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Abstract
Biochemical networks are used in computational biology, to model the static and dynamical details of

systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and struc-
tural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics
of large models of this type. Multi-scaleness is another property of these networks, that can be used to get
past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler
networks, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic
parameters. The main idea used for such robust simplifications of networks is the concept of dominance
among model elements, allowing hierarchical organization of these elements according to their effects on
the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the
light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady
state and quasi-equilibrium approximations, and provide practical recipes for model reduction of linear
and nonlinear networks. We also discuss the application of model reduction to backward pruning machine
learning techniques.

1 Introduction

During the last decades, biologists have identified a wealth of molecular components and regulatory mech-
anisms underlying the control of cell functions. Cells integrate external signals through sophisticated
signal transduction pathways, ultimately affecting the regulation of gene expression, including that of the
signaling components. Metabolic functions are sustained and controlled by complex machineries involving
genes, enzymes and metabolites. The genetic regulations result from the coordinate effect of many, mutu-
ally interacting genes. These regulations involve many molecular actors, including proteins and regulatory
RNAs, which form large, intricate networks.

Current dynamical models of cellular molecular processes are small size networks. These small scale
models, that are subjective simplifications of reality, can not take into account the specificities of regulatory
mechanisms. New methods are needed, allowing to reconcile small scale dynamical models and large scale,
but static, network architectures. The main obstacle to increasing the size of dynamical networks is the
incomplete information, on the parameters and on the mechanistic details of the interactions. In vivo
values of the parameters depend on crowding and heterogeneity of the intracellular medium, and can be
orders of magnitude different from what is measured in vitro. Furthermore, learning models from data
suffer for non-identifiability and over-fitting problems. Thus, model reduction is an avoidable step in the
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study of large networks, allowing to extract the essential features of the model, that can then be identified
from data. Model reduction in computational biology should have several particularities.

First of all, model reduction should cope with parametric incompleteness and/or uncertainty.
A certain class of reduction methods are parameter independent and automatically comply with this

specificity. In biochemical networks, the number of possible chemical species grows combinatorially due to
numerous possibilities of interactions between molecules with multiple interaction sites. The exact lumping
methods [12, 18] reduce the number of microstates and avoid combinatorial explosion in the description
and analysis of large models of receptor and scaffold signalling. A similar technique [24] is used to
rationally organize supramolecular complexes in rule-based modeling [21] of biochemical networks. Other,
parameter independent, coarse-graining techniques are graphical methods formalizing node deletion and
merging operations in biochemical networks [29], pooling of metabolites in large scale metabolic networks
[73, 54], or extensive searches in the set of all possible lumps [22]. Finally, qualitative reduction methods
were used to simplify large logical regulatory graphs, adequately suppressing nodes and defining sub-
approximating dynamics [68, 69].

Secondly, biochemical processes governing network dynamics span over many timescales. For example,
changing gene expression programs can take hours and even days while protein complex formation goes
on the second scale and post-translational protein modifications take minutes to happen. Protein life
half-times can vary from minutes to days. Model reduction should exploit multiscaleness. Asymptotic
dynamics of networks with slow and fast processes, can be strongly simplified using various ideas such as
inertial and invariant manifolds (IM) and averaging approximations.

The iterative methods of IM aim to find a slow low dimensional IM, containing the asymptotic dynamics
[37, 38, 81]. The Computational Singular Perturbation (CSP) [59, 15] aims to find even more, the slow
IM and, in addition, the geometry of fast foliation. Invariant manifolds can be calculated by various other
methods [39, 41, 81, 56, 58].

Very popular are the methods for computation of a “first approximations” to the slow IM. The classical
quasi steady-state approximation (QSS) was proposed by [10] and was elaborated into an important tool
for analysis of chemical reaction mechanism and kinetics [87, 16, 50]. The classical QSS is based on
the relative smallness of concentrations of some of active reagents (radicals, concentration of enzyme
and substrate-enzyme complexes or amount of active centers on the catalyst surface) [5, 86, 100]. The
quasiequilibirium approximation (QE) has two basic formulations: the thermodynamic approach, based
on conditional entropy maximum (or free energy conditional minimum), or the kinetic formulation, based
on equilibration of fast reversible reactions. The very first use of the entropy maximum dates back to
Gibbs [30]. Corrections to QE approximation with applications to physical and chemical kinetics were
developed by [40, 39]. An important, still unsolved, problem of these two approximations is the detection
of QSS species and QE reactions without application of all machinery of the IM or CSP methods. Indeed,
not all reactions with large constants are at quasi-equilibrium, and there are no simple rules to find QSS
species if there is no such hints as a small amount of a conserved quantity (like the total concentration of
enzyme). The method of Intrinsic Low Dimensional Manifolds (ILDM) [63, 14] provides an approximation
of a low dimensional invariant manifold and works as a first step of CSP [55].

Another method allowing to simplify multiscale dynamics is averaging. This idea can be tracked back
to Poincaré’s perturbative treatment of the many body problem in celestial mechanics [74], further devel-
oped in classical mechanics by other authors [6, 62], and also known as adiabatic or Born-Oppenheimer
approximation in quantum mechanics [66]. Rather generally, averaging can be applied when some fine
scale variables of the system are rapidly oscillating. Then, the dynamics of slow, coarse scale variables,
can be obtained by time averaging the system over a timescale much larger than the period of the fast os-
cillations. The way to perform averaging, depends on the structure of the system, namely on the definition
of the coarse grained and fine variables [11, 7, 2, 85, 1, 34, 88].

Some of these ideas have been implemented in computational biology tools. Systems biology markup
language SBML [52] can allocate a ”fast” attribute to reaction elements. Fast reaction specification can
be taken into account by computational biology softwares such as VirtualCell [90] that implements a QE
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approximation algorithm [89]. Similarly, the simulation tool COPASI [51] implements the ILDM method
[93].

Finally, multiscaleness does not uniquely apply to timescales but equivalently to abundances of various
species in these networks. mRNA copy numbers can change from some units to tens of thousands, and the
dynamic concentration range of biological proteins can reach up to five orders of magnitude. Furthermore,
the DNA molecule has only one or a few copies. Low copy numbers lead, directly or indirectly (a species
can be stochastic even if present in large copy numbers), to stochastic gene expression. In computational
biology, model reduction should thus cope not only with deterministic, but also with stochastic and hybrid
models. The need to reduce large scale stochastic models is acute. Indeed, stochastic simulation algorithm
(SSA, [32, 31]) can be very expensive in computer time when applied to large unreduced models, precluding
model analysis and identification. For this reason, extensive effort has been dedicated to adapting the
main ideas used for model reduction of deterministic models, namely exact lumping, invariant manifolds,
QSS, QE, and averaging, to the case of stochastic models.

