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Abstract

This paper deals with the study of “sharp localized” solutions of a nonlinear type Schrédinger
equation in the whole space RY, N > 1, with a zero order term, in modulus, like a power
m less than one of the modulus of the solution, and with a non zero external forcing term f.
Our fundamental assumption is that such an exponent m verifies m € (0,1). The self-similar
structure of the solution is justified from the assumption that the external forcing term satisfies
that f(t,z) = tf(pfz)/zF(tfl/zcc) for some complex exponent p and for some profile function
F which is assumed to be with compact support in RY. We show the existence of solutions
u(t, ) = tP/2U(t~Y%z), with a profile U, which also have compact support in RY, reason why
we call as “sharp localized” solutions to this type of solutions. The proof of the localization of
the support of the profile U uses some suitable energy method applied to the stationary problem
satisfied by U after some unknown transformation.
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1 Introduction and main result

This paper deals with the study of “sharp localized” solutions of the nonlinear type Schrodinger
equation in the whole space R,

i%—;‘JrAu:a|u|*<1*m>u+f(t,x), (1.1)
under the fundamental assumption m € (0,1) and for different choices of the possible complex coef-
ficient a. Here we use the notation of bold symbols for complex mathematics objets, iZ = —1 and
A= Jﬁ:l 8%2? for the Laplacian in the variables .

By the term “sharp localized solutions” we understand solutions which are more than merely
the so called “localized solutions” considered earlier by many authors. For instance, most of the
“localized type solutions” in the previous literature must vanish at the infinity in an asymptotic way:
|u(t,z)] — 0 as |x|] — oo. They have been intensively studied mostly when some other structure
property is added to the solution. It is the case of the special solutions which receive also other names
such as standing waves, travelling waves, solitons, etc.

Here we are interested on solutions which have a sharper decay when |z| goes to infinity in the
sense that we will require the support of the function u(t, . ) to be a compact set of R, for any ¢ > 0.

We recall that equations of the type (1.1) arise in many different contexts: Nonlinear Optics,
Quantum Mechanics, Hydrodynamics, etc., and that, for instance, in Quantum Mechanics the main
interest concerns the case in which Re(a) > 0, Im(a) = 0 (here and in which follows Re(a) is the
real part of the complex number a and Im(a) is its imaginary part) and that in Nonlinear Optics
the ¢t does not represent any time but the main scalar variable which appears in the propagation
of the wave guide direction (see Agrawal and Kivshar [2], p.7; Temam and Miranville [30], p.517).
Sometimes equations of the type (1.1) are named as Gross-Pitaevskii types equations in honor of two
famous papers by those authors in 1961 (Gross [19] and Pitaevskii [26]). For some physical details
and many references, we send the reader to the general presentations made in the books Ablowitz,
Prinari and Trubatch [1], Cazenave [14] and Sulem and Sulem [29].

In most of papers on equations of the type (1.1), it is assumed that m = 3 (the so called cubic
case). Nevertheless there are applications in which the interest is enlarged trough a general value of

the exponent m > 0. For instance, it is the case of the so called “non-Kerr type equations” arising in

the study of optical solitons (see, e.g., Agrawal and Kivshar [2], p.14 and following).



The case m € (0, 1) has been studied before by other authors but under different points of view:
some explicit self-similar solutions (the so called algebraic solitons) can be found in Polyanin and
Zaitsev [27] (see also Agrawal and Kivshar [2], p.33). We also mention here the series of interesting
papers by Rosenau and co-authors (Kashdan and Rosenau [21], Rosenau and Schuss [28]) in which
“sharp localized” solutions are also considered with other type of statements and methods.

We also mention that the case Re(a) > 0 (which corresponds to the dissipative case, also called
defocusing or repulsive case, when Im(a) = 0) must be well distinguished of the so called attractive
problem (or also focusing case) in which it is assumed that Re(a) < 0 (and Im(a) = 0). See, e.g.,
Ablowitz, Prinari and Trubatch [1], Cazenave [14], Sulem and Sulem [29] and their references).

The case of complex potentials with certain types of singularities, i.e. corresponding to the choice
Im(a) # 0, has been previously considered by several authors, and arises in many different situa-
tions (see, for instance, Brezis and Kato [12], Carles and Gallo [13], LeMesurier [23], Liskevitch and
Stollmann [24] and the references therein).

Here we assume that the datum f is not zero and represents some other physical magnitude which
may arise in the possible coupling with some different phenomenon: see the different chapters of Part
IV of the book Sulem and Sulem [29], the interaction phenomena between long waves and short waves
(Benney [10], Dias and Figueira [18], Urrea [31] and their references), etc.

Obviously, the property of the compactness of the support of w(¢, . ) requires the assumption that
“the support” of the datum function f(t, .) is a compact set of RY, for a.e. t > 0. Because of that,
the qualitative property we consider in this paper can be understood as a “finite speed of propagation
property” typical of linear wave equations. We point out that our treatment is very different than
other “propagation properties” studied previously in the literature for Schrédinger equations which
are formulated in terms of the spectrum of the solutions. See, e.g., the so called Anderson localization
(Anderson [3]), Jensen [20], etc.

