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Abstract

This paper deals with the theoretical aspects concerniggtielastodynamic of damped continuum medium in the fremudomain. Eigenvalue
analysis and frequency response function are studied. Hileats discussed here use a dynamic substructuring approhe first method is based
on a mixed variational formulation in which Lagrange mulgps are introduced to impose the linear constraints orctiupling interfaces. A modal
reduction of each substructure is obtained using its fnéerfiace modes. A practical construction of a unique safuis carried out using the Singular
Value Decomposition (SVD) related only to the frequenayeipendent Lagrange multiplier terms. The second methothidas to the first one
replacing the free-interface modes by the fixed-interfaodes and elastostatic operator on the interface of eaclrsotuse.

1. Introduction

In this paper, we are interested in eigenvalue and frequesgyonse
function calculations of a linear dynamic three-dimenaiobounded
damped elastic structures subjected to prescribed foResall that the
frequency response functions allow deterministic andostaty random
analyses to be performed (Kree and Soize, 1986; Argyris aalhibk,

1991). More precisely, this paper is devoted to theoretisplects of
structure-structure coupling by dynamic substructuringthods using
modal reduction procedures. The proposed methodology eaapb
plied to general linear coupled systems such as fluid-streéteraction
problems (Morand and Ohayon, 1995; Soize, Desanti and DA9&P).

For linear structural vibrations, dynamic substructutiechniques based
on the use of the fixed-interface modes or free-interfaceanqdom-
pleted by static boundary functions, attachment modegjuakflexibil-
ity, etc.) of each substructure have been widely developete litter-
ature: for conservative structures see for example (Ha8g5; Craig
and Bampton, 1968; MacNeal, 1971; Rubin, 1975; Flashn&6;19lin,
Igusa and Achenbach, 1992; Farhat and Geradin, 1994) antfoped
structures (Klein and Dowell, 1974; Hale and Meirovitch8@9Leung,
1993; Farstad and Singh, 1995; Rook and Singh, 1995).

Some papers are based on a mixed formulation using a Lagnanige
plier in order to impose the linear constraints on the caougpinterfaces
(see Klein and Dowell, 1974; Min, Igusa and Achenbach, 1%%2stad
and Singh, 1995; Rook and Singh, 1995). Within the contextnite
element discretization of linear structural dynamic peoi$, Farhat and
Geradin (1994) have also introduced a Lagrange multipti¢ake into
account incompatible meshes on the interface (their aisalyslevoted
to undamped structures using a component mode method basedad
interface modes and static boundary functions).

Below, we present an original general approach for dampedtstes
using continuum-based variational formulations and R&terkin pro-
jection methods using free-interface modes and fixedfatermodes of
each substructure (in this paper we do not consider matheahaspects
of error estimates connected to the truncation of the moelés). For
this purpose, various rigorous algebraic decompositidnsdmissible
classes of the unknown fields are introduced and leads toadéiveear
dynamic substructuring methods, the continuity of theldisgment field
on the interface being imposed through the use of a Lagrandfipier
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field. As a consequence, the final system for the mixed fornamndas
a rank-deficiency in the matrix that describes the condsaibhis leads
to non-unigueness of the solution. In order to avoid thiialifty, a new
constructive approach is proposed consisting in using gufan Value
Decomposition (SVD) of the frequency-independent coirgtnaatrix

and chose a "least-square" solution that is in fact the isolaif the orig-
inal problem. Due to a relatively small number of degreesreédiom
in the reduced model, the use of SVD is particularly efficiedince the
problem under consideration is linear, SVD is used only or¢ense-
quently, the SVD appears as an efficient and reliable toobbeesthis

rank-deficiency problem. It should be noted that SVD has lsed for
undamped linear vibration analysis of plates using dynamixstructur-
ing by analytical methods (Jen, Johnson and Dubois, 1998)ud recall
that SVD has also been used in the area of the nonlinear dgabamal-
ysis of multibody systems with nonlinear constraints (8iagd Likins,

1985; Shabana , 1991; Schmidt andilir, 1993).

Now we give a short description of the content of each section
Section 2 deals with the displacement and mixed variatifmmadulations
for the coupled linear structure-structure problem, Lageamultiplier
field being introduced in the mixed problem.

In Section 3, we present a dynamic substructuring methodgutsie
free-interface modes of each linear substructure. The hredaction
procedure is carried out using a new explicit constructibthe La-
grange multiplier admissible space. Two practical comsions of the
frequency response function of the global linear dampeadtstre and
the eigenvalues of the associated conservative structarpeaformed
using SVD once on a part of the linear system to be solved, iyaome
the frequency-independent Lagrange multiplier terms.

