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Abstract

This paper deals with the theoretical aspects concerning linear elastodynamic of damped continuum medium in the frequency domain. Eigenvalue
analysis and frequency response function are studied. The methods discussed here use a dynamic substructuring approach. The first method is based
on a mixed variational formulation in which Lagrange multipliers are introduced to impose the linear constraints on thecoupling interfaces. A modal
reduction of each substructure is obtained using its free-interface modes. A practical construction of a unique solution is carried out using the Singular
Value Decomposition (SVD) related only to the frequency-independent Lagrange multiplier terms. The second method is similar to the first one
replacing the free-interface modes by the fixed-interface modes and elastostatic operator on the interface of each substructure.

1. Introduction
In this paper, we are interested in eigenvalue and frequencyresponse
function calculations of a linear dynamic three-dimensional bounded
damped elastic structures subjected to prescribed forces.Recall that the
frequency response functions allow deterministic and stationary random
analyses to be performed (Kree and Soize, 1986; Argyris and Meljnek,
1991). More precisely, this paper is devoted to theoreticalaspects of
structure-structure coupling by dynamic substructuring methods using
modal reduction procedures. The proposed methodology can be ap-
plied to general linear coupled systems such as fluid-structure interaction
problems (Morand and Ohayon, 1995; Soize, Desanti and David, 1992).

For linear structural vibrations, dynamic substructuringtechniques based
on the use of the fixed-interface modes or free-interface modes (com-
pleted by static boundary functions, attachment modes, residual flexibil-
ity, etc.) of each substructure have been widely developed in the litter-
ature: for conservative structures see for example (Hurty,1965; Craig
and Bampton, 1968; MacNeal, 1971; Rubin, 1975; Flashner, 1986; Min,
Igusa and Achenbach, 1992; Farhat and Geradin, 1994) and fordamped
structures (Klein and Dowell, 1974; Hale and Meirovitch, 1980; Leung,
1993; Farstad and Singh, 1995; Rook and Singh, 1995).

Some papers are based on a mixed formulation using a Lagrangemulti-
plier in order to impose the linear constraints on the coupling interfaces
(see Klein and Dowell, 1974; Min, Igusa and Achenbach, 1992;Farstad
and Singh, 1995; Rook and Singh, 1995). Within the context offinite
element discretization of linear structural dynamic problems, Farhat and
Geradin (1994) have also introduced a Lagrange multiplier to take into
account incompatible meshes on the interface (their analysis is devoted
to undamped structures using a component mode method based on fixed-
interface modes and static boundary functions).

Below, we present an original general approach for damped structures
using continuum-based variational formulations and Ritz-Galerkin pro-
jection methods using free-interface modes and fixed-interface modes of
each substructure (in this paper we do not consider mathematical aspects
of error estimates connected to the truncation of the modal series). For
this purpose, various rigorous algebraic decompositions of admissible
classes of the unknown fields are introduced and leads to several linear
dynamic substructuring methods, the continuity of the displacement field
on the interface being imposed through the use of a Lagrange multiplier

field. As a consequence, the final system for the mixed formulation has
a rank-deficiency in the matrix that describes the constraints. This leads
to non-uniqueness of the solution. In order to avoid this difficulty, a new
constructive approach is proposed consisting in using a Singular Value
Decomposition (SVD) of the frequency-independent constraint matrix
and chose a "least-square" solution that is in fact the solution of the orig-
inal problem. Due to a relatively small number of degrees of freedom
in the reduced model, the use of SVD is particularly efficient. Since the
problem under consideration is linear, SVD is used only once. Conse-
quently, the SVD appears as an efficient and reliable tool to solve this
rank-deficiency problem. It should be noted that SVD has beenused for
undamped linear vibration analysis of plates using dynamicsubstructur-
ing by analytical methods (Jen, Johnson and Dubois, 1995). Let us recall
that SVD has also been used in the area of the nonlinear dynamical anal-
ysis of multibody systems with nonlinear constraints (Singh and Likins,
1985; Shabana , 1991; Schmidt and Müller, 1993).

Now we give a short description of the content of each section.
Section 2 deals with the displacement and mixed variationalformulations
for the coupled linear structure-structure problem, Lagrange multiplier
field being introduced in the mixed problem.
In Section 3, we present a dynamic substructuring method using the
free-interface modes of each linear substructure. The modal reduction
procedure is carried out using a new explicit construction of the La-
grange multiplier admissible space. Two practical constructions of the
frequency response function of the global linear damped structure and
the eigenvalues of the associated conservative structure are performed
using SVD once on a part of the linear system to be solved, namely on
the frequency-independent Lagrange multiplier terms.
Section 4 is devoted to a dynamic substructuring method using the classi-
cal Craig and Bampton fixed-interface modes and boundary static func-
tions of each linear substructure, presented in an originalgeneral frame-
work allowing various other decomposition procedures to beobtained.
After having constructed the reduced matrix model of each substructure,
we explain two procedures for the assemblage of the substructures and
the construction of a solution, (1) in a classical manner and(2) as in
Section 3 using Lagrange multiplier field and SVD.
Finally, in Section 5, some conclusions are presented.
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2. Displacement and Mixed Variational For-
mulations for the Coupled Structure-Structure
Problem
2.1 General Mechanical Hypotheses