One of the main reasons of the study of “sharp localized” solutions arises from the fact that, if we

assume for the moment f = 0, then
0
a|u|2 + divJ = 2Im(a)|u|™ ",

where

J < (uVu - aVu) = —2Re(i@ Vu),

(@ denotes the conjugate of the complex function u) and so we get (at least formally) that

1d

3a Jon lu(t, z)|*dx = Im(a)/ lu(t, z)|™ " dx.

RN



Notice that if Im(a) # 0 then there is no mass conservation. For instance, this is the case studied by
Carles and Gallo [13] where they prove that actually the solution vanishes after a finite time, once that

€ (0,1). More generally, it is easy to see that the two following conservation laws hold, once a € R
and f = 0:if u(t) € H*(RY)N L™+ (RY) then we have the mass conservation £ ||u(t )||L2(RN) 0,
moreover, if u(t) € H2(RY)N L2™(RY) then u(t) € L™ (RY) and we have conservation of energy

LB (u(t)) =0, where

[KG] s

1
E(u(t)) = §||VU( )HL2 (RN) +— L HL(RNY

a
m+1
Indeed, in the first case, Au(t) € H™Y(RN) and |u(t)|"~™u(t) € LmTH(RN). It follows from

the equation (1.1) that 248 ¢ H-1(RY) 4 L™+ (RY) and since (H(RN)NL™F(RN))" =

H-Y(RY) + LMTH(RN), it follows that we may take the duality product of equation (1.1) with
iu(t), from which the mass conservation follows. In the same way, since u(t) € L2(RY) N L2™(RY)
and 0 < m < 1, we get that u(t) € L™ (RY). We also easily have that Au(t) € L?#(RY) and
lu(t)| A =m™u(t) € L2(RN). It follows from the equation (1.1) that a’é—ff) € L2(RY) and so we may

take the duality product of equation (1.1) with a’égt), from which the conservation of energy follows.

Like in the pioneering study by Schrédinger, the condition Im(a) = 0 implies that |u|? represents
a probability density, and so the study of “sharp localized solutions” becomes very relevant (recall the
Heisenberg Uncertainty Principle). As we will show here (sequel of previous papers by the authors,
Bégout and Diaz [7, 8]), if m € (0, 1), under suitable conditions on the coefficient a (for instance for
Re(a) > 0 and Im(a) = 0), it is possible to get some estimates on the support of solutions wu(t, x)
showing that the probability |u(t,z)|? to localize a particle is zero outside of a compact set of RY.
The natural structure for searching self-similar solutions is based on the transformation A — wy,

where for A > 0, p € C and u € C((0,00); Li (RY)), we define
ux(t,z) = A"Pu(\%t, \z), V¢ >0, for a.e. z € RV, (1.2)

Recall that since p € C then AP 4l gplnd — cRe(p) InAgilm(p) InX — \Re(p)gilm(p)InX 4 that [AP| =

ARe(P)  Our main assumption on the datum f is that
Flt,x) = AP D F(\%t, Az), YA > 0, (1.3)
for some p € C, for any ¢ > 0 and almost every = € RY, or equivalently, that

flt,x) =t"—F <%> : (1.4)

for any ¢ > 0 and almost every € RY, where F = f(1). It is easy to build functions f satisfying
(1.3). Indeed, for any given function F', we define f by (1.4). Then f(1) = F and f satisfies (1.3).



Finally, if we assume Re(p) = 12— then a direct calculation show that if w is a solution to (1.1) then

for any A > 0, uy is also a solution to (1.1), and conversely.

We easily check that if u satisfies the invariance property u = uy, for any A > 0, then

u(t,z) = t5U (%) , (1.5)

for any ¢ > 0 and almost every x € RY, where U = u(1). Thus, we arrive to the following notion:

Definition 1.1. Let 0 < m < 1, let f € C((0,00); L (RY)) satisfies (1.3) and let p € C be such

loc
that Re(p) = 2. A solution w of (1.1) is said to be self-similar if w € C((0,00); L (RY)) and if

1 loc

for any A > 0, uy = u, where uy is defined by (1.2). In this cases, u(1) is called the profile of u and
is denoted by U.

It follows from equation (1.1) and (1.5) that U satisfies
~AU + a|U|"0 =™y — %U+ %:v.VU = _F, (1.6)

in 2'(RY), where F = f(1). Conversely, if U € L2 _(RY) verifies (1.6), in 2'(RY), then the function

u defined by (1.5) belongs to C((0,00); LZ (RY)) and is a self-similar solution to (1.1), where f is

loc

defined by (1.4) and satisfies (1.3). It is useful to introduce the unknown transformation
glz)=U(z)e 5. (1.7)

Then for any m € R, p € C and U € L2 (RY), U is a solution to (1.6) in 2'(RY) if and only if

loc

g € L2 (RY) is a solution to

loc

N +2p
4

1 N
g- plef’g = —Fe e, (18)

~Ag+alg|""Mg —i

in 2'(RY). Tt will be convenient to study (1.8) instead of (1.6). Indeed, formally, if we multiply
(1.8) by 4g or +ig, integrate by parts and take the real part, one obtains some positive or negative
quantities. But the same method applied to (1.6) gives (at least directly) nothing because of the term
iz.VU.