Reduction of stochastic rule-based models, based on a weakened version of the exact lumpability
criterion, has been proposed by [25] to define abstract species or stochastic-fragments that can be further
used in simplified calculations. Multiscaleness of stochastic models is two-fold, it affects both species and
reaction rates. This has been exploited in hybrid stochastic simulation schemes that are, for the most
of them, based on a partition of the biochemical reactions in fast and slow reactions [49, 13, 4, 48, 3,
82, 57, 47, 92, 83, 45, 9, 60, 36, 72]. Conversely, mixed partitions, using both reactions and species can
exploit both types of multiscaleness and more appropriately unravel a rich variety of stochastic functioning
regimes such as piece-wise deterministic, switched diffusions, diffusions with jumps, as well as averaged
processes [80, 20, 19] only partially covered by some situations discussed in [64].

Machine learning approaches to parameter identification [35] could profit from Fokker-Planck approxi-
mations, also known as diffusion approximations or Langevin approach, of the master equation describing
dynamics of stochastic networks. Traditional approaches such as central limit theorem [33, 65], the Ω
and the Kramers-Moyal expansions [80, 20] where used to derive diffusion approximations. Alternatively,
[23] propose diffusion approximations for slow/fast stochastic networks, in which the drift and diffusion
parameters are obtained numerically. By the ergodic theorem, time averaging of multiscale stochastic
models boils down to a QE assumption for the fast variables. This idea has been used in [20] to reduce
stochastic networks. A few computational biology tools implement stochastic approximations [83].

With the exception of the parameter independent methods, all the model reduction methods described
above need a full parametrization of the model. This is a stringent requirement, and can not be easily
bypassed. Indeed, the reduction has a local validity. The elements defining a reduced model such as IM,
QSS species, QE species, depend on the model parameters and also on the position on a trajectory of the
dynamics. What one can expect is that model reduction is robust, i.e. a given reduced model provides an
accurate approximation of the dynamics of the initial model for a wide range of parameters and variables
values. One can show that this property is satisfied by biochemical networks with separated constants,
because in this case the simplified networks depend on the order relations among model parameters and
not on the precise values of these parameters [42, 76, 70].

The purpose of this review is not the exhaustive description of all the reduction methods that we have
delineated. We will revisit the fundamental concepts of model reduction in the light of a new program, that
should, in the long term, lead to a new generation of reduction tools satisfying all the specific requirements
of computational biology. Due to space limitations, we restrict ourselves to deterministic models.
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2 Deterministic dynamical networks

To construct a dynamic reaction network we need the list of components, A = {A1, ... An} and the list of
reactions (the reaction mechanism): ∑

i

αjiAi 

∑
k

βjkAk, (1)

where j ∈ [1, r] is the reaction number.
Dynamics of nonlinear networks in homogeneous isochoric systems (fixed volume) is described by a

system of differential equations:

dc

dt
= P (c) =

r∑
j=1

νj(R
+
j (c)−R−j (c)) (2)

c ∈ Rn is the concentration vector, νj = βj − αj is the global stoichiometric vector. The reaction rates

R
+/−
j (c) are non-linear functions of the concentrations. For instance, the mass action law reads R+

j (c) =

k+j
∏
i c
αji

i , R−j (c) = k−j
∏
i c
βji

i , in which case Pi(c) is a multivariate polynomial on the concentrations cj .

3 Multi-scale reduction of monomolecular reaction networks

Monomolecular reaction networks are the simplest reaction networks. The structure of these networks is
completely defined by a digraph, in which vertices correspond to chemical species Ai, edges correspond to
reactions Ai → Aj with kinetic constants kji > 0.

The kinetic equation is

dci
dt

=
∑
j

kijcj −

∑
j

kji

 ci, (3)

or in matrix form: ċ = Kc.
The solutions of (3) can be expressed in terms of left and right eigenvectors of the kinetic matrix K:

c(t) = (l0, c(0)) +

n−1∑
k=1

rk(lk, c(0)) exp(−λkt) (4)

where Krk = λkr
k, and lkK = λkl

k.
Each eigenvalue λk is the inverse of a timescale of the network. A reduced network having solutions

of the type (4), with eigenvectors rk, lk, and eigenvalues λk approximating the eigenvectors and the
eigenvalues of the original network is called a multiscale approximation.

We say that the network constants are totally separated if for all (i, j) 6= (i′, j′) one of the relations
kji << kj′i′ , or kji >> kj′i′ is satisfied.

It was shown in [42, 76, 43] that the multiscale approximations of arbitrary monomolecular reaction
networks with totally separated constants are acyclic (have no cycles), and deterministic (have no nodes
from which leave more than one edge) digraphs.

In order to reduce a network with total separation, one needs only qualitative information on the con-
stants. More precisely, each edge of the reaction digraph can be labeled by a positive integer representing
the rank of the reaction parameter in the ordered series of parameter values, the largest parameter (the
quickest reaction) having the lowest label. These integer labels also indicate the timescales of the processes
modeled by the network reactions.

The reduced network is not always a subgraph of the initial graph. It is obtained from this integer
labeled digraph by graph re-writing operations, that can be generically described as pruning and pooling.
Two types of pruning operations are of primary importance (see also Figure 1) :
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Rule a) If one has one node from which leave more than one edge, then all the edges are pruned with
the exception of the fastest one (lowest integer label). This operation corresponds to keeping the
dominant term among the terms cikij consuming a species Ai, and reduces the node outdegree to
one. The same principle can not be applied to reduce the indegree, because which production term
is dominant among kijcj depends not only on kij but also on the concentrations cj .

Rule b) Cycles with separated constants can be transformed into chains, by elimination of the slowest
step. This can be justified intuitively by topology, because any two nodes of a cycle are connected
by two paths, one containing the slowest step and the other one not containing the slowest step.
The latter shortcuts the former.

However, a combination of rules a) and b) is not allowed to prune slow reactions leaving cycles and
further transform the cycles into chains. Indeed, the total mass of such cycles is slowly decaying because of
outgoing reactions. Pruning the slow reactions that leave a cycle would keep the total cycle mass constant
and produce the wrong long time approximation. In this case, pooling operations are needed:

Rule c) Glue each cycle in the pruned system into a new vertex and transform the network of all initial
reactions into a new one. The concentration of this new component is the sum of the concentration
of the glued vertices. Reactions to the cycles transform into reactions to the correspondent new
vertices (with the same constants). To transform the reactions from the cycles, we have to calculate
the normalized quasi-stationary distributions inside each cycle (with unit sum of the concentrations
in each cycle). Let for the vertex Ai from a cycle this concentration be c◦i . Then the reaction
Ai → Aj with the constant kji transforms into the reaction from the new (“cycle”) vertex with the
constant kjic

◦
i . The destination vertex of this reaction is Aj if it does not belong to a cycle of the

pruned system, it is the correspondent glued cycle if it includes Aj and does not include Ai and the
reaction vanishes if both Ai and Aj belong to the same cycle of the pruned system.

