under the following form:

—1
Un(t,z) =t " F(zt™P) with F(z) = (C + rilz?)sT,
with k, = (127]3‘?1. Similarly to the case a > 1 in the situation o, < a < 1 the global
strong solution converges asymptotically to a Barrenblatt solution. M. A. Herrero and
M. Pierre in [21] have proved the global existence and the uniqueness of global weak
solution for initial data in L . (this is in sharp contrast with the case o > 1 where some
growth condition at infinity is required on wug to provide even a local solution in time).

1.1 Main results

Let us now give your first result describing the link between quasi-solutions and the
solutions of (1.11). Finally we obtain the following theorems.

Theorem 1.1 Let p(p) = pup® with a > 1 — % and X(p) verifying the relation (1.4).
Let pg € LYRY) with po > 0 and continuous and ug = —V(pg). Then it exists a
global weak solution solution of the system (1.9) of the form (p,u = —V(p)) with (p,u)



belonging in C*((0,+00) x RY) N C([0,+0c0] x RY) and solving the following system
almost everywhere :

Op — 2A =0
1P n(p) =0, (112)
p(0,-) = po.
Furthermore we have:
i [(t) = Un(®)13 v, =0, (1.13)
Convergence holds also in L* norm:
. B _ _
i () — U (1)) = O (1.14)
with = W and Uy, the Barrenblatt of mass m = |po| ;1@ny. For every p €

(1,400) we have the following regularizing effect, p(t,-) belongs in LP(RN) and:

o)l oy < Ctllpollf gy

. N(a—1)+2 N(p—1
U}Zth O'p = m and Oép = m

Remark 9 Let us point out that we could have also global strong solution for more

general viscosity coefficients with p verifying the same conditions than the subsection
(2.1.1). We refer to the section 2 for more details in this situation.

Remark 10 Let us point out that any solution of (1.11) such that p is in C3((0,+00) x
RYN) is a classical solution of (1.9).In the case where p = 0 the velocity is not defined
when 0 < a < 1 that s why we assume that u = 0 on the vacuum set. In other case we
could give sense to pu as in [26].

Remark 11 We can observe as in [17] that if we consider the compressible Navier-
Stokes equation with a friction term apu and a pressure of the form 2uap® then the same
solution than theorem 1.1 verify a such system.

Remark 12 Let us mention that when « is in the interval (0, m.) with m. = max(0, %)
(which violate the Lamé condition on the viscosity coefficients) then it can appears a phe-
nomena of extinction of the solution in finite time, in particular it implies a lost of the
initial mass when po is in L'. A typical example is the solution:

T—t, 1 2ucqa_,, |x|?
plt2) = ol o) and uft,7) =~ RV,
with ¢k~ = 2(N — %) In particular we observe a blow-up behavior of u at time T'.

Remark 13 Let us mention that when we have initial data py with compact support than
any po = Up (7, ) with 7 > 0 then we can not hope the uniqueness of the quasi-solution.
Indeed on the region {(t,z), p(t,x) = 0} the velocity u can take any value. There is a
problem to define the uniqueness, an option to overcome this difficulty consists in working
with the unknowns p and \/pu.



We are going to give a general definition of global weak solution for the quasi solutions in
the spirit of [26] including the case where the initial velocity is not necessary irrotational.

Definition 1.2 We say that (p,u) is a quasi solution if (p,u) verifies in distribution
sense:

0 :
5" + div(pu) =0,

gt(pU) + div(pu ® u) — div(2u(p) Du) — V(A(p)divu) = 0, (1.15)
(psu) t=0 = (po,uo)

More precisely (p,u) is a weak solution of (1.9) on [0,T] x RN

Pt=0 = po = 0, puji—o = mo. (1.16)
with: LN YN
po € L' (R™), /poVe(po) € L*(R™), po > 0, 1.17)
Aoluol(1+ /(1 + o) € LA(RY).
if

o pe LP(LIRY), VpVi(p) € LP(LARY)), Jpu € LF(LARY)),

e /u(p) Vu e L2((0,T) x RY), \/pluly/In(1 + [u[?) € LF(L*(RY)).

with p > 0 and (p, \/pu) satisfying in distribution sense on [0,T] x RNV

Bup + div(y/py/pu) = 0,
p(0,2) = po(a).

and if the following equality holds for all p(t, x) smooth test function with compact support
such that (T,-) = 0:

T
L oo el0.0d+ [ ] Vamon + e Vi Vods
— < 2u(p) Du, Vi > — < Ap) divu, divp >= 0,

(1.18)

where we give sense to the diffusion terms by rewriting him according to \/p and \/pu:
< 2p(p) Du, Vi >= _/lu\(fpp)(\/ﬁuj)aiﬁojdx dt — /2(\@%')#'(0)61\/,5&@3'6156 dt
-/ “\(g(ﬁugﬂang‘dw it = [ 2/ (0105 Oug st

< Ap) divu, divy >= —/>;(/pﬁ)(\fpui)8jig0jdx dt — /2(\fpui)/\/(p)8i\fp8jg0jdx dt

We assume also that p and \ verify the conditions (1.4) and (1.5).



We obtain now a general result concerning the stability of the global weak solution for
system (1.9) and a result of existence of global weak solution for general initial data of
the form (pg, —V(po)) (in particularly pg is not assumed only strictly positive).

Theorem 1.2 Assume that p(p) and A(p) are two regular function of p verifying (1.4)
and (1.5). Furthermore we shall set g(z) = % and we assume that g is bijective and

that g=* is continuous on (0,+00). When 2+ N < vy, we assume in addition that g and
g are increasing on (0, 400).

Let (pn,uyn) be a sequence of global weak solutions of system (1.15) satisfying entropy
inequalities (3.29), (3.80) and (3.81) with initial data:

(Pn) ji=0 = po () and (paun)ji—0 = poug (2)
with pg and ug such that:
PR >0, pi— po in LYRY), phul — poug in L*(RY), (1.19)

and satisfy the following bounds (with C' constant independent on n):

[t <e [ Vmvere<c (1.20)

and: )
1 n
/ pgM In(1 + |up|*)dz < C. (1.21)
RN 2

Then, up to a subsequence, (pn,/Pntn) converges strongly to a global weak solution
(p,/pu) of (1.15) satisfying entropy inequalities (3.29), (3.30) and (3.31).
Furthermore the density p, converges stmngly to p in C([0,T], Lllota(]RN)) with 0 < a <

v1 when N =3 and in C([0,T], L} (RN)) for any ¢ > 1 when N = 2; \/pau, converges

strongly in L*(0,T, L%OC) to \/pu and the momentum my, = pyu, converges strongly in

LY0,T, L} (RYN)), for any T > 0.

If we assume moreover that (po,ug) verify the initial condition of the definition 1.2, that
1

ug = —Vo(p) with u(p) = up®™ and that \//T()]u0|1+5 belongs in L>(RN) for p large enough,

then it exists a global weak solution (p,u) of the system (1.15) where p is also the unique

solution of the system (1.11) (see the theorem 2.4 for the existence of a unique global
strong solution for the equation (1.11) with a L' initial data).

Remark 14 Let us mention that the very technical assumption on g remains quite nat-
ural since they are verified in the standard case p(p) = pp® with o > 1 — % In particular
we observe that this result extend the analysis of [26] to general viscosity coefficient, in
particular we do not suppose that u/(p) >c>0.

Remark 15 Let us emphasize that the condition (1.5) implies that we exclude the case
of fast diffusion equation with 0 < o < 1 — N, in particular it forbids any phenomen of
extinction and loss of mass ||p(t, )| 1 @wwy-
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Remark 16 Let us mention that our second result of existence of global weak solution
when ug = —Vp(po) can be applied to the Barrenblatt solution by choosing po = Up (T, )
with T > 0. In this case the density p, converges strongly to p in C°((0,T), L:T*(RN))

loc

with 0 < o < v; when N = 3 and in C°((0,T), LL (RN)) for any ¢ > 1 when N =

loc

2; \/Pntty, converges strongly in L*(0,T,L? ) to Vpu and the momentum m, = pyuy

loc

converges strongly in L*(0, T, L, (RYN)), for any T > 0 to 0, uo) verify the initial data
assumption of the definition 1.2. In this case we have then a free boundary problem with
(p,u) C* when p > 0 and (p,u) = (0,0) when p = 0. In particular when p(p) = pp®
with o > 1 we observe that the propagation of the support of the Barrenblatt is finite.

More generally when we choose a initial density with compact support the support of
the density remains bounded along the time when we deal with the case p(p) = pp® with
a > 1. It means that quasi-solutions in this case have the same properties than the porous
media solutions. We are related to a free boundary problem with on a side the solution
which is C*° and on the other side the solution is identically null. In particular it implies

that we can not hope uniqueness as the velocity can take any value on the vacuum set.

Remark 17 Let us mention that the problem of the existence of global weak solutions
remains open in the general case (it means when g is different from —V¢(pg)). Indeed in
the previous theorem we prove the stability of the global weak solutions, however it seems
quite complicated to construct approximate global weak solution which verify uniformly
all the entropies. We have the same problem in the case of the shallow water system (see

[26]).

We are going to prove now the convergence of the global weak solution of the compressible
Navier-Stokes equations to the quasi solution when we consider a vanishing pressure
process. More precisely let us consider the highly compressible Navier-Stokes system
with e going to 0:

Ope + div(peue) = 0,
O(peue) + div(pete @ ue) — div(2u(pe) D(ue)) — V(A(pe)divue) + eVpl =0,  (1.22)
(pm uE)/tZO = (p()) UO)'

In the literature we find many result on the incompressible limit which corresponds to
take € = 77% with 1 going to 0. For such results in the framework of the global weak
solutions we refer to the following papers [9, 10, 24, 25]. We are going to deal with
the opposite situation when the solutions are highly compressible and converge to quasi-

solution which are in some sense purely compressible since irrotationnal.

Theorem 1.3 Let v > 1 with the additional hypothesis (7?) if v > 3 and N = 3 and
(po, uo) verifies the conditions of definition 1.2 with the additional property po € LY (RY).
Let us take the following assumptions on vy, v1 and vy:

e N=3
o > 2:
%+%<7<2+% if N=3,
g+%<7<%+%yl if N =3,
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e <1y <2:

5 1y 4—v))1+11) .
c o2 N =
6 T2 <7< 2— 1 i 3
5 1] b 7 .
e il _ _ N =
6+12<’y<6+12u1 if 3,
o N=2 1
Vo .
42 N =2.
4+8<’y if

Assume that there exists global weak solution (pe,ue) verifying the definition of [26] with
the conditions (1.4) and (1.5) on u(p) and X(p). Then (pe,ue) converges in distri-
bution sense to a global weak quasi-solution (p,u) of the system (1.15) respecting the
properties of the definition 1.2. Furthermore the density p. converges strongly to p in
C([0,T), Lt *(RN)) with 0 < a < vy when N = 3 and in C([0,T], L{ (RN)) for any

q > 1 when N = 2; \/peu. converges strongly in L*(0,T,L% ) to Vpu and the momentum

loc

me = peue converges strongly in L'(0, T, L (RN)), for any T > 0

loc

Remark 18 However an important questions remains, when u(p) = pp® and uy =
—V(po) is the limit solution (p,u) of (pe,ue) when € goes to 0 a solution of (1.12).
Indeed it is not clear how to prove the uniqueness of the quasi solutions. In the fol-
lowing corollary, we shall give properties of the solutions of (1.22) when we assume the
uniqueness of the quasi-solutions.

Remark 19 The second important remark consist to emphasize on the fact that the
question of global weak solution for the system (1.22) remains open, indeed Mellet and
Vasseur have proved the stability of the global weak solution in [26]. However it seems
not so easy to construct a regular sequel (pn,ur) approzimating (1.22) (typically by a
Friedrich process) and verifying uniformly all the entropies of [26] (3.34), (3.35) and
(3.36).

Corollary 1 Let v > 1, v1 and vo with the hypothesis of theorem 1.3.Let py and ug
verifying the hypothesis of the theorem 1.8 with ug = —Vp(po) and u(p) = up®, A(p)
verifying also the hypothesis of theorem 1.3. We assume here that there exist a unique
quasi solution of system (1.15) with such initial data, in particular this quasi solution
verifies (1.11). Then as in theorem 1.3 (pe, uc) converges in distribution sense to a global
weak quasi-solution (p,u) of the system (1.15) which is solution of (1.11). Moreover:

o Ifa>1, pg € L¥(RN) and the support of pg is compact then we have for T > 0 p,
converges strongly to p in C([0,T], LY(RN)NLP(RN)) with 1 <p < 141y if N =3
and in C([0,T], LP(RY)) for any p > 1.

For all n > 0 it exists eg > 0 such that for all 0 < € < ¢y ¥Vt € [0, T] we have:

pe(t7 ) = p(t, ) + fe(tv ‘)7

with p(t,-) with compact support for any t € [0,T] such that it exist C > 0 such
that supp p(t,-) < Ct5 with B = m and we have || fe(t, )| .1 @ny <1
For all n > 0 it exists eg > 0 such that for all 0 < e < ¢y Vt € [0,T] we have:

pe(tv ) = p(t, ) + fe(t’ ')’

12



with p(t,-) verifying for p as above:
o) oy < O 032 gy

with op = (N(a—1)+2p

_ __Np-1
N(a—1)+2)p and oy = N 5

=T and we have || fe(t, ')HLP(RN) <.

o Ifa>1— %, for allmp > 0 for all compact K it exists T > 0, it exists eg > 0 such
that for 0 < € < ¢y we have:

1pe(t, ) = Un(t, iy <m Yt € [T, 2T).