Notice that if p € C is such that Re(p) = 2 and if f € C((0,00); L*(R")) and satisfies (1.3)
with f(tp) compactly supported for some ¢y > 0, then it follows from (1.3) that for any ¢t > 0,
supp f(t) is compact. Moreover, from (1.5), if u is a self-similar solution of (1.1) and if supp U is
compact then for any t > 0, supp u(¢) is compact. As a matter of fact, it is enough to have that u(tg)
is compactly supported for some ¢y > 0 to have that u satisfies (1.9) below and supp u(t) is compact,

for any ¢ > 0. Indeed, U = u(1) satisfies (1.6) and by (1.5), supp U and supp u(t) are compact for



any t > 0. Let g be defined by (1.7). Then g is a solution compactly supported to (1.8) and it follows
from Theorem 3.2 below that g € H2(RY). By (1.7), we obtain that U € H2(R") and we deduce
easily from (1.5) that w satisfies (1.9).

The main result of this paper is the following.

Theorem 1.2. Let 0 < m < 1, let a € C be such that Im(a) < 0. If Re(a) < 0 then assume further
that Im(a) < 0. Let p € C be such that Re(p) = 12— and let f € C((0,00); L2(RY)) satisfying (1.3).

Assume also that supp f(1) is compact.

1 Af | F (D) L2y s small enough then there exists a self-similar solution
u € C((0,00); H*(RY)) N C*((0,00); H(RY)) N C?((0, 00); L*(R"Y)) (1.9)

to (1.1) such that for any t > 0, supp wu(t) is compact. In particular, w is a strong solution and

verifies (1.1) for any t > 0 in L2(RY), and so almost everywhere in RY.

2. Let R > 0. For any € > 0, there exists 69 = do(R, ¢, |al,|p|, N,m) > 0 satisfying the following
property: if supp f(1) C B(0, R) and if Hf(l)HLZ(RN) < g then the profile U of the solution
obtained above verifies suppU C K () C B(0, R+ ¢), where

K(e) = {:v € RY; 3y € supp f(1) such that |z —y| < g},
which is compact.

3. Let Ry > 0. Assume now further that Re(a) > 0, Im(a) = 0 and

ATm(p) + 24/4Im*(p) + 2 > R2.

Then the solution is unique in the set of functions C((0,00); LZ(RYN)) whose profile V' satisfies
supp V' C B(0, Ry).

In contrast with many other papers on self-similar solutions of equations dealing with exponents
m > 1 (see Cazenave and Weissler [15, 16, 17] and their references), in this paper we do not prescribe
any initial data w(0) to (1.1) since we are only interested on any solution wu(t) by an external source
f(t) compactly supported. Moreover, we point out that if u € C([O, oo);Lq(]RN)) is a self-similar
solution to (1.1), for some 0 < ¢ < oo, then necessarily u(0) = 0. Indeed, with help of (1.5), we
easily show that U € LI(RY) and that for any ¢ > 0, |lu(t)| pee~) = RETRET |U|| Lawny, implying
necessarily that «(0) = 0. On the other hand, notice that if u € C([0,00); 2'(R")) is a self-similar

solution to (1.1) then one cannot expect to have u(0) € LI(RY), unless u(0) = 0. Indeed, we would



have ux(0) = u(0) in LI(RY) and for any A > 0, ||u(0)||ga@y) = Aﬁ-‘r%Hu(O)HLQ(RN) and again
we deduce that necessarily u(0) = 0. More generally, the set of functions w satisfying the invariance

property,
YA >0, for ae. x € RN, ur(z) = EED Pu(iz) = u(x),

and lying in L9(RY) is reduced to 0.

In the special case of self-similar solution, the above arguments show that if f = 0, a € R and
u € C((0,00); L2(RY)) then necessarily u(t) = 0, for any ¢ > 0. Indeed, if u € C((0,00); L2(R"))
is a self-similar solution to (1.1) then its profile U belongs to L2(RN) and u € C*((0;00) x RY) (see
Theorem 3.2 below). So for any ¢ > 0, we can multiply the above equation by —iu(t), integrate by
parts over RY and take the real part. We then deduce the mass conservation, %Hu( )||L2 ®Y) = 0,

which yields with the above identity,

L 4N
1Tl g2y = llw@)ll g2y = =7 Ul g2n),

for any ¢ > 0. Hence the result. As a matter of fact, if £ € {0,1,2} and if u € C((0,00); H¢(RY)) is
a self-similar solution to (1.1) then one easily deduces from (1.5) that actually }1{% [w(@)|| gre gy = 0.

