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DYNAMICAL SYSTEMS USING A STOCHASTIC LINEARIZATION METHOD

WITH RANDOM COEFFICIENTS

by

C. Soize and O. Le Fur
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ABSTRACT

It is known that an efficient approach for modal identification of a weakly nonlinear multidimensional
second-order dynamical system consists in using a model based on equivalent stochastic linearization
with constant coefficients. Such a model leads to a good identification of the total power of the
stationary response but can give an incorrect identification of the matrix-valued spectral density
functions. The objective of this paper is to present an identification procedure which is based on the
use of a stochastic linearization method with random coefficients. The model is then defined as a
multidimensional linear second-order dynamical system with random coefficients. An optimization
procedure is developed to identify the parameters of the probability law of the random coefficients.
The identification procedure is described step by step. Finally, an example is presented and shows the
interest of the method proposed.

1. INTRODUCTION

This paper deals with modal identification of weakly nonlinear multidimensional second-order dy-
namical systems. In the case of linear dynamical behavior, the modal identification methods are well
developed due to the use of the linear vibration theory of structures. For general nonlinear dynamical
systems, some different strategies exist to identify such systems by nonlinear models (for instance,
nonlinear ARMAX or Volterra series). The present paper concerns the weakly nonlinear case for
which, the unique objective is the identification of a given nonlinear multidimensional dynamical
system by an infinite family of linear multidimensional dynamical systems, this family being spanned
by a second-order dynamical system with random operators. The eigenfrequencies and associated
eigenmodes are then deduced from the linearized representation which is identified (consequently, the
eigenfrequencies are random variables). Using broad-bandstationary random excitation and constant
coefficients of the model yields the classical Stochastic Linearization Method with Constant Coeffi-
cients (SLMCC). The SLMCC was introduced by Caughey in 1963 [1] within the context of prediction
methods. Many developments have been proposed in this area since this date and an excellent synopsis
was made by Roberts and Spanos in 1990 [2]. In the field of identification procedures, it should be
noted that difficulties arise due to the presence of the mass matrix which is unknown and which
must be identified. Fill̂atre [3] developed a method for identifying such an equivalent linear model
in which mass, damping and stiffness matrices are constant and unknown. His approach is based
on an extension of Kozin’s works [4,5] and can be considered as a method based on the SLMCC.
Generally speaking, it is known that the SLMCC yields a very good approximation of the second-order
statistical moments of the stationary response of second-order dynamical systems. Consequently, an
identification method based on such a procedure yields an equivalent linear dynamical system which
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can restitute the second-order moments. Unfortunately, insome cases, although the second-order
moments are correctly estimated, the matrix-valued spectral density function of the response may
be erroneous. This difficulty was first shown by Miles for a one-dimensional nonlinear dynamical
system[6]. For such nonlinear dynamical systems, methods were proposed to calculate the power
spectral density function of the stationary response without using Monte Carlo numerical simulation
(Miles [6], Bouc [7,8] and Soize [9,10]). The matrix-valuedspectral density function can generally
not be calculated explicitly for multidimensional nonlinear dynamical systems, except for particular
cases related to linear dynamical systems with random parametric excitations (see for instance Soize
[11]). Recently, Bellizzi and Bouc [12] proposed an interesting method for multidimensional systems
in the context of prediction methods.
The Stochastic Linearization Method with Random Coefficients (SLMRC) [9,10] is adapted to identi-
fication procedures and allows the identification to be improved with respect to the classical SLMCC.
This fact was recently proved by Soize [13] for one-degree-of-freedom nonlinear second-order dy-
namical systems. This method, based on a linear dynamical model with random coefficients, has just
been extended by Le Fur [14] for the identification of weakly nonlinear multidimensional second-order
dynamical systems.
The purpose of this paper is to present a new approach for identifying weakly nonlinear multidimen-
sional second-order dynamical systems based on the identification of a linear model with random
coefficients. In order to improve the clarity of the paper, wehave limited the presentation of the theory
to the case of stiffness nonlinearities. This theory can be extented to the case of damping and stiffness
nonlinearities as it is shown in Soize [10]. Nevertheless, the validation for the multidimensional case
has been performed for stiffness nonlinearities. Below we present

- a multidimensional stochastic linear model with random coefficients which allows a set of parametric
probabilities to be defined.