Section 4 is devoted to a dynamic substructuring methodyubimclassi-
cal Craig and Bampton fixed-interface modes and boundatig §tac-
tions of each linear substructure, presented in an origjeaéral frame-
work allowing various other decomposition procedures tmbtined.
After having constructed the reduced matrix model of eatissucture,
we explain two procedures for the assemblage of the sulbstascand
the construction of a solution, (1) in a classical manner @)das in
Section 3 using Lagrange multiplier field and SVD.

Finally, in Section 5, some conclusions are presented.
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2. Displacement and Mixed Variational For-
mulations for the Coupled Structure-Structure
Problem

2.1 General Mechanical Hypotheses

In this section, the following hypotheses are introduced:

- One considers the linear vibrations of a three-dimensistracture
about a static equilibrium configuration which is considehere as a
natural state (for the sake of brevity, prestress are nosidered but
could be added without changing the theory).

- The structure is only submitted to prescribed externatder(no pre-
scribed displacement).

With the above hypotheses, there are two cases.

(1)- The first one, which is the only case considered in thigepacor-
responds to prescribed external forces which are in equilibat each
instant. Consequently, the displacement field of the atrads defined
up to an additive rigid body displacement field. In this case,are
only interested in the part of the displacement field due ¢osthuctural
deformation. We will see below how the rigid body displacetrféeld
can be disregarded.

(2)- The second case corresponds to prescribed extereakfarhich are
not in equilibrium at some instants. To solve this problene, method
consists in transforming this case to the first case by adufiraglditional
external force related to rigid body field. For the sake oftiyethis case
will not be considered in the present paper.

One presents a variational formulation of the problem (fieste), taking
into account an additional small structural damping basea dinear
viscoelastic model with an instantaneous memory. A frequedo-
main formulation is used, the convention for the Fouriengfarm being
U(w) = [ e"“*u(t) dt wherew denotes the circular frequenayw) is

a vector inC? andt(w) its conjugate R andC denote the set of real and
complex numbers respectively).

2.2 Notation for a Substructure(2,.

We consider a structure formed by substructures that wiltiéeoted
by an indexr. Let 2, be the 3D-bounded domain occupied at static
equilibrium by the substructure labelled by indexLet 92, =T, UT
with I, N T' = @ be the boundary of2,. (assumed to be smooth). The
boundany” will be theinteraction surfacevith another substructure. The
external prescribed volumetric and surface force fieldéieghjo 2. and

[;. are denoted by,, andg,. respectively. Let” = (uf, uj, u3) be the
displacement field at each poit= (x1, 22, x3) in cartesian coordinates.
The set of admissible displacement fields with value§fifresp. inR?)

is denoted by . (resp.Rg,.) and is used for dissipative problems (resp.
associated conservative problems). For substruiyrene denotes the
test function (weighted function) associated withaséu” € Cq,. (orin
Rq,) . The strain tensor is defined by

" 1, .
eij(U") = _(uf ; +uj,)

5 (1)

in which v ; denotes the partial derivative ofwith respect tar;. The
total stress tensor is defined by

(2)

whereo” is the elastic stress tensor definedddy(u”) = a;jxn exn(U")
andiw s” is the viscous part of the total stress tensor suchshat™) =

O =0" +iws"

bijkn €k (UT) (Using summation over repeated indices). The mechanicalwhereb(. )

coefficientsa, ;. andb;;x, are independent ab and verify the usual
properties of symmetry and positivity (see Marsden and tdagh983).
The mass density is denoted py. For the dissipative problem, three
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sesquilinear forms ofin,. x Cq, corresponding to the mass, stiffness and
damping operators of substructupg, are introduced as follows

mr(ur,(Sur):/ prut-surdx (3)

Q.

b ow) = [ of ) (W) dx )
Q.