In this section, the following hypotheses are introduced:
- One considers the linear vibrations of a three-dimensional structure
about a static equilibrium configuration which is considered here as a
natural state (for the sake of brevity, prestress are not considered but
could be added without changing the theory).
- The structure is only submitted to prescribed external forces (no pre-
scribed displacement).
With the above hypotheses, there are two cases.
(1)- The first one, which is the only case considered in this paper, cor-
responds to prescribed external forces which are in equilibrium at each
instant. Consequently, the displacement field of the structure is defined
up to an additive rigid body displacement field. In this case,we are
only interested in the part of the displacement field due to the structural
deformation. We will see below how the rigid body displacement field
can be disregarded.
(2)- The second case corresponds to prescribed external forces which are
not in equilibrium at some instants. To solve this problem, the method
consists in transforming this case to the first case by addingan additional
external force related to rigid body field. For the sake of brevity, this case
will not be considered in the present paper.

One presents a variational formulation of the problem (firstcase), taking
into account an additional small structural damping based on a linear
viscoelastic model with an instantaneous memory. A frequency do-
main formulation is used, the convention for the Fourier transform being
u(ω) =

∫R e−iωt u(t) dt whereω denotes the circular frequency,u(ω) is
a vector inC3 andu(ω) its conjugate (R andC denote the set of real and
complex numbers respectively).

2.2 Notation for a SubstructureΩr

We consider a structure formed by substructures that will bedenoted
by an indexr. Let Ωr be the 3D-bounded domain occupied at static
equilibrium by the substructure labelled by indexr. Let ∂Ωr = Γr ∪ Γ
with Γr ∩ Γ = ∅ be the boundary ofΩr (assumed to be smooth). The
boundaryΓ will be theinteraction surfacewith another substructure. The
external prescribed volumetric and surface force fields applied toΩr and
Γr are denoted byg

Ωr
andg

Γr
respectively. Letur = (ur

1, u
r
2, u

r
3) be the

displacement field at each pointx = (x1, x2, x3) in cartesian coordinates.
The set of admissible displacement fields with values inC3 (resp. inR3)
is denoted byCΩr

(resp.RΩr
) and is used for dissipative problems (resp.

associated conservative problems). For substructureΩr, one denotes the
test function (weighted function) associated withur asδur ∈ CΩr

(or in
RΩr

) . The strain tensor is defined by

εij(ur) =
1

2
(ur

i,j + ur
j,i) , (1)

in which v,j denotes the partial derivative ofv with respect toxj . The
total stress tensor is defined by

σr
tot = σr + iω sr , (2)

whereσr is the elastic stress tensor defined byσr
ij(u

r) = aijkh εkh(ur)
andiω sr is the viscous part of the total stress tensor such thatsr

ij(u
r) =

bijkh εkh(ur) (using summation over repeated indices). The mechanical
coefficientsaijkh and bijkh are independent ofω and verify the usual
properties of symmetry and positivity (see Marsden and Hughes, 1983).
The mass density is denoted byρr. For the dissipative problem, three

sesquilinear forms onCΩr
×CΩr

corresponding to the mass, stiffness and
damping operators of substructureΩr, are introduced as follows

mr(ur, δur) =

∫

Ωr

ρr ur · δur dx , (3)

kr(ur, δur) =

∫

Ωr

σr
ij(u

r) εij( δur ) dx , (4)

dr(ur, δur) =

∫

Ωr

sr
ij(u

r) εij( δur ) dx . (5)

It should be noted that the hermitian formmr is positive definite on
CΩr

× CΩr
. The hermitian formskr anddr are semi-definite positive

(degenerated forms) since rigid body displacement fields are allowed in
the present case. The setRr

rig ofR3-valued rigid body displacement fields
(of dimension 6) is a subset ofCΩr

. Consequently, for allδur in CΩr
,

kr(ur, δur) anddr(ur, δur) are equal to zero for anyur in Rr
rig.

We then define the following sesquilinear formzr onCΩr
× CΩr

zr(ur, δur) = −ω2 mr(ur, δur)+iω dr(ur, δur)+kr(ur, δur) . (6)

Finally, we definefr by the relation

≪ fr , δur≫=

∫

Ωr

g
Ωr

· δur dx +

∫

Γr

g
Γr

· δur ds . (7)

2.3 Continuum-Based Variational Formulations for Two Coupled
SubstructuresΩ1 and Ω2

We consider a structure composed of two substructuresΩ1 andΩ2 that
interact through a common boundaryΓ (the extension to the case of more
than two substructures is straightforward). The notationsintroduced in
Section 2.2 are used withr=1 andr=2. The linear coupling conditions
onΓ are written as

u1 = u2 on Γ , (8)

σ1
tot n

1 = −σ2
tot n

2 on Γ , (9)

wherenr is the unit normal toΓ, external toΩr.