Remark 20 It is very surprising to observe that for € p. is subjected to a type of damping
effect in LP(R™) with p choose as above up to a small remainder term in LP(RN). Indeed
in [13] we observe a damping effect on the density due to the pressure plays, but in our
case the pressure tends to disappear. As for the porous media equation this effect seems
purely non linear and is exhibit via the particular structure of the viscosity coefficients.

Remark 21 Under the hypothesis of uniqueness of the quasi solution when uy = —V¢(pg)
we show that the solution of the highly compressible Navier-Stokes equation are not so far
to have a finite speed of propagation when we take a initial density with compact support.
Indeed this is the case modulo a perturbation f. of small L' norm. Similarly modulo
this hypothesis of uniqueness we expect a asymptotic convergence of pe to the Barrenblatt
solution of L' norm ol 1wy modulo a small perturbation.

The paper is structured in the following way: in section 2 we recall some important
results on the porous media and the fast diffusions equations. In section 3 we adapted
the entropy of [5] and [26] to the case of the quasi-solutions. In section 4, we give a
few notation, some compactness results and briefly introduce the basic Fourier analysis
techniques needed to prove our result. In section 4 we prove theorem 1.1 and in section
5 we show the theorem 1.2. In section 5.1 we conclude with the proof of the theorem
1.3 and the forollary 1. An appendix is postponed in order to prove rigorously some
technical lemmas.

2 Important results on the porous media equation

for the sake of completeness for the reader which are not familiar with the porous and
the fast diffusion equations, we are going to recall in this section some essential results
on the porous media and the fast diffusion equations. The majority of them are directly
issue from the excellent book [30], [31] from Vazquez. In this part in order to simplify

the problem we shall only consider the following equation with v > 1 — %:

(2.23)

Orp — 2uAp® =0,
p(O, ) =po = 0.

Let us start with the case where o > 1

13



2.1 Porous Media, a > 1

In the sequel we shall set @ = (0, +00) x RY. Let us recall the notion of global strong
solution for the equation (1.11) of the porous medium equation (a > 1) (see [30] chapter
9 for more details).

Definition 2.3 We say that a function p € C([0,+00), L*(R™)) positive is a strong L!
solution of problem (2.23) if:

o p* € L}, (0, +00, L"(RY)) and py, Ap™ € Lj,,((0,+00) x RY)

loc loc
o py = pAp® in distribution sense.
e u(t) = po ast — 0 in LY(RY).

Let us mention (see [30] pl197) that we have the following theorem of global strong
solution:

Theorem 2.4 Let o > 1 For every non-negative function pg € L*(R™N) N L>(RYN) there
exists a unique global strong solution p > 0 of (2.28). Moreover, dyp € LY (Q) for

loc
1<p< % and:
p ) /
D L — D
o2~y i D@,
2||p0||L1(]RN)
[0:p(t, ) L1 rrvy < “la—1t

Let p1 and pa be two strong solutions of (2.23) in (0,T) x RN then for every 0 <1 <t
H (,01(t, ) - p2(tﬂ ‘))_,_”Ll(]RN) < ” (pl(Tv ) - pg(T, '))_:,_HLl(RN)' (2‘24)

If p1 and pa are two strong solution with initial data po1 and po2 with po1 < pe2 in RV,
then p1 < pa almost everywhere in (0, 400) x RV,

Remark 22 Let us recall that there exists global weak solution which are not classical
it means not C* even if the initial data is C*> (see a example due to Aronson in the
problem 5.7 of [30]).

We are now to recall the so called L' — L™ smoothing effect (as for the dispersive
equations), we refer to [30] p 202.

Theorem 2.5 For everyt > 0 we have:
plt, ) < CllpollFs gyt ™,

with o = W, 8= m and C > 0 depends only on o and N. The exponents

are sharp.

Let us finnish by giving a more general theorem of existence of global strong solution for
(2.23) with some properties on the solutions (see [30] p 204-205).
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Theorem 2.6 For every pg € L'(RYN) there exists a unique global strong solution of
(2.23) such that p € C([0, +o0), LY(RN)) N L>®((1, +00) x RN) with 7 > 0. Furthermore
we have the following L™ estimate:

p(t,2)] < Cllpol 5 gyt

with o = W, 8= W and C > 0 depends only on o and N. Moreover we

have the following properties:

1. The solutions are continuous functions of (t,x) in Q with a uniform modulus of
continuity fort > 1 > 0.

2. The maximum principles holds.

3. if po is strictly positive and continuous, then p € C®(Q) N C(Q) and is a classical
solution of (2.23).

4. For every p € (1,400) we have the following regularizing effect, p(t,-) belongs in
LP(RN) and:
ooy < CEP ool ey

. N(a—1)+2 N(p—1
with 05 = (a2 974 O = (viaCTDp

Let us conclude this section with two important theorem showing the finite speed of
propagation for the porous media equation (see [30] p 210) and the time asymptotic
behavior of the solution which converges to Barrenblatt solutions (see [32] p 69).

Proposition 2.1 Let p be the global strong solution of (2.23) with initial data py €
LY (RN N L®(RY) and assume that py has a compact support then for every t > 0 the
support of p(t,-) is a bounded set.

Theorem 2.7 Let p(t,x) be the unique global strong solution of (2.23) with initial data
po € LYRY), po > 0. Let Uy, be the Barrenblatt with the same mass as po. Then we
have:

lim_ [[p(t) = Fon(t) | 1) = 0. (2.25)

t——+o00

Convergence holds also in L> norm:

lim 7]|p(t) = Fun(t)[| e vy = 0, (2.26)

t—+o00
: _ N
Remark 23 For more results in this direction we refer also to [11].

Let us conclude this section by giving general results (essentially extracted form the
chapter 9 from [30]) on porous media equation of the form:

{ ip — 2Ap(p) =0,

p(0,") = po. (227)
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2.1.1 General viscosity coefficients

We assume here that p verifies the following assumptions:
e 4 is a continuous and increasing function: R — R with ©(0) =0

e 11 has at least linear growth at infinity in the sense that it exists ¢ > such that for
large |s| we have:
|u(s)| = c|s| > 0.

Definition 2.4 A locally integrable function p defined in Q1 is said to be a weak solution
of the problem if:

1. plp) € L2(0, T, H'(RM))

2. p satisfies the identity:

/ / (Vilp) - Vo — pdp)dadt = /R  pol@)p(0, 2)de, (2.28)

for any function ¢ € C*(Qr) which vanishes fort = T and has uniformly bounded support
in the space variable.

We define L, (RY) by the set of measurable function py such that u(pg) € L'(RY). We
shall consider v the primitive of u:

Let X7 = L,(RY) N LYRY) and Y = L®(Qr) N LY (Qy) for 0 < T < +oc.

Theorem 2.8 Let pg € X. Then it exists a unique global weak solution defined in
(0,4+00) and Vu(p) € L3(Q1). Moreover we also have p € L>=((0,T), X).

2.2 Fast diffusion equations, 0 < a <1

The situation is different in the case of fast diffusion equation 0 < a < 1, indeed in
this case infinite propagation occurs and solution may even vanish in finite time. Let
us mention that when « is in the interval (0,m.) with m. = max(0, %52) then it can
appears a phenomena of extinction of the solution in finite time. In particular it implies
a lost of the initial mass when pg is in L' (it implies also a lost of the regularity of
the solution). We refer to [31] theorem 5.7 for a necessary condition of extinction, in
particular the solution belongs in an appropriate Marcinkewitz space M« (RM).

Let us mention that in the case a € (m,, 1) the situation is quite similar to the case of the
porous media equation (except the infinite propagation speed) as the mass is preserved
which implies no extinction in finite time. Moreover we have self similar solutions also

discovered by Barrenblatt that we can write under the following form:

;1
Un(t,z) =t " F(zt™P) with F(z) = (C + rilz?)sT,
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with k1 = % In particular the proof of the most of the previous result in the
last section are based on the existence of Barrenblatt solutions and on the maximum
principle or in other word the L! contraction principle. This two fundamental point arise
also in the case a € (m¢, 1) which implies that we have the most of the result of the case
a > 1 exists also in this case (using essentially the same proof). In particular similarly
to the case o > 1 in the situation o, < a < 1 the global strong solution converges
asymptotically to a Barrenblatt solution and we have also regularizing effect L' — L.

For more details in this situation we refer the reader to the excellent books of Vazquez
[30, 31].

3 Entropy inequality for the quasi-solutions and basic tools

3.1 Entropy for the quasi-solution of the system (1.9)

We now want to establish new entropy inequalities for system (1.9) by applying the
entropy inequalities discovered in [5, 26]. More precisely if we assume that (p,u) are
classical solutions of system (1.9), we obtain the following proposition.

Proposition 3.2 Assume that (p,u) are classical solutions of system (1.9) then for all
t > 0 we have the two following entropy:

/ f,o\u| t,x dCE+// 2u(p)| Dl dwdt+// p)|divu|*dzdt
(3.29)
~ [ mluo*@)da.
RN

1 t
/RN 5p\u+ch( p)|(t, ) da:+2/0 /]RN w(p)|Vu —" Vu|*dzdt

, (3.30)
= /RN §PO|UO + Vo(po)*(z) da.

Proof: In order to obtain (3.29) it suffices to multiplying the momentum equation by u
and integrating over (0,t) x RY.

Let us briefly recall the proof of the second entropy (3.30) introduced by Bresch and
Desjardins in [5]. To this purpose, we have to study:

d [1, , 1 )
p [§plu| +pu - V(o) + 50Velp)l |dz.

Step 1:

First by the mass equation, we have:

174d ar [T, [ (S0P
5 [ Geveotis = [ o5  divouyde,

- / pVuVe(p) @ Ve(p)de + / p*¢ (p) A (p)divuda + / p|Vo(p)Pdivuda.
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Step 2
It remains to estimate the derivative of the cross product:

d d d
)z = = dz
o | puVelp)de = /Vso dt(pU)+/ﬂu 7 Vo)

= [Velo) Gt~ [ divipu)s (9) 5 pds
= [Velp)- o) + [ div(ou?s (p)da.
Multiplying the momentum equation by V(p), we get:
[ 96t 50w == [ @uto) + Me)Ap(p)divads + 2 [ Vu: Telp) @ Vanlp)ds
) / Vo (p) - Viu(p)divuda — / Vo (p)div(pu © u)dz,

where we use the fact that:

/V p)divu) - Vo(p)dz = —/A(p)Agp(p)divudm,

[ aveupD@) - Velpde = [ 0,(u(pdju)diep)ds + [ 0y(un(p)00u)0r0(p)
:/a( ()0;u)050(p dx—i—/a )0 dup(p)da,
— [0n0u0050(0)de ~ [ in(p)oui0;0(p)iz
=— / 1(p)d5ui0jjp(p)dx + / dju(p)diu;Oip(p)da — / Oipu(p)0ju;Oip(p)de
- / 1(p)dju;jOiip(p)da
—9 / Vu: Vilp) @ Ve(p)de — 2 / Vulp) - Voolp)divuda — 2 / 1(p) A (p)divuds.

Step 4
Sincey, p and A satisfies (1.4) and (1.5), then we obtain:

d

2
dt(/pu Ve(p) + W@(p)‘ ——dr) = —/Vw(p)diV(pu@@pU)dw+/¢/(p)(diV(pU))2dw-

2
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Finally we have:
- / Vi(p)div(pu ® pu)dr + / # (p)(div(pu))*da
—— [ o) Tpdivipu) — ¢ (0)Volpu- Tu) + ¢ () cliv(pu)*da
= [ ¢ (p)tivudivion) — pg (9)Vp(u- Vuds
= / P20 (p)(divu)? + pg' (p)u - Vpdivu — pg' (p)Vp(u - Vu)dz,
then by (1.4) and (1.5), we get:
= [ Vetoptivipus purds + [ ¢ (o)(iv(pu) P,
=2 / ph' (p)(divu)? + Vh(p) - udivu — V(h(p))(u - Vu)dz,

= 2/p//(p)(divu)2 — u(p)(divu)® — u(p)u - Vdivudz + Q/M(p)(“)iuj(?jui

+ p(p)u - Vdivudz,
— [ 2on(9) ~ 2u(p)) v + 2u(p)0y0;0yd

= //\(p)(divu)2 +/2,u(p)8iuj'8juidx,

whichgives:

\V4 2
| ‘PQ(P)’ d:C)

(/pu-VsO(p)+p
= /A(p)(divu)2d$+/QM(p)aiujajUidCCa

Adding this equality and (3.29), and using the fact that:

(9in — Gjui

[2@I@F ~ [ 2005 = [ 20522
we easily get (3.30). O As in [26] we are also interested in getting a gain of integrability
on the velocity. We have then the following proposition.

Proposition 3.3 Assume that:

2u(p) + NA(p) = vA(p)

for some v € (0,1) (which is a part of (1.5)). Then it exists C > 0 such that smooth
solutions of (1.9) satisfy the following inequality:

d 1+ |ul?
p

p 5 In(1 + |u?)dz + Y /,u(p)[l + In(1 + |ul?)| Dul?dz < C/,u(p)]VuFd:n.

2
(3.31)
for any & € (0,2), and with |Vul*> =Y, > D52
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Proof: Multiplying the momentum equation by (1 + In(1 + |u/?))u, we get:

d 1 2 1 2
/pdt[ +2]u| ln(1+\u|2)]d:z:+/pu-V( —1—2]u| In(1 + [u]?))dz

2uiuk

+ [ o)1+ a1+ [uP) D) P+ 1) s Dig ()

2u;
+ / A(p) (1 + In(1 + [u)?)divu|?dz + / A(p)%@iukdivud:ﬂ ~0
Since:
|divul* < N|Vul® and vpu(p) < 2u(p) + NA(p),
we obtain:

d 1 2 1 2
/ P +2’“| (1+\u|2)]dx+/pu-v( +2’“| In(1 + |uf?))de

(3.32)
+y/u( J(1 4+ In(1 + [ul?)| D(w)|2dz < 0/ ()| Vul2da.