After pooling we have to prune (Rule a) and so on, until we get an acyclic pruned system. Then the
way back follows: we have to restore cycles and cut them (Rule b).

In more detail, the graph re-writing operations, are described in the Appendix and illustrated in
Figure 1. The dynamics of reduced acyclic deterministic digraphs follows from their topology and from
the timescale labels. First of all, let us notice that the network has as many timescales as remaining edges in
the reduced digraph. The computation of eigenvectors of acyclic deterministic digraphs is straightforward
[42, 76, 43]. For networks with total separation, these eigenvectors satisfy, in the first approximation, a
0 − 1 type property, the coordinates of lk, rk belong to the sets {0, 1}, and {0, 1,−1} respectively. The
0 − 1 property of eigenvectors has a non-trivial consequence. On the timescale tk = (λk)−1, the reduced
digraph behaves as an effective reaction (single step approximation). The effective reaction receives (from
reactions acting on smaller timescales) the mass coming from the species with coordinate 1 in lk (pool)
and transfers it (during a time tk) to the species with coordinate 1 in rk. The successive single step
approximations of an acyclic deterministic digraph are illustrated in Figure 2.

Monomolecular networks with separation represent instructive examples where reduction and qualita-
tive dynamics result from the network topology and from the orders of magnitude of the kinetic constants.
This type of models can be used in computational biology to reduce linear subnetworks or even binary re-
actions for which one reactant is present in much larger quantities than the other (pseudo-monomolecular
approximation).

As argued by a few authors, total separation could be a generic property of biochemical networks
[28]. This property can be checked empirically by investigating the distribution of network timescales in
logarithmic scale. Whenever one finds distributions with large support in logarithmic scale (a log-uniform
distribution is equivalent to the Zipf law, i.e. a power law distribution with exponent −1, well known in
critical systems [28]) total separation is valid and the above reduction method applies.
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4 Separation, dominance, and tropical geometry

The previously presented algorithm is based on the idea of dominance, which occurs at many levels. For
instance, when several reactions compete for the same pool, all can be pruned, excepting the dominant one
(Rule a)). This simple idea is widely spread, and corresponds to max-plus algebra: the sum of positive, well
separated terms, can be replaced by the maximum term. Max-plus algebra, that found many applications
to dynamical systems [17, 96, 8], belong to the new mathematical field of tropical geometry [71]. Tropical
geometry offers convenient solutions to solve systems of polynomial equations with separated monomials,
to simplify and hybridize systems of polynomial or rational ordinary differential equations with separated
monomials. We can conveniently use tropical geometry concepts to rationalize many model reduction
operations and find new ones.

The logarithmic transformation ui = logxi, 1 ≤ i ≤ n, well known for drawing graphs on logarithmic
paper, plays a central role in tropical geometry [97].

Let us consider multivariate monomials M(x) = aαx
α, where xα = xα1

1 xα2
2 . . . xαn

n . Monomials with
positive coefficients aα > 0, become linear functions, logM = logaα+ < α, log(x) >, by this transforma-
tion.

There is a straightforward way to use the logarithmic transformation from tropical geometry in order
to obtain approximations of dynamical networks of the type (2). Let us suppose that reaction rates are
polynomial functions of the concentrations (this is satisfied by mass action law and obviously, also by
monomolecular networks), such that

∑r
j=1 νj(R

+
j (c)−R−j (c)) =

∑
α∈A aαc

α.
We call tropicalization of the smooth ODE system (2) the following piecewise-smooth system:

dci
dt

= siexp[maxα∈Ai{log(|ai,α|)+ < c, α >}], (5)

where u = (logc1, . . . , logcn), si = sign(ai,αmax) and ai,αmax , αmax ∈ Ai denotes the coefficient of a
monomial for which the maximum occurring in (5) is attained.

The tropicalization associates to a polynomial
∑
α∈A aαc

α, the max-plus polynomial

P τ (c) = exp[maxα∈A{log(|aα|)+ < log(c), α >}].

In other words, a polynomial is replaced by a piecewise smooth function, equal to the largest, in
absolute value, of its monomials. Thus, (5) is a piecewise smooth model [95] because the dominating
monomials in the max-plus polynomials can change from one domain to another of the concentration
space. The singular set where at least two of the monomials are equal, and where the max-plus polynomial
P τ (c) is not smooth is called tropical variety [67]. On logarithmic paper, the tropical varieties of various
species define polyhedral domains inside which the dynamics is defined by monomial differential equations
(Figure 3). Tropicalized systems remind of, but are not equivalent to, Savageau’s S-systems [84] that
have been used for modeling metabolic networks. S-systems are smooth systems such that the production
and consumption terms of each species are multivariate monomials. Tropicalized systems are S-systems
locally, within the polyhedral domains defined by the tropical varieties, and also along some parts of the
tropical variety (that carry sliding modes, see next section).

The tropicalization unravels an important property of multiscale systems, that is to have different
behavior on different timescales. We have seen that, on every timescale, monomolecular networks with
total separation behave like a single reaction step. This is akin to considering only the dominant processes
in the network and implies that the tropicalization is a good approximation for monomolecular networks
with total separation. In the next section we discuss other, more general situations, that include nonlinear
networks, when the tropicalization represents an useful approximation of the smooth dynamics.
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5 Quasi-steady state and Quasi-equilibrium, revisited

Two simple methods for model reduction of nonlinear models with multiple timescales: the quasi-equilibrium
(QE) and the quasi-steady state (QSS) approximations. As discussed in [43, 44], these two approximations
are physically and dynamically distinct. In order to understand these differences let us refer to the simple
example of the Michaelis-Menten mechanism,

S + E
k1


k−1

ES
k2→ P + E (6)

The QSS approximation, proposed for this system by Briggs and Haldane, considers that the total
concentration of enzyme, [E] + [ES] is much lower than the total concentration of substrate, therefore
complex ES is a low concentration, fast species. Its concentration is driven by concentration of S, hence,
the simplified mechanism correspond to pooling the two reactions of the mechanism into a unique irre-

versible reaction S
R(S,Etot)−→ P , which means that d[P ]

dt = −d[S]dt = k2[ES]QSS . The QSS value of the
complex concentration results from the equation k1[S]([E]tot− [ES]QSS) = (k−1 +k2)[ES]QSS . From this
follows that R([S], [E]tot) = k2[E]tot[S]/(km + [S]), where [E]tot is the total enzyme concentration, and
km = (k−1 + k2)/k1.