2.3.1 Basic(u1, u2) Variational Formulation P0

For all realω in R and prescribed(f1, f2), find (u1, u2) in CΩ1
× CΩ2

verifying the linear constraintu1 = u2 onΓ, such that, for all(δu1, δu2)
in CΩ1

× CΩ2
verifying the linear constraintδu1 = δu2 onΓ, one has

z1(u1, δu1) + z2(u2, δu2) =≪ f1 , δu1≫ + ≪ f2 , δu2≫ . (10)

From the mathematical point of view (see Dautray and Lions, 1992), by
taking Sobolev spaceH1(Ωr,C3) as admissible spaceCΩr

, the existence
and uniqueness of a solution ofP0 can be proved.

2.3.2 Mixed(u1, u2,l) Variational Formulation P1

This formulation consists in relaxing the linear constraint (defined by
Eq. (8)) used inP0 by the introduction of a Lagrange multiplier fieldl
defined onΓ. Let ΛΓ be the admissible set of Lagrange multiplier fields
defined onΓ with values inC3.
Formulation P1 . For all realω inR and prescribed(f1, f2), find(u1, u2)
in CΩ1

× CΩ2
andl in ΛΓ such that, for all(δu1, δu2) in CΩ1

× CΩ2
and

for all δl in ΛΓ, one has

z1(u1, δu1)+z2(u2, δu2)+b(l, δu1−δu2)+b(δl, u1−u2) =≪ f1, δu1≫ + ≪ f
(11)

whereb(. .) is defined by

b(l, ur) =

∫

Γ

l · ur ds . (12)
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Space of Traces onΓ. The set of the traces related to the boundaryΓ,
is denoted byCΓ. Therefore, ifur ∈ CΩr

, then the trace ofur on Γ is
denoted byur

|Γ and belongs toCΓ. In Eq. (11),ΛΓ is the dual space of
CΓ.

Remark. From the mathematical point of view (see Dautray and Li-
ons, 1992), by takingCΩr

= H1(Ωr,C3)), CΓ = H1/2(Γ,C3) and
ΛΓ = H−1/2(Γ,C3), the existence and uniqueness of a solution of
formulationP1 can be proved using the so called LBB condition related
to the sesquilinear formb (see Brezzi and Fortin, 1991). It should be
noted thatH1/2(Γ,C3) is dense inH−1/2(Γ,C3).

3. Dynamic Substructuring Using the Free-Inter-
face Modes of Each Substructure
The method is based on the use of the mixed variational formulation
defined byP1. Then, a modal reduction is carried out using the Ritz-
Galerkin projection on the free-interface modes of each substructure.
Finally, the Singular Value Decomposition (SVD) is used forthe con-
struction of the solution.

3.1 Free-Interface Modes of a SubstructureΩr

A free-interface mode of a substructureΩr (for r=1 or r=2) is defined as an
eigenmode of the conservative problem associated with the substructure
Ωr, subject to zero forces onΓ. The real eigenvaluesω2 ≥ 0 and the
eigenmodesur in RΩr

are solutions of the following spectral problem:
find ω2 ≥ 0, ur ∈ RΩr

(ur 6= 0) such that for allδur ∈ RΩr
, one has

kr(ur, δur) = ω2 mr(ur, δur) . (13)

It can be shown that there exist six zero eigenvalues0 = (ωr
−5)

2 =
. . . = (ωr

0)
2 (associated with the rigid body displacement fields) and

that the strictly positive eigenvalues (associated with the displacement
field due to structural deformation) constitute the increasing sequence
0 < (ωr

1)
2 ≤ (ωr

2)
2, . . .. The six eigenvectors{ur

−5, . . . , ur
0} associated

with zero eigenvalues spanRrig (space of the rigid body displacement
fields). The family{ur

−5, . . . , ur
0; ur

1, . . .} of all the eigenvectors forms
a complete set inRΩr

. Forα andβ in {−5, . . . , 0; 1, . . .}, we have the
orthogonality conditions

mr(ur
α, ur

β) = δαβ µr
α , (14)

kr(ur
α, ur

β) = δαβ µr
α ωr

α
2

, (15)

in which µr
α > 0 is the generalized mass of modeα depending on the

normalization of the eigenmodes.

3.2 Modal Reduction ofP1

We introduce the subspaceCNr

Ωr
of CΩr

, of dimensionNr , spanned by

{ur
1, . . . , ur

Nr
} with Nr ≥ 1. For allur in CNr

Ωr
, one has

ur =

Nr∑

α=1

qr
α ur

α , (16)

in whichqr
α are complex-valued generalized coordinates. Concerning the

trace of the displacement field (including rigid body displacement field)
onΓ, the subspace spanned by the family{ur

−5|Γ
, . . . , ur

0|Γ; ur
1|Γ, . . .} is

a complete set inCΓ (for the two domainsr=1 andr=2). Consequently,
the family{ur

1|Γ, . . .} forms a complete set of the displacement field on

Γ due only to the structural deformation. LetCNr

Γ be the subspace ofCΓ

spanned by the finite family{ur
1|Γ, . . . , ur

Nr |Γ
}. LetWN

Γ be the subspace
of CΓ of finite dimensionN ≤ N1 + N2 defined by

WN
Γ = CN1

Γ
∪ CN2

Γ
. (17)

The present approach is based on the fact that anyl in ΛΓ can be
expanded on a complete orthonormal set inCΓ and consequently, the
projection of the Lagrange multiplierl is done on the subspaceWN