We also mention here that our treatment of sharp localized solutions has some indirect connections
with the study of the “unique continuation property”. Indeed, we are showing that this property does
not hold when m € (0,1), in contrast to the case of linear and other type of nonlinear Schrodinger
equations (see, e.g., Kenig, Ponce and Vega [22] and Urrea [31]).

The paper is organized as follows. In the next section, we introduce some notations and give
general versions of the main results (Theorems 2.3 and 2.5). In Section 3, we recall some existence,
uniqueness, a priori bound and smoothness results of solutions to equation (1.8) associated to the
evolution equation (1.1). Finally, Section 4 is devoted to the proofs of the mentioned results, which

we carry out by improving some energy methods presented in Antontsev, Diaz and Shmarev [4].

2 Notations and general versions of the main result

Before stating our main results, we will indicate here some of the notations used throughout. For
1 < p < oo, p is the conjugate of p defined by % + 1% = 1. We denote by Q the closure of a nonempty
subset Q2 C RY and by Q¢ = RY \ Q its complement. We note w € 2 to mean that @ C 2 and that
@ is a compact subset of RYN. Unless if specified, any function lying in a functional space (LP(Q),

W™P(Q), etc) is supposed to be a complex-valued function (LP(Q;C), W™P();C), etc). For a



functional space E C L (;C), we denote by E. = {f € E;supp f € Q} For a Banach space E,

loc

we denote by E* its topological dual and by (. , .) g+ g € R the E* — E duality product. In particular,

for any T € LP' (Q) and ¢ € LP(Q) with 1 < p < oo, (T, ) = Re [ T(z)ep(z)dz. For
)

L? (2),L7(Q)

xo € RN and r > 0, we denote by B(xo,r) the open ball of RN of center z and radius 7, by S(zo,r)

its boundary and by B(zg,r) its closure. As usual, we denote by C' auxiliary positive constants,
and sometimes, for positive parameters ay, ..., a,, write C(a1,...,a,) to indicate that the constant
C' continuously depends only on as,...,a, (this convention also holds for constants which are not

denoted by “C”).
Now, we state the precise notion of solution.

Definition 2.1. Let © be a nonempty bounded open subset of R, let (a,b,¢) € C3, let 0 < m < 1
and let G € L, _(Q).
1. We say that g is a local very weak solution to
—Ag+a|g|_(1_m)g+bg+cx.Vg =G, (2.1)
in 2'(Q), if g € L2 _(Q) and if
(9, —Ap) 9 (),20 + (H(9), p) o @)2@) = (G, P)a©),2)> (2.2)
for any ¢ € 2(92), where
H(h) = alh|"*"™h + bh + cx.Vh, (2.3)

for any h € Lfoc(Q). If, in addition, g € L2(Q2) then we say that g is a global very weak solution
to (2.1).

2. We say that g is a local weak solution to (2.1) in 2'(Q), if g € HL _(Q) and if

(Va, Vo) o ),a0) + (HG), ¥) o ),20) = (G, @) 9/@),2Q) (2.4)

for any ¢ € 2(Q), where H € C (L

2.(Q); 2'(Q)) is defined by (2.3).
3. We say that g is a local weak solution to
—~Ag +alg|"""™g + bg + c|z|’g = G, (2.5)
in 2'(Q), if g € H _(Q) and if g satisfies (2.4), for any ¢ € 2(Q), where
H(h) = alh|"*"™h + bh + c|z|*h, (2.6)

for any h € HY ().



4. Assume further that G € L%(Q). We say that g is a global weak solution to (2.1) and

in L?(Q), if g € H}(Q?) and if

(Vg, v1’>L2(Q),L2(Q) + <H(g)7v>L2(Q),L2(Q) = (G, ”>L2(Q),L2(Q)= (2.8)

for any v € H}(Q), where H € C(H(Q); L?(2)) is defined by (2.3). Note that Ag € L?(1),

so that equation (2.1) makes sense in L2()) and almost everywhere in €.

5. Assume further that G € L?(Q). We say that g is a global weak solution to (2.5) and (2.7), in
L?(Q), if g € H}(Q) and if g satisfies (2.8), for any v € H(f2), where H € C(L?(Q); L*(Q2))
is defined by (2.6). Note that Ag € L?(Q), so that equation (2.5) makes sense in L?(2) and

almost everywhere in Q.

In the above definition, I' denotes the boundary of Q and C(Q) = C°(f) is the space of complex-
valued functions which are defined and continuous over Q. Obviously, for k € N, C*() denotes the
space of complex-valued functions lying in C(2) and having all derivatives of order lesser or equal

than k belonging to C(€2).
Remark 2.2. Here are some comments about Definition 2.1.