The QE approximation considers that the first reaction of the mechanism is a fast, reversible re-
action. The simplified mechanism corresponds to a pooling of species. Two pools [S]tot = [S] +
[ES], and [E]tot = [E] + [ES] are conserved by the fast reversible reaction, but only one, [E]tot is
conserved by the two reactions of the mechanism. The pool [S]tot is slowly consumed by the sec-
ond reaction and represents the slow variable of the system. The single step approximation reads

Stot
R([S]tot,[E]tot)−→ P , or equivalently d[P ]

dt = −d[S]totdt = k2[ES]QE . The QE value of the complex concen-
tration is the unique positive solution of the quadratic equation k1([S]tot − [ES]QE)([E]tot − [ES]QE) =
k−1[ES]QE . From this it follows that R([S]tot, [E]tot) = 2k2[E]tot[S]tot([E]tot + [S]tot + k−1/k1)−1(1 +√

1− 4[E]tot[S]tot/([E]tot + [S]tot + k−1/k1)2)−1. When the concentration of enzyme is small, [E]tot <<

[S]tot, we obtain the original equation of Michaelis and Menten, R([S]tot, [E]tot) ≈ k2 [E]tot[S]tot
k−1/k1+[S]tot

.

One of the main difficulties to applying QE or QSS reduction to computational biology models is that
QE reactions and QSS species should be specified a priori. For some models, biological information can
be used to rank reactions according to their rates. For instance, one knows that metabolic processes
and post-transcriptional modifications are more rapid than gene expression. However, this information
is rather vague. In detailed gene expression models some processes can be rapid, while others are much
slower. Furthermore, the relative order of these processes can be inverted from one functioning regime to
another, for instance the binding and unbinding rates of a repressor to DNA, can be slow or fast depending
on various conditions. Even if some numerical approaches such as iterative IM, CSP and ILDM propose
criteria for detecting fast and slow processes, at present there is no general direct method to identify QE
reactions and QSS species.

Here we present two methods, based, the first one on singular perturbations, and the second on tropical
geometry ideas, allowing to detect QE reactions and QSS species.

The first method uses simulation of the trajectories, therefore it can only be applied to a fully
parametrized model. However, in systems with separation, the sets of QE reactions and QSS species
are robust, ie remain the same for broad ranges of the parameters. One can use imprecise parameters
(resulting for instance from crude estimates or fitting) to compute these sets. The method starts by de-
tecting slaved species. Given the trajectories c(t) of all species, the imposed trajectory of the i-th species
is a real, positive solution c∗i (t) of the polynomial equation

Pi(c1(t), . . . , ci−1(t), c∗i (t), ci+1(t), . . . , cn(t)) = 0, (7)

where Pi is the i-th component of the rhs of (2). We say that a species i is slaved if the distance between
the trajectory ci(t) and some imposed trajectory c∗i (t) is small for some time interval I, supt∈I |log(ci(t))−
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log(c∗i (t))| < δ, for some δ > 0 sufficiently small. The remaining species, that are not slaved, are called
slow species.

Slaved species are rapid and are constrained by the slow species. The minimum number of variables
that we expect for a reduced model is equal to the number of slow species. The slow species can be
obtained by direct comparison of the imposed and actual trajectories. This method is illustrated for a
model of NFκB canonical pathway in Figure 4.

There are two types of slaved species. Low concentration, slaved species satisfy QSS conditions. Large
concentration, slaved species are consumed and produced by fast QE reactions and satisfy QE conditions.
Because the reduction schemes are different in the two situations, it is useful to have a method to separate
the two cases. Using the values of concentrations can work when concentrations are well separated, but
may fail for a continuum of values. A better method is to identify which are the dominant terms in the
Eq.(7). Using again the example of Michaelis-Menten mechanism, the complex ES will be detected as
slaved in both QSS and QE conditions. Eq.(7) reads k1[S][E] = (k−1 + k2)[ES]. For QE condition, the
term k2 will be dominated by k−1. We call pruned version of Eq.(7) the equation obtained after removing
all the dominated monomials, in this case the equation k1[S][E]− k−1[ES] = 0. When the pruned version
is a combination of reversible reaction rates set to zero, then the slaved species satisfy QE conditions.
Again, the comparison of monomials is possible for a fully parametrized model, however we expect this
comparison to be robust for models with separation.

The second method to identify QE and QSS conditions from the calculation of the tropicalization (5).
This can be done formally and do not require simulation of trajectories and numerical knowledge of the
parameters. Indeed, is was shown in [95] that there is a relation between sliding modes of the tropical-
ized system (5) and the QSS or QE conditions. Sliding modes are well known for ordinary differential
equations with discontinuous vector fields [27]. In such systems, the dynamics can follow discontinuity
hypersurfaces where the vector field is not defined. When the discontinuity hypersurfaces are smooth and
n− 1 dimensional (n is the dimension of the vector field) then the conditions for sliding modes read:

< n+(x), f+(x) >< 0, < n−(x), f−(x) >< 0, x ∈ Σ, (8)

where f+, f− are the vector fields on the two sides of Σ and n+ = −n− are the interior normals.
In [95] we have shown the following. If the smooth dynamics obeys QE or QSS conditions and if

the pruned polynomial P̃ defining the fast dynamics is a 2-nomial, P̃i(c) = a1c
α1 + a2c

α2 , then the QE
or QSS equations define a hyperplane of the tropical variety of P̃ , namely S = {< log(c), α1 − α2 >=
log(|a1|/|a2|)}. The stability of the QE of QSS manifold implies the existence of a sliding mode of the
tropicalization (5) along this hyperplane. This result suggests that checking the sliding mode condition
(8) on the tropical manifold, provides a method of detecting QE reactions and QSS species.