Γ

of CΓ ⊂ ΛΓ. A characterization ofWN
Γ requires the construction of a

basis ofWN
Γ denoted by{w1, . . . , wN}. One possible method consists

in extracting an independent system ofN functions from the family
{u1

1|Γ, . . . , u1
N1 |Γ

, u2
1|Γ, . . . , u2

N2 |Γ
}. Consequently, for alll in WN

Γ ,
one has l =

N∑

γ=1

pγ wγ . (18)

The Reduced ProblemP red
1 . We use the Ritz-Galerkin method consist-

ing in substituting Eqs. (16) and (18) into Eq. (11). Using the orthogonal-
ity conditions defined by Eqs. (14) and (15) and introducing the vectors
of generalized coordinatesq1 = (q1

1 , . . . , q
1
N1

), q2 = (q2
1 , . . . , q2

N2
) and

p = (p1, . . . , pN ), one deduces the following finite-dimension reduced
problem fromP1




Z1(ω) 0 BT

1

0 Z2(ω) BT
2

B1 B2 0








q1

q2

p



 =




F1

F2

0



 , (19)

in which, for all realω and forr = 1 andr = 2, [Zr(ω)] is an (Nr ×
Nr) complex symmetric matrix,[Br] a (N × Nr) real matrix which is
independent ofω andFr aCNr -valued vector. Matrix[Zr(ω)] is defined
by

[Zr(ω)] = −ω2 [Mr] + iω [Dr] + [Kr ] , (20)

where[Mr] and [Kr] are diagonal positive-definite matrices such that
[Mr]αβ = µr

α δαβ and[Kr]αβ = µr
α ωr

α
2 δαβ, [Dr] is a full symmetric

positive-definite matrix, such that[Dr]αβ = dr(ur
β, ur

α). Consequently,
for all realω, matrix [Zr(ω)] is invertible. Matrix[Br] is such that for
all α in {1, . . . , Nr} andγ in {1, . . . , N}, one has

[Br]γα = b(wγ , ur
α) . (21)

Finally, vectorFr is such that, for allα in {1, . . . , Nr}, one has

F r
α =≪ fr , ur

α≫ . (22)

3.3 Practical Construction of the Frequency Response Function of
the Global Structure Using Reduced ProblemP red

1 and SVD

First, we introduce the(N× M) real matrix[B ] such that

M = N1+N2 , [B ] = [B1 B2] . (23)

and write Eq. (19) as

[
Z(ω) BT

B 0

][
q
p

]
=

[
F

0

]
. (24)

In order to solve Eq. (24), we use a Singular Value Decomposition
(SVD) of [B ]. It is know that there exist algorithms (see Golub and Van
Loan, 1989) which are very efficient for the construction of the SVD
of reasonable size matrices. This is the case for the reducedproblems
obtained by modal projection as Eq. (24). In the proposed approach,
it should be noted that SVD will only be applied to the submatrix [B ]
in Eq. (24). The SVD of(N× M) real matrix[B ] with M ≥ N (see
Section 3.2) consists in constructing the following decomposition

[B ] = [U ] [ Σ ] [V ]T , (25)
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where[U ] is an(N × N) orthogonal real matrix,[V ] is an(M × M)
orthogonal real matrix and[ Σ ] is a(N×M) real matrix which is written
in block form as

[ Σ ] =
[

Σ+ 0
]

, (26)

in which [ 0 ] is the(N× (M −N)) null matrix and[ Σ+] is the(N×N)
diagonal matrix of positive or null singular valuesσk such thatσ1 ≥
σ2 ≥ . . . ≥ σN ≥ 0. Letn be the integer such that1 ≤ n ≤ N such that

σ1 ≥ σ2 ≥ . . . ≥ σn > σn+1 = . . . = σN = 0 . (27)

Consequently, the rank of[B ] is equal ton and Eq. (25) yields the SVD
expansion

[B ] =

n∑

k=1

σk Uk VkT
, (28)

in which the vectorsUk andVk are the columns of[U ] and[V ] and such
that

<Uj , Uk >= δjk , <Vj , Vk >= δjk . (29)

The range of[B ] is spanned by{U1, . . . , UN} and its null space by
{Vn+1, . . . , VM}.

3.3.1 First Algebraic Stage of the Practical Construction of Solution.

En equation (24) has a unique solution if the null space of[B ]T is reduced
to {0} or equivalently, the dimension of the null space of[B ] is equal to
M−N , i.e. if one hasn = N in Eq. (27). Generally, we haven < N ,
which means that the linear constraint equations

[B ] q = 0 , (30)

are non independent and consequently, Eq. (24) does not havea unique
solution. In that case, the SVD of[B ] allows the construction of a unique
solutionq of Eq. (24) in the null space of[B ], i.e.

q =
M∑

k=n+1

ξk Vk . (31)

Using Eqs. (28) and (29), it can be seen thatq defined by Eq. (31)
satisfies Eq. (30). Using Eqs. (28) and (31), Eq. (24) yields

M∑

k=n+1

ξk [Z(ω) ] Vk +
n∑

k=1

σk ηk Vk = F , (32)

in which ηk =<Uk , p>, or equivalently,

M∑

k=n+1

ξk Vk +
n∑

k=1

σk ηk [Z(ω) ]−1 Vk = [Z(ω) ]−1
F . (33)

Equation (32) or (33) shows thatξk can be calculated in a unique way.

