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WEAKLY NONLINEAR SECOND-ORDER DYNAMICAL SYSTEMSIDENTIFICATION
USING A RANDOM PARAMETERSLINEAR MODEL

by

C. Soize AND O. LE Fur
Office National d' Etudes et de Recherches Aérospatiales, BP 72, 92322 Chatillon Cedex, France

ABSTRACT

The objective of this paper is to present an identification procedure which is based on the use
of a stochastic linearization method with random coefficients. The model is then defined as a
multidimensional linear second-order dynamical system with random coefficients. An optimization
procedure is developed to identify the parameters of the probability law of the random coefficients.
Theidentification procedureis described step by step. Finally, an exampleis presented and showsthe
interest of the method proposed.

1. INTRODUCTION

For linear multidimensional second-order dynamical systems (m.s-0.d.s.) with time independent
coefficients (constant coefficients), modal identification procedures are known and well developed.
In this paper, we are interested in the identification of weakly nonlinear m.s-0.d.s. with constant
coefficients, using a linear model and a stationary random input. The main ideais to use an infinite
family of linear models to represent the nonlinear dynamical system i.e., alinear m.s-0.d.s. with
random coefficients. This means that the weakly nonlinear m.s-o0.d.s. is identified by a linear
m.s-0.d.s. with uncertainties. Conseguently, such an identification yields a linear model whose
operator-valued frequency response function is arandom stochastic processindexed by the frequency.
The eigenfrequencies and associated eigenmodes are then deduced from the linearized representation
which isidentified (consequently, the eigenfrequencies are random variables).

Using broad-band stationary random excitation and constant coefficients of the model yields the
classical Stochastic Linearization Method with Constant Coefficients (SLMCC). The SLMCC was
introduced by Caughey in 1963 [1] within the context of prediction methods. Many developments
have been proposed in this area since this date and an excellent synopsis was made by Roberts and
Spanosin 1990 [2]. An identification procedure based on SLMCC can be summarized as shown in
Fig. 1 and will berefered in this paper as Method 1.
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Fig. 1. Method 1 — Identification procedure based on a stochastic linearization method
with constant coefficients (SLMCC)

Inthisfield of identification procedures, it should be noted that difficulties arise due to the presence of
the mass matrix which is unknown and which must be identified. Fill atre [3] devel oped a method for
identifying such an equivalent linear model in which mass, damping and stiffness matrices are constant
and unknown. His approach is based on an extension of Kozin’sworks[4,5] and can be considered as
amethod based on the SLMCC. Generally speaking, it is known that the SLMCC yields avery good
approximation of the second-order (s-0.) statistical moments of the stationary response of second-
order dynamical systems. Consequently, an identification method based on such a procedure yields
an equivalent linear dynamical system which can restitute the second-order moments. Unfortunately,
in some cases, athough the second-order moments are correctly estimated, the matrix-valued spectral
density function (s.d.f.) of theresponsemay be erroneous. Thisdifficulty wasfirst shown by Milesfor
aone-dimensiona nonlinear dynamical system[6]. For such nonlinear dynamical systems, methods
were proposed to calculate the power spectral density function of the stationary response without
using Monte Carlo numerical simulation (Miles[6], Bouc [7,8] and Soize[9,10]). The matrix-valued
spectral density function can generally not be calculated explicitly for multidimensiona nonlinear
dynamical systems, except for particular cases related to linear dynamical systems with random
parametric excitations (see for instance Soize [11]). Recently, Bellizzi and Bouc [12] proposed an
interesting method for multidimensional systemsin the context of prediction methods.

The Stochastic Linearization Method with Random Coefficients (SLMRC) [9,10] is adapted to identi-
fication procedures and allows the identification to be improved with respect to the classical SLMCC.
This fact was recently proved by Soize [13] for one-degree-of-freedom nonlinear second-order dy-
namical systems. This method, based on alinear dynamical model with random coefficients, has just
been extended by L e Fur [14] for theidentification of weakly nonlinear multidimensional second-order
dynamical systems and the details of the method can be found in [15]. An identification procedure
based on SLMRC can be summarized as shown in Fig. 2 and will be refered in this paper as Method
2. It should be noted that Method 2 uses Method 1. The purpose of this paper is to summarize a
new approach devel oped by Soize and Le Fur [15] for identifying weakly nonlinear multidimensional
second-order dynamical systemsbased ontheidentification of alinear model with random coefficients.
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Fig. 2. Method 2 — I dentification procedure based on a stochastic linearization method
with random coefficients (SLMRC)