Moreover multiplying the mass equation by %ln(l + |u|?) and integrating by parts,
we have:

1 2 d 1 2
/—1—2|u] n(1 + |ul? ) pdm /pu-V( —|—2]u\ In(1 + [uf?))dz =0

We deduce that:

d 1+ |ul?
& [P a  uPyde % [ o)+ 1+ ) D) P
< C/ p)|Vul?dz.
It concludes the proof. O

3.2 Entropy for the compressible Navier-Stokes equations

We are going now to consider the following system with u(p) and A\(p) verifying (1.4):
Op + div(pu) =0,
O (pu) + div(pu @ u) — div(2u(p)Du) — V(A(p)Vu) + eV P(p) = 0, (3.33)
(p7 U)(O, ) = (p()? ’LL()).

Here P corresponds to the pressure and we shall consider a v law P(p) = ap? with v > 1
and a > 0.

Proposition 3.4 Assume that (p,u) are classical solutions of system (3.33) then for all
t > 0 we have the two following entropy:

/RN[ plul’(t, z) 7(t,x) dm+/ / 2u(p)| Du|*dzdt
€a
/ / p)|divu|>dzdt = / [poluol(x) + — 1pg(x)} da.
RN RN g

(3.34)
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1
/RN [gplu+Velp)(tz 2+ "t )] do + o // (p)|Vu " Vu|*dzdt

t
1
vea [ [ 95 Vplp)(sapdsdo = / (ool + V(o))
0 JRN RN
ea

+ ﬁpg(t, 3:)] dx.

(3.35)

Proof: We refer to [5] for the proof. O
Proposition 3.5 Assume that:
2u(p) + NA(p) = 11A(p)

for some v € (0,1) (which is a part of (1.5)). Then it exists C > 0 such that smooth
solutions of (1.9) satisfy the following inequality:

1 2
jt/p +2|“‘ (1 + ]u|2)dx+;/ﬂ(p)[1+ln(1+ (uf2)| Dul2dz <

C’/ (p)|Vu|?dz + Cé (/ (iz;)g)ﬁ;dx)?i‘(/(mmz +p)d:n)%
for any 0 € (0,2).

Proof: The proof follows the same lines than the lemma 3.2 in [26], for the sake of com-
pleteness let us adapt this proof to our situation. Multiplying the momentum equation
by (1+1In(1+ |u?))u, we get as in (3.32):

2
/ jt[1+2‘“| (1+\u12)}dx+/pu-v(1+2‘“| In(1 + [uf?))da

+1 /,u(p)(l +1n(1 + [u?)|D(u)|?dz < —ae/[l +1In(1+ [uP)]u-Vplde  (3.37)

(3.36)

+ C’/ (p)|Vu|?dz.
It remains to bound the right hand side. We have:
|e/[1 +In(1 + |u*))u - Vprdz|

e|/ l‘uk|28ukp dz| + 6|/ n(1 + |ul?)]divup?dz|,

< 26(/M(p)yvu\2dx)%(/ %dm é+ey/ [+ In(1 + [uf?)]divup"dz].

Let us deal with the last term on the right hand side:

€| /[1 + In(1 + |u?)]divup’dz| <

<o [+ 01+ P @[+ P2k,
. 2;(/[1 (1 + |u!2)]:(;)d:v).
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We deduce that it exists C' > 0 such that:

Cé oy P77
+ 2V1(/[2+1n(1 + )L

where the last term satisfies (if 6 € (0,2)) for a C' > 0:

62/}f(%)\uﬁdw<€2</(pzy_g)ﬁsd:ﬁ>22§(/p[2+ln(l+|u|2)]§dx)g,

p 1(p)
< Ce —“ddx ul|” + p)dz
1(p) g g
and the proposition follows. O

3.3 Basic results of compactness

We would like to finish this section by giving very useful propositions of compactness
that we shall often apply. We are going to recall the so-called Aubin-Lions theorem.

Proposition 3.6 Let X << B < Y be Banach spaces (with X which is compactly
imbedded in B) and (fu)nen a sequence bounded in L((0,T),B) N L*((0,T),X) (with
1<qg<+4o00)and (%fn)nEN bounded in L*((0,T),Y).Then (fn)nen is relatively compact
in LP((0,T),B) for any 1 <p <gq.

Let us recall now the theorem of Arzela-Ascoli.

Proposition 3.7 Let B and X Banach spaces such that B —— X 1is compact. Let
fn be a sequence of functions I — B (with I an interval) uniformly bounded in B and
uniformly continuous in X. Then there exists f € C°(I, B) such that f, — f strongly in
F€CI,X) up to a subsequence.

Lemma 1 Let K a compact subset of RN (with N > 1) and v¢ a sequel such that:
e v¢ is uniformly bounded in L'**(K) with a > 0,
e v° converge almost everywhere to v,

then v¢ converges strongly to v in L'(K) with v € L'T¥(K).

Proof: First by the Fatou lemma v is in L'*%(K). Next we have for any M > 0:

/ |v€ —v|dx < / |v¢ — v|dz —l—/ |v€ — v|dz. (3.38)
K Kn{jve—v|<M} Kn{jv¢—v|>M}

We are dealing with the second member of the right hand side, by Holder inequality and
Tchebychev lemma we have for a C' > 0:

/ o oo < ([ o = oftedn) T (o - of 2 M
Kn{jve—v|>M} K

C
< —
M T+

(3.39)
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In particular we have shown the strong convergence of v¢ to v, indeed from the inequality
(3.38) it suffices to use the Lebesgue theorem for the first term on the right hand side
and the estimate (3.39) with M going to +oo. O

Lemma 2 Let f € H® with s >0 and f € LP + L? with 1 < p < 2. Then f € L2

Proof: Indeed we have as f € H*:

/ P9 FPde < +oo,
]RN

S0 fl{m>1} € L2(RN). And as f = f1 + fo with f; € LP(RY) and f, € L?. By using
the Riesz-Thorin theorem, we know that f; € L(RYN) with 1% + % =1. As ¢ > 2 we then
have f1 (fl<1y € L?*(RY). This concludes the proof. O

4 Proof of theorem 1.1

Let us assume in a first time that the solution (p,u) of system (1.9) are classical, we are
going to search solution under the form: (p, —V¢(p)). The mass equation give us:

Ip —div(pVe(p)) =0 (4.40)
Since ¢ (p) = Lp(p) we get:
Op —2A8p(p) =0 (4.41)

Let us check that the second equation is compatible with the first and keep an irrotational
structure. First we have:

I (pu) = =0u(pV(p)) = =2V (1(p))-

—2div(u(p)Du) = 2div(u(p) VVe(p)),

=2p(p)VAp(p) + 2V u(p) - VV(p). (142)
—V(A(p)divu) = =V(A(p)Ag(p)).
Next we have:
div(pu ® u); = Z di(puiuy) = Z 9i(p0ip(p)ds0(p)),
= Z 8i(py (p)3;pd:(p)) = 2 Z 9i(0j1(p)di(p)),
= 28¢(p)0;n(p) +2(Vu(p) - VV@(p));-
We have then:
div(pu @ u) = 28p(p)Vu(p) + 2Vu(p) - VV@(p). (4.43)

Combining (4.42) and (4.43) we obtain:

div(pu @ u) — 2div(u(p) Du) = 280 (p)Vu(p) + 2V u(p) - VVo(p)
+2u(p)VAp(p) +2Vu(p) - VVp(p),  (4.44)
=2V (u(p)Ap(p)) +2V(Vu(p) - Vio(p)).
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Finally using (4.42), (4.44) and the fact that A(p) + 2u(p) = 24 (p), we obtain:
O(pu) + div(pu ® u) — 2div(u(p)Du) — V(A(p)divu) =

— V(20i(p) — 2u(p) Ap(p) — 2V (p) - Vio(p) — Ap)Aip(p)), (4.45)
— V(20i(p) — 2p1 () Ap(p) — 2V 1u(p) - Vip(p)).

Next we have since y (p) = % p¢ (p):

Bulp) = 3 0unlp) = 3 5010 (9)0up),

1

=5 2 %ipdi(p));
1 1
= 5PR¢(p) +5Vp - Vi(p).
and: ] 1
wp)Aulp) = 5pAp(p) + 51 (p)Vp - Vo(p),
2 2 (4.46)
= 5PAP(p) + 5 Valp) - Ve(p).
In particular from (4.46) we have:
441 (p) = 2p2p(p) + 2V pi(p) - Veo(p) (4.47)
Combining (4.48) and (4.47) we have:
O(pu) + div(pu ® u) — 2div(u(p)Du) — V(A(p)divu) (4.48)

= V(21 () Dep) — 2A0(p))).-

This concludes the proof inasmuch as via the above equation the momentum equation is
compatible to the mass equation and must verify the equation (4.41).

But when we take initial density in L' non negative and continuous, we know via the
theorem 2.6 that the unique global solution of (4.41) is classical and non negative. It
justify in particular all the previous formal calculus and prove that (p,u = —Vp(p)) is a
classical solution of (1.9) with p verifying (4.41). It concludes the proof.

Furthermore the different properties on p are a direct consequence of theorem 2.4, 2.6
and 2.7.

5 Proof of the theorems 1.2

We now present the proof of theorem 1.1 extending to general viscosity coefficient the
results of [26] in the case of the quasi solutions. Let us begin with recalling the assump-
tions on the initial data. Indeed we assume that it exits a sequence (py,u,) of regular
global weak solution verifying the system (1.15) (or at least an approximated system,
typically by using Friedrich approximations).
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Initial data:

In particular the initial data pf,uq) must uniformly in n satisfy (1.16), and (1.17) in
order to verify the entropy inequalities from section 3, more precisely we shall have:

e pf is bounded in L'(RY), pp > 0 a.e in RY,
e pf|up|? is bounded in L'(RY),

e /p"Vp(pd) = Vf(p") is bounded in L2(RY),
e puf|?In(1 + |up|?) is bounded in L'(RY).

With those assumptions, and using the entropy inequalities (3.29), (3.30) and the mass
equation, we have the following bounds:

Ivenll oo o,r),L2@NY) < C,
Iv/Prtnll Lo 0.7y, 2@y < C,

(5.49)
IV f(pn) o (0,1),22®N)) < C,
IvPrVunl 20,1y xrry < C,
and
Il onltn|* (1 + [unl*) | Lo (07,01 YY) < C- (5.50)

Remark 24 Let us point out that the gain of integrability on u, in (5.50) will be a direct
consequence of a gain of integrability on the pressure with some restriction on vy, v1 and
V9.

The proof of theorem 1.1 will be derived in three steps and follows some arguments
developed in [26]. In the first step, we deal with the strong convergence of the density
(pn)nen which enables us to show the convergence almost everywhere of (p,)nen us to a
subsequence. We shall also prove the strong convergence of a momentum sequel of the
form /pph(pn)u, with a function h to precise to a function /ph(p)u. In the second step
we derive the strong convergence of \/ppu, to \/pu in L2 ((0,T) x R) (it allows us to
give sense to the momentum product p,u, @u,) by taking advantage of the uniform gain
of integrability on un via the entropy inequality (3.31). Indeed it will suffice to use the
lemma 1 after proving almost everywhere convergence via Sobolev injection. In this part,
we also shall deal with the strong convergence in the distribution sense of the product
/Prnr/Prun. In the last step we will treat the diffusion term which will achieve the proof
of the theorem 1.2.

Step 1: Convergence almost everywhere on p, and p,u,

We are going to begin with proving a technical lemma giving uniforms estimates on p,
via the entropy (3.29) and (3.30).

Lemma 3 When N = 2,3 V(“\(/’;in)) is uniformly bounded in L (L*(RYN)) for any T > 0.
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o When N = 3 it implies that M\/;in), % are uniformly bounded in L>((0,T), LS(RY))
for any T > 0 which gives:

1 v

pSJrW is uniformly bounded in L°°(0,T; LS(RN)). (5.51)
e When N = 2 we distinguish two cases:

o vy > 2, p, is uniformly bounded in L3¥(LY(RYN)) for any q € [1,+oo[ and any
T > 0. It implies that M\/;in) and M\/p%) are uniformly bounded in L>°((0,T), L1(K))
for any compact K.

e 0 < vy <2, py, is bounded in L (LI(RN)) for any T > 0 and any q € [1,+oo|.
M(Pn)

It implies that N and )‘\(/’/%) are uniformly bounded in L>°((0,T), LY(K)) for any

compact K.

Proof: When N = 3, we observe that:

v<“¢(’;> = 20 (9) Vo5 — ‘2‘?) o,
= VH) -0,
2p2

and from conditions (1.4), (1.5) and the fact that u(p) > 0 we obtain:

20 (p)p = A(p) + 2u(p) = W > %u(p)- (5.52)

We deduce that:

p(p 3.1 (p
10 G < 3105y

2/)5 R \/ﬁ

3

< =

< 5,1 (DVPIV
3

<= .

< V()

It provides that

|v<“<ff;)>| < CIVf(p).

It implies by energy estimates that:

||V(M\;ppin))”L°°(0,T;L2(RN)) <C.

Sobolev’s embedding ensured that &\/pin) is bounded in L°°(0, T; LS(R")). Next by using
(1.8) we have:

1_1.,"
Cpa NN < ,u(//))n) when p, > 1,
\Ya Ll
1_ 1, v2
Cpa NTaN < ,u(/;n) when p, < 1.
VvV Fn



1 1

Y1
It implies in particular p; ~ AELIT uniformly bounded in L°°(0, T'; LS(R™)) (this is due
to the fact that p,1y,, <13 is uniformly bounded in L>(0, T; L' (RN))NL>(0, T; L (R"))
andthatB—%—%%lehenN:S).

