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WEAKLY NONLINEAR SECOND-ORDER DYNAMICAL SYSTEMS IDENTIFICATION
USING A RANDOM PARAMETERS LINEAR MODEL

by

C. Soize and O. Le Fur

Office National d’Etudes et de Recherches Aérospatiales, BP 72, 92322 Châtillon Cedex, France

ABSTRACT

The objective of this paper is to present an identification procedure which is based on the use
of a stochastic linearization method with random coefficients. The model is then defined as a
multidimensional linear second-order dynamical system with random coefficients. An optimization
procedure is developed to identify the parameters of the probability law of the random coefficients.
The identification procedure is described step by step. Finally, an example is presented and shows the
interest of the method proposed.

1. INTRODUCTION

For linear multidimensional second-order dynamical systems (m.s-o.d.s.) with time independent
coefficients (constant coefficients), modal identification procedures are known and well developed.
In this paper, we are interested in the identification of weakly nonlinear m.s-o.d.s. with constant
coefficients, using a linear model and a stationary random input. The main idea is to use an infinite
family of linear models to represent the nonlinear dynamical system i.e., a linear m.s-o.d.s. with
random coefficients. This means that the weakly nonlinear m.s-o.d.s. is identified by a linear
m.s-o.d.s. with uncertainties. Consequently, such an identification yields a linear model whose
operator-valued frequency response function is a random stochastic process indexed by the frequency.
The eigenfrequencies and associated eigenmodes are then deduced from the linearized representation
which is identified (consequently, the eigenfrequencies are random variables).

Using broad-band stationary random excitation and constant coefficients of the model yields the
classical Stochastic Linearization Method with Constant Coefficients (SLMCC). The SLMCC was
introduced by Caughey in 1963 [1] within the context of prediction methods. Many developments
have been proposed in this area since this date and an excellent synopsis was made by Roberts and
Spanos in 1990 [2]. An identification procedure based on SLMCC can be summarized as shown in
Fig. 1 and will be refered in this paper as Method 1.
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Fig. 1. Method 1 – Identification procedure based on a stochastic linearization method

with constant coefficients (SLMCC)

In this field of identification procedures, it should be noted that difficulties arise due to the presence of
the mass matrix which is unknown and which must be identified. Fill âtre [3] developed a method for
identifying such an equivalent linear model in which mass, damping and stiffness matrices are constant
and unknown. His approach is based on an extension of Kozin’s works [4,5] and can be considered as
a method based on the SLMCC. Generally speaking, it is known that the SLMCC yields a very good
approximation of the second-order (s-o.) statistical moments of the stationary response of second-
order dynamical systems. Consequently, an identification method based on such a procedure yields
an equivalent linear dynamical system which can restitute the second-order moments. Unfortunately,
in some cases, although the second-order moments are correctly estimated, the matrix-valued spectral
density function (s.d.f.) of the response may be erroneous. This difficulty was first shown by Miles for
a one-dimensional nonlinear dynamical system[6]. For such nonlinear dynamical systems, methods
were proposed to calculate the power spectral density function of the stationary response without
using Monte Carlo numerical simulation (Miles [6], Bouc [7,8] and Soize [9,10]). The matrix-valued
spectral density function can generally not be calculated explicitly for multidimensional nonlinear
dynamical systems, except for particular cases related to linear dynamical systems with random
parametric excitations (see for instance Soize [11]). Recently, Bellizzi and Bouc [12] proposed an
interesting method for multidimensional systems in the context of prediction methods.

The Stochastic Linearization Method with Random Coefficients (SLMRC) [9,10] is adapted to identi-
fication procedures and allows the identification to be improved with respect to the classical SLMCC.
This fact was recently proved by Soize [13] for one-degree-of-freedom nonlinear second-order dy-
namical systems. This method, based on a linear dynamical model with random coefficients, has just
been extended by Le Fur [14] for the identification of weakly nonlinear multidimensional second-order
dynamical systems and the details of the method can be found in [15]. An identification procedure
based on SLMRC can be summarized as shown in Fig. 2 and will be refered in this paper as Method
2. It should be noted that Method 2 uses Method 1. The purpose of this paper is to summarize a
new approach developed by Soize and Le Fur [15] for identifying weakly nonlinear multidimensional
second-order dynamical systems based on the identification of a linear model with random coefficients.
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Fig. 2. Method 2 – Identification procedure based on a stochastic linearization method
with random coefficients (SLMRC)

2. CONSTRUCTION OF THE MODEL WITH RANDOM COEFFICIENTS

We consider a weakly nonlinear dynamical system of dimension n ≥ 1 subjected to an external
random excitation. This dynamical system is written as the following stochastic differential equation

[M ]Ẍ (t) + [C]Ẋ (t) + [K]X (t) + εf
(X (t)

)
= F(t) , (1)

in which matrices [M ], [C ] and [K ] are positive definite; function f from Rn into Rn is odd,
continuous and nonlinear; excitation force F is a Gaussian, second-order, centered, stationary, mean-
square continuous stochastic process indexed by R with values in Rn. The matrix-valued spectral
density function of process F is written as

[SF(ω)] = s(ω)[B ] , (2)

where [B ] is a positive matrix and s is a positive-valued function defined on R having the required
properties such that process F is physically realizable and approaches an ideal normalized narrow-band
noise.