3.3.2 Second Algebraic Stage of the Practical Constructionof Solu-
tion.

First Procedure.
The projection of Eq. (33) on{V1, . . . , Vn} yields

[E(ω) ] y = e , (34)

in which [E(ω) ] is a (n× n) complex symmetric matrix such that
[E(ω) ]k′k =
< [Z(ω) ]−1Vk , Vk′

>, y = (y1, . . . , yn) is a vector inCn with yk =
σkηk ande = (e1, . . . , en) is a vector inCn such that

ek =< [Z(ω) ]−1F , Vk >. Then, the projection of Eq. (33) on the
remaining{Vn+1, . . . , VM} yields for allk in {n+1, . . . ,M},

ξk = −
n∑

k′=1

yk′ < [Z(ω) ]−1Vk′

, Vk > + < [Z(ω) ]−1
F , Vk > .

(35)
The corresponding algorithm is summarized below.

Step 0: calculating the SVD of[B ] in order to obtain its rankn and
V1, . . . , VM .

Then, for each realω,
Step 1: solving the linear equation of dimensionn with n+1 right-hand
side members{F ; V1, . . . , Vn}

[Z(ω) ] X0 = F ; [Z(ω) ] Xk = Vk , k ∈ {1, . . . , n} ; (36)

Step 2: constructing(n× n) complex symmetric matrix[E(ω) ] such
that [E(ω) ]k′k =<Xk , Vk′

> for k andk′ in {1, . . . , n};
Step 3: constructingCn-valued vectore such thatek =< X0 , Vk > for
k in {1, . . . , n};
Step 4: solving Eq. (34) which has a unique solutiony (by construction);
Step 5: calculatingξn+1, . . . , ξM such that for allk in {n+1, . . . ,M},

ξk = −
n∑

k′=1

yk′ <Xk′

, Vk > + <X0 , Vk > . (37)

Step 6: calculatingq by using Eq. (31).

Second Procedure.
The projection of Eq. (32) on{Vn+1, . . . , VM} yields

[G(ω) ]x = g , (38)

in whichx = (ξn+1, . . . , ξM ) is a vector inCM−n, g = (g1, . . . , gM−n)
is a vector inCM−n such thatgk =< F , Vk+n > and [G(ω) ] is a
((M− n) × (M−n)) complex symmetric matrix such that

[G(ω) ] = −ω2 [M̂ ] + iω [ D̂ ] + [ K̂ ] , (39)

where [M̂ ], [ D̂ ] and [ K̂ ] are ((M −n) × (M −n)) real symmetric
positive-definite matrices defined, for allk andk′ in {1, . . . ,M−n}, by

[M̂ ]k′k =< [M ] Vk+n , Vk′
+n > , (40)

[ D̂ ]k′k =< [D ] Vk+n , Vk′
+n > , (41)

[ K̂ ]k′k =< [K ] Vk+n , Vk′
+n > . (42)

The corresponding algorithm is summarized below.

Step 0: calculating the SVD of[B ] in order to obtain its rankn and
Vn+1, . . . , VM .

Then, for each realω,
Step 1: constructing((M−n)×(M−n)) complex symmetric matrix[G ]
such that
[G ]k′k =< [Z(ω) ] Vk+n , Vk′

+n > for k andk′ in {1, . . . ,M−n};
Step 2: constructingCM−n-valued vectorg such thatgk =<F , Vk+n >

, k ∈ {1, . . . ,M−n};
Step 3: solving Eq. (38) which has a unique solutionx (by construction);
Step 4: calculatingq by using Eq. (31).

Journal of Applied Mechanics 4 Ohayon, Sampaio, Soize



Comments on the two proposed procedures.
(1)- Due to the fact that we have to solve a reduced size problem N and
M are small.
(2)- In the first procedure, Step 1 is solved substructure by substructure
independently. For each substructureΩr, if the damping operator defined
by Eq. (5) is diagonalized by the free-interface modes of this substruc-
ture, Step 1 is straightforward. If not, we have to solve a small (Nr×Nr)
full complex symmetric system for each substructure. In Step 4, one
has to solve a linear system of dimensionn with a full (n× n) com-
plex symmetric matrix corresponding to the total number of independent
linear constraints existing in the global structure (assemblage of all the
substructures).
(3)- In the second procedure, Step1 is relative to the globalstructure
(assemblage of all the substructures) and Step 4 requires tosolve a full
complex symmetric linear system of dimensionM−n.
(4)- For example, if there areNS substructures (in this paperNS = 2)
and if the mean value of{Nr} on the set of substructures isNR =
1

NS

∑NS

r=1
Nr, the order of floating operations isNS × N3

R for the first
procedure with a damping matrix of each substructure which is not diag-
onalized by the free-interface modes of this substructure and,N3

S × N4
R

for the second procedure.

As a conclusion, the first procedure is recommended since it is more
efficient (particularly, if the damping matrix of each substructure is diag-
onalized by the free-interface modes of this substructure).