0wy = [ st e () dx (5)
Q

It should be noted that the hermitian form™ is positive definite on
Cq, x Cq,. The hermitian forms:” andd” are semi-definite positive
(degenerated forms) since rigid body displacement fieldsbiowed in
the present case. The &}, of R3-valued rigid body displacement fields
(of dimension 6) is a subset 6f,,. Consequently, for abu” in Cq,.,
k" (u",éu™) andd"(u", 6u") are equal to zero for any” in Ry,
We then define the following sesquilinear foehonCq, x Cq,

2T(UT, 0U") = —w? m"(U", u”) +iw d”(U”, Su”)+ET(U”,6u”) . (6)
Finally, we defingd” by the relation
<<fr,W>>:/ gﬂr-WdX+/ g, o7 ds (1)
Q. Iy

2.3 Continuum-Based Variational Formulations for Two Coupled
Substructures2; and Q5

We consider a structure composed of two substructlreand 2, that
interact through a common bounddrythe extension to the case of more
than two substructures is straightforward). The notatiotr®duced in
Section 2.2 are used with=1 andr =2. The linear coupling conditions
onT are written as

(8)

(9)

1 2

ut=u* on I ,

2 12

1 .1
Ot = —oen” on IT' |

wheren” is the unit normal td", external ta)".
2.3.1 Basic(u!, u?) Variational Formulation P,

For all realw in R and prescribedf!,f2), find (u*,u?) in Cq, x Cq,
verifying the linear constraint* = u? onT, such that, for al(du?, ju?)
in Ca, x Cq, verifying the linear constraintu® = §u? onT, one has

ZH(ut, out) + 22 (u? 0u?) =<t dul>> + < f? du?> (10)
From the mathematical point of view (see Dautray and Lio882}, by
taking Sobolev spacH! (2", C?) as admissible spack,, , the existence
and uniqueness of a solutionBf, can be proved.

2.3.2 Mixed (ut, u?,X\) Variational Formulation 7,

This formulation consists in relaxing the linear consttqitefined by
Eqg. (8)) used inP, by the introduction of a Lagrange multiplier fie\d
defined orT". Let Ar be the admissible set of Lagrange multiplier fields
defined ol with values inC3.

Formulation P; . Forallreats in R and prescribe¢f!, f2), find (u!, u?)

in Ca, x Cq, andX in Ar such that, for al{éu, §u?) in Cq, x Cq, and
for all X in Ar, one has

2 (Ut subt)+22 (U2, 6u?)+b(\, ut —6u?)4+b(0N, ul —u?) =<1, dul > + <1

(11)
is defined by
b\, u") = / \-U"ds (12)
JI
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Space of Traces orl". The set of the traces related to the boundary
is denoted byCr. Therefore, ifu” € Cq,, then the trace ofi” on T is
denoted byu""F and belongs t@r. In Eq. (11),Ar is the dual space of
Cr.

Remark. From the mathematical point of view (see Dautray and Li-
ons, 1992), by taking’q, = H'(Q",C?)), Cr = HY*(T,C?) and
Ar = H~-Y*(I',C?), the existence and uniqueness of a solution of
formulation?; can be proved using the so called LBB condition related
to the sesquilinear form (see Brezzi and Fortin, 1991). It should be
noted thatd '/2(T", C?) is dense ini —1/2(T", C?).

3. Dynamic Substructuring Using the Free-Inter-
face Modes of Each Substructure

The method is based on the use of the mixed variational fation
defined byP;. Then, a modal reduction is carried out using the Ritz-
Galerkin projection on the free-interface modes of eactssubture.
Finally, the Singular Value Decomposition (SVD) is used tioe con-
struction of the solution.

3.1 Free-Interface Modes of a Substructure?,.

Afree-interface mode of a substructte (for r=1 orr=2) is defined as an
eigenmode of the conservative problem associated withubstsicture
,., subject to zero forces on. The real eigenvalues? > 0 and the
eigenmodesl” in R, are solutions of the following spectral problem:
findw? > 0, U™ € Rgq, (U™ # 0) such that for albu” € Rq,, one has

ET (U, 6uT) = w?m"(u", 6u") (13)
It can be shown that there exist six zero eigenvallies (w”;)? =
(wh)? (associated with the rigid body displacement fields) and
that the strictly positive eigenvalues (associated with displacement
field due to structural deformation) constitute the inciegsequence
0 < (wy)? < (wh)?,.... The six eigenvectorfu” 5, ..., us} associated
with zero eigenvalues spaRig (space of the rigid body displacement
fields). The family{u” 5, ..., ug;u7,...} of all the eigenvectors forms
a complete setifRq,. Foraandg3in {-5,...,0;1,...}, we have the
orthogonality conditions

m" (Ug, Uj) = Gagp i, (14)

kr(ugv Ub) = 6aﬁ :ug ng ) (15)

in which p7, > 0 is the generalized mass of modedepending on the
normalization of the eigenmodes.