Within the context of an identification problem, it is assumed that stochastic differential equation (1)
has a unique stationary, second-order, centered stochastic solution X having a matrix-valued spectral
density function [SX ]. Furthermore, function [SX ] is assumed to be square integrable on R.

Applying the identification procedure developed by Fillâtre [3] (based on a stochastic linearization
method with constant coefficients) yields the following linear stochastic differential equation on Rn

[M c] Ẍ(t) + [Cc] Ẋ(t) + [Kc]X(t) = F(t) , (3)

in which F is the stochastic process used in Eq. (1) and matrices [M c], [Cc] and [Kc] result from the
identification procedure and are positive definite.

We introduce the eigenmodes � ∈ Rn and the associated eigenfrequencies ω of the conservative
problem associated with Eq. (3), which are the solutions of the generalized eigenvalue problem
[Kc]� = ω2 [M c]�. Let [Φ] be the (n× n) real matrix of the eigenmodes such that [Φ]jk = {�

k
}j .
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We introduce modal coordinates Q such that X = [Φ]Q. Substituting this change of coordinates in
Eq. (3) yields

[Mg] Q̈(t) + [Cg] Q̇(t) + [Kg]Q(t) = [Φ]T F(t) , (4)

where [M g] = [Φ]T [M c] [Φ] , [Cg] = [Φ]T [Cc] [Φ] and [Kg] = [Mg] [Ω
2] = [Φ]T [Kc] [Φ] are

(n×n) real positive-definite matrices. Matrices [M g], [Kg] and [Ω2] are diagonal and [Cg] is a dense
matrix in the general case.

We associate with Eq. (4) the following stochastic differential equation with random coefficients

[Mg] Ÿ(t) + [Cg] Ẏ(t) + [Kg]
(
[ I ] + [Λ]

)
Y(t) = [Φ]T F(t) , (5)

where [Λ] is a random variable with values in the (n× n) real diagonal matrices. We introduce the
vector � = (Λ1, . . . ,Λn) of its diagonal entries Λi = [Λ]ii. It is assumed that {Λ1, . . . ,Λn} are
independent real-valued random variables. The probability law P

Λi
(dλ) of the real-valued random

variable Λi is defined by a probability density function p
Λi
(λ) on R with respect to dλ:

P
Λi
(dλ) = p

Λi
(λ)dλ , (6)

in which for all λ ∈ R,
pΛi

(λ) = αΛi
(1 + λ)WΛi

(λ) . (7)

Real function λ �→ WΛi
(λ) defined on R is such that

W
Λi
(λ) = 1

[λ
(1)
i

,+∞[
(λ)(λ− λ

(1)
i )e

−β
Λi

(λ−λ
(1)
i

)2
. (8)

Equations (6)-(8) define a parametric family of probabilities where the unknown parameters α
Λi

, β
Λi

and λ
(1)
i verify the conditions α

Λi
> 0 , β

Λi
> 0 , 1 + λ

(1)
i > 0. Since P

Λi
(dλ) is a probability,

P
Λi
(R) = 1 and consequently, the three parameters α

Λi
, β

Λi
and λ

(1)
i are dependent. Calculating α

Λi

as a function of β
Λi

and λ
(1)
i yields

α
Λi

=
2β

Λi

1 + λ
(1)
i + 1

2

√
π
β

Λi

. (9)

Because of the independence of random variables {Λ1, . . . ,Λn}, the probability law of the Rn-valued
random variable � is written as

P
�
= ⊗n

i=1PΛi
. (10)

It can be proved [14,15] that Eq. (5) has a unique second-order, centered, stationary solution Y which
has a square integrable matrix-valued spectral density function given by the relation

[SY(ω)] =

∫
Rn

[SYΛ
(ω;�)]P

�
(dλ) , (11)

in which P
�

is given by Eqs. (6)-(10) and matrix [SYΛ
(ω;�)] is such that

[SYΛ
(ω;�)] = [HΛ(ω;�)] [Φ]

T [SF(ω)] [Φ] [HΛ(ω;�)]
∗ , (12)

[HΛ(ω;�)] =
[−ω2 [Mg] + iω [Cg] + [Kg]([ I ] + [λ ])

]−1
. (13)
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3. IDENTIFICATION PROCEDURE

The identification procedure consists in calculating the parameters of probability law P
�

in order to
minimize the "distance" between the matrix-valued spectral density function of the model responses
and measured (experimental) responses.