1. Note that in Definition 2.1, any global weak solution is a local weak and a global very weak

solution, and any local weak or global very weak solution is a local very weak solution.

2. Assume that Q has a C”' boundary. Let g € H'(2). Then boundary condition g = 0 makes
sense in the sense of the trace v(g) = 0. Thus, it is well-known that g € H} () if and only if
v(g) = 0. If furthermore (2 has a C' boundary and if g € C(Q) N H(Q) then for any z € T,
g(z) = 0 (Theorem 9.17, p.288, in Brezis [11]). Finally, if g ¢ C(Q) and Q has not a C%!
boundary, the condition g;r = 0 does not take sense and, in this case, has to be understood as

g € H}(Q).

3. Let 0 <m < 1 and let z € C\ {0}. Since ||z|~('=™)z| = |z|™, it is understood in Definition 2.1

that ||z[~(=™ 2| = 0 when z = 0.

The main results of this section are the two following theorems implying, as a special case, the

statement of Theorem 1.2.



Theorem 2.3. Let Q C B(0,R) be a nonempty bounded open subset of RN, let 0 < m < 1, let
(a,b,c) € C? be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further
that Im(a) < 0. Then there exist three positive constants C' = C(N,m), L = L(R, |al,|p|, N,m) and

M = M(R,|al,|p|, N,m) satisfying the following property: let G € LL (), let g € HL (Q) be any

loc loc

local weak solution to (2.5), let xzy € Q and let pg > 0. If po > dist(zo, ') then assume further that

g € H}(Q). Assume now that G|onB(z,pe) = 0- Then 910N B (20, pmax) = 05 Where

Z0o,

1
P <p8 —CMQmax{l,ﬁ}max{/%l’l}

E v(7) b)) b(pa)1(T)
re(z2 1] 2r = (1+m) .
where
_ 2 o m—+1
E(po) - HVg”Lz(QﬁB(xg,pg))’ b(po) - ||g||Lm+1(QﬂB(zo.,po))’
k

kE=2(1+m)+ N(1—-m), v=5 > 2,

and where
21— (1+m) _2(1-17) 1l-m
1) = T e 0,1, pln) = T ) = e = () 0.

+1
for any T € (mT, 1} .
Here and in what follows, ry = max{0,r} denotes the positive part of the real number r.

Remark 2.4. If the solution is too “large”, it may happen that pmax = 0 and so the above result is
not consistent. A sufficient condition to observe a localizing effect is that the solution is small enough,
in a suitable sense. We will give a sufficient condition on the data a € C, p € C and G to have

Pmax > 0 (see Theorem 3.3 below).

Theorem 2.5. Let Q C B(0,R) be a nonempty bounded open subset of RN, let 0 < m < 1, let
(a,b,c) € C? be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further
that Im(a) < 0. Let G € L{ (), let g € H

loc loc

(Q) be any local weak solution to (2.5), let o €
and let py > 0. If p1 > dist(z,T) then assume further that g € H}(SY). Then there exist two positive

constants E, > 0 and e, > 0 satisfying the following property: let po € (0,p1) and assume that

2
HVQHLz(QnB(zO’m)) < B, and
2 P
Vp € (Oapl)v ||GHL2(QI"WB(;E0,p)) g 5*((/’ - PO)+) 5 (210)
where p = W Then 910nB(wo,p0) = 0- In other words (with the notation of Theorem 2.3),
Pmax = P0-

10



Remark 2.6. We may estimate F, and ¢, as

po L
E* <|g|Lm+1 (B(zo, pl))vpla Ev Mvam) ’
po L
A (= )

where L > 0 and M > 0 are given by Theorem 2.3. The dependence on % means that if § goes to 0

then F, and €, may be very large. Note that p = (— where -y is the function defined in Theorem 2.3.

3 Existence, uniqueness and smoothness

The following results are taken from other works by the authors.

Theorem 3.1 (Existence — Bégout and Diaz [5], Theorem 2.6). Let Q) be a nonempty bounded
open subset of RN let 0 < m < 1 and let (a,b,c) € C* be such that Im(a) < 0, Im(b) < 0 and
Im(c) < 0. If Re(a) < 0 then assume further that Im(a) < 0. For any G € L2(Q), there exists at
least one global weak solution g € HZ () to (2.5) and (2.7). Let h € H} () be any solution to (2.5)
and (2.7). Then, h € H (Q). Finally, if Q has a C*' boundary then h € H?*(Q) and hjr = 0 in
the sense of the trace.

Symmetry property. Assume additionally that for any R € SOn(R) (the special orthogonal group
of RN), RQ = Q and that G € L*() is spherically symmetric. Then there erists a spherically

symmetric solution g € HF(Q) N HE (Q) of (2.5) and (2.7). For N =1, this means that if G is an

loc

even (respectively, an odd) function then g is also even (respectively, odd) function.

Global smoothness of the above theorem comes from Property 1) of Proposition 2.17 in Bégout and

Diaz [5].