3.2 Modal Reduction of P;
We introduce the subspaﬂé\{:j of Cq,, of dimensionN,., spanned by
{ur,...,u} }with N, > 1. For allu” in C}", one has

N,

ut=>" gl

a=1

(16)

inwhichg,, are complex-valued generalized coordinates. Concerhang t
trace of the displacement field (including rigid body digglment field)
onT, the subspace spanned by the farﬁilgzg)‘r, - UG s UL s - - .}is
acomplete setidr (for the two domaing =1 andr =2). Consequently,
the family {uf r., ...} forms a complete set of the displacement field on
T due only to the structural deformation. L&} be the subspace 6§
spanned by the finite familuy ., . . ., uyv,»uﬂ}' LetW? be the subspace

of Cr of finite dimensionV < N; + N, defined by
Wi =chvuch- (17)
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The present approach is based on the fact thatdamy Ar can be
expanded on a complete orthonormal setjnand consequently, the
projection of the Lagrange multipliex is done on the subspad&/®’

of Cr C Ar. A characterization oWV requires the construction of a
basis of)/\/éV denoted by{w,...,wx}. One possible method consists
in extracting an independent system &f functions from the family

{uhr,...,u}vl‘r,uflr,...,uﬁzlr}. Consequently, for al\ in W,
one has
N
A= Z Dy Wy (18)
y=1

The Reduced ProblenPi®d. We use the Ritz-Galerkin method consist-
ing in substituting Egs. (16) and (18)into Eq. (11). Usingdinthogonal-
ity conditions defined by Egs. (14) and (15) and introduchmgectors
of generalized coordinateg = (¢f,...,qy,), 9> = (¢f,....4¢%,) and

p = (p1,...,pn), one deduces the following finite-dimension reduced
problem fromP;
Zlw) o Bl [d F!
0 2w BI||a®|=|F| ., (19)
By By 0 P 0

in which, for all realw and forr =1 andr =2, [Z"(w)] is an (N, x
N,) complex symmetric matrix,B,] a (N x N,) real matrix which is
independent ab andF" aC"--valued vector. MatrixZ” (w)] is defined
by

[27(w)] = —w? M| +iw[ D]+ [KT] (20)

where[M"] and [ "] are diagonal positive-definite matrices such that
(Mop = U5 Sap @aNd[K"as = il wh? Sag, (D] is a full symmetric
positive-definite matrix, such thaD"],s = d"(uj, uy,). Consequently,
for all realw, matrix [Z2"(w)] is invertible. Matrix[B,] is such that for
alain{l,...,N,}andyin {1,..., N}, one has

[Br]va = b(W’Yv ug) (21)
Finally, vectorF" is such that, for altvin {1,..., N,.}, one has
Fl=<f 0> (22)

3.3 Practical Construction of the Frequency Response Funicin of
the Global Structure Using Reduced ProblenP}®® and SVD

First, we introduce théN x M) real matrix[ B ] such that

M=N+Ny , [B]=[B B] (23)
and write Eq. (19) as
FadiHe o

In order to solve Eq. (24), we use a Singular Value Decomjoosit
(SVD) of [ B]. Itis know that there exist algorithms (see Golub and Van
Loan, 1989) which are very efficient for the construction lné SVD

of reasonable size matrices. This is the case for the reducddems
obtained by modal projection as Eq. (24). In the proposedcau,

it should be noted that SVD will only be applied to the subima}i3 |

in Eq. (24). The SVD of N x M) real matrix[ 5] with M > N (see
Section 3.2) consists in constructing the following decogifon

(B]=W][=1V]T (25)
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where[U] is an(N x N) orthogonal real matrix[V'] is an (M x M)
orthogonal real matrix anid ] is a(N x M) real matrix which is written
in block form as

[2]=[=* o] , (26)

inwhich[0] is the(N x (M — N)) null matrix and[ 1] is the(N x N)
diagonal matrix of positive or null singular valueg such thato; >
oo > ... > oy > 0. Letn be the integer such that< n < N such that

01>209>...20,>0p41=...=0n =0 (27)
Consequently, the rank 63 ] is equal ton and Eq. (25) yields the SVD
expansion

(B] = i op UF VAT (28)
k=1

in which the vectorg)* andV* are the columns d{/ ] and[V' ] and such
that _
< Ur>=4;

<VI VE>=5, (29)

The range of B3] is spanned by{U',... UV} and its null space by
{yntl VMY,

3.3.1 First Algebraic Stage of the Practical Construction 6Solution.

En equation (24) has a unique solution if the null spaddsdf’ is reduced
to {0} or equivalently, the dimension of the null space Bf| is equal to
M—N, i.e. ifone hass = N in Eq. (27). Generally, we have < N,
which means that the linear constraint equations
[Bla=0 (30)

are non independent and consequently, Eq. (24) does noghawviglue
solution. Inthat case, the SVD pB | allows the construction of a unique
solutiong of Eq. (24) in the null space ¢#3], i.e.