To illustrate this method, let us use again the Michaelis-Menten example. In this case, two conservation
laws allow elimination of two variables E and P and the dynamics can be described by two ODEs:

d[S]

dt
= −k1Etot[S] + k1[S][ES] + k−1[ES]

d[ES]

dt
= k1Etot[S]− k1[S][ES]− (k−1 + k2)[ES] (9)

The tropical manifolds of the two species S and ES are tripods with parallel arms like in Figure 3.
Indeed, the slopes of the arms of tropical manifold are only given by the powers of different variables of
the monomials, and these are the same for the two species. Investigation of the flow field close to the
tripod arms identifies sliding modes on an unbounded subset AOB of the tropical manifold of the species
ES. This subset is a global attractor of the tropicalized dynamics and represents a tropicalized version
of the invariant manifold of the smooth system. If the initial data is not in this set, the tropicalized
trajectory converges quickly to it and continues on it as a sliding mode. When k2 >> k−1, ES satisfies
QSS conditions leading to the Michaelis-Menten equation. The arm AO of the tropical manifold of
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the species ES carry a sliding mode, has the equation k1Etot[S] = (k−1 + k2)[ES] >> k1[S][ES], and
corresponds to the linear regime of the Michaelis-Menten equation. Similarly, the arm OB of the tropical
manifold of ES has the equation k1Etot[S] = k1[S][ES] >> (k−1 + k2)[ES] and corresponds to the
saturated regime of the Michaelis-Menten equation. When k2 << k−1, the tropical manifolds of the
two species S and ES practically coincide. Both species are rapid and satisfy QE conditions, namely
k1Etot[S] = k−1[ES] >> k1[S][ES] on the arm AO and k1Etot[S] = k1[S][ES] >> k−1[ES] on the arm
OB.

The tropicalization can thus be used to obtain global reductions of models. Even when global reductions
are not possible (sliding modes leave the tropical manifold or simply do not exist), the tropicalization can
be used to hybridize smooth models, ie transform them into piecewise simpler models (modes) that change
from one time interval to another. These changes occur when the piecewise smooth trajectory of the system
meets a hyperplane of the tropical manifold and continues as a sliding mode along this hyperplane or leaves
immediately the hyperplane. Hybridization is a particularly interesting approach to modeling cell cycle.
Indeed, progression of the cell cycle is a succession of several different regimes (phases). This strategy is
illustrated in Figure 4 for a simple cell cycle model.

6 Graph rewriting for large nonlinear, deterministic, dynamical
networks

We have seen that model reduction of monomolecular networks with total separation is based on graph
rewriting operations.

Similarly, QSS and QE approximations can be used to produce simpler networks from large nonlinear
networks. The classical implementation of these approximations leads to differential-algebraic equations.
It is however possible to reformulate the simplified model as a new, simpler, reaction network. We showed
in the previous section how to do this for the Michaelis Menten mechanism under different conditions. In
general one has to solve the algebraic equations corresponding to QE or QSS conditions, eliminate (prune)
QSS species and QE reactions, pool reactions (for QSS approximation) or species (for QE approximation),
and finally calculate the kinetic laws of the new reactions.

By reaction pooling we understand here replacing a set of reactions by a single reaction whose stoi-
chiometry vector ν is the sum of the stoichiometry vectors νi of the reactions in the pool, ν =

∑
i γiνi.

If the reactions are reversible then the coefficients γi can be arbitrary integers, otherwise they must be
positive integers. Reaction pools conserve certain species that where previously consumed or produced
by individual reactions in the pools. These species were called intermediates in [76]. The species that
are either produced or consumed by the pools were called terminal in [76]. For example, an irreversible
chain of reactions A1 → A2 → A3 can be pooled onto a single reaction A1 → A3, which in terms of

stoichiometry vectors reads

−1
0
1

 =

−1
1
0

 +

 0
−1
1

. In this example A1, A3 are terminal species and A2

is an intermediate species. Reaction pooling is used with QSS conditions, in which case the intermediates
are the QSS species.

By species pooling we understand replacing a set of species concentrations {ci} by a linear combination
with positive coefficients of species concentrations,

∑
i bici. Species pooling is used with QE conditions.

In general, the reaction and species pools result from linear algebra. Indeed, let us consider the matrix
Sf that defines the stoichiometry of the rapid subsystem. For the QSS approximation, the matrix Sf has
a number of lines equal to the number of QSS species. The columns of this matrix are the stoichiometries
of the reactions in the model, restricted to the QSS species. We exclude zero valued columns, i.e. reactions
that do not act on QSS species. For the QE approximation, the number of columns of the matrix Sf is
equal to the number of QE reactions, and the lines of Sf are the stoichiometries of QE reactions. We
exclude zero valued lines corresponding to species that are not affected by QE reactions.
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In QE conditions, species pools are defined by vectors in the left kernel of Sf ,

bTSf = 0 (10)

The vectors b, that are conservation laws of the fast subsystem, define linear combinations of species
concentrations that are the new slow variables of the system. Of course, one could eliminate from these
combinations, the conservation laws of the full reaction network, that will be constant (see Appendix).

In QSS conditions, reaction pools (also called routes) are defined by vectors in the right kernel of Sf ,

Sfγ = 0 (11)

According to the definition (11), a reaction pool does not consume or produce QSS species (these are
intermediates). One can impose, like in [76], a minimality condition for choosing the reaction pools. A
reaction pool is minimal if there is no other reaction pool with less nonzero stoichiometry coefficients.
This is equivalent to choosing reaction pools as elementary modes of the fast subsystem.

After pooling, QE and QSS algebraic conditions must be solved and the rates of the new reactions
calculated. The new rates should be chosen such that the remaining species and pools of species satisfy the
simplified ODEs. The choice of the rates is not always unique (some uniqueness conditions are discussed in
[76], see also the Appendix). In order to compute the new rates, one has to solve QE and QSS equations.
For network with polynomial or rational rates, this implies solving large systems of polynomial equations.
The complexity of this task is double exponential on the size of the system [70], therefore one needs
approximate solutions. Approximate solutions of polynomial equations can be formally derived when the
monomials of these equations are well separated. Some simple recipes were given in [76] and could be
improved by the methods of tropical geometry.

These ideas were used in [76] to reduce several models of NF-κB signalling (Figure 6).
The NF-κB activation pathway is complex at many levels. NF-κB is sequestered in the cytoplasm by

inactivating proteins named IκB. There are five known members of the NF-κB family in mammals, Rel
(c-rel), RelA (p65), RelB, NF-κB1 (p50 and its precursor p105) and NF-κB2 (p52 and its precursor p100).
This generates a large combinatorial complexity of dimers, affinities and transcriptional capabilities. IκB
family comprises seven members in mammals (IκBα, IκBβ, IκBε, IκBγ, Bcl-3). All these inhibitors
display different affinities for NF-κB dimers, multiplying the combinatorial complexity. The activation of
NF-κB upon signalling, occurs by phosphorylation by a kinase complex, then ubiquitination, and finally
degradation of IκB molecules. The activation signal is transmitted by several possible pathways most of
them activating the kinase IKK that modifies IκB. In the canonical pathway, one important determinant
of IKK dynamics is the protein A20 that inhibits IKK activation. A20 expression is controlled by NF-κB.
In order to cope with this complexity a model containing 39 species, 65 reactions and 90 parameters was
proposed in [76]. Of course, not all reactions and parameters of this complex model are important. In
order to determine, in a rational and systematic way, which of the model features are critical, we have
used model reduction.