Theorem 3.2 (Regularity — Bégout and Diaz [5]). Let Q@ C RY be a nonempty bounded open
subset, let 0 < m < 1, let (a,b,c) € Cx Cx R, let F € L{, () and let U € LE () be any local

very weak solution to
—AU + a|U|""™U +bU +ice.VU = F, in 2'(Q).
Then the following regularity results hold.

1) Let 2 < p < oco. If F € L2 () then U € W2P(Q).

loc

2) Let a € (0,m]. If F € CX(Q) then U € C2(9Q).

11



By the unknown transformation described at the beginning of Section 4 below, we are brought

back to the study of the smoothness of solutions to equation,

cN

(1—m . c? iclel®
“Ag + alg| 0 >g+(b—17)g—z|w|2g=F<x> )

Thus, Theorem 3.2 is a consequence of Theorem 2.15 in Bégout and Diaz [5].

Here as usual,

CRi(Q) =CRd(C) ={ue C*QC)Yw e Q, Y HI(Du)< 400y,

loc loc
|Bl=k
for 0 <a<1landke Ny ¥ NU {0}, where H*(u) =  sup % Analogously,
{(w,y;ewz
a7y

Che(Q) = {u € CH@:C); Y HG(DPu) < +oo}.
|B|=k

Theorem 3.3 (Bégout and Diaz [5], Theorem 2.7). Let  C B(0,R) be a nonempty bounded
open subset of RN let 0 < m < 1, let (a,b,c) € C* be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0.
If Re(a) < 0 then assume further that Im(a) < 0. Let G € L*(Q2) and let g € H(Q) be any global

weak solution to (2.5) and (2.7). Then we have the following estimate.

g1l 72 () < Mo(R? + 1)||Gl L2 (0,
where My = My(|al, |b],|c]).
Concerning the uniqueness of solutions, we have the following result.

Theorem 3.4 (Uniqueness). Let Q C RN be a nonempty open subset let 0 < m < 1, let (a,b,c) €
R x C x R be such that a > 0, Re(b) = 0 and ¢ > 0. Then for any F € L2(), equation

—AU —ia|U|"~™U - ibU +ice.VU = F, in 2'(Q),
admits at most one global very weak solution compact with support U & Lg (Q).

Proof. Let Uy, U, € LE(Q) be two global very weak solution both compactly supported to the above
. . 2

equation. By Theorem 3.2, one has Uy, Us € HE(Q) Setting g1 = Ure™ el and gg = Uze_lc%,

a straightforward calculation shows that (see also the beginning of Section 4 below) g1,g2 € H2(12)

satisfy

—Ag+a|g| a- mg—l—bg—l—N‘/Qg F 1nL2(Q)

12



2

~ ~ . . 2
where @ = —ia, b= —i(b+ <L), ¢= -5, V(z) = |z| and F = Fe~ic™i~  Note that,

@40, Re(@) =0,

Re (63) = Re ((l (b—|— %)) e aRe(b) 4+ %acN > O,
2

Re (aé) - %Re(i) —0.

Then it follows from 1) of Theorem 2.12 in Bégout and Diaz [5] that g1 = g2 and hence, Uy = Us.
O

Remark 3.5. Notice that uniqueness for self-similar solution is relied to uniqueness for (1.8). Using
Theorem 2.12 in Bégout and Diaz [5], we can show that the uniqueness of self-similar solutions to
equation (1.1) holds in the class of functions C((0,00); LZ(R")) when, for instance, Re(a) = 0 and
Im(a) < 0 (Theorem 3.4). These hypotheses are the same as in Carles and Gallo [13]. We point out
that it seems possible to adapt the uniqueness method of Theorem 2.12 in Bégout and Diaz [5] to

obtain other criterion of uniqueness.

Remark 3.6. In the proof of uniqueness of Theorem 1.2, we will use the Poincaré’s inequality (4.8).
This estimate can be improved in several ways. For instance, for any zo € RY and any R > 0, we

have

2R
1wl 2B (a0, r)) < 7HVUHL2(B(10,R))7 (3.1)
which is substantially better than (4.8), since % < 1 < /2. Actually, (3.1) holds for any u €
H*(B(x0, R)) such that

B(mo,R)

0%u
O0x;0xy,
more details.

and € L°°(B(zo, R)), for any (j,k) € [1,N] x [1, N]. See Payne and Weinberger [25] for

4 Proofs of the localization properties

We start by pointing out that if € R¥ is a nonempty open subset and if 0 < m < 1, we have the

following property: let U € H}

loc(£2) be a local weak solution to

—AU + a|U|""™U + bU + icz.VU = F(z), in 2'(Q),

13



z|2
for some (a,b,c) € Cx CxRand F € L} =

L o(Q). Setting g(z) = U(z)e <, for almost every z € Q,

it follows that g € H}!

Le(f2) is a local weak solution to

—(1—m) -CN 02 2 —icﬂ . /
—Ag + alg| g+ |\b-im)g—lafg=F(x)e™ ", in 7(Q).