M

q= Y &V*

k=n+1

(31)
Using Egs. (28) and (29), it can be seen thatefined by Eq. (31)
satisfies Eq. (30). Using Egs. (28) and (31), Eq. (24) yields

n

M
Yo GIZ@IVEAY o VE=F

(32)
k=n+1 k=1
in whichn, =<UF, p>, or equivalently,
M n
YooaVEEY o [ZW)]TIVE=[ZW)] T FE L (33)
k=n+1 k=1

Equation (32) or (33) shows thgt can be calculated in a unique way.

3.3.2 Second Algebraic Stage of the Practical Constructioof Solu-
tion.

First Procedure.
The projection of Eq. (33) ofiV!,...,V"} yields

[Ew)]y=e , (34)

in which [E(w)] is a (n x n) complex symmetric matrix such that
[E(W) ]rk ) =

<[ZW)]7WVF VF >y = (y1,...,yn) is a vector inC™ with y;, =
orn, ande = (eq, ..., ey) is a vector inC™ such that
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er, =< [Z(w)]"'F,V* >. Then, the projection of Eq. (33) on the
remaining{V"*!,... VM1 yields for allk in {n+1,..., M},

Ge=—Y y <[2w)] V¥ VF> 4 <[Z(w)] ' F,VE>
k=1
(35)

The corresponding algorithm is summarized below.
Step Q calculating the SVD of B] in order to obtain its rank and
Vi .. VM,
Then, for each reab,
Step 1 solving the linear equation of dimensiarwith n+1 right-hand
side membergF; V1L, ... V"}

[ZW) X =F ; [Z(w)]Xk=VE ke{l,...,n} ; (36)
Step 2 constructing(n x n) complex symmetric matriX£(w) ] such
that[ E(w) Jpx =<X*,V¥ > for kandk’in {1,...,n};

Step 3 constructingC™-valued vectoee such thak, =< X%, V* > for
kin{l,...,n};

Step 4 solving Eqg. (34) which has a unique solutipby construction);
Step 5 calculatingé,,+1, - - ., &y such that for alk in {n+1,..., M},

& ==Yy <X VE> 4 <ox? VvE>

(37)
k=1
Step 6 calculatingg by using Eq. (31).
Second Procedure.
The projection of Eq. (32) ofvV"™*+!, ..., VM} yields
[Gw)]E=g ., (38)
inwhichg = (&,41,...,&um) isavector inCM =", 9= (g1,...,9M—n)

is a vector inCM~" such thatg, =< F,V*" > and[G(w)] is a
((M—mn) x (M—n)) complex symmetric matrix such that
[Gw)] = ~w* [M]+iw[D] +[K] | (39)

where[ﬁ/l\], [D] and [K] are (M —n) x (M —n)) real symmetric
positive-definite matrices defined, for &land%’ in {1,..., M —n}, by

[ M =<[M]VETn VE (40)
[D]pr =<[D]VF" VFrs (41)
[Kwe =< [V VF7rs (42)

The corresponding algorithm is summarized below.

Step Q calculating the SVD of B] in order to obtain its rank and
vntl VM,

Then, for each real,

Step 1 constructing (M—n) x (M—n)) complex symmetric matrikG |
such that

[Glee =<[Z(w)]VFt™ VK415 for kandk in {1,..., M—n};
Step 2 constructingC™ ~"-valued vectog such thay, =< F,VFtn >
Jke{l,...,M—n};

Step 3 solving Eq. (38) which has a unique soluti®iby construction);
Step 4 calculatingqg by using Eq. (31).

4 Ohayon, Sampaio, Soize



Comments on the two proposed procedures.

(1)- Due to the fact that we have to solve a reduced size probleand
M are small.

(2)- In the first procedure, Step 1 is solved substructureutngtsucture
independently. For each substructfg if the damping operator defined
by Eq. (5) is diagonalized by the free-interface modes o shibstruc-
ture, Step 1 is straightforward. If not, we have to solve alk(§,. x N,.)
full complex symmetric system for each substructure. ImpSteone
has to solve a linear system of dimensierwith a full (n x n) com-
plex symmetric matrix corresponding to the total numbendependent
linear constraints existing in the global structure (addage of all the
substructures).