3.4 Practical Construction of the Eigenmodes of the Global Structure
Using a Reduced Spectral Problem and SVD

The conservative problem associated to Eq. (24) leads to thefollowing
spectral problem




K1 0 BT

1

0 K2 BT
2

B1 B2 0








q1

q2

p



 = ω2




M1 0 0
0 M2 0
0 0 0








q1

q2

p



 , (43)

in which the two matrices defined by blocks are real symmetricand
independent ofω. Using a global notation as done in Eq. (24), Eq. (43)
is rewritten as

[
K BT

B 0

] [
q
p

]
= ω2

[
M 0
0 0

] [
q
p

]
. (44)

For this problem, we must use the second procedure defined in Section
3.3.2 (in this case, the first procedure cannot be directly used since
[K] − ω2 [M] is not invertible for all real values ofω). Substituting Eq.
(31) in the first row of Eq. (44), projecting it on{Vn+1, . . . , VM} and
using Eq. (29), yield

[ K̂ ]x = ω2 [M̂ ]x , (45)

in which [M̂ ] and[ K̂ ] are defined by Eqs. (40) and (42).
The corresponding algorithm is summarized below.
Step 0: Calculating the SVD of[B ] in order to obtain its rankn and
Vn+1, . . . , VM .
Step 1: constructing((M−n)× (M−n)) real symmetric matrices[M̂ ]

and[ K̂ ];
Step 2: solving the generalized eigenvalue problem defined by Eq. (45);
Step 3: calculating the eigenmodesu = (u1, u2) of the structure by
using Eqs. (31) and (16).

4. Dynamic Substructuring Using the Fixed-
Interface Modes of Each Substructure
In this section, we present a modal reduction procedure based on formu-
lationP1 using SVD (see Section 2.3.2) starting from a reduced matrix
model for each substructureΩr.

4.1 Reduced Matrix Model of SubstructureΩr

4.1.1 Basic ur Variational Formulation for Substructure Ωr

Consider substructureΩr submitted to the external applied forcesg
Ωr

in
Ωr, g

Γr
onΓr andg

Γ
on the interaction surfaceΓ.

The basic variational formulation for substructureΩr is written as fol-
lows.
Basic problemPr

1 . For all realω in R and prescribedfr defined by Eq.
(7), findur in CΩr

such that, for allδur in CΩr
, one has

zr(ur, δur) =≪ fr , δur≫ + ≪ fΓ , δur ≫ , (46)

in whichzr is defined by Eq. (6) and where≪ fΓ , δur≫=
∫
Γ

g
Γ
·δur ds.

4.1.2 Fixed-Interface Modes of SubstructureΩr

A fixed-interface mode of a substructureΩr (for r=1 or r=2) is defined
as an eigenmode of the conservative problem associated withthe sub-
structureΩr, which is fixed onΓ. Since the problem is conservative and
defined in a bounded domain, all the quantities are real. Consequently,
we introduce the setR0

Ωr
defined by

R0
Ωr

=
{

δur ∈ RΩr

∣∣ δur = 0 on Γ
}

, (47)

in whichRΩr
is defined in Section 2.2. The real eigenvaluesω2 > 0 and

the eigenmodesur in R0
Ωr

are solution of the following spectral problem:
Findω2 > 0, ur ∈ R0

Ωr
(ur 6= 0) such that for allδur ∈ R0

Ωr
, one has

kr(ur, δur) = ω2 mr(ur, δur) , (48)

in which mr andkr are defined by Eqs. (3) and (4) respectively. It
can be shown that the eigenvalues constitute and increasingsequence
0 < (ωr

1)
2 ≤ (ωr

2)
2, . . .. The family{ur

1, ur
2, . . .} of the eigenvectors

associated with the eigenvalues, forms a complete set inR0
Ωr

. Forα and
β in {1, 2, . . .}, we have the orthogonality conditions similar to Eqs. (14)
and (15).

4.1.3 Introduction of the Elastostatic Lifting Operator Sr

We consider the solutionur
stat of the elastostatic problem of substructure

Ωr subjected to a prescribed displacement fieldur
|Γ on Γ. Let RΓ and

R
ur

|Γ

Ωr
be the sets of functions such that

RΓ = { x 7→ uΓ(x) , ∀ x ∈ Γ } , (49)

R
ur

|Γ

Ωr
=

{
ur ∈ RΩr

∣∣ ur = ur
|Γ on Γ

}
. (50)

The fieldur
stat satisfies the following variational formulation

kr(ur
stat, δur) = 0 , ur

stat∈ R
ur

|Γ

Ωr
, ∀ δur ∈ R0

Ωr
, (51)

whereR0
Ωr

is the spaceR
ur

|Γ

Ωr
obtained forur

|Γ = 0. The solutionur
stat of

Eq. (51) defines the linear operatorSr from RΓ intoRΩr
(called lifting

operator in mathematics), such that

ur
|Γ 7→ ur

stat = Sr(ur
|Γ) . (52)

We denote the range space of operatorSr asRΓ
Ωr

⊂ RΩr
such that

RΓ
Ωr

= Sr(RΓ). It should be noted that the discretization ofSr by the
finite element method is obtained by a classical static condensation pro-
cedure (sometimes called the Schur complement) of the stiffness matrix
of substructureΩr with respect to degrees of freedom onΓ.
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4.1.4 Conjugate Relationships Between urα and ur
stat

Takingδur = ur
α in Eq. (51), forur

stat satisfying Eq. (51) yields

kr(ur
stat, ur

α) = 0 . (53)

For a given mode(ωr
α, ur

α ∈ R0
Ωr

), the modal reaction forcesFr
α =

σr(ur
α) nr onΓ is defined by the variational property

kr(ur
α, δur) − (ωr

α)2 mr(ur
α, δur) =

∫

Γ

Fr
α · δur ds , ∀ δur ∈ RΩr

.