Conversely, if g € H}

oc(£2) is a local weak solution to

~Ag +alg|~ "™ g + bg — *[z*g = G(z), in Z'(Q),

r

2
for some (a,b,c) € Cx C xR and G € L{ (), then setting U(z) = g(:v)e‘cT‘, for almost every

loc
x € Q, it follows that U € H}

oc(€) is a local weak solution to

. lz)2
AU + a|U|"0"™U + (b + icN)U + 2ice. VU = G(z)el* 2, in 7'(Q).
The proof of Theorems 2.3 and 2.5 (and so Theorem 1.2) relies on the following lemma and on some
technical results proved in Bégout and Diaz [6], in which the energy methods presented in Antontsev,

Diaz and Shmarev [4] was improved.

Lemma 4.1. Let Q C B(0,R) be a nonempty bounded open subset of RN let 0 < m < 1, let
(a,b,c) € C? be such that Im(a) < 0, Im(b) < 0 and Im(c) < 0. If Re(a) < 0 then assume further
that Im(a) < 0. Let G € L () and let g € H}:

loc

(Q) be any local weak solution to (2.5). Then there
exist two positive constants L = L(R, |al, |b|, |c|) and M = M (R, |al,|b|,|c|) such that for any xo €
and any psx > 0, if GianB(xo,p.) € L? (Q N B(xo,p*)) then we have

2 m—+1 2
||v-qHL2(QﬁB(wo,p)) +Llgl L™ QN B(z0.0) T L”9HL2(QHB(wmp))

<M / B L / G@)g(@)ldz |, (41)
QNS(zo,p) |I - $0| QNB(xo,p)

for every p € [0, p,), where it is additionally assumed that g € HZ () if p. > dist(xo, ).

Proof. Let z¢p € © and let p, > 0. Let o be the surface measure on a sphere and set for every

p € [Ovp*)v

I(p) =

= XL — X
/ gVg. “do|, J(p)= / |G (x)g(x)|d,
QNS(zo,p) |I - $0| QNB(zo,p)

w(p) = / gVg.——"do, Ine(p) =Re(w(p)), Tim(p) = Im(w(p)).
QNS(zo,p)

| — 20|
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It follows from Theorem 3.1 in Bégout and Diaz [6] that I, J, Ire, Im € C([0, p«); R) and
2 m—+1 2
||ngL2(QﬁB(m07p)) + Re(a)|\g| L™ (QNB(z0,p)) + Re(b)HgHL2(QﬁB(mo7p))

4 Re(@) el iy = o) +Re [ [ Gl |, (42)
QNB(zo,p)

m(a)| g| rrtil(SlﬂB(zo,p)) + Im(b)HgH2L2(QﬂB(IO)p)) + Im(c)”|x|g”i2(QmB(wo)p))

= Itm(p) +Im / G(z)g(x)dz |, (4.3)

QNB(zo,p)

for any p € [0, p+). From these estimates, we obtain

HVQHL?(B (0,p)) + Re( )HQH?I}H (B(z0.p)) + Re(b)l|g”i2(3(zo_p))

+Re(c )|||x|g||L2 (B(z0,p)) <I(p)+J(p), (44)

(@)l g5 sy + O 50y + 112 500y ) < T0) + (), (45)

for any p € [0, p+). Let A > 1 to be chosen later. We multiply (4.5) by A and sum the result with (4.4).
This leads to,

2 m—+1 2
IVl (5o ) + AUt 1) T A2 2250001

+ Re(c )|||CU|QHL2 (B(zo,p) 2A(I(p) + J(p)), (4.6)

where
Re(a), if Re(a) > 0,
7\ Al(@)] - [Re(@], i Re(a) < 0.
As = AlIm(b)| — |Re(b)|.

But (4.6) yields,

199132500y + ALGI7ES oy + (A2 = RAR(E)) [9l2 e,y < 24(1(0) + () (A7)

We choose A = A(R, |al, |b],|c|) large enough to have A|Im(a)| — |Re(a)| > 1 (when Re(a) < 0) and
A — R?|Re(c)| > 1. Then (4.1) comes from (4.7) with L = min{A4;,1} and M = 2A. Note that
L = L(R,|al,|bl,|c|) and M = M (R, |al, |b|, |c|). This concludes the proof. O
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Remark 4.2. When p, < dist(zo,T') and G € L?

loc

(Q), one may easily obtain (4.2)—(4.3) without the
technical Theorem 3.1 in Bégout and Diaz [6]. Indeed, it follows from Proposition 4.5 in Bégout and

Diaz [3] that g € H?

o e (©) and almost everywhere in

(Q2), so that equation (2.5) takes sense in L2

Q. Thus, if p, < dist(zo,T) then g g, ) € H? (B(wo,p)) and (4.2) (respectively, (4.3)) is obtained

xo,p

by multiplying (2.5) by g (respectively, by ig), integrating by parts over B(xo, p) and taking the real

part.
Proof of Theorem 2.3. Apply Lemma 4.1 above and Theorem 2.1 in Bégout and Diaz [6]. O
Proof of Theorem 2.5. Apply Lemma 4.1 above and Theorem 2.2 in Bégout and Diaz [6]. O