(3)- In the second procedure, Stepl is relative to the glstralcture
(assemblage of all the substructures) and Step 4 requirssite a full
complex symmetric linear system of dimensibf—n.

(4)- For example, if there ar®s substructures (in this papéfs = 2)
and if the mean value of N,.} on the set of substructures ¥z =
NLS Zf,vjl N,., the order of floating operations /s x N3 for the first
procedure with a damping matrix of each substructure whictot diag-
onalized by the free-interface modes of this substructoce &% x N
for the second procedure.

As a conclusion, the first procedure is recommended since ritdre
efficient (particularly, if the damping matrix of each substure is diag-
onalized by the free-interface modes of this substructure)

3.4 Practical Construction of the Eigenmodes of the GlobaltBucture
Using a Reduced Spectral Problem and SVD

The conservative problem associated to Eq. (24) leads tfoHosving
spectral problem

Kt o0 BT [q! ML o0 0] ot
0 K2 BY{|g*|=w?| 0 M2 0| |q®| , (43
By By 0 P 0 0 0 9]

in which the two matrices defined by blocks are real symmetnd
independent ofo. Using a global notation as done in Eq. (24), Eq. (43)
is rewritten as

K BT [q] _ »[M 0]]q
ERdIH R kil
For this problem, we must use the second procedure defineecting
3.3.2 (in this case, the first procedure cannot be directdusince
[K] — w? [M] is not invertible for all real values of). Substituting Eq.
(31) in the first row of Eq. (44), projecting it ofv™*!,... ., VM} and
using Eq. (29), yield

(44)

[K]e=w?[M]E (45)
in which [/\7} and[l%} are defined by Egs. (40) and (42).

The corresponding algorithm is summarized below.

Step 0 Calculating the SVD of B] in order to obtain its rank and
vl VM,

Step I constructing (M—n) x (M—n)) real symmetric matrice[sﬂ}
and[K];

Step 2 solving the generalized eigenvalue problem defined by &s); (
Step 3 calculating the eigenmodas = (u!,u?) of the structure by
using Egs. (31) and (16).

4. Dynamic Substructuring Using the Fixed-
Interface Modes of Each Substructure

In this section, we present a modal reduction proceduredb@séormu-

4.1 Reduced Matrix Model of Substructuref?,.

4.1.1 Basic (i Variational Formulation for Substructure €,
Consider substructui®,. submitted to the external applied forags in
., g, onI', andg. on the interaction surfade.

The basic variational formulation for substructiipe is written as fol-
lows.

Basic problemP7. For all realw in R and prescribedi” defined by Eg.
(7), findu” in Cq, such that, for albu” in Cq,., one has

2N(U",6U") =<7 SuT > 4 < frLoum> (46)

inwhichz" is defined by Eq. (6) and where fr, ou” >= [ g,.-6u” ds.

4.1.2 Fixed-Interface Modes of Substructure,.

A fixed-interface mode of a substructurg (for r=1 or r=2) is defined
as an eigenmode of the conservative problem associatedtvetbub-
structuref),., which is fixed onl". Since the problem is conservative and
defined in a bounded domain, all the quantities are real. €prently,
we introduce the seR{, defined by

Ry, ={du"€Rq, | 6u"=0 on T} (47)
in whichRg, is defined in Section 2.2. The real eigenvalués> 0 and
the eigenmodes” in R?lr are solution of the following spectral problem:
Findw? > 0,u” € R, (u” # 0) such that for albu” € RY, , one has

ET(u",6um) = w?m"(u", 6u") (48)

in which m™ and k" are defined by Egs. (3) and (4) respectively. It
can be shown that the eigenvalues constitute and increasiugence
0 < (wh)? < (wh)?,.... The family {uf,us,...} of the eigenvectors
associated with the eigenvalues, forms a complete §é?zi1_n Fora and
gin{1,2,...}, we have the orthogonality conditions similar to Egs. (14)
and (15).