When N = 2 by following the same proof than in the case N = 3 we obtained that

V(%) is uniformly bounded in L%°(0,T; L2(R")) for any T > 0. By using in a similar

way (5.52) when N = 2 and (1.8) we have:

1+ H/(Pn)
Cpn *|Vpn| <2 Vool =|Vf(pn) when p, >1,
Vol <2| s Vo] = [V f(pn)]

(5.53)

1+ - (pn)
Cpn *|Vpn| <2 Von| =|Vf(pn) when p, <1.
Von| <2 N Vo] = [V f(pn)]

n

When vy > 2, choosing 1 € C§°(RY) with 1) = 1 on B(0, 1) and supp ¢ included in B(0, 2)
we have: (1 — (p,))V/pn is uniformly bounded in L (L?(R"Y)) for any 7 > 0. Since
/Pn is uniformly bounded in L (L*(RY)) for any T > 0 we deduce that (1 —v(pn))\/Pn
is uniformly bounded in L (HY(RY)) for any 7" > 0. It implies that (1 — ¥(p,))pn is
bounded in L (LY(RYN)) for any g € [1,+oo[ by Sobolev embedding. Let us deal now
with the term 9 (py,)pn which is bounded in L3 (LY (RY)) N L (L>®(RY)), it proves that
pn is bounded in L (LY(RY)) for any ¢ € [1,+oo[ . Via (1.8) It implies that #pn) nq

Vo
—’\\(/’%) are uniformly bounded in L>((0,T), L4(R™)) for any compact K.

Let us deal with the case 0 < v» < 2. By using (5.53) we show that V((1 — w(pn))p?)
is bounded in L¥(L*(RY)) and (1 — w(pn))p;Tl is bounded in L%O(L%(RN)). Since by
Tchebytchev lemma (1—1(py,)) p;% is strictly positive only on a set of finite measure it im-
plies that (1 —w(pn))p;T is also bounded in LS°(L?(RY)). We deduce that (1 —w(pn))p;?l

i

is bounded in L¥(H'(RY)). By Sobolev embedding it yields that (1 — 1 (p,))pnt is
bounded in L (LI(RY)) for any T > 0 and any ¢ € [1,+o0[. Since ¥(p,)pn is bounded
in L (L®RY)NLYRY)) for any T > 0 we conclude that p, is bounded in LS°(L4(RY))
for any 7' > 0 and any ¢ € [1, +o0[.

The proof is similar for % by using the remarks 7. ]

Lemma 1 If u(p), N(p) satisfies (1.4), (1.5) and in addition we assume that g(xz) = %
is a bijective function on [0,+00) and that g~' is continuous, then when we distinguish

the two following cases, we have:
o U > 2

1. Hlen) g uniformly bounded in L>(0,T; H}.

loc

(RY))

3

2. at“y;in) is bounded in L*(0,T; W, *(RN)).

As a consequence up to a subsequence (via the Cantor’s diagonal process) %

converges almost everywhere and strongly in C([0,T], L2 .(R™))) tov. In particular
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it implies that #lpn) converges up to a subsequence almost everywhere to v and we

Vpn
define p as follows:
p=g "' (v).

It implies that p, converge up to a subsequence almost everywhere to p.

e < <2
Let us consider:

Blpn) = (pn)v/pn + (1 = ¢ (pn)) Py’
with 0 < oy < min(3, #).
1. B(pn) is bounded in L>=(0,T; H*(RV))
2. 0;B(pn) is bounded in L*(0,T; W~LL(RN)).

As a consequence up to a subsequence, [B(pn) converge almost everywhere and
strongly in C([0,T], L (RN))) to v. We define p by:

loc
p=5"p).
In particular we have that p, converge up to a subsequence almost everywhere to p.

Furthermore py, converge strongly to p in C([0,T], Lt*(RN)) if N = 3 with a > 0 small

enough and in C([0,T), L} (RN)) for any p > 1 if N = 2. This last result is under the
following hypothesis:

o When 2+ N < vy, we assume that g and g/ are increasing on (0, +00).

Remark 25 Let us point out that we could weaken the last assumption on g when v1 > 2
by assuming that g and g/ are only increasing in a neighbor of 0 and of +00. As mentioned
above, let us point out that this last condition is quite natural since this is true when we
set p(p) = pp® with o > %

Proof: Let T > 0. We are going to distinguish two case when v; > 2 and when
0<v <2

.V122

The first estimate is a direct consequence of the lemma 3 in the appendix. Indeed

we know that V%\/pin) is bounded in L (L*(RY)). Easily we deduce by lemma 3 that

M\/;)in) is uniformly bounded in L3°(L?(K)) for any compact K. Next we observe that:

1on)y _ g ilen) : 3 p(pn)
Bt(@)— d (\/p*n 2

= _diV<Mg):)\/P7nun) + (W - % M(pn))\/ p(pr)divi,.
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Let us start with estimating the first term on the right hand side of (5.54). According to
(1.8) we know that:

o1
PP < Gy ) pA¥ N when po < 1.
Pn
Since 5% — = 0 it implies in particular that w is bounded in L (L>®(RY)). In

order to have local estimates, it suffices to deal with the region when p, > 1, it means
A= (pn))ilpn)
Pn

It suffices to use the lemma 3 which insures that when N = 3 £ \(ﬁ) belongs in L5 (LS(RY))

and we deduce that “le is bounded in L$°(LS(RY)). Finally we have obtain
that & (p ») is bounded in LP(L2 (RY)) when N = 3. It yields the uniform boundness of

loc

p’; ")./pnun in L (L} (RY)) when N = 3. A similar argument insure the same result
when N = 2.
By proceeding similarly we also prove that 4/ %\ / 11(pr )divauy, is uniformly bounded in
LOO(L}OC

that for N = 2,3 via the lemma 3 ;’i”) is bounded in L (L?(K)) for any compact K

and since \/p(pp)divu, is bounded in L (L?*(RY)), Holder(s inequality give the desired
result.

(R™)). Indeed following the same argument than for the previous term, we know

Let us now deal with the term M\/ w(pp)divu,. A simple calculus using (1.4) give
us: \V4 N(Pn)
1 (pn)VPn _ 1, Mpn) 49 u(pn))
wpn) 27/ pap(pn) Pn

)‘(pn)
Vonu(pn)’

remarks 8 we know that it exists C' > 0 such that:

[A(p)| < Culp) Yp>0.

We have only to deal with the term the other one has been estimated. By the

It implies that:

|—=I|<C
Prtt(pn) Pn

Mp’;) is uniformly bounded in L (LY (RY)) for N = 2,3 via the
lemma 3, it achieves the proof of the second estimates.
By the Ascoli’s theorem, the fact that the application u — ¢u with ¢ € C$P(RY) is

compact from H!(RY) to L?(RY) and the Cantor’s diagonal process it entails that %

(RM))) to v, = %) (and in

And as we know that

converges strongly up to a subsequence in C([0,77], L2,

particular in L? ((0,7) x RY) ). We shall define p in the sequel by:
_1,1(p)
p=g (==)
VP
Furthermore an immediate consequence is that up to a subsequence

wp)
N And since ¢

#(pn)
Jpe converge almost

-1

everywhere to £ is continuous, it implies that up to a subsequence p,
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converges almost everywhere to p.
e < <2

In this case we are going to study:

B(pn) = Y(pn)v/pn+ (1 =9 (pn)) Py’

with «y to choose suitably. Let us start with dealing with ¢(py)+/pn, we have then:

U(pn) 1 (pn)
1 (pn) /P

The first term is easily bounded in L$°(L?(RY)) via the entropy (3.30) since the support
of 1" is included in the shell C(0,1,2).The second term is also bounded in L3®(L?(RY))

by observing that % is bounded in L (L®(RYM)) via (1.8), (1.4), (1.5) and 14 < 2.

V(l/J(Pn)\/an) = 1/1/ (pn)\//Tnvpn +

n

Indeed we have:

¢(pn) %_2%
u'(pn)’ < vlenlp =

The conservation of mass provides that ||p,||z1 = ||pf|| L1 which implies the L°°(0,T; H')
bound on ¥(py)+/pn. Next we observe that:

0L (pn)/w) = ~div((pn) /i) + (o) — ¥ (pu)pi)diven. (5:55)

The first term on the right hand side is obviously bounded in L (W ~12(RY)). The two
last terms in (5.55) are bounded in LZ(W~13(RY)). It implies finally that ¢ (pn)\/pn
are uniformly bounded in L (H'(RY)) and 8:(¢(pn)\/pn) in L3.(W~L2(RY)).

Let us deal now with the term (1 — ¢(p,,))pSt, we have then:

a;—1

V(1 = Plon))p) = — = (o) P2V + (1 — w<pn>>Z7(pn2) “\j%) Vou  (556)
By (1.4), (1.5) and (1.8) we show that:
(1= (o)) 2| < (1= (o)) HFF T

o — =

Since 0 < a3 < 2% it implies that (1 — ¥ (p, p’}l is bounded in L°(L*(RY)) and
2N 1 (pn) T

a—%
(1— ?l)(pn))% %Vpn is bounded in LS (L?(RY)). The first term on (5.56) is easy

to deal with. Now we have:

, a1+1
(1 — (pn))plt) = —div((1 — $(pn)) P un) — (=t (p) e
o 1(pn) (5.57)
o — 1)(1 — n n n ) divis,.
+ (a1 = 1)(1 = (p ))\/m)\/u(p )
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The first term on the right hand side of (5.57) is bounded in L (W~LL(RY)) since
(1 —9(pn))p2t is bounded in L>(L?(RY)) because a; < 3. We have now according to
(1.8)

(1= (pn)) —22| < (1 = h(pn))ps 2 N N
w(pn)

Since oy < % it implies that this term is bounded in L3F(L*°(R")) which shows the

bound of (1 — ¢(pn))\/%\/u(pn)divun in L2.(L?(RY)). The second term of 5.57 is
easy to treat.

Finally we have proved that (1 —(p,))pt is uniformly bounded in L (H!(RY)) and
O((1—=2(pp))p2t) is also in L2 (W ~L2(RY)). In conclusion it shows that 5(p;,) is bounded
in L (HY(RY)) and 8,(8(pn)) is bounded L& (W ~LL(RY)).

Thanks to the Ascoli’s theorem and the Cantor’s diagonal process it gives the strong
convergence in

C([0, T], Lipe(RY))

loc

of B(pn) to vy. It implies in particular up a subsequence of the convergence almost
everywhere of 3(p;,) to vo. We shall define p in this situation by:

p=5"p),

indeed 3 is inversible and we verify by continuity of 5! that p,, converge up to a subse-
quence almost everywhere to p.

Strong convergence of p,

We are now interested in proving the strong convergence of p, to p. Let us deal with the
first case v > 2.

First case: 11 > 2

For the moment we have only obtained strong convergence on M\/[%) to %, let us trans-

late this strong convergence on p,. We are going to distinguish two different cases when
vy > 2, let us start with the first one.

e We assume here that (%)/, % are increasing on (0, +00). We have then the following

lemma.

Lemma 4 Let g1 a regular function with g1(0) = 0. When x,y > 0 and g1, gll are
increasing, we have:

g1(lz —yl) <lg1(x) — 1 (v)]. (5.58)

Proof: It suffices to study the function:

p(x) =g1(z —y) — (q1(z) — 91(y)),
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when x > y. We observe that for all x >y > 0:

p(z) =gz —y) — gi(z) <0.

It implies that when z > vy, p is negative and p is decreasing on [y, +00) with is equivalent
to say that:

g1 —y) — (91(7) — 91(y)) < p(y) = g1(0) Vo >y.

It implies that for all z > y we have:

gi(lz —y)) = g1(z —y) < (1(z) — 91(y)) = |91(2) — g1 (y)|-

By proceeding similarly when 0 < z < y we obtain (5.58). O
In particular since we assume that ( ) and ((T are increasing on (0, +00) we deduce
from the lemma 4:

plp —pnl) _pulp

<X n) u(p)‘
Vie=pnl = Ve VP

Using (1.8) we obtain:

1 1.7 1 n
p— pultH &sc|“<f))—*$€)|vrp—pn\>1
v (5.59)
1, 1 n
p— pal2 ¥ §<C|u\(/p7) \(f)l Yip—pnl <1

Since M\/pin) converges strongly to % in C([0,T), L?

l ) and p1lpn)  plp)

Jpe ot p are bounded via

lemma 3 in LE}Q(L6 (RM)) when N = 3 (it suffices to apply Fatou’s lemma), we deduce by

interpolation that “\%l) converges strongly to \;’1) in C([0,77], LS~%) for any small a > 0.

loc
#(pn)
N

Similarly when N = 2 we obtain by interpolation and via lemma 3 that £

strongly to \([) in C([0,T], L7 .
By using (5.59) we deduce that (1—(p— pn))]p—pn]%*%Jrz% and zp(p—pn)|p—pn|%*%+§%

converge strongly to 0 in C([0,T],LS %) for any small @ > 0 when N = 3 and in

loc

converges

) for any p > 1.

C([0,T],L;,,) for any p > 1 when N = 2. Since v; > 0 it yields that:
11
sup |[1p = pa PG, oy (8 )22 r0) —nostoo O, (5.60)
t€[0,T

for any compact K with p(N) = 6 — « for any small @« > 0 and p(N) = p for any
p € [1,+o00] when N = 2. And similarly we have:
N+

up [llp = puP W EIE Ly (6 ) s 0 (561)
te[0,7)

It implies since vo > 0 that p, converges strongly to p in C([0,T7, Llloto‘ (RM)) for a > 0

small enough when N = 3 and p,, converges strongly to p in C([0,T], L} (RY)) for any

loc
p=> 1
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o1y < N+2

Let us deal now with the case when (“2)" and (& (x)) are not increasing on (0, +00).