(54)
Using Eqs. (48) and (53), Eq. (54) yields

mr(ur
stat, ur

α) = −
1

(ωr
α)2

∫

Γ

Fr
α · ur

|Γ ds . (55)

Consequently, for all fieldur
|Γ in RΓ andur

α in R0
Ωr

, one has

kr(Sr(ur
|Γ) , ur

α) = 0 , (56)

mr(Sr(ur
|Γ) , ur

α) = −
1

(ωr
α)2

∫

Γ

Fr
α · ur

|Γ ds . (57)

4.1.5 Decomposition ofRΩr
and CΩr

Due to the fact that the trace ofur − ur
stat is zero onΓ, we have the

following decomposition

RΩr
= RΓ

Ωr
⊕R0

Ωr
, (58)

ur = Sr(ur
|Γ) +

∞∑

α=1

qr
α ur

α . (59)

Let CΓ
Ωr

andC0
Ωr

be the complexified vector spaces ofRΓ
Ωr

andR0
Ωr

respectively. One then has

CΩr
= CΓ

Ωr
⊕ C0

Ωr
, (60)

and Eq. (59) holds withur
|Γ being aC3-valued field andqr

α complex
numbers.

4.1.6 Construction of the Reduced Matrix Model

We introduce the subspaceC0,Nr

Ωr
of C0

Ωr
, of dimensionNr, spanned by

{ur
1, . . . , ur

Nr
} with Nr ≥ 1 and the subspaceCΓ,Nr

Ωr
of CΩr

such that

CΓ,Nr

Ωr
= CΓ

Ωr
⊕ C0,Nr

Ωr
. (61)

For allur andδur in CNr

Ωr
, one has

ur = Sr(ur
|Γ) +

Nr∑

α=1

qr
α ur

α , (62)

δur = Sr(δur
|Γ) +

Nr∑

α=1

δqr
α ur

α . (63)

We use the Ritz-Galerkin method related to spaceC0
Ωr

consisting in
substituting Eqs. (62) and (63) into Eq. (46). Using the conjugate
relations (56) and (57) and the orthogonality properties (14) and (15) for
fixed-interface modes, we obtain in abstract operator notation

[
Zr

Γ(ω) tAr(ω)
Ar(ω) [Zr(ω)]

] [
ur

Γ

qr

]
=

[
fΓ
Fr

]
, (64)

in which qr = (qr
1 , . . . , q

r
Nr

) is the vector of generalized coordinates
related to the fixed-interface modes,Fr = (F1, . . . ,FNr

) is the vector
whose components are given by Eq. (22) using the fixed-interface modes
andfΓ is defined in Section 4.1.1.
(1)- For all realω, linear operatorZr

Γ(ω) is defined by the following
sesquilinear form onCΓ

Ωr
× CΓ

Ωr

≪Zr
Γ(ω) ur

|Γ , δur
|Γ≫= zr(Sr(ur

|Γ) , Sr(δur
|Γ)) . (65)

From Eq. (6), we deduce the following abstract operator equation

Zr
Γ(ω) = −ω2 M r

Γ + iω Dr
Γ + Kr

Γ , (66)

in which the mass, damping and stiffness operatorsM r
Γ, Dr

Γ andKr
Γ are

defined by

≪M r
Γ ur

|Γ , δur
|Γ≫= mr(Sr(ur

|Γ) , Sr(δur
|Γ)) , (67)

≪Dr
Γ ur

|Γ , δur
|Γ≫= dr(Sr(ur

|Γ) , Sr(δur
|Γ)) , (68)

≪Kr
Γ ur

|Γ , δur
|Γ≫= kr(Sr(ur

|Γ) , Sr(δur
|Γ)) , (69)

wheremr, kr anddr are defined by Eqs. (3), (4) and (5), respectively.
It should be noted that these operators are related to surface Γ and cor-
respond to the static condensation onΓ of the mass, stiffness (Guyan,
1965) and damping operators using the elastostatic operator Sr defined
in Section 4.1.3.
(2)- For all realω, the(Nr× Nr) complex symmetric matrix[Zr(ω)] is
defined by Eq. (20) using the fixed-interface modes. It shouldbe noted
that if the damping operator defined by Eq. (5) is diagonalized by the
fixed-interface modes, matrix[Zr(ω)] is diagonal.
(3)- For all realω, the linear operatorAr(ω) is defined by the following
sesquilinear form onCΓ