4.1.3 Introduction of the Elastostatic Lifting Operator S”

We consider the solutionZ,; of the elastostatic problem of substructure
Q.. subjected to a prescribed displacement flqlid onT. LetRr and

R;‘F be the sets of functions such that

Rr={x—up(x) , Vxel} |, (49)
Rel = {ur €Rq, | u =up on F} (50)

The fieldug, satisfies the following variational formulation
k" (Ugiap 0U™) =0 Ugtat € Rlsjz‘: Vou" e Ry, (51)

whereRY, is the spacé%?z‘f obtained fouu’,. = 0. The solutionuZ,, of
Eg. (51) defines the linear operat®t from Rr into Rq,. (called lifting
operator in mathematics), such that

Ujp = Ugie = 5" (U]p) (52)
We denote the range space of opera%rasR{lr C Rq, such that

R, = S"(Rr). Itshould be noted that the discretizationf by the
finite element method is obtained by a classical static cosatén pro-

lation P, using SVD (see Section 2.3.2) starting from a reduced matrix cedure (sometimes called the Schur complement) of theasi$f matrix

model for each substructufe..
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4.1.4 Conjugate Relationships Betweenuand ug,,
Takingdu™ = ul, in Eq. (51), forug,, satisfying Eq. (51) yields

k" (Ugiap UG) = 0 (53)

For a given modgw},,u;, € RY, ), the modal reaction forces;, =

o"(uL,)n" onT is defined by the variational property

kT (U”, 0um) — (wh)2 m" (Ur, 0u”) = / F" . ou”ds, Vou" € Ra,

a
T

(54)
Using Egs. (48) and (53), Eq. (54) yields
" (Ugtap UL) = L / Fr.uh.d (55)
m stab Yo/ T (WZ)Q.F a r $
Consequently, for all fieldqF in Rr andu, in R?l one has
k"(S"(ufp),ug) =0 (56)
"(S"(up) ur)f——1 /FT und (57)
R N AL S

4.1.5 Decomposition ofRq, and Cq,

Due to the fact that the trace of — ug,, is zero onI', we have the
following decomposition

Ra, =R, @RS, (58)
u" = S"(up) + Z o Ug, (59)

a=1

Let C;, andC{ be the complexified vector spaces®f, andR{,
respectively. One then has

Ca, =Co, ®Co, (60)

and Eq. (59) holds withui. being aC3-valued field and’, complex
numbers.

4.1.6 Construction of the Reduced Matrix Model
We introduce the subspacg™" of €3 , of dimensionX,., spanned by
{uf,...,uy, } with N, > 1 and the subspad®, ™" of Cq, such that

e =ch, e (61)
For allu™ andéu” in C(NZ;‘, one has

N,
un=ST(UR) + > qhun (62)

a=1

N,
su” = S™(Sufp) + Y dqur, (63)

a=1

We use the Ritz-Galerkin method related to spé@g consisting in
substituting Egs. (62) and (63) into Eq. (46). Using the agaje
relations (56) and (57) and the orthogonality propertied éhd (15) for
fixed-interface modes, we obtain in abstract operator inotat

salld]-[#]
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Zp(w)

in whichq" = (¢f,...,qy,) is the vector of generalized coordinates
related to the fixed-interface modeB; = (F,...,Fn,) is the vector
whose components are given by Eq. (22) using the fixed-atenfnodes
andfr is defined in Section 4.1.1.

(1)- For all realw, linear operatoZ}.(w) is defined by the following
sesquilinear form oﬁ’gr X cgr,

CZ(w) Uy, OUT = 27 (S7(ufy) , ST (3ufy)) (65)

From Eq. (6), we deduce the following abstract operator tgua
Zi(w) = —w? M} +iwDf + KE (66)

in which the mass, damping and stiffness operalibfs D}. andK]. are
defined by

CM U, SUT = (S7(Uy), S™(BuT) . (67)
<D Uy, 3T = d' (87 (ufp) , S (8U7y)) (68)
CKE U 0UT = K7(S7(U), S™(0uf)) . (69)

wherem”, k" andd” are defined by Eqgs. (3), (4) and (5), respectively.
It should be noted that these operators are related to surfand cor-
respond to the static condensation Iorof the mass, stiffness (Guyan,
1965) and damping operators using the elastostatic opesatdefined
in Section 4.1.3.

(2)- For all reakw, the (N, x N,.) complex symmetric matrix2” (w)] is
defined by Eq. (20) using the fixed-interface modes. It shbeldoted
that if the damping operator defined by Eq. (5) is diagondlizg the
fixed-interface modes, matr2” (w)] is diagonal.