=
S

By calculus and using (1.4) we have:

(u(p))f _m(p)  1ulp)

VP VP2 p3
_ 1 Mp) + nlp)

2 3

Next by (1.8) we obtain:

[
-

Cp;%*E** < ‘(L(p))/’ < Cp%f*%*% Vp <1,

N
\(/ﬁ) (5.62)
Y11 HAP) ! Yo 11
szz{/ 3w <|(—=) | <CpzN~2"N Vp>1.
( NG ) |
Assume that 2‘% - % - % < 0 which is equivalent to vo < N + 2. In this case we obtain:
p(p) v
(—=)>C vp< 1.
| N ) |
Let us recall that the derivative of the inverse function of g(p) = £ (’; ) s
/ 1
(61 (P) = =
g9 (g7 (p))

In particular it means that the inverse function g~!(p) is Lipschitz on the region p < 1
and more generally on the region p < M, it provides then the following inequality for
Chr > 0 depending on M (since when p < M we have that A\/’%) is also bounded via (1.8)

and the hypothesis % + 5% — % >0):

n(p)  plpn) 1)y q i(pn)
‘W ~ 5 Moo <y O 2 lg (W) —9 Jon L p<ryuon<ary (5.63)
2 |p = pallip<iyugonsty-
We deduce the following estimate for any compact K:
/ [Pty )da — p(t, )] da = / [pu(t,2)dx — p(t, )| Lo aryugpnsan (t 2)de
K K (5.64)

+/K |pn(t,ﬂj‘) _p(tvx)‘l{ng}U{pngM}(tax)dx

The second term converges uniformly on (0,7") to 0 when n goes to infinity via (5.63)
applied to M > 0 and the strong convergence in C([0, 7], L% (RY)) of M\/;)in) to %. Let

us deal with the first term, since we know via the lemma 3 that p,, is uniformly bounded
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in L5°(L; FE(RN)) with e > 0 we have by Holder’s inequality and Tchebytchev lemma for

loc

C>0:

/K pult ) — plt, 2)|Lps aryugpnonny (2 <

1 e
(/K |on(t, ) dz — p(t, )" Ly pnaryugpn s ary (1 ) da) T [{p > 1} U {p, > 1}[ T,

< 2C||p0”L1(]RN).

This last term goes uniformly on (0,7") to 0 in n when M goes to infinity. It show the
desired result.

Second case 0 < vy < 2

In this case it suffices to apply exactly the same argument than in the case vy > N + 2
except at the place we consider not % but S(p). It concludes the proof of the lemma.
a

Lemma 5 Let ¢ € CO(RY) with ¢p = 1 on B(0,1) and supp is included in B(0,2).

We are going distinguish two cases:

o When v > 2 we set:
on = P (pn)p(pn)un + (1 = P (pn)) prin,

we have:

e v, is uniformly bounded in L*(0, T, WY (K) for any compact K.

e Oy, is uniformly bounded in L*(0, T, W21 (K) for any compact K.
Up to a subsequence, the sequel v, converges strongly in L?(0, T} Lfoc(RN)) to some v(t, x)
for allp € [1,3). In particular:

W(pn)i(pn) + (1 = Y(pp)))un = v almost everywhere (z,t) € (0,T) x RY.

Note that we can already define u(t,x) = w(p)u(pq;(wfﬁ)ﬂ/)(p))p outsitde the vacuum set

{p(t,z) = 0}, but we do not know yet whether v(t,x) is zero on the vacuum set (in
particular if there is no concentration phenomena for v on {p(t,x) = 0}).

o When 0 < 11 < 2 we consider:

vn = P(pn) gﬁ_lun + (1 - T/J(Pn»l)g+lum

with B < _ﬁl and By verifying the following assumptions:

51217
1 )

51+N—ﬁ20, (5.65)
1 1 )

-

g tan T av S

we have:
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e v, is uniformly bounded in L*(0,T, W (K) for any compact K.
e Oy, is uniformly bounded in L*(0,T,W~2Y(K) for any compact K.

Up to a subsequence, the sequel v, converges strongly in L?(0,T; LY (RN)) to some v(t, x)

loc
for allp € [1, §). In particular:

(W(pn) P+ (1 = (pn)pE T un — v almost everywhere (z,t) € (0,T) x RY.

v(t,x)
¥(p)p1 T +(1-9(p))
{p(t,x) = 0}, but we do not know yet whether v(t,x) is zero on the vacuum set (in

particular if there is no concentration phenomena for v on {p(t,x) = 0}).

Note that we can already define u(t,x) = pias: outside the vacuum set

Proof: Let us start with proving that v, is uniformly bounded in L2(0, T, WH1(RY).

e We are going to start with the case v, > 2.
Let us prove that v2 is bounded in L?(0,T, W !(K) for any compact K. We have then:

01((1 = (pn)pting) = — o n) B0 g o

W (pn) r
(1= (o)) #(pn), (1- .
+ M/ (pn) \/p— zpn munj \/m ma mj-

We observe that by using (1.8), (1.4) and 1 > 2 that U=222) i yniformly bounded in

(5.66)

#(pn)
LP(L>®(RY)). It implies that the second term % ”\/(7 0iPn\/Prnln; is bounded

by Hélder’s inequality in LZ(L!(RY)). The first term on the right hand side of (5.66) is
bounded in L2(L'(RN)) by using the fact that the support of ¢ is included in the shell
C(0,1,2). The last term is also bounded in L2.(L'(RY)). Indeed by (1.8) and ve > 2 it
suffices to observe that:
(L= %(pn))pn CVim,
1(pn)

which implies that % is bounded in L (L2(RY)).

Finally we have seen that Vo2 is bounded in L2(L'(RY)). And since we see easily that
v2 is also bounded in L (LY(RY)), it implies that v2 is bounded in LZ(WLH(RY)).
Let us deal now with estimating 9;v2. A simple calculus gives for any regular function g:

4(9(pn) prtin) = —g(pn)putin - Viin — g (pn) phtndivity, — undiv(g(pn) prtin)
+ 2div(g(pn) (pn) Dun) — 2V g(pn) - t(pn) Dun + V(g(pn)A(pn)divuy)
— Vyg(pn) M pp)divu,, (5.67)
= —div(g(pn)pnin @ un) — 9/(Pn)Pq2mundiVUn + 2div(g(pn)p(pn) Dun)
= 2Vg(pn) - p(pn) Dun + V(g(pn)A(pn)divun) — Vg(pn) Apn)divus,.

When we apply the previous formula to g(p,) = (1 —¥(py)) %

all the terms on the right hand side of (5.67), it comes for 7" > 0:

9(Pn) prun @ up = (1 = ¥(pn))/Prin @ \/Prtin. (5.68)

, we have to estimate

35



By Hélder’s inequality we obtain that (1—1(pn))\/Pntn®./priin is bounded in L3 (L (RV)).

Next we have:
3

9 (pn)pundivu, = — <pn>¢%ﬁnun Vi) divy, (5.69)

This term is bounded in L2 (L*(RY)) by Holder’s inequality since 1" is supported in the
3

shell C(0,1,2) which implies that ' (p,) \/% is bounded in L$°(L®(RY)). Similarly
H{pPn

9(pn) p(pn) Duy = (1 — 9 (pn)) V H(Pn)\/mDunv
= (1 =¢(pn)) M\(/[%) pi/ (o) Dt

According lemma 3 we deduce easily that (1 —¥(pn))\/p(pn)\/p(pn)Duy, is bounded in
LA (LY(K)) for any compact K. Next we have:

QVQ(pn) ’ :U’(pn)Dun = —2¢/(Pn)vpn : ,u(pn)Dun' (571)

This term is bounded in L2 (L'(RY)) by Holder’s inequality since ¢ is supported in the
shell C(0,1,2). The two last term in (5.67) are similar to treat. (5.68), (5.69), (5.70) and
(5.71) implies that dyv2 is uniformly bounded in L2.(W~11(K)) for any compact K.

we have:

(5.70)

e Case 0 <1y < 2.

In this case we are going to consider:

0121 =(1- w(Pn))Panuw
Let us start with proving that Vv, belongs in L4(L*(K)) for any compact K. We have
then:

zb'(pﬁﬂ)p 1 (pn)
1 (pn) " VPn
(1= (pn))Ph 1 (pn) (L= v(pu))ph "
7 az n n'Unj n 81 nj-
By using (1.5) and (1.4), we obtain that:

oy = L2u(p) +NAGp) 1 ulp)

ai((1 - w(ﬂﬂ))ﬂgpnunj) == 0i P/ Prting

(5.72)

+

p(p) = 2 N +( N)Tv
-

We deduce that according to (1.8) that:
(L= v(p)on, o (L= %lon))on™
| | <] B

M/(pn) N 1(pn)
1-— n TIBL+1
cotsmt”,
< O|(1 — (o)) VT



8
Since 3 < = we deduce that (A=vlen)on i uniformly bounded in L3 (L>®(RY)). In par-

H, (Pn)
_ g . . .
ticular it implies that a f((f)z)))p” “\/(5—:) i pnr/Prtinj is uniformly bounded in L3 (LY (RY)).

Since the support of ¢ is included in the shell C(0,1,2) we easily observe that the
first term on the right hand side of (5.72) is uniformly bounded in L$°(L'(RY)). The
last term is also bounded in LZ(LY(RY)) since frac(l — 1/1(pn))p£+1\/,u(pn) belongs in
LF(L*(RY)) by using (1.8), 8 < —+ and the lemma 3.

Finally we have seen that Vo2 is bounded in L2(L'(RY)). And since we see easily that
v2 is also bounded in L (LY(RY)), it implies that v2 is bounded in LZ(WLH(RY)).

Let us deal now with estimating 9;v2. It suffices to deal with the formula (5.67) and
replacing g(pn) by (1 — w(pn))pg. Let us start with the first term of (5.67):

9(pn)prtin ® i, = (1= P(pn)) P/ Prtin © \/Prtin. (5.73)

Since 8 < —% it implies that (1—v(py)) pg is L*° bounded and then by Holder’s inequality
we obtain that (1 — W,ZJ(pn)),og1 /Prtin ® \/Prun is bounded in L (LY(RY)). Next we have:

3+8
/nind' n:*/n bn nUn )iV,
g (pn)Phundivu MMW\FU Vilpn)divu -
148 ’
+B(1 - w<pn>>%ﬁnunmdmn.

The first term is bounded in L2.(L'(RY)) by Hélder’s inequality since ¢ is supported

, 345
in the shell C(0,1,2) which implies that (pn)% is bounded in L (L>®(RY)).
L+s
The second term is also bounded in L2(L'(RY)) since (1 — w(pn))% is bounded
in L5 (L°(RY)) by using (1.8) and the fact that 8 < 3.
Similarly we have:

g(pn)ﬂ(pn)Dun = (1 - ¢(Pn))\/M(Pn)P£\/M(Pn)DUm

=(1- w(pn))\/@p%w\/mpun

According lemma 3 we deduce easily that (1 — ¥(pn))\/1(pn)\/1(pn)Duy, is bounded in
LZ(LY(K)) for any compact K. The last term gives:

(5.75)

2Vg(pn) - u(pn)Dun = _2¢l (Pn)pgan - fi(pn) Dun,

e , (5.76)
p(pn) 1 (Z:)Wn -/ 1t(pn) Dt

_ pn_
+ B(1 = ¥(pn)) o) o

The first term is bounded in L2(L'(RY)) by Holder’s inequality since 1 is supported
in the shell C(0,1,2) and we proceed similarly for the second by observing that (1 —
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B3
¢(pn))”"Tw“)(W is L bounded via (1.4), (1.5) and (1.8). The two last term in (5.67)

are similar to treat. (5.73), (5.74), (5.75) and (5.76) implies that d,v2 is uniformly
bounded in L4 (W ~11(K)) for any compact K.

Let us deal now with the term v} . We are going to distinguish two cases.
e Case 11 > 2.

We have:

_ Ylon)plpn)
V(o) 1t(pn)un = J/Pn v/ Prn,

where via the lemma 3 % is uniformly bounded in L3°(L®(RY)) and \/pru, is

uniformly bounded in L°°(0,T; L2(R")) which implies that 1 (p,)u(pn)us, is bounded in
L>(0,T; L2 (RN)).
Next we have:

ai(¢(pn)ﬂ(pn)unj Y(pn)V 1 (pr) V 11(Pn aunj "‘1/1 Pr) 1t pn) iPnUng,

= ¢ pn VvV K pn VvV H ,On aun] MazpnMUnj

By entropy inequality (3.30) we know that %&- pn is uniformly bounded in L (L?(RY))

which implies that wa Pny/Priing is uniformly bounded in L3 (LY(RV)).

Let us deal now with the term ¢(pp)/1t(pn)\/1(pn)0itn;, we know that \/p(pn)0itn;
is uniformly bounded in LZ(L?(RY)). Next we know that 1 (p,)+/1(pn) is bounded in

L (L°(RY)) which provides on 9(pn)v/11(pn) /1(pn)Oitnj a LA(L*(RY)) bound. Hence
for any compact K:

V(4 (pn)p(pn)un) is bounded in L*(0,T; L' (K))
In particular we have obtained that for all compact K:
v} = ¥(pn)p(pn)un is bounded in L2(0,T; WH(K)).

We are now going to estimate dyv., it suﬂﬁces to estimate each term on the right hand

side of (5.67) by replacing g(py) by ¢(pn) o wlon)
We have then:

1(pn)
Pn

VPrn @ \/Priin, (5.77)

By Hélder’s inequality we obtain that 1 (p,)u(pn)un ® u, is bounded in L (LY(RN)).
Indeed we have used the fact that by (1.8) and since v > 2 then w(pn)% is bounded
in L3P (L>(RY)).