Let Q be the Rn-valued stationary stochastic process such that Q = [Φ]−1X in which X is the
measured stationary stochastic process (experimental responses) and [Φ] are the estimated eigenmodes
introduced in Section 2 . We then deduce that for all realω, the matrix-valued spectral density function
[SQ(ω)] of process Q can be written as

[SQ(ω)] = [Φ]−1[SX (ω)] [Φ]−T . (14)

Let �(1) and A be the vectors in Rn such that �(1) = (λ
(1)
1 , . . . , λ

(1)
n ) and A = (A1, . . . , An) with

Ai = 1/
√
β

Λi
, i ∈ {1, . . . , n} . (15)

Let � = (�1, . . . ,�n) be the vector in R2n such that � = (A,�(1)) and �i = (Ai, λ
(1)
i ). Let D be the

domain of � which is such that

D =
{
(A,�(1)) ∈ R2n | Ai > 0 , 1 + λ

(1)
i > 0 , ∀ i ∈ {1, . . . , n}

}
. (16)

In order to indicate the dependence of P
�

and [SY] in �, we rewrite these quantities as P �
�

and [S�
Y ]

respectively. Since the measured and the model matrix-valued spectral density functions are square
integrable, the following cost function can be used,

H(�) =
n∑

i=1

‖ [SQ]ii − [S�
Y ]ii ‖2 =

n∑
i=1

∫
R

(
[SQ(ω)]ii − [S�

Y(ω)]ii
)2
dω . (17)

The identification procedure is defined as the following optimization problem: find �0 in D such that

H(�0) = min
�∈D

H(�) . (18)

It should be noted that diagonal terms [S�
Y]ii depend on all the components of � due to the fact that

matrix [Cg] used in the calculation of [HΛ(ω;�)] is not diagonal. In order to replace problem (18)

by n independent optimization problems in R2, elements [S�
Y(ω)]ii are approximated by [S�i

Y (ω)]ii
obtained by neglecting the extra-diagonal part in matrix [Cg]. It should be noted that this approximation
(introduced only to simplify the optimization problem) is not used in the final calculation of matrix
[S�

Y(ω)] (see Section 4). Then, from Eqs. (2), (6)-(9) and (11)-(13), we deduce that for all i in
{1, . . . , n}

[S�i
Y (ω)]ii =

2eiis(ω)

1+λ
(1)
i +Ai

√
π/2

∫ +∞

0

(1+Aix+λ
(1)
i )xe−x2

dx(
(1+Aix+λ

(1)
i )[Kg]ii−ω2[Mg]ii

)2
+ω2[Cg]

2
ii

, (19)

in which eii = {[Φ]T [B ] [Φ]}ii. For each i in {1, . . . , n}, we define the functional on
]0 ,+∞[×] − 1 ,+∞[⊂ R2 such that

Ji(�i) =

∫
R

{
[SQ(ω)]ii − [S�i

Y (ω)]ii

}2

dω . (20)
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Consequently, the optimization problem on a subset of R2n defined by Eq. (18), is replaced by the n
following optimization problems on a subset of R2

Ji(�i,0) = min
�i∈ ]0,+∞[×]−1,+∞[

Ji(�i) , i ∈ {1, . . . , n} . (21)

It should be noted that each constraint optimization problem defined by Eq. (21) is not standard
because Ji is not a convex function. Consequently the following method has been used:
- Step1: Determine a bounded subdomain Ci = [A2,i, A1,i] × [λ

(1)
1,i , λ

(1)
2,i ] included in unbounded

domain ]0,+∞[×] − 1,+∞[ such that Ci contains the solution (see [15]), in order to limit the space
of the research for a solution.
- Step 2: Use a global optimization algorithm on Ci based on an adaptive random search [16] which
allows a first approximation �i,a of the solution of (21) to be constructed.
- Step 3: Finally, use a local optimization method on Ci based on the Gauss-Newton algorithm and
initialized with �i,a, giving solution �i,0 of problem (21).