Proof of Theorem 1.2. Let R > 0. Let ¢ > 0 and let f € C((0,00); L*(RY)) satisfying (1.3)

- . _ N2 _
and supp f(1) C B(0, R). Let My be the constant given by Theorem 3.3. Let b = —i=— 2, ¢ =

. . 2
—% and G = —f(l)e_‘%. Note that Im(a) < 0, Im(b) = —% < 0 and Im(e) = 0. In

addition, if Re(a) < 0 then Im(a) < 0. It follows that Theorem 3.1 applies to equation (1.8). Let
g € H3(B(0,2R + 2¢)) N H3(B(0,2R + 2¢)) a solution to (1.8) and (2.7) be given by Theorem 3.1,
for such a, b and ¢. We apply Theorem 2.3 with pg = 2¢. By Theorem 3.3, there exists dg =
do(R,¢,]al,[b],]c[, N,;m) > 0 such that if [| f(1)[| g2~y < o then pmax > €. Set K = supp f(1) =

supp G. Let zp € K (2¢)° N B(0,2R + 2¢). Let y € B(xo,2¢) and let z € K. By definition of K (2¢),
dist(K (2¢)¢, K) = 2e. We then have

2e = dist(K (26)°, K) < |lzo — 2| < |wo —y| + |y — 2| <2+ |y — 2|.

It follows that for any z € K, |y — z| > 0, so that y ¢ K. This means that B(z,2¢) N K = {), for any

xo9 € K(2¢)°N B(0,2R + 2¢). By Theorem 2.3 we deduce that for any z¢ € K(2¢)° N B(0,2R + 2¢),

9|B(z,c) = 0. By compactness, K(g)° N B(0,2R + 2¢) may be covered by a finite number of sets
B(zo,€) N B(0,2R + 2¢) with 2 € K(2¢)°. It follows that g (.yenp(0.2r12:) = 0. This means that
suppg C K(g) C B(0,2R + 2¢). We then extend g by 0 outside of B(0,2R + 2¢). Thus, g € HZ(R")
is a solution to (1.8) in RY. Now, let U = gei% and let for any t > 0, u(t) = t2U (75) It
follows that suppU = suppg C K(g), U € H2(R") and U is a solution to (1.6) in RY. By (1.5), u
verifies (1.9) and is a solution to (1.1) in (0, 00) x RY with w(1) = U compactly supported in K (). By
Definition 1.1, w is self-similar and still by (1.5), supp u(t) is compact for any ¢ > 0. Hence Properties 1
and 2. It remains to show Property 3. Let Ry > 0 and assume further that Re(a) > 0, Im(a) = 0
and 0 < R? < 4Im(p) + 21/4Im*(p) + 2. Let uy, u2 € C((0,00); L2(RY)) be two solutions to (1.1)
whose profile Uy, Uy satisfy suppU,suppV C B(0, Ry). By Theorem 3.2, Uy, Uz € HZ(RY). For

L. 12
je{1,2}, let g; = Uje"%. It follows that g1 and g2 belong to HZ(RY), are compactly supported
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in B(0, Ry) and satisfy the same equation (1.8). Let g = g1 — g2 and set for any h € L2(RY),
H(h) = |h|~U~™h. It follows that,

N +2p
i
4

1 .
—Ag+a(H(g1)— H(g2)) — g— E|:1:|Qg:0, a.e. in RV,

Multiplying this equation by g, integrating by parts over RY and taking the real part, we get

N +2p 1
HV9||2L2 + @<H(91) - H(g2)7gl - 92>L2,L2 Re ( 4 ) H9H2 - 1_6H| . |g||2,;2
1
= [|Vgll32 + a(H(g1) — H(g2), 91 — g2) 12 1.2 + Im(p)|lgll7= — el lgl|7

= 0,
We recall the following refined Poincaré’s inequality (Bégout and Torri [9]).

Vu € H} (B(0,Ry)), ||u||L2(B 2R0||Vu||L2 (4.8)

(0,Rg)) (B(0,Ro))’

If follows from (4.8) and Lemma 9.1 in Bégout and Dfaz [3], that there exists a positive constant C

such that,

N

<2—;za+§lm<p> Ro)mnawa/('gl?() w@?

)+ lg2(z))t =™

where w = {a: € Qg1 (x)| + |g2(z)] > O}. But,

11 R 1

— + =1 — 2 = —— (—R{ + 8Im(p)R} +8) >0

when

0 < R2 < 4Im(p) + 24/4Im*(p) + 2.

It follows that g1 = g2 which implies that U; = Uz and for any t > 0, uq(t) = ua(t). This ends the
proof. O
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