2. CONSTRUCTION OF THE MODEL WITH RANDOM COEFFICIENTS
We consider a weakly nonlinear dynamical system of dimension n > 1 subjected to an externa
random excitation. This dynamical system is written as the following stochastic differential equation

[M]X(t) + [C]X () + [K)X(t) + ef (X (1)) = F(t) (1)

in which matrices [M ], [C'] and [K] are positive definite; function f from R™ into R™ is odd,
continuous and nonlinear; excitation force F is a Gaussian, second-order, centered, stationary, mean-
sguare continuous stochastic process indexed by R with valuesin R™. The matrix-valued spectra
density function of processF iswritten as

[Sr(w)] = s(w)[B] (2)

where [B] is a positive matrix and s is a positive-valued function defined on R having the required
propertiessuchthat processF isphysically realizable and approachesan ideal normalized narrow-band
noise.

Within the context of an identification problem, it is assumed that stochastic differential equation (1)
has a unique stationary, second-order, centered stochastic solution X having a matrix-valued spectral
density function [Sx]. Furthermore, function [Sx] is assumed to be square integrable on R.

Applying the identification procedure developed by Fill &tre [3] (based on a stochastic linearization
method with constant coefficients) yields the following linear stochastic differential equation on R™

[MX(1) + [CIX(8) + [KX(t) = F(t) (3)
in which F isthe stochastic process used in Eq. (1) and matrices [M ], [C.] and [K ] result from the
identification procedure and are positive definite.

We introduce the eigenmodes ¢ € R™ and the associated eigenfrequencies w of the conservative
problem associated with Eqg. (3), which are the solutions of the generalized eigenvalue problem
[K.]p =w?[M,] . Let [D] bethe (nx n) real matrix of the eigenmodes such that [®] ;;, = {e. ;-
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We introduce modal coordinates Q such that X = [®] Q. Substituting this change of coordinatesin
Eqg. (3) yields ) _

M, (1) + [C,) Q1) + [K,)Q(t) = [2]F(t) (4)
where [M ] = [2]" [M_][2], [C,] = [2]" [C,][2] and [K,] = [M,][Q*] = [®]" [K.][®] are
(nxn) real positive-definite matrices. Matrices [M ], [K ] and [Q?] arediagonal and [C,]isadense
matrix in the general case.

We associate with Eq. (4) the following stochastic differential equation with random coefficients

(M C (1) + K, ([I]+[A) Y(&) = [@]F(t) (5)

where [A] is arandom variable with valuesin the (n x n) real diagonal matrices. We introduce the
vector A = (Aq,...,A,) of its diagona entries A; = [A];;. It isassumed that {A;,..., A, } are
independent real-valued random variables. The probability law P, (d\) of the real-valued random
variable A; is defined by a probability density functionp, (A) onR with respect to d:

PA (d)‘) = Dy, (A)d)‘ ) (6)

inwhichforal A\ € R,
Py, (A = Qp, (1+ A)WAi OV (7)
Real function A — W, () defined on R is such that

(1)
W, (\) =1 (A= AD)e P, O (8)

A ool

Equations (6)-(8) defineaparametric family of probabilities wherethe unknown parametersa, , 8,
and )\ﬁl) verify the conditionsa, > 0, 8, >0, 1+ )\51) > 0. Since P, (dA) is aprobability,
P, (R) = 1 and consequently, the three parameters o, , 3, and Agl) are dependent. Calculating «v,,
asafunctionof 3, and Agl) yields

28,

N = : (9)
SRS I\ €O Sy o o
TA B,

Because of the independence of random variables{A 1, ..., A, }, the probability law of the R™-valued
random variable A iswritten as

(07

P, = ®?:1PAi . (10)

It can be proved [14,15] that Eq. (5) has a unique second-order, centered, stationary solution Y which
has a square integrable matrix-valued spectral density function given by the relation

Sl = [ [SraleNIR@) (1)

inwhich P, isgiven by Egs. (6)-(10) and matrix [Sy, (w;X)] issuch that
Sy, (wiN)] = [Ha(w; NI []" [Se(w)] [@] [Ha(wsN)]" (12)

[Ha(wiN)] = [~w? [M,] +iw[C,] + [K ([ 1]+ [AD] " . (13)

g
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3. IDENTIFICATION PROCEDURE

The identification procedure consists in calculating the parameters of probability law P, in order to
minimize the "distance" between the matrix-valued spectral density function of the model responses
and measured (experimental) responses.