9(Pn) Prtin @ un = P(pn)
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Next we have:

/ n %undlvun: , n n n / n Z nUn n leun,
g (pn)p (¥ (pn)(pn) + 9 (pn)p (p ))\/(—?)x/? Vilpn) -

= ( n)p% Un/ p(pn)divu
(¥ (pn) N(pn)pn +¢}(pn) \/m IV Prtn/ 1(pn) n

The first term is bounded in L2(L'(RY)) by Holder’s inequality since 1 is supported

, 3
in the shell C(0,1,2) which implies that ¥ (pn)\/p(pn)p? is bounded in LS (L>(RYN)).
The second term is also bounded in LZ(L'(RY)) because using (1.8) we observe that

’ % ) ‘
T/J(Pn)% is bounded in Li‘?(LOO(]RN))‘

The third term gives:

9(pn)1t(pn) Duy, = ,On ——/u(pn)Duy,

pn ﬁpn D,

(5.79)

By (1.8) and v; > 2 we know that (p’;") is bounded in L (L>(RY)), since via lemma 3

% is bounded in L (L5(K)) for any compact K we deduce that 1 (p,) (T) (pn)Duy,

is uniformly bounded in L2 (L'(K)) for any compact K.
Next we have:

2V9(pn) - 1 pn) Dt = 20 (pn)Vpn - 11(pn) D,

+20(p) V(P o - (pn) Vpn -/ 1(pn) Du.
VPn
The first term is easily bounded in LA (LY(RY)) since the support of ¢ is included in
C(0,1,2). The second term is also bounded in L2 (L*(RY)) by Hélder’s inequality be-
cause via (1.8) we deduce that 1/(pn)\/p(pn)pn is bounded in L (L®(RY)). The two
last term in (5.67) are similar to treat. (5.77), (5.78), (5.79) and (5.80) implies that d;v}
is uniformly bounded in L(W~11(K)) for any compact K.

(5.80)

e Case 0 <1y < 2.

We are going to work with:

U’}L = (Pn)pgl PnUn.

We have then:
w(pn)pglpnun = ¢(pn),0n *2 vV PnUn.-
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Since 81 > =L, it implies that 1(pn )Pl pris is bounded in L (LA(RN)).
Next we have

( 514—1
V M Pn 8 iUngs
v “( (5.81)

0; (¢(pn)pgl+1unj)

o (p )5 1
+ B1Y(pn) — = = zpn\/ Prnlnj + w Pn)pP pr 0 pnlinj
(en)y; (Pn) /Pn 3V (Pn)en ”
Using (1.8), (1.4) and (1.5) we show that:
B1 1 vo
Pn [ s
w pn ! S ¢ pn pn N 2N.
[6(on) A < ()
5
Since f1 + § — 58 > 0 it implies that @b(pn)ﬁ;) is bounded in L°(L>®(RYM)). We

deduce that the second term on the right hand side of (5.81) is uniformly bounded in
L (LY(RY)) . The third term is easy to treat by using that the support of Y is a shell
C(0,1,2).

Let us deal with the first term of (5.81). By using (1.8) we get:

w(pn)Pgﬁl’ b(on) Prti+—22
wlpn) '

1

B1+
Since 1 + 3 + 55 — 2% > 0 it provides a L> bound on w(p"% which insures the
H{pPn

LZ(L*(RY) bound of w(:-;lpin V/11(pn) O, j. Hence for any compact K:
V(4 (pn)p? T uy,) is bounded in L2(0,T; LY(K))

In particular we have obtained that for all compact K:

vl = Y(pp )pﬁlﬂun is bounded in L*(0,T; WhH(K)).

n

We are now going to estimate dyv., it suffices to estimate each term on the right hand

side of (5.67) by replacing g(pn) by ¥(pn)pht
We have then:

g(pn)pnun & Up = (pn)Pn \/pnun & v/ Pnln, (5-82)

By Holder’s inequality and the fact that 5, > 1 we obtain that w(pn)pglun ® Uy is
bounded in L (L} (RY)). Next we have:

w

’

g (Pn)piundi"un = (¢ (Pn)pnl + B1v(pn) Py, o 1)

51+% /31+%

oy P pn
= (¢ (pn) M(pn)—i_ﬁlw(pn) ()

VvV PnUny/ p(pn)divuy,,

==z
> |
E./

(5.83)

)V Prun/ f1(pn)divu,

40



The first term is bounded in L2(L'(RY)) by Hélder’s inequality since Y is supported

3

, B1+
in the shell C(0,1,2) which show that o' (pn)2—

vV u(pn)

second term is also bounded in L2(L'(R”)) because using (1.8) we observe that:

is bounded in L3¥®(L>®(RY)). The

pr1+1 Vo

(o) PP | < Cop(p) BT AR
1(pn)

51+1
It provides a L* bounds on 9(p,) % since B + 5& — & > 0.

The third term gives:

9(pn)1(pn) Dun = ¥ (pn) P/ 1(pn) v/ 1(pr) D, (5.84)

By (1.8) we prove that ¥(p,)pat\/1(py) is bounded in L (L®°(RY) and it yields that
¢(pn)p£1 vV 1(pn)/ 1(pn) Duy, is uniformly bounded in LZ(L*(RY)). Next we have:

2Vg(pn) * 11(pn) Duin = 29 (pn) pi Vo - 11(pn) D

BrL—3 /
+ Qw(pn)pn 'u/ (pf)(pn) M\;Z—:) Von - / 1(pn) Dun.

The first term is easily bounded in LZ(L'(R™N)) since the support of ¢’ is included in
C(0,1,2). In order to deal with the second term we observe that via (1.4), (1.5) and
(1.8):

(5.85)

P ot )
" 1 (pn) ! 1 (pn) wpn) "

1, 1 V3
< Colpf IR

1

on' "2 \/lpn) 1,1
It implies that @b(pn)"Tp)" is bounded in L3 (L>®(RY)) since f1 — 5+ 55y — 1% = 0
and we deduce that the second term is bounded in LZ(L'(RY)). The two last term in

(5.67) are similar to treat.
(5.82), (5.83), (5.84) and (5.85) implies that d;v2 is uniformly bounded in LZ(W ~11(K))
for any compact K. O

Step 2: Convergence of ,/p,u, and ppu,
In the sequel we shall define h(p) as follows:

_ M — it v
hp) = w(p)" 2+ U= w()Vp if 122 (5.86)

h(p) = w(p)p" 72 + (1 —p(p)pP+E if 0 <y <2.

Here ¢, 6 and B verify the hypothesis of lemma 5.
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Lemma 2 The quantity \/ppuy, strongly converges in Lz ((0,T) x ) to % (which is
null when v =0).
In particular, we have v(t,z) =0 a.e on {p(t,z) = 0} and there exists a function u(t,x)

such that v(t,x) = \/p(t,x)h(p)(t, z)u(t,x) and:

VPtin — \/pu strongly in L2 ((0,T) x RY),
Pty — pu strongly in L*(0,T; L, (RY)).

Remark 26 Here u is not uniquely defined on the vacuum set {p(t,x) = 0}. We will
set u=0 on the vacuum set {p(t,z) = 0}.
Proof: Since # is uniformly bounded in L>(0,7T; L?(RY)), Fatou’s lemma implies
that:
s
lim inf ——=dx < 4o0.
h(pn)?
We deduce that v(t,z) = 0 a.e. in {p(t,z) = 0} since h(p) = 0 when p = 0. We can define
% when p(t,z) # 0 and u(t,z) =0
on {p(t,z) = 0}. In particular this last point implies that there is no concentration effect
of ppuy ® uy on the set {p =0}. And for all ¢ > 0:

the limit velocity by wu(t, ) with u(t,z) =

v2(t, x)
ry B2(p)(t, x)

Furthermore applying the Fatou’s lemma once more, we obtain:

dx = / p(t, z)|u(t, z)2dx < 4o0.
RN

/p]u21n(1 + |ul?)dz < /liminfpn]un|21n(1 + |un |?)da
< liminf/pn|un|2 In(1 + |u,|*)dz,

which yields plu|? In(1 + |u|?) € L>=(0,T; L*(RY)).
Next, since v, and p, converge almost everywhere, we know that in {p(t,z) # 0},

t,h/p,zun = h(U;n) converges almost everywhere to /pu = ﬁ. In particular it implies
at:

\/pnunl{{|un\§M}ﬁ{p>0} — \/EU1{|U\§M} almost everywhere.

5.87
VPnUnl({ju, 1 <aryn{p=0y < M+/pp — 0 almost everywhere. ( )

Following the argument of the proof of the lemma 1 for any compact K we have:

/(0 TyxK |mun - \/ﬁu|2dl‘dt < / ’\/an“nl{\un|§M} — \/5U1{|U|SM}|2d$dt
T) %

(0,T)xK

—|—2/ ]@un1{|un|>M}|2dmdt+2/ ’\/ﬁul{|u|2M}’2dZ’dt,
0.T)xK 0T)xK

(5.88)

1) X
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Let us deal with the first term of (5.88) we have then:

/(0 T)x K |VPrtnl {ju <y = \/EU1{|u|§M}|2d£L'dt <
5 X

/ [VPntnL{ju, <ary = VPuL g <any P dedt (5.89)
{(OvT)XK}m{\/PnSC}
+/ /Pt L {un|<ary — VPUL{uj<ary P dadt

{(0,T)x K}n{\/pn>c}

The first term of (5.89) converges to 0 when n goes to +oo via the theorem of dominated
convergence.
Now let us recall that via the inequality (1.8) we have:

(pn)

=

when p, > 1.

Since % is uniformly bounded in L (LS(RY)) for N = 3 (see the lemma 3) we deduce

that \/p, is uniformly bounded in L3 (L*T(RN)). It allows to deal with the second
term of (5.89) for N = 3 by Holder’s inequality and Tchebytchev lemma with ¢ going to
infinity.

For N = 2 using the inequality (1.8) and the fact that % is uniformly bounded in
L (LY (RN)) for any p > 1 when N = 2 (see the lemma 3), we deal similarly with the
second term of (5.88) via Holder’s inequality and Tchebytchev lemma.

Finally, we take advantage of the gain of integrability on the velocity furnished by the

entropy (3.31):

1

Similarly we have:

1

Combining all the previous estimate, it yields:

C
li Py, — 2 <
im sup /\ Py, — /pul“drdt < (1 1 M)

n—-+0o

for all M > 0, and the lemma follows by taking M — +oo.

e Let us prove now the strong convergence of p,u, to pu. Since /ppu, converges
strongly in L ((0,T) x RM) to y/pu and that via the lemma 1 ,/p, converges also
in L7 .((0,T) x RY) to \/p it implies that p,u, converges strongly in L}, ((0,7) x RY)

loc

to pu. O
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Step 3: Convergence of the diffusion terms

Lemma 3 We have the convergence in distribution sense up to subsequence for any
T>0: /

1(pn) Vi, = w(p)'Vu in D'((0,T) x RV),

and:
App)divuy, — A(p)dive in D' ((0,T) x RY).

Proof: Let ¢ be a test function, then:

[ o)V unodsdt =~ [ upuyunVodsit+ [ w (oo duds

1(pn)
N

_ “\(/pi) VoV dadt + / PtV f(pn) b dadt.

From lemma 3 in the appendix we know tha

Pntn Ve dzdt + / NS \/Zj) pnddzdt.  (5.90)

n

(RY)).

Furthermore via the inequality (1.8) and the convergence almost everywhere from p,, to

p we know that M\/;in) converges almost everywhere to % (defined to be zero on the

loc

t L \(/’;i) is uniformly bounded in L>(0, T’; LY

vacuum set). Therefore by the lemma 1, it converges strongly in L2 ((0,T) x RM) to

wp)
N
strongly.

Next since Vf(py,) is bounded in L>(0,T; L*(RY)), up to a subsequence V f(p,) con-
verges weakly to v in L2 ((0,7) x RY). In addition by Sobolev embedding we know that
f(pn) is bounded in L°°(0 T; LY (RM))). Since f(pn) converges almost everywhere (f is
a continuous function) to f(p), it converges strongly in L2 ((0,7) x RY) by using the
lemma 1. It follows that:

This point is enough to prove the convergence of the first term as ,/ppu, converges

VI(pn) = Vf(p) Line((0,T) x RY) — weak.

It concludes the proof for the second term of (5.90).
A similar argument holds for p(p,)'Vu, and A(p,)divu, inasmuch as we have |A(p)| <
Cu(p) and [N (p)| < Cp'(p) via (1.5) and the remark 8.

Global existence when uy = —V(pg) when pu(p) = pup® with o > 1 — %

The first thing to observe is that u(p) = up® with @ > 1 — + veriﬁes the hypothesis of
theorem 1.2 for the stability of the global weak solution and in particular (1.5).Now it
suffices to construct a sequence of global regular solution (py,, u,) verifying the hypothesis
of the theorem 1.2, in particular the uniform bound via the entropy (3.29), (3.30) and
(3.31) and the following properties:

e pf converges strongly to pg in L'(RY).

e phul converges strongly to poug in L'(RY).
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Let » a function belonging in the Schwarz space S(RY) with x > 0 and fRN kdr = 1.
We define x, by:

tin = n k(n-).