4. CALCULATION OF THE MODEL MATRIX-VALUED SPECTRAL DENSITY FUNCTION

Matrix-valued spectral density function [SY(ω)] can be calculated for � = �0 where �0 results from
the identification procedure (see Section 3). Knowing [SY(ω)] which is the identified model of
measured matrix [SQ(ω)] expressed in terms of modal coordinates, we deduce the identified model
[SZ(ω)] of the measured matrix [SX (ω)] relative to the physical coordinates. We have the relation
[SZ(ω)] = [Φ] [SY(ω)] [Φ]

T . Since matrix [Cg] is dense, the direct calculation of the model matrix-
valued spectral density function defined by Eq. (11) requires calculating a n-uple integral on Rn for
each ω. This calculation can only be carried out by numerical integration. Consequently, it cannot
be made for large values of n (for instance when n is 10 or 20 (or more)). We therefore propose a
construction of an approximation in ref. [15], which allows to calculate only n simple integrals on R.

5. EXAMPLE

For this example, an "experimental data base" is constructed using a Monte Carlo numerical simulation
in the time domain of the second-order nonlinear dynamical system defined by Eq. (1) with n = 5,
where the nonlinear mapping f is defined by f

(X (t)
)

=
(
[K]11X1(t)

3, . . . , [K]55X5(t)
3
)

with
ε = 1875, where the frequency band of narrow-band process F is [14 Hz, 28 Hz] and where [K] jj are
the diagonal terms of matrix [K] appearing in Eq. (1). Matrices [M ], [C] and [K] were generated by
the formulas [M ] = [S]−T [M] [S]−1, [C] = [S]−T [ C ] [S]−1 and [K] = [S]−T [K] [S]−1, where

[S] =

⎡
⎢⎢⎢⎣

0.208513 0.333334 0.301512 0.447214 0.447214
0.208513 −0.333334 0.301512 −0.447214 0.447214
0.625543 0.577350 0.522233 0.447214 0.0
0.625543 0.577350 −0.522233 −0.447214 0.0
0.361158 −0.333334 −0.522233 0.447214 0.774597

⎤
⎥⎥⎥⎦ ,

and where [M] is the identity matrix (generalized masses equal to 1), [K] = [M] [Ω]2 in which [Ω] is
the diagonal matrix whose diagonal is 2π×[ 18.0 , 20.0 , 20.4 , 22.0 , 23.0 ] and finally, [ C ] is a diagonal
matrix whose diagonal is [ 4.5 , 5.0 , 5.13 , 5.5 , 5.8 ]. Digital signal processing on the time-simulated
sample paths of the stationary response was applied to estimate the "measured" matrix-valued spectral
density function [SX (ω)] for ω in the frequency band of analysis.
It should be noted that some eigenfrequenciesΩj of the underlying linear dynamical system associated
with the nonlinear dynamical system are close (20.0 Hz and 20.4 Hz). In presence of nonlinearities,
this kind of situation is generally recognized as a difficult problem within the context of structural
dynamic identification. The procedure presented in Section 3 is used to identify the parameters � i of
the model. Figure 3 is related to the comparisons between the matrix-valued spectral density functions
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obtained by "experiments" and by identification of the model with constant coefficients. Fig. 3
shows the comparison between [SX ]ii and [SX]ii for i in {1, 2, 3, 4, 5}. These results correspond to
those obtained by Fillâtre [3]. It should be noted that this first identification already yields a good
identification (taking into account the intrinsic difficulties of the example considered),but as mentioned
in Section 1, this kind of results can be improved using a more advanced model for identification (see
below).
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Figure 4 is related to the comparisons between the matrix-valued spectral density functions obtained
by "experiments" and by identification of the model with random coefficients for which the procedure
was described in Sections 2 to 4. Fig. 4 shows the comparison between [SX ]ii and [SZ]ii for i in
{1, 2, 3, 4, 5}. It can be seen that the results obtained are much better than above. Complete results
concerning this example are given in [15].
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6. CONCLUSION

This work started from previous research on modal identification of weakly nonlinear multidimensional
second-order dynamical systems (based on the use of the equivalent stochastic linearization with
constant coefficients). In some cases, this method has difficulty identifying the matrix-valued spectral
density function of the stationary responses. In the present work, we have used the previous work to
identify the mean part of the model. In order to improve the identification of spectral quantities, we
developed a method based on stochastic linearization with random coefficients. This new identification
procedure seems to be very efficient and can be implemented easily. The results show that this method
yields better results than the previous one. Nevertheless, this method could be improved by introducing
some statistical dependencebetween the components of the random coefficients expressed in the modal
coordinates (or possibly by introducing extra-diagonal terms) in oder to model energetic exchanges
between eigenmodes due to the weak nonlinearities. It should be noted that in this last case, the
optimization problem introduced in the method could not be split into several optimization problems
with a smaller size. This being the case, the efficiency of such a procedure would have to be studied
with great care.
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