Graph rewriting was performed in a modular way, by applying the pruning and pooling rules to tightly
connected submodels of the NF-κB network. The computation of the reaction pools was performed
using Matlab and METATOOL [98]. Using submodel decomposition reduces the complexity of computing
elementary modes and of solving large systems of algebraic equations needed for recalculating the reaction
rates.

To give an example of modular reduction, let us consider the set of reactions involving six cytoplas-
mic located intermediates (IKK|active, IKK|inactive, IKK, IKK|active:IkBa, IKK|active:IkBa:p50:p65,
p50:p65@csl) and four terminal species (A20, IkBa@csl, IkBa:p50:p65@csl, p50:p65@ncl). As can be seen
from Figure 5, the six intermediate species are slaved. The reactions of this submodel form the cyto-
plasmic part of the signalling mechanism, including 11 kinase transformation reactions, a complex release
reaction, a complex formation reaction, and the NF-κB translocation reaction. The elementary modes
of the submodel (computed using METATOOL [98]) are used to define the reactions pools. For this
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submodel, we find two elementary modes, that can be described as the modulated inhibitor degradation
(IkBa@csl → ∅), and a reaction summarizing the NF-κB release and translocation (IkBa:p50:p65@csl
→ p50:p65@ncl), respectively. In order to compute the reaction rates of the two elementary modes as
functions of the concentrations of the terminal species, we find approximate solutions of the QSS equations
for the intermediate species and equate, for the variation rates of each terminal species, the contributions
of elementary modes to the total known variation rate in the unreduced model (see Appendix). The two
rates are k21p1[IkBa@csl][IkBa : p50 : p65@csl]/((k21p2 + [IkBa@csl])(k21p3 + [A20])) for the modulated
inhibitor degradation, and k15p1[IkBa : p50 : p65@csl]/((k15p2+[IkBa@csl])(k15p3+[A20])) for the release
and translocation reaction.

7 Model reduction and model identification

Computational biology models contain mechanistic details that can not all be identified from available
experimental data. Determining the parameters of such complex models could lead to overfitting, de-
scribing noise, rather than features of data, or can be simply meaningless, when model behavior is not
sensitive to the parameters. Furthermore, many model identification methods [35] suffer from the ”curse
of dimensionality” as it becomes increasingly difficult to cover the parameter space when the number of
parameters increases. A rather efficient strategy to bypass these problems is to use model reduction. This
method is known in machine learning as backward pruning or post-pruning [99]. It consists in finding a
complex model that fits data well and then prune it back to a simpler one that also fits the data well.
Far from being redundant, backward pruning can be successfully used in computational biology. Rather
often, one starts with a complex model coping with mechanistic details of the network regulation. Then,
over-fitting and problems of identifiability of the parameters are avoided by model reduction. By model
reduction the mechanistic model is mapped onto a simpler, phenomenological model. For instance, gene
transcription and translation can be represented as one step and one constant in a phenomenological
model, but can consist of several steps such as initiation, transcription of mRNA leading region, ribosome
binding, translation, folding, maturation, etc. in a complex model. Not all of these steps are important
for the network functioning and not all parameters are identifiable from the observed quantities. Follow-
ing reduction, the inessential steps are pruned and several critical parameters are compacted into a few
effective parameters that are identifiable.

As discussed in [78, 76, 77, 26], model reduction unravels the important features and the critical
parameters of the model.

Using model reduction for determining critical features of the model has many advantages relative to
numerical sensitivity studies [75, 46, 53]: this approach is less time consuming, brings more insight, and
is based on qualitative comparison of the order of the parameters and therefore does not need exhaustive
scans of parameter values. In the applications described in [78, 76, 77, 26], the critical parameters of the
pruned model are combinations (most often monomials) of the parameters of the complex models. As
only the critical combinations can be fitted from data it is important to have estimates of some individual
parameters, allowing to determine the remaining ones.

This methodology has been first proposed in [76]. The model reduction of the NF-κB model in
[76] leads to new, effective parameters that are monomials of the parameters of the complex model. The
correspondence between the initial parameters and the effective parameters is shown in Figure 7. Although
not fully exploited in the theoretical study [76], this mapping can be used for model identification from
experimental data. Parameters of the reduced model have increased observability and could be obtained
from experimental data. The values of the effective parameters can be used to constrain the parameters
of the full model. Some of the parameters of the full model, that are not critical or contribute to effective
parameters together with other parameters remain arbitrary and could be fixed to generic values.
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8 Conclusion

The mathematical techniques described in this paper define strategies for the study of large dynamical
network models in computational biology. Large networks are needed in order to understand context
dependence, specialization, and individuality of the cell behavior. Extensive pathway database accumu-
lation supports somehow the idea that biological cell is a puzzle of networks and pathways, and that once
these are put together in a tightly bound, coherent map, the cell physiology should be unraveled by a
computer simulation. Actually, confronting biochemical networks with real life is not an easy challenge.
Model reduction techniques are needed to bring us one step closer to this objective, as these methods can
reveal critical features of complex organizations.

We have proposed that the ideas of limitation and dominance are fundamental for understanding
computational biology dynamical models. The essential, critical features of systems with many separated
time scales, can be resumed by a dominant, reduced, subsystem. This dominant subsystem depends on
the order relations between model parameters or combinations of model parameters. We have shown how
to calculate such a dominant subsystem for linear and nonlinear networks. Geometrical interpretation of
these concepts in terms of tropicalization provides a powerful framework, allowing to identify invariant
manifolds, quasi-steady state species and quasi-equilibrium reactions. We have also discussed how model
reduction can be applied to backward pruning parameter learning strategies.

Future efforts are needed to extend these mathematical ideas and model reduction algorithms and
implement them into computational biology tools.
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Appendix : algorithms

Algorithm 1 : reduction of monomolecular networks with separation

This algorithm consists of three procedures.
I. Constructing of an auxiliary reaction network: pruning.
For each Ai branching node (substrate of several reactions) let us define κi as the maximal kinetic

constant for reactions Ai → Aj : κi = maxj{kji}. For correspondent j we use the notation φ(i): φ(i) =
arg maxj{kji}.