Let Q be the R"-valued stationary stochastic process such that @ = [®] "' X in which X is the
measured stationary stochastic process (experimental responses) and [®] are the estimated eigenmodes
introduced in Section 2. Wethen deducethat for all real w, the matrix-valued spectral density function
[So(w)] of process Q can be written as

[Se(w)] = [2] M [Sx(w)][@] 7" . (14)

Let X and A bethe vectorsin R suchthat () = (A ... APy and A = (44,..., A,) with
Ai=1/\/B, . ie{l,...,n} . (15)

Let¢ = (£1,...,&,) bethevectorin R2" suchthat € = (A, X)) and &; = (4;,A\"). Let D bethe
domain of £ which issuch that

D:{(A,k(l))e[RQ" | Ai>0,1+)\§1)>0,Vz’6{1,...,n}} . (16)

In order to indicate the dependence of P, and [Sy] in &, we rewrite these quantities as P$ and (S8 ]
respectively. Since the measured and the model matrix-valued spectral density functions are square
integrable, the following cost function can be used,

n

H(E) = | [Sal Z / So@l - [SS@))dw . (17)

i=1

The identification procedure is defined as the following optimization problem: find €, in D such that

H(&) =min H(g) (18)

It should be noted that diagonal terms [55(]“' depend on all the components of € due to the fact that
matrix [C ] used in the calculation of [H (w;X)] is not diagonal. In order to replace problem (18)
by n independent optimization problems in R?, elements [S$ (w)]s; are approximated by [S&' ()]s
obtained by neglecting theextra-diagonal partinmatrix [C, ]. It should benoted that thisapproximation
(introduced only to simplify the optimization problem) is not used in the final calculation of matrix
[S$ (w)] (see Section 4). Then, from Egs. (2), (6)-(9) and (11)-(13), we deduce that for al i in
{1,...,n}

& ()] — 2e;;5(w) oo (1+Ai:c+)\l(»1))a:e_m2 dx
[SY' (w)]ii = 1+A§1)+Aiﬁ/2/0 ((1+Ai$+)\§‘1))[ﬁg]ii_WQ[MQ]M‘)2+WZ[Qg]?i , (19)
in which e;; = {[®]7[B][®]}:. For each i in {1,...,n}, we define the functional on
10, 4+o0[x] — 1 —i—oo[C R? such that
2
() — EN b dw
3&) = [ {180 - 155 W} do (20)
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Consequently, the optimization problem on a subset of R?” defined by Eq. (18), is replaced by the n
following optimization problems on a subset of R?

Ji(&i0) = min Ji(&) , ie{l,...,n} . (21)

£;€]0,+00[x]—1,400]

It should be noted that each constraint optimization problem defined by Eqg. (21) is not standard
because J; is not a convex function. Consequently the following method has been used:

- Sepl: Determine a bounded subdomain C; = [Az, A1) x [A"), A})] included in unbounded
domain ]0, +o00[x] — 1, +o0o[ such that C; contains the solution (see 7[15]),7 in order to limit the space
of the research for a solution.

- Step 2: Use aglobal optimization algorithm on C; based on an adaptive random search [16] which
alows afirst approximation §; , of the solution of (21) to be constructed.

- Sep 3: Finaly, use aloca optimization method on C; based on the Gauss-Newton algorithm and
initialized with €; ,, giving solution €,  of problem (21).

4. CALCULATION OF THE MODEL MATRIX-VALUED SPECTRAL DENSITY FUNCTION

Matrix-valued spectral density function [Sy (w)] can be calculated for € = &, where & results from
the identification procedure (see Section 3). Knowing [Sy(w)] which is the identified model of
measured matrix [Sg(w)] expressed in terms of modal coordinates, we deduce the identified model
[Sz(w)] of the measured matrix [Sx (w)] relative to the physical coordinates. We have the relation
[Sz(w)] = [®] [Sy (w)] [@]". Since matrix [C,] is dense, the direct calculation of the model matrix-
valued spectral density function defined by Eq. (11) requires calculating a n-uple integral on R™ for
each w. This calculation can only be carried out by numerical integration. Consequently, it cannot
be made for large values of n (for instance when n is 10 or 20 (or more)). We therefore propose a
construction of an approximation in ref. [15], which allowsto calculate only n simpleintegralson R.