Ωr
× CNr

≪A
r(ω) ur

|Γ , δqr ≫=

Nr∑

α=1

zr(Sr(ur
|Γ) , ur

α) δqr
α , (70)

in whichδqr = (δqr
1 , . . . , δqr

Nr
). From Eq. (6), we deduce the following

abstract operator equation

A
r(ω) = −ω2

A
r
m + iω A

r
d , (71)

in whichAr
m andAr

d are operators defined by

≪A
r
m ur

|Γ , δqr≫=

Nr∑

α=1

mr(Sr(ur
|Γ) , ur

α) δqr
α , (72)

≪A
r
d ur

|Γ , δqr≫=

Nr∑

α=1

dr(Sr(ur
|Γ) , ur

α) δqr
α , (73)

in which Eq. (56) has been used. The quantitiesmr(Sr(ur
|Γ) , ur

α) are
calculated using Eq. (57) anddr(Sr(ur

|Γ) , ur
α) using Eqs. (5), (51) and

(52). Finally, operatortAr(ω) is defined by the following sesquilinear
form onCNr × CΓ

Ωr
such that

≪ t
A

r(ω) qr , δur
|Γ≫=

Nr∑

α=1

qr
α zr(ur

α , Sr(δur
|Γ)) . (74)

In conclusion, the matrix (of operators) in the left-hand side of Eq. (64)
is called the "reduced matrix model" of substructureΩr relative to the
displacement fieldur

|Γ on Γ and theNr generalized coordinates (which
can be viewed as "internal generalized degrees of freedom"). We refer
to Morand and Ohayon (1995) for the particular case of an undamped
structure.
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4.2 Frequency Response Function and Eigenmodes Constructions
for the Global Structure Using the Mixed Variational Formul ation
and SVD

4.2.1 Modal Reduction of Mixed ProblemP1

The reduction ofP1 defined in Section 2.3.2 is obtained using the reduced
matrix model defined by Eq. (64) for each substructure. Recall that the
projection of Lagrange multiplierlmust be done on the subspaceWN

Γ of
CΓ ⊂ ΛΓ. A characterization ofWN

Γ requires the construction of a basis
of WN

Γ denoted by{w1, . . . , wN}. Consequently, for alll in WN
Γ , one

has Eq. (18). Substituting Eqs. (62),(63), (18) andδl =
∑N

γ=1
δpγ wγ

into Eq. (11), we obtain




Z1
Γ(ω) tA1(ω) 0 0 tB1

A1(ω) [Z1(ω)] 0 0 0
0 0 Z2

Γ(ω) tA2(ω) tB2

0 0 A2(ω) [Z2(ω)] 0
B1 0 B2 0 0







u1
Γ

q1

u2
Γ

q2

p


 =




0
F1

0
F2

0


 ,

(75)
in which we can recognize the reduced model of each substructure (see
Eq. (64)). Using Eq. (12), forr = 1, 2 andγ in {1, . . . , N}, operators
B1 andB2 are defined by

[Br]γ = b(wγ , ur
Γ) . (76)

4.2.2 Practical Construction of the Frequency Response Function
Using SVD

SinceB1 andB2 are independent ofω, Eq. (75) can be rewritten as

[
Z(ω) tB

B 0

] [
Q
p

]
=

[
F

0

]
, (77)

whereQ = (u1
Γ, q1, u2

Γ, q2). Equation (77) being similar to Eq. (24),
the practical construction is carried out as described in Section 3.3.

4.2.3 Practical Construction of the Eigenmodes Using SVD

The conservative problem associated to Eq. (75) leads to thefollowing
spectral problem




K1
Γ 0 0 0 tB1

0 [K1] 0 0 0
0 0 K2

Γ 0 tB2

0 0 0 [K2] 0
B1 0 B2 0 0







u1
Γ

q1

u2
Γ

q2

p




= ω2




M1
Γ

tA1
m 0 0 0

A1
m [M1] 0 0 0

0 0 M2
Γ

tA2
m 0

0 0 A2
m [M2] 0

0 0 0 0 0







u1
Γ

q1

u2
Γ

q2

p


 . (78)

Equation (78) is rewritten using the global notation introduced in Eq. (77)
and is then similar to Eq. (44). Consequently, we can use the method
presented in Section 3.4 for solving this spectral problem.

4.2.4 General comments

In the case of a finite element discretization with incompatible mesh on
Γ, the method presented in Section 4.3 (Eqs. (75) and (78)) is efficient
because, sinceB1 and B2 are independent ofω, the SVD is carried
out once and for all (even if the sizes of the matrices of the discretized
operatorsB1 andB2 are important).

5. Conclusion
Within a general continuum-based approach, we have presented two dy-
namic substructuring procedures by modal reduction methods in order
to calculate the frequency response function of linear damped struc-
tures and the eigenmodes of the associated conservative systems. The
free-interface and fixed-interface modes of each substructure are used
within a mixed variational formulation involving Lagrangemultiplier
fields defined on the coupling interfaces. Generally, the introduction of
a Lagrange multiplier field associated with kinematic linear constraints
induces some difficulties for the construction of the solution due to the
rank deficiency of the obtained linear system. In the presentpaper, the
Singular Value Decomposition (SVD) method is applied to thefrequency-
independent Lagrange multiplier terms. The use of SVD is particularly
efficient due to a relatively small number of degrees of freedom in the
reduced model and is used once. Therefore, the SVD appears asan
efficient and reliable tool for this problem.
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