An auxiliary reaction network V is the set of reactions obtained by keeping only Ai → Aφ(i) with
kinetic constants κi and discarding the other, slower reactions. Auxiliary networks have no branching,
but they can have cycles and confluences. The correspondent kinetic equation is

ċi = −κici +
∑
φ(j)=i

κjcj , (12)

If the auxiliary network contains no cycles, the algorithm stops here.
II gluing cycles and restoring cycle exit reactions
In general, the auxiliary network V has several cycles C1, C2, ... with lengths τ1, τ2, ... > 1.
These cycles will be “glued” into points and all nodes in the cycle Ci, will be replaced by a single

vertex Ai. Also, some of the reactions that were pruned in the first part of the algorithm are restored with
renormalized rate constants. Indeed, reaction exiting a cycle are needed to render the correct dynamics:
without them, the total mass accumulates in the cycle, with them the mass can also slowly leave the
cycle. Reactions A → B exiting from cycles (A ∈ Ci, B /∈ Ci) are changed into Ai → B with the rate
constant renormalization: let the cycle Ci be the following sequence of reactions A1 → A2 → ...Aτi → A1,
and the reaction rate constant for Aj → Aj+1 is kj (kτi for Aτi → A1). The quasi-stationary normalized
distribution in the cycle is:

c◦j =
1

kj

 τi∑
j=1

1

kj

−1 , j = 1, . . . , τi .

The reaction Aj → B (A ∈ Ci, B /∈ Ci) with the rate constant k is changed into Ai → B with the rate
constant c◦jk.

Let the cycle Ci have the limiting steps that is much slower than other reactions. For the limiting
reaction of the cycle Ci we use notation klim i. In this case, c◦j = klim i/kj . If A = Aj and k is the rate

constant for A→ B, then the new reaction Ai → B has the rate constant kklim i/kj . This rate is obtained
using quasi-stationary distribution for the cycle.
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The new auxiliary network V1 is computed for the network with glued cycles. Then we prune it, extract
cycles, glue them, iterate until a acyclic network is obtained Vm, where m is the number of iterations.

III Restoring cycles
The previous procedure gives us the sequence of networks V1, . . . ,Vm with the set of verticesA1, . . . ,Am

and reaction rate constants defined for each Vi in the processes of pruning and gluing.
The dynamics of species inside glued cycles is lost after their gluing. A full multi-scale approximation

(including relaxation inside cycles) can be obtained by restoration of cycles. This is done starting from the
acyclic auxiliary network Vm back to V1 through the hierarchy of cycles. Each cycle is restored according
to the following procedure:

• We start the reverse process from the glued network Vm on Am. On a step back, from the set Am
to Am−1 and so on, some of glued cycles should be restored and cut. On the qth step we build
an acyclic reaction network on the set of vertices Am−q, the final network is defined on the initial
vertex set and approximates relaxation of the initial networks.

• To make one step back from Vm let us select the vertices of Am that are glued cycles from Vm−1.
Let these vertices be Am1 , A

m
2 , .... Each Ami corresponds to a glued cycle from Vm−1, Am−1i1 →

Am−1i2 → ...Am−1iτi
→ Am−1i1 , of the length τi. We assume that the limiting steps in these cycles are

Am−1iτi
→ Am−1i1 . Let us substitute each vertex Ami in Vm by τi vertices Am−1i1 , Am−1i2 , ...Am−1iτi

and

add to Vm reactions Am−1i1 → Am−1i2 → ...Am−1iτi
(that are the cycle reactions without the limiting

step) with corresponding constants from Vm−1.

• If there exists an outgoing reaction Ami → B in Vm then we substitute it by the reaction Am−1iτi
→ B

with the same constant, i.e. outgoing reactions Ami → ... are reattached to the heads of the limiting
steps. Let us rearrange reactions from Vm of the form B → Ami . These reactions have prototypes in
Vm−1 (before the last gluing). We simply restore these reactions. If there exists a reaction Ami → Amj
then we find the prototype in Vm−1, A → B, and substitute the reaction by Am−1iτi

→ B with the
same constant, as for Ami → Amj .

• After the previous step is performed, the vertices set is Am−1, but the reaction set differs from the
reactions of the network Vm−1: the limiting steps of cycles are excluded and the outgoing reactions
of glued cycles are included (reattached to the heads of the limiting steps). To make the next step,
we select vertices of Am−1 that are glued cycles from Vm−2, substitute these vertices by vertices of
cycles, delete the limiting steps, attach outgoing reactions to the heads of the limiting steps, and for
incoming reactions restore their prototypes from Vm−2, and so on.

After all, we restore all the glued cycles, and construct an acyclic reaction network on the set A. This
acyclic network approximates relaxation of the initial network. We call this system the dominant system.

Note that the reduction algorithm does not need precise values of the constants. It is enough to have
an initial ordering of the constants. Then, the auxiliary network is obtained only from this ordering.
However, after a first iteration, and if the initial network contains cycles, some of the exit constant are
renormalized and the new rate constants become monomials of the old ones. In order to prune again, we
need to compare these monomials. Monomials of well separated constants are generically well separated
[42]. However, a freedom remains on ordering these new monomials, leading to several possible reduced
acyclic digraphs, given an initial digraph with ordering of the constants (Figure 1 of the main text).

Algorithm 2 : reduction of nonlinear networks with separation

This algorithm consists of the following procedures.
I. Identification of QSS species and QE reactions.
There are two methods of identification, trajectory based, and tropicalization based. Presently we are

using the trajectory based method.
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Detect slaved species. After generating trajectories c(t) for t ∈ I, for each species compute the dis-
tances δi = supt∈I |log(ci(t))−log(c∗i (t))|. Use k-means clustering to separate species into two groups,
slaved (small values of δ) and slow (large values of δ) species.

Prune. For each Pi (polynomial rate) corresponding to slaved species, compute the pruned version P̃i by
eliminating all monomials that are dominated by other monomials of Pi.

Identify QE reactions and QSS species. Identify, in the structure of P̃i the forward and reverse rates
of QE reactions. This step can be performed by recipes presented in [91]. The slaved species not
involved in QE reactions are QSS.

II. Exploiting QSS conditions, pruning intermediate species, pooling reactions

Define subsets and matrices Given the set of QSS (intermediate) species I, one defines the set RI of
reactions acting on them. The terminal species T , are the the other species, different from I, on
which act the reactions from RI . Define two stoichiometric matrices Sf and ST . Sf defines the fast
subsystem and has a number of lines equal to the number of QSS species, and a number of columns
equal to the number of reactions RI . ST contains the stoichiometries of the terminal species for the
same reactions RI . Species I will be pruned, and reactions RI will be pooled.

Compute elementary modes (EMs) Compute elementary modes of nonzero terminal stoichiometry
as minimal solutions of Sfγ = 0, ST γ 6= 0, the minimality being defined with respect to the number
of nonzero coefficients. ST γ 6= 0 on the output of elementary modes packages such as METATOOL.
If the terminal stoichiometries of the EMs are dependent, restrict to a subset of independent terminal
stoichiometries.

Solve QSS equations Find approximate formal solutions for systems of QSS algebraic equations. This
step is not yet automatic. It will be automatized in subsequent work by using tropical geometry
methods.