2

Let us take for example k(x) = (2%)%6%. By using the theorem 1.1 and by setting
Py = Po + % with fo continuous and belonging in L*(RY) N L=(RN) n WL3(RY) N
WHLRN) and strictly positive and py continuous we know that there exists a global
regular solution of the system (1.15) with initial data (pf, —Ve(pg)). Indeed pj verifies
the hypothesis of theorem 1.2 since pj is continuous in L'(RYN) and strictly positive. We
also observe that p? converges strongly to po in L! (R™). Let us deal now with a more
simple case when we assume that py belongs also in L>®°(RN) N W3(RY) n WHL(RN).
Next we have:

n, ' n n nya—2 n
Vere (p0)Ves = alpy)® 2V g,
fo (5.91)
n

)a_%vfo-

_3 ! fo
=a(po+ —=)""2Vpo + g(ﬂo +

Let us distinguish two cases o > % and 1 — La < %

2|

e a > 3. In this case since py belongs in H'(R™) N L>®°(RY) we deduce that V f(p}) and
/ppul are uniformly bounded in L>®(L2(RY)). Indeed we have:

’ _3
IV Pge (p6)Veg| < (a+ 1) (llpoll ooy + [ foll oo @)~ 2 (IV o0l + [V fol),

which implies the previous statement.
1
Let us prove that /p8(u8)1+5 is uniformly bounded in L?(RY) for a p > 1 large enough.

It will be then sufficient in order to show that \/pgug+/In(1 + |uf|?) is uniformly bounded
in L2(RY). We have then for p large enough (1 + %)(a —2)+ 3 >0 and:

1 1y (q—2)+ 1 i1+l
IVor i) o) < C(pp) M2t g pp

(5.92)
1y(q—2)t 1 1 1
< Cllpolloe@ny + I foll poo vy) 222 (1o To 4 [V o] 7).

Since we have assumed that pp and fy are in WHH(RY) N WL3(RY) it shows that for p

1
large enough, / p6‘(u6‘)1+5 is bounded in L?(R") which implies the desired result.
Let us finished by proving the strong convergence of pgug to poug. We have then:

_ _ «Q _
o — pouol = ol + 22— g5 Tp0 + Lo+ L)1l (93)
Since pp and fo are bounded in L>(RY) we deduce that:

Jo )afl

1(po + . - p8_1||L°°(RN) —n—s+oo 0.

This last inequality and Hoélder’s inequality show in particular that [(pg + %)0‘_1 —
(po)®'|Vpo converges strongly in L'(RY) to 0. The second term of (5.93) is easy to

treat. It gives that pfjug converges strongly to pouo.
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In particular via the first part of the theorem 1.2, it implies that (p,,u,) converge in
distribution sense to a global weak solution (p,u).

o1 % <a< % In this case we shall assume moreover that /po|Ve(po)

\/]TO|V@(f0)|1+% are bounded in L2(R") for p large enough. We have via (5.91):

1
"% and

/ _3 1 _3
/P58 (08)V g < apy 2 [Vpo| +an2~ f3 72|V fol. (5.94)

Since we have o > % it implies that ./ pggol(pg)Vpg is uniformly bounded in L?(RY) by
using the fact that /poVe(po) and /foVe(fo) are bounded in L?(RY). It implies that
V£(py) and \/ppult are uniformly bounded in L>°(L?(RY)). Next by (5.92) we have:

1 n Lyq—2)41 — i1+t
Vs i) o) < C(pp) e e g

1 1+1
IV,

< () PO (V[ 4 —

n (5.95)

1+%)(a—2)+% 3_1 l—i—(l—i—%)(a

1 1y(g_N_3_1 9 )
< Clpy Vool 5 4 nlH0)Bme)=3=y g2 IV fol 5,
1+ L) (a—2)+1 1 1 oili_g) 4+0+1)(a—2 1
Sc(pé P 2|VPO|1+”—l-n(2 +p( )f02 eyl )|Vf0|1+1’.

1 1
Since a > % by choosing p large enough we obtain that nlz-atp-a)

bounded. By the fact that \/pT)]Vgo(po)\H% and \/%]V@(fo)\H% are bounded in L2(RY),
it implies that w/pg(u’(})H% is bounded in L?(RY) and so that pf|u?|?In(1 + |u?|?) is
uniformly bounded in L?(RY).

Finally by (5.93) we are going to prove that pgu( converges strongly to poug. We start
by remarking that when o < 1:

which is uniformly

fo)a—l

[[(po + )" = Py Vol < 20571V pol.

We deduce by the theorem of dominated convergence that [(pg + %)a_l — p5 YV po
converges strongly to 0 in L' (RY). The second term on the right hand side of (5.91) goes
also trivially to 0. It the case where 1 < a < % it suffices to observe that:

Jo\a— _
11[(po + ;)a T Po 1]HLOO(RN) —n—4o0 0

It implies in particular since Vpg belongs in WHH(RY) that [(pg + %)afl — p5 Vo
converges strongly to 0 in L'(RY). It achieves the proof of the strong convergence of
poug to poup. Finally it implies that (pp, uy,) converge also in the case 1 — % <a< % to

a global weak solution (p,u) of the system (1.15).

We have previously proved the existence of a global weak solution (p,u) of the system
(1.15) by assuming extra conditions on the initial density pg, typically pg belonging in

1
L®RN)Y N HYRN)nWLLRYN), po continuous and /po|Ve(po)| " bounded in L2(RY)
for p large enough. Let us deal with the general case, it suffices by a second approxi-
1
mation on the initial data (p, 4 /pn(ug)H—E) with p large enough to pass to the limit by
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using the first part of the theorem 1.2. More precisely by a convolution approximation
we choose pll = po* K, which belongs in L>(RY)N HY(RM)NW L (RY) and is continuous

1

1+1 1+=
and we set \/pp(ug) P = (V/pug 7) * Kn.

Let us now describe the form of the solution (p,w), in particular we are interested in
proving that p is also the unique global strong solution of the system 1.11) (for a such
result, we refer to the theorem 2.4). To do this we recall that our first approximation
(pn, uy) is solution of (1.11) with a initial data strictly positive in L'(RY) and contin-
uous. Let us recall that from theorem 2.4 the porous media equation verifies a crucial
property which ensures the uniqueness the L' contraction principle. Let us apply this
property to the sequence (py,)nen, we have then for all n,m € N :

lon(t,-) = pm(t; ) ey < ot = 6"l L2 @y -

Since we know that pj converge to pg in L*(RY) it implies that (p,)nen is a Cauchy se-
quence in C([0,T], L*(RN)) for any T > 0 which implies that (p,)nen converges strongly
to p1 in C([0,T], LY(RY)). But since via the first part of the theorem 1.2 we know that p,,
converges also strongly in C([0, T, Llloc(]RN )) to p, it implies that p = p;. Furthermore
by the definition of the L' solution of the porous media equation, we know that p; is the
unique solution of porous media equation with p(l) = po (see chapter 6 and 9 of [30] for
more details). It proves that p = p; is the global unique solution of (1.11) with initial
data pg which belongs in L'(R"™). We proceed similarly for the second approximation
(pn,un) since each time the approximated sequel verify the L' contraction principle of
the porous media equation. It concludes the proof of the theorem 1.2. [l

5.1 Proof of Theorem 1.3 and corollary 1
5.2 Proof of theorem 1.3

We are now going to prove that if we have some global weak solution (pe,u.) for the
system (1.22) in the sense of the definition [?] (or see [26]), then these global weak
solution converge in distribution sense to a quasi-solution (p, u) with initial data (pg, ug).
To prove this, it will suffice to use the same compactness argument than in the previous
section; except that we shall deal with the pressure term and that the entropy (3.36)
is quite more complicated since there is a reminder term to deal with. Via the entropy
(3.34), (3.35) we have:

€
v—1

t
| Ipdudt o)+ = ildar [ [ poolDuPdss
RN 0 JRN

t
+// )\(pe)|divu6|2dxdt§/ [ooluol*(z) + —— p3] da
0 JRN RN -1
(5.96)

[ [oduct. o) + o Volpol )] do+c [ [ V(o) Vordad
RN 0 JRN
<[ (plual@) + mlVielpo) @) + — @) do)

Lemma 6 We are going to distinguish two cases.
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ol
o v > 2 +\/epl is uniformly bounded in L2(LS(RY)) for any T > 0 when N = 3 and
in L2(LY(RN)) for any T > 0 and q¢ > 2 when N = 2.

e <1 <2
1
1. epe BEAR is uniformly bounded in LL(L3(RY)) for any T > 0 when N = 3.
1,
2. ep! NN s bounded in any LL(LP(RN)) with p € [2, +oo] when N = 2.

Proof: The inequality (5.96) insures a uniform bound of v/ey/ ¢’ (pe)pd ™' Vpe in L2((0,T), L2(RN))

for any T > 0. Let us evaluate /¢ (pc)pd ' Vpe, we have using (1.5) and (1.4):

, _ NA(pe) + 2u(pe) ~— 1 _:
V¢ (pe)p? 1Vpe=\/ o) + 200e) 15 1 91— L)u(popd™ o,
N N
1 n -3
>4 /2(1 — = + =) plpe)pd e
_\/( N T ulp)pd " Vp

Via (1.8) we deduce that:

I-l-sk ik o a1

pé IVpel < Cl\/ @ (pe)pd " Vpe| Vpe > 1,
%_1_2%4';% \v4 <C / y—lv Vo, < 1
pé Vel < Cl\ @' (pe)pd™ Vpe| Ype < 1.

Let set ¢ a C§° function such that ¢» = 1 on B(0,1) and ) = 0 on °B(0,2). It implies
that since supp ¢’ is included in the shell C (0,1,2):

sz

_ 1, vy
o /eh(pe)Vpé W PN g uniformly bounded in L2.(L?(RY)) for any T > 0.

o Je(1— (pe))Vp6 NIV is uniformly bounded in L2.(L?(RY)) for any T > 0.

Next by (5.96) we know that e%p€ is uniformly bounded in L (LY(RY)) for any T > 0

J
which implies that /epZ is uniformly bounded in L$°(L*(RY)) for any T > 0. Let us
deal with two different cases.

1/122

Vi

In this case we have : —z + £ > 0 it implies that /(1 — w(pe))VpG% is uniformly
bounded in LZ(L*(RY)) for any T > 0. And since €2 ,05% is uniformly bounded in
LP(L*(RY)) for any T > 0, we deduce that e%(l - ¢(p€))p§ is uniformly bounded
in L (L*(RYN)) for any T > 0. We deduce that e2 (1 —(pe)) pj is uniformly bounded in
LZ(HY(RY)) for any T > 0. Easily since €2 1/)(,06)p6 is umformly bounded in L (LY (RY))N

L (L>®(RY)), we deduce by Sobolev embedding that e2pE is uniformly bounded in
LZ(LS(RYN)) when N = 3 and in LZ(LY(RY)) for any ¢ > 2.
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O<r <2

Let us distinguish the case N =2 and N = 3.

oN=3
1_o14m

We know that /e(1 — ¢(pc))Vpé 2V MELEE uniformly bounded in L2.(L?(RY)) for any
X2

T > 0. Furthermore since \/ep? is uniformly bounded in L(L*(R™)) we deduce that

Yo 14m
e%(l —(pe))pé 2¥TIN is yniformly bounded in LOO(LP(]RN)) with p(3 — 5k + ) =2
with p > 2 (indeed it is possible because 3 — 5 N + 1% > 0) . Indeed we have:

1 3-sntik T
e pé HL%O(LP(RN)) = |l Ps||Loo (LY (RN))*

Since p > 2 it implies that /e(1 —1/1(,06));)6 TINEAN is uniformly bounded in L3 (LP(RY))

v

1 v
and also in L (L?(RY)) because /¢(1 — Q,Z)(pE)),oE TAINTAN g strictly positive only a set of
finite measure (it is a direct consequence of the Tchebytchev lemma). We have shown that

vy

y_ 1 v
Ve(l—1(pe))pé 2N TN g uniformly bounded in L2.(H'(RY)) for any T > 0. By Sobolev

L,
embedding we deduce that e(1 — ¥ (pc))pe ¥ TV g uniformly bounded in LL(L3(RY))
for any T > 0.

Since we know that 11}(,06)p6 is uniformly bounded in L (L (RN)) N LP(L>®(RY)) we de-

Y1
duce that e (p)pe NN is uniformly bounded in LL.(L3(RY)) for any T > 0 because if

Y1
v— N + 577 > 1 this is obvious by 1nterpolat10n In the other case eq/)(pe) TNV §g yni-
formly bounded in L (LP(RY)) with p(y— % +2%) = 1. And we have p = ﬁ <2,
N ' 2N

vl
we conclude also by interpolation in order to prove that ey (pc)pe ImNtaR is uniformly
V1

bounded in L (L3(RY)).
1.
Finally we obtain that ep; ~ MELE uniformly bounded in LL(L3(RY)) for any T > 0.

e N =2
Similarly we obtain that \/e(1 — ¥(pc))pé Fmavtaw is uniformly bounded i in L2 (H LRNY)
for any 7" > 0. It provides a uniform bound for /e(1 — w(pe))p; vtk in any

L%(Lq(RN)) with ¢ € [2,400[. It means that e(1—(pc))pe N s in any LL.(LP(RY))
with p € [1,4o0[. Since 1/J(p€)p6 is uniformly bounded in L (L'(RY)) N LOO(LOO(RN))

Y1
we deduce that e(pe)pe NI is bounded in any LL(LP(RYM)) with p € [1,+oo[ if
¥ — N + 5% > 1 and in any L} (LP(RN)) with [p1, +oo] where p;(y — % + 4) = 1in the
other case where p; < 2. It implies that:
_1. v
° epz N*IV s bounded in any L%(LP(RN)) with p € [1, +oo[ if v — N +a>1
L
e o] ¥ s bounded in any Li(L(RY) with p € [py, oo with pr (7 4+ #) =
1 in other case.

It achieves the proof of the lemma. O

In the following lemma we are going to get uniform estimate on the pressure p¢.
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Lemma 4 Let us distinguish two cases:

e vy > 2. The pressure ep is bounded in Lg(((), T)xRN) when N = 3 and L"((0,T) x
RN) for all v € [1,2[ when N = 2.

e 0 < vy < 2. The pressure ep. is bounded in LI} (L™ (RN)) with ry = 2 — ﬁ
when N = 3.