5. EXAMPLE

For thisexampl e, an "experimental database” is constructed using aMonte Carlo numerical simulation
in the time domain of the second-order nonlinear dynamical system defined by Eqg. (1) withn = 5,
where the nonlinear mapping f is defined by (X (t)) = ([K]1iX1(t)3, ..., [K]ss5X5(t)%) with
e = 1875, where the frequency band of narrow-band processF is[14 Hz, 28 Hz] and where [K] ;; are
the diagonal terms of matrix [K] appearing in Eq. (1). Matrices [M], [C] and [ K| were generated by
theformulas [M] = [S]~T [M][S]74, [C] = [S]7T [C][S]~! and [K] = [S]~T [K] [S]~*, where

0.208513 0.333334  0.301512  0.447214 0.447214
0.208513 —0.333334 0.301512 —0.447214 0.447214

[S] = | 0.625543 0.577350  0.522233  0.447214 0.0 )
0.625543 0.577350 —0.522233 —0.447214 0.0
0.361158 —0.333334 —0.522233 0.447214  0.774597

and where [ M] isthe identity matrix (generalized massesequal to 1), [K] = [M] [Q]? inwhich [Q] is
the diagonal matrix whosediagonal is27 x [18.0,20.0,20.4,22.0,23.0 ] andfinally, [C ] isadiagonal
matrix whose diagonal is [4.5,5.0,5.13,5.5,5.8]. Digital signal processing on the time-simulated
sample paths of the stationary response was applied to estimate the "measured” matrix-valued spectral
density function [Sx (w)] for w in the frequency band of analysis.

It should be noted that some eigenfrequenciess? ; of theunderlying linear dynamical system associated
with the nonlinear dynamical system are close (20.0 Hz and 20.4 Hz). In presence of nonlinearities,
this kind of situation is generally recognized as a difficult problem within the context of structural
dynamic identification. The procedure presented in Section 3 is used to identify the parameters ¢ ; of
themodel. Figure 3isrelated to the compari sonsbetween the matrix-valued spectral density functions
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obtained by "experiments' and by identification of the model with constant coefficients. Fig. 3
shows the comparison between [S x|;; and [Sx];; for i in {1,2,3,4,5}. These results correspond to
those obtained by Fillatre [3]. It should be noted that this first identification aready yields a good
identification (taking into account theintrinsic difficulties of the example considered), but as mentioned
in Section 1, this kind of results can be improved using amore advanced model for identification (see

below).
x 10~ coeff (1,1) x10°° coeff (2,2)
2 \ \ ‘ 8 ‘ ‘ ‘
1.5}
1 L
0.5
0 L
30
Hertz Hertz
x 10" coeff (3,3) x 10~ coeff (4,4)
2 ‘ ‘ 4 ‘ ‘
3 L
2 L
1 L
0 !
10 15 20 25 30
Hertz Hertz
x 10~ coeff (5,5)
2 ;
A
15}
1 L
0.5¢
0

1‘5 2‘0 2‘5 30
Hertz
Fig. 3. Power spectral density functions [S x|;; and [Sx];:

______ experiments
————— identification with stochastic linearization method with constant parameters
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Figure 4 is related to the comparisons between the matrix-valued spectral density functions obtained
by "experiments" and by identification of the model with random coefficientsfor which the procedure
was described in Sections 2 to 4. Fig. 4 shows the comparison between [S x];; and [Sz];; for ¢ in
{1,2,3,4,5}. It can be seen that the results obtained are much better than above. Complete results
concerning this example are givenin [15].

x 10~ coeff (1,1) o x10°° coeff (2,2)
1 L
6 L
4 L
0.5¢
2 L
0— 0— ‘ ‘ -
15 20 25 30
Hertz Hertz
x 10" coeff (3,3) x 10~ coeff (4,4)
15 ‘ ‘ ‘ 3 ; ;

O !
10 15 20 25 30
Hertz Hertz
x 10~ coeff (5,5)
2 ‘ ‘
1.5¢
1 L
0.5t
ol—— _

1‘5 2‘0 2‘5 30
Hertz
Fig. 4. Power spectral density functions [S x|;; and [Sz];;:

______ experiments
————— identification with stochastic linearization method with random parameters
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11.

12.

6. CONCLUSION

Thiswork started from previousresearch on modal i dentifi cation of weakly nonlinear multidimensional
second-order dynamical systems (based on the use of the equivalent stochastic linearization with
constant coefficients). In some cases, this method has difficulty identifying the matrix-valued spectral

density function of the stationary responses. In the present work, we have used the previous work to
identify the mean part of the model. In order to improve the identification of spectral quantities, we
devel oped amethod based on stochastic lineari zation with random coefficients. Thisnew identification
procedure seemsto be very efficient and can beimplemented easily. The results show that this method
yieldsbetter resultsthan the previousone. Neverthel ess, thismethod could beimproved by introducing
some stati stical dependence between the componentsof the random coeffi cientsexpressed in the modal

coordinates (or possibly by introducing extra-diagonal terms) in oder to model energetic exchanges
between eigenmodes due to the weak nonlinearities. It should be noted that in this last case, the
optimization problem introduced in the method could not be split into several optimization problems
with asmaller size. This being the case, the efficiency of such a procedure would have to be studied
with great care.
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