Find rates of EMs To each elementary mode γi, associate a kinetic law giving the rate of the EM as a
fonction of the terminal species concentrations R∗i (cT ). Let R(cT ) be the vector of rates of terminal
species (the dependence on cT is direct, or indirect, via cI that can be now expressed as function of
cT ) of reactions in RI . Then the EM rates R∗i (cT ) must satisfy STR(cT ) =

∑
R∗i (cT )ST γi. This

equation has an unique solution if the vectors ST γi are independent (this justifies the independence
condition for the terminal stoichiometries of EMs).

III. Exploiting QE conditions, pruning QE reactions, pooling species

Define subsets and matrices Given the set of QE reactions Q, one defines the set S of species that
are affected by them. The species S are also affected by other reactions that we call terminal, QT .
Define two stoichiometric matrices Sf and ST . Sf defines the fast subsystem and has a number of
lines equal to the cardinal of E, and a number of columns equal to the cardinal of Q. ST contains
the stoichiometries of the reactions reactions QT for the same species S (it has the same number of
lines as Sf ). Reactions Q will be pruned and species E will be pooled.

Compute species pools Species pools are computed as minimal solutions of bSf = 0, bST 6= 0 (the
second condition stands for looking for conservation laws of the fast subsystem that are not conserved
by the entire network; the minimality condition means that we compute elementary modes of the
transpose matrix Sf ).

Solve QE equations Same methods as for QSS conditions. Solve the QSS equations together with the
conservation of pools and express the concentrations of the species E as functions of the pools
c∗i = bic.
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Find new rates Re-express (by substitution) the rate of each reaction fromQT in terms of pools c∗i = bic.
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Figure 1: A monomolecular network with total separation can be represented as a digraph with integer
labels (the quickest reaction has label 1). Two simple rules allow to eliminate competition between
reactions (rule a) and transform cycles into chains (rule b). Rule b can not be applied to cycles with
outgoing slow reactions, in which case more complex, hierarchical rules should be applied (rule c). In the
rule c, first the cycle A2 → A3 → A4 → A2 is “glued” to a new node (pool A2 +A3 +A4) and the constant
of the slow outgoing reaction renormalized to a monomial k5k5/k3. Rule b is applied to the resulting
network, which is a cycle with no outgoing reactions. The comparison of the constants k5k5/k3 and k6
dictates where this cycle is cut. Finally, the glued cycle is restored, with its slowest step removed.
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Figure 2: For a given timescale, monomolecular networks with total separation behave as a single step:
the concentrations of some species (white) are practically constant, some species (yellow) are rapid ,
low concentration, intermediates, one species (red) is gradually consumed and another (pink) is gradually
produced. We have represented the sequence of one step approximations of a reduced, acyclic, deterministic
digraph, from the quickest time-scale t1 = λ−11 to the slowest one t4 = λ−14 . These one step approximations
are activated when mass is introduced at t = 0 via the “boundary nodes” A1 and A6.
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a) b)

Figure 3: a) The tropical manifold of the polynomial ax+by+cxy on “logarithmic paper” is a three lines
tripod. b) The tropical manifolds for the species ES (in red) and S (in blue) for the Michaelis-Menten
mechanism. The tropicalized flow is also represented on both sides of the tropical manifolds (with arrows,
red on one side, blue on the other side). Sliding modes correspond to blue and red arrows pointing in
opposite directions.
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Figure 4: Model reduction and tropicalization of a 5 variables cell cycle model defined by the differential
equations y′1 = k9y2 − k8y1 + k6y3, y′2 = k8y1 − k9y2 − k3y2y5, y′3 = k′4y4 + k4y4y

2
3/C

2 − k6y3, y′4 =
−k′4y4 − k4y4y23/C2 + k3y2y5, y′5 = k1 − k3y2y5, proposed in [94]. (A) Comparison of trajectories and
imposed trajectories show that variables y1, y2, y5 are always slaved, meaning that the trajectories are
close to the 2 dimensional hyperplane defined by the QE condition k8y1 = k9y2, the QSS condition
k1 = k3y2y5 and the conservation law y1 + y2 + y3 + y4 = C. The variables y3, y4 are slaved and
the corresponding species are quasi-stationary on intervals. This means that the dimensionality of the
dynamics is further reduced to 1, on intervals. (B) Tropicalization on logarithmic paper, in the plane of the
variables y3, y4. The tropical manifold consists of two tripods, represented in blue and red, which divide
the logarithmic paper into 6 polygonal sectors. Monomial vector fields defining the tropicalized dynamics
change from one polygonal domain to another. The tropicalized (approximated) and the smooth (not
reduced) limit cycle dynamics stay within bounded distance one from another. This distance is relatively
small on intervals where the variables y3 or y4 are quasi-stationary, which correspond to sliding modes of
the tropicalization.
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Figure 5: The ratio of the imposed and actual trajectories has been calculated as a function of time for
each species of the model of NFκB canonical pathway (proposed in [61], model M(14, 25, 28) from [76]).
If this ratio is close to one fold, the species is slaved, otherwise the species is slow. Among the slaved
species, some have low concentrations and satisfy quasi-steady-state conditions, whereas other have large
concentrations and satisfy quasi-equilibrium conditions.
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Figure 6: Model of NF-κB signaling, proposing separate production of the subunits p50, p65, the full
combinatorics of their interactions as well as with the inhibitor IκB, the positive self-regulation of p50, and
in addition an A20 molecule whose production is enhanced upon NF-κB stimulation, and which negatively
regulates the activity of the stimulus responding kinase IKK [76]. This model, denotedM(39, 65, 90) con-
tains 39 species, 65 reactions and 90 parameters. We have reduced it to various levels of complexity.
Among the reduced model we obtained one, M(14, 25, 33) that has the same stoichiometry as a model
published elsewhere by another author [61] and denotedM(14, 25, 28). Incidently, this is also the simplest
model in the hierarchy related to M(39, 65, 90). The rate functions in the reduced model are different,
explaining the difference in number of parameters. Comparison of the rate functions and of the trajec-
tories of the models M(14, 25, 33) and M(14, 25, 28) provided insight into the consequences of various
mechanistic modeling choices.
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Figure 7: The modelM(14, 25, 28) from from [76] (first proposed in [61]) was used to generate a hierarchy
of simpler models, the simplest one being M(5, 8, 15). We show the mapping between the parameters of
the models M(14, 25, 28) and M(5, 8, 15). Parameters of the first model are gathered into monomials that
are parameters of the reduced model. The integers on the arrows connecting parameters represent the
corresponding powers of the parameters in the monomial. The innermost circle represents a dynamical
property of the model that is influenced positively, negatively, or negligibly by the effective parameters
(parameters of the reduced model). From [79].
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