Proof:

o > 2: 5

We have seen in the lemma 6 that when N = 2, /ep? is bounded in L2(0,T; L¢(RY))
for any ¢ > 2. We deduce that ep! is bounded in L'(0,T; LP(R™)) N L=(LY(RY)) for
all p € [1, +oo[, hence by interpolation ep? is bounded in L"((0,T) x RY) for all r € [1,2][.
When N = 3, by Sobolev embedding we only obtain that ﬁpeg bounded in L2(0, T; LS (RY))
which gives that ep! is uniformly bounded in L'(0,T; L3(R"™)). By Hélder inequality we
have:

2 3
SN 15 NS (57 g

Hence ep is bounded in L3 ((0,T) x RV).

e < <2:

_i.n
When N = 3 we know via the lemma 6 that ep, N T2V ig bounded in LL(L3(RYN)).
We have in particular that:

v 1 v

e
Via lemma 3 we have seen that p, is uniformly bounded in LS (L1 (RY)) when N = 3.

We define p such that:

=
=

1
_W+

»
)
»
'2

Y
epl = (€epe

1 N S Z T _
p(ﬁ—ﬁ)—p(g g)—l""/l < p=

6(1+411)

with 11 < 2.
2 — 141

By Holder’s inequality we obtain with p% = % + % that:

v

=

,Y_L_i_ﬂ 1
lepdll Ly o @ny) = llepe ™ 2V lr ms@myllpd ¥ |l Lee (Lo mny)-

2

Now since ep{ is bounded in L.(LP1(RY)) N L2 (LY(RY)) we have by interpolation that
epd is bounded in L. (LY(RYN)) with:

1

=9,

r

1 0

-=—4+1-0,

q y4!
It implies the following relation % + %(1 — pil) = 1. In particular we obtain that epy is
bounded in L} (L™ (RY)) with ry =2 — ﬁ. 0

We are going finally to prove that /pe|ue|(In(14|ue |2)% is uniformly bounded in L5° (L?(RY)).
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Lemma 5 /pc|uc|(In(1+ |u6|2)% is uniformly bounded in LS (L*(R™N)) for the following
situations:

e 1 > 2 and:
%+%<7<2+% if N=3,
%+%<’}/<%+%V1 if N=3,
i+%<7 if N=2.
e 0 <1 <2 and:
g+%<7<g+1—72ul if N=3,
%+%<7 if N=2.

Proof: Let us come back to the inequality (3.36), we have Vé € (0, 2):

1 2 t
/ p L 01 4 fuf?) 1,2+ / / 1(p) (1 + (1 + fuel2))| Duel?(t, 2)dadt
RN 0 JRN
2’\/—% )

! 2 2 K Pe =5 dr
SC/O /RN w(pe)|Vue|“(t, x)dxdt + Cse /0 (/RN(,U(Pe)) dz)dt. o

Let us deal with this inequality in order to prove the uniform bound of ,06% In(1 4+
lu|?) in L (LY (RYN)) for any T > 0. To do this we shall estimate the right hand side of
(5.97). Using the inequality (1.8) we obtain that:

PTETIHRN TN V> 1,
(5.98)
< LpridR vp<

Let us distinguish two cases when v; > 2 and when 0 < v < 2.

ey >2and N =3 ;
From the lemma 4, we know that ep! is uniformly bounded in L3((0,7) x RV) N
LP(LYRYN)) for N = 3 which implies that it exists C' > 0 such that:

¢ 5
/0 /R N pd dxdt < C. (5.99)

2'\/—% 2

In particular it implies that for ¢ small enough 62(1{p€21}%)ﬁ is uniformly bounded
in LY((0,7) x RY) under the conditions that:

wlu

€

1 141 5) 141
14+ =—-—= <= + —. 5.100
2y -1 5N < 37 &S <2 5 ( )

o1



Indeed by Tchebytchev lemma we have:

Hz, [pe(t, z)| = 13 < lpoll L ().

We choose p such that p(2y— g -1+ % — 21/7]{!)22?6 = %fy with § small enough. By Holder’s

inequality we have:

1

“ T/ Hpeonp®7 8RS dad < ¢ /T</ p31dx)7 | poll s g,
0 JRN {oez1} - 0 RN LI(RN)%Y

95 L/ T 5 5 L
<5 @l ([ [ pPdadeys,
0 RN

2

_V71) .
2N/2-6 18

Z[~

with 1% =1- ]1) and p > 1. It implies by (5.99) that 621{p621}p(27_g_1+
uniformly bounded in L'((0,T) x R™) under the hypothesis (5.100).
2r=5-1+% %)

2
Let us deal now with the term ezl{pegl}p 2-3 it suffices to assume that:

1 1%0] 5) 1%0]
oy — 14— — 2 5 oy 5.101
L A I T (5.101)

Indeed we know that 1, <1y is bounded in L (LYRN)) N L (L°(RY)) which insures

: y—8—1+%—3%)525 v Too(T (RN : : .
the uniform bound of 1y, <1377 27 "N " 28/2=3 in LF(L*(R™Y)) by interpolation. This
achieves the proof of the case N = 3.

The last situation consists when N = 3 in using the lemma 3 when 2y—1+%—2”7{[ < 1+%

2%

which is equivalent to v < % + %ul. Indeed via the lemma 3 we know that p€1+ 2N s
) v 2

uniformly bounded in L°(LS(RY)). It implies that 621{0621}p(27_5_1+%_ﬁ)ﬂ is uni-

formly boundeéd in {J%O(LI(Q]RN)) when 2y — 1+ & — 2 <1+ 2% . In order to bounde
_d_qpl_miy 2 . . .

621{,,61},0(27 2% ~28) 75 we use the same hypothesis than in the previous case.

® 1 Z 2, N — 2

In this case, the situation is quite simple, indeed we know via the lemma 3 that p. is

é_l_;'_%_”il

bounded in L (LY(RY)) for any ¢ > 1. In particular it implies that 1{0621}/727_ 2 IN
is bounded in L$° (L (RY)) without any specific condition. However we shall require a hy-

pothesis for dealing with the term 1y, Sl}p%_g_H%_% which is similar to the previous
section: 1 1
12 1P
-1+ —==-—=>1 & 7> -+ —. 5.102
TTIYN TN R (5.102)

o)<y <2, N=2
The proof in this situation is exactly the same than in the previous case by using the
lemma 3. We need only:

1 12 1 1P
2y — 14+ — — —=>1 -+ =, 5.103
V-l ey >l e 1>ty ( )
e0<1 <2,N=3
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Via the lemma 4 we have seen that ep! is bounded in L7} (L™ (RY)) with r; = 2— 63211”;1).

By using exactly the same argument than in the previous case we have two possibility to
bound the last term on the right hand side of (5.97):

9y 2 22 2=u Jy & <242
TT37 % 6(1+u) 77 2" (5.104)
1 1) .
2y 14— — 2 51
TN TN T
o 5 57
V9 V1
5. _ 5 5.105
6 127" 12 (5.105)
It achieves the proof of the lemma 5. [l

2
We have now proved that pe% In(1 + |ue|?) is uniformly bounded in L2 (LY(RN)).
We can then pass to the limit when e goes to 0, more precisely by using lemmas 1, 2
we show that pc, peue and |/peptic @ /peplie converges in distribution sense to p, pu and
VPu ® \/pu and lemma 3 give us the convergence in distribution sense of the diffusion

term. Furthermore the lemmas 1 and 2 give us the following desired strong convergence:

e p. converges strongly to p in C([0,T], L.F*(RN)) for a small enough when N = 3.

loc

e p. converges strongly to p in C([0,T], LY (RY)) for any p > 1 when N = 2.

loc

e \/Peue converges strongly to /pu in L? ((0,T) x RY)) for any T > 0 .

loc

It remains only to deal with the term ¢V p! and to prove that it converges in distribution
sense to 0.

Lemma 6 Let us distinguish two cases:

o When N =3
€“pd converges strongly to 0 in L%"(L}OC(RN)) for any a > 0 when € goes to 0 for:

v <1l4uv.

€“pl converges strongly to 0 in Lg_a((O,T) x RNY)) for vy > 2 and for any o > 0
small enough when € goes to 0.
€“pd converges strongly to 0 in L1T+Q(L’”1_°‘(RN)) for0 < vy <2 and for any o >0
small enough when e goes to 0.

o When N =2
€“pd converges strongly to 0 in L%O(LZIOC(RN)) for any a > 0 when € goes to 0.

Proof: When N = 2 we know via the lemma 3 that p. is bounded in LS°(L4(RY)) for
any ¢ > 1. It implies trivially that €*p! converges strongly to 0 in LY (L}OC(RN )) for any
a > 0 when € goes to 0.

When N = 3 we are in a similar situation when v < 1 4+ v via the lemma 3. If
v1 > 2 we have seen in the lemma 4 that €p! is uniformly bounded in Lg(((), T) x RY)),
combining this result with the fact that ep! is uniformly bounded in L$°(L(RY)) and
an interpolation argument we obtain the result that we wish. In the case 0 < v < 2 we
apply a similar argument with r; by using the lemma 4. It concludes the proof of the
lemma. O
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5.3 Proof of the corollary 1

From the previous theorem we know that (pe, u) converges to a quasi solution (p, u) and
that p. converges strongly to p in C([0,T], L}, .(RY)). In particular when u(p) = pp®
if we assume that there exists a unique global quasi solution we know via the theorem
1.2 that this quasi solution verifies the porous media or the fast diffusion equation in
function of v inasmuch as p is solution of (1.11).

In particular when we assume that the initial density pg has a compact support, it implies
that when a > 1 the support of the density p remains bounded along the time. Indeed
it consists merely of not ing that we can find a delayed Barrenblatt solution centered for

instance at 0 that lies on the top of pg, it means:
0 < po(z) < Un(r,z) VYoeRY,

with m large enough and 7 > 0. By theorem 2.4 and the maximum principle we know

that:
T

0<p(t,z) < (t+7) " F(

1

with F(z) = (C — %MP)F In particular it implies an information on the expan-
sion of the support of the solution since we observe that the support of p(t, -) is included
in a set B(t) = CB(0,M(t +7)% with C > 0, M > 0 independent of ¢.

Let us prove now that p. converges strongly to p in C([0, 7], L*(RY)). We know for the
moment that p. converges strongly to p in C([0,7], LL (RY)), it suffices to consider K
a compact set large enough such that for any ¢ € [0, 7] we have suppp(t,-) C K, we have
then:

[o(t, ) = pe(t, L1 (x) —e=0 0. (5.106)

Now we have by conservation of the mass and the fact that p(¢,-) = 0 in K¢ for any
te[0,T):
1ot +) = pe(t, M 1oy = llpe(t; )l L1 (e

(5.107)
= |lpoll L1y = llpe(ts )l L1 (x)-

In particular since p. converges strongly to p in C([0,T], L(K)), (5.107) implies that
[pe(t, )|l (k) converges uniformly on [0, 7] to [[p(t, )| 11 (k) When € goes to 0. But since
ot ) L1y = llpoll L1y for any ¢ € [0, 7] (indeed the support of p(t,-) is completely
included in K), it induces that ||p(t, ) — pe(t, ) || L1 (xe) converges uniformly on [0,77] to 0
when € goes to 0.

Finally we have by using (5.107):

p(t, ) = pe(t, Mirmny < Mot ) — pe(ts MLrxy + llpoll i@y = llpe(ts )l x)-

It implies that [|p(t,-) — pe(t, -)|| L1 (mr) converges uniformly on [0,7] to 0 when € goes to
0 and we have shown that p. converges strongly to p in C([0,T], L*(RY)). In particu-
lar it implies that for € small enough p. is the sum of a solution with compact support
on [0,7] and of a term of small L! norm. In this sense we can claim that the propa-
gation speed of the free boundary of p, is not so far to be finite at a small L' perturbation.
This implies in particular by interpolation that p. converges strongly to p in C ([0, 7], LP(R™))
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for any T' >, any p < 1 + « with a small enough if N =3 and with p > 1 if N =2.
In particular since via the theorem 2.6, we have:

() rgy < CE lo0l5% vy

with o, = (%(0&—1)+2p N(p—1)

Na=D)72)p and o = Na-1)12)p" It shows that up a remainder term of
small norm in LP, the LP norm of p. decrease in time for small €. It means that in some
sense the density is subjected to a damping effect in time for the LP norm which is very

surprising since this effect seems purely non linear.

Let us deal now with the time asymptotic behavior of p.. We expect that p.(t,-) goes
asymptotically in time to the Barrenblatt solution Uy, of (1.11) of mass ||pol| 1 gy = m.
We have then:

1Unm(t,) = pe(t, ) 1y < NUm(t,-) = p(t )Ly + ot ) = pe(t, )l 1wy
(5.108)
Via the theorem 2.7 we know that |[Upn(t,-) — p(t, -)|| L1 (rr) converges asymptotically to 0
when t goes to +00. The second term converges also to 0 when € goes to 0 since we have
shown that p. converges strongly to p in C([0,7], L' (R™)) for any T > 0. In particular
it implies that for any a > 0 it exists 7' > 0 such that:

[Un(t, ) — p(t, Npmyy < VE>T.
Furthermore it exists €y > 0 such that for all ¢ < ¢y we have:
p(t,) = pe(t, M rmny < VE€[0,nT], withneN.

It implies that for all @ > 0 it exits T' > 0 such that for all n € N it exits ¢y > 0 such
that for all 0 < € < ¢p we have:

1Um(t,) = pelt, Mgy < 2Vt € [T, ).

In this sense we observe that for € small enough the solution p. tends to converge asymp-
totically to a Barrenblatt solution of mass [|pol| 11 (). O
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