(3)- For all reakw, the linear operatad” (w) is defined by the following
sesquilinear form oﬁ’gr x CNr

N,
A (W)Ul 607 >= Y 2" (S (ufp)  Un) da

a=1

(70)

inwhichdéq” = (0q7, ..., dqy, ). FromEq. (6), we deduce the following
abstract operator equation

A (w)=-w? Al +iw Al (71)
in which A7, and.A7; are operators defined by
R N- R
<A Ulp, 097 >= Z m"(S"(U[p),ug) og (72)
a=1
N,
CAGUL, Q7 >= Y d7(S"(Ulp)  up) dgs (73)

a=1
in which Eq. (56) has been used. The quantitiegS"(ujr),u;) are
calculated using Eq. (57) anﬂ(ST(ulrF) ,ur) using Egs. (5), (51) and
(52). Finally, operatotd”(w) is defined by the following sesquilinear
form onCr x Cf, such that

N,
<W (W) g7, du>= > g; 27(ug, ST (8ulr))

a=1

(74)

In conclusion, the matrix (of operators) in the left-handiesof Eq. (64)
is called the "reduced matrix model" of substructéxerelative to the
displacement fielaij‘rF onT and theN,. generalized coordinates (which
can be viewed as "internal generalized degrees of freedow®) refer
to Morand and Ohayon (1995) for the particular case of an npdal
structure.
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4.2 Frequency Response Function and Eigenmodes Construmtis
for the Global Structure Using the Mixed Variational Formul ation
and SVD

4.2.1 Modal Reduction of Mixed ProblemP;

The reduction of?; defined in Section 2.3.2 is obtained using the reduced
matrix model defined by Eq. (64) for each substructure. Réual the
projection of Lagrange multipliéc must be done on the subspas#®’ of

Cr C Ar. A characterization oT/VfV requires the construction of a basis
of WY denoted by{wy, ..., wy}. Consequently, for ak in W}, one
has Eq. (18). Substituting Eqgs. (62),(63), (18) ahd= ZL Op W,

into Eq. (11), we obtain

Z}(w) AN (w) 0 0 B u} 0

Al(w) [Z2Yw))] 0 0 0 q! F!
0 0 Z% (W) U%(w) !By u% =10
0 0 A%(w) [2%2w)] O q? F2
Bi 0 B> 0 0 P 0

(75)
in which we can recognize the reduced model of each substeutsee
Eqg. (64)). Using Eq. (12), for=1,2 and~y in {1,..., N}, operators
B, andB; are defined by

(B, ], = b(wy, ur) (76)

4.2.2 Practical Construction of the Frequency Response Fuation
Using SVD

SinceB; andB, are independent e, Eq. (75) can be rewritten as

% Tl

B
whereQ = (uk,q',u?, g?). Equation (77) being similar to Eq. (24),
the practical construction is carried out as described oti&®3.3.

‘B
0

F
0

Q

; )

4.2.3 Practical Construction of the Eigenmodes Using SVD

The conservative problem associated to Eq. (75) leads ttoHosving
spectral problem

KL 0 0 0 !'By7ub
0 [K'1 o 0 0 q
0 0 Ki& 0 Byl |ud
0O 0 0 K7 o q?
B, 0 B> 0 0 o]
ML AL 0 0 07 rub
A, MT 0 0 of|d
=w?| 0 0 ME 2 0] |ui (78)
0 0 A% [M? 0] |¢?
0 0 0 0o ollp

Equation (78) is rewritten using the global notation introeld in Eq. (77)
and is then similar to Eq. (44). Consequently, we can use #thad
presented in Section 3.4 for solving this spectral problem.

4.2.4 General comments

In the case of a finite element discretization with incontgatmesh on
T', the method presented in Section 4.3 (Eqgs. (75) and (78]Jjicseat

because, sinc#8; and B, are independent af, the SVD is carried
out once and for all (even if the sizes of the matrices of tiserdtized
operatord3; andB; are important).
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5. Conclusion

Within a general continuum-based approach, we have pexséntd dy-
namic substructuring procedures by modal reduction metlarder
to calculate the frequency response function of linear daingtruc-
tures and the eigenmodes of the associated conservatiiasys The
free-interface and fixed-interface modes of each substreicre used
within a mixed variational formulation involving Lagrangeultiplier
fields defined on the coupling interfaces. Generally, theéhiction of
a Lagrange multiplier field associated with kinematic lineanstraints
induces some difficulties for the construction of the solutdue to the
rank deficiency of the obtained linear system. In the prepapér, the
Singular Value Decomposition (SVD) method is applied tdthguency-
independent Lagrange multiplier terms. The use of SVD isqdarly
efficient due to a relatively small number of degrees of foeedn the
reduced model and is used once. Therefore, the SVD appeans as
efficient and reliable tool for this problem.
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