- a method for identifying the model parameters using a minimization criterion for the difference between
the matrix-valued spectral density functions of the model responses and measured responses (so called
reference responses or experimental responses). The modelparameter identification problem leads us
to solve an optimization problem.

- an appropriate numerical method to solve the optimizationproblem introduced above (which is not
standard).

- an example which validates the method proposed.

2. CONSTRUCTION OF A STOCHASTIC DIFFERENTIAL EQUATION
WITH RANDOM COEFFICIENTS

We consider a weakly nonlinear dynamical system of dimension n ≥ 1 subjected to an external
random excitation. This dynamical system is written as the following stochastic differential equation

[M ]Ẍ (t) + [C]Ẋ (t) + [K]X (t) + εf
(

X (t)
)

= F(t) , (1)

in which matrices[M ], [C ] and [K ] are positive definite; functionf from Rn into Rn is odd,
continuous and nonlinear; excitation forceF is a Gaussian, second-order, centered, stationary, mean-
square continuous stochastic process indexed byR with values inRn. The matrix-valued spectral
density function of processF is written as

[SF(ω)] = s(ω)[B ] , (2)

where[B ] is a positive matrix ands is a positive-valued function defined onR having the required
properties such that processF is physically realizable and approaches an ideal normalized narrow-band
noise.
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Within the context of an identification problem, it is assumed that stochastic differential equation (1)
has a unique stationary, second-order, centered stochastic solutionX having a matrix-valued spectral
density function[SX ]. Furthermore, function[SX ] is assumed to be square integrable onR.

Applying the identification procedure developed by Fillâtre [3] (based on a stochastic linearization
method with constant coefficients) yields the following linear stochastic differential equation onRn

[M c] Ẍ(t) + [Cc] Ẋ(t) + [Kc] X(t) = F(t) , (3)

in which F is the stochastic process used in Eq. (1) and matrices[M c], [Cc] and[Kc] result from the
identification procedure and are positive definite.

We introduce the eigenmodes� ∈ Rn and the associated eigenfrequenciesω of the conservative
problem associated with Eq. (3), which are the solutions of the generalized eigenvalue problem
[Kc]� = ω2 [M c]�. Let [Φ] be the(n× n) real matrix of the eigenmodes such that[Φ]jk = {�

k
}j .

We introduce modal coordinatesQ such thatX = [Φ] Q. Substituting this change of coordinates in
Eq. (3) yields

[Mg] Q̈(t) + [Cg] Q̇(t) + [Kg] Q(t) = [Φ]T F(t) , (4)

where[Mg] = [Φ]T [M c] [Φ] , [Cg] = [Φ]T [Cc] [Φ] and [Kg] = [Mg] [Ω
2] = [Φ]T [Kc] [Φ] are

(n×n) real positive-definite matrices. Matrices[Mg], [Kg] and[Ω2] are diagonal and[Cg] is a dense
matrix in the general case.

We associate with Eq. (4) the following stochastic differential equation with random coefficients

[Mg] Ÿ(t) + [Cg] Ẏ(t) + [Kg]
(

[ I ] + [Λ]
)

Y(t) = [Φ]T F(t) , (5)

where[Λ] is a random variable with values in the(n× n) real diagonal matrices. We introduce the
vectorL = (Λ1, . . . ,Λn) of its diagonal entriesΛi = [Λ]ii. It is assumed that{Λ1, . . . ,Λn} are
independent real-valued random variables. The probability law P

Λi
(dλ) of the real-valued random

variableΛi is defined by a probability density functionp
Λi

(λ) onR with respect todλ:

P
Λi

(dλ) = p
Λi

(λ)dλ , (6)

in which for allλ ∈ R,
p

Λi
(λ) = α

Λi
(1 + λ)W

Λi
(λ) . (7)

Real functionλ 7→ W
Λi

(λ) defined onR is such that

W
Λi

(λ) = 1
[λ

(1)
i

,+∞[
(λ)(λ− λ

(1)
i )e

−β
Λi

(λ−λ
(1)
i

)2
. (8)

Equations (6)-(8) define a parametric family of probabilities where the unknown parametersα
Λi

, β
Λi

andλ
(1)
i verify the conditionsα

Λi
> 0 , β

Λi
> 0 , 1 + λ

(1)
i > 0. SinceP

Λi
(dλ) is a probability,

P
Λi

(R) = 1 and consequently, the three parametersα
Λi

, β
Λi

andλ
(1)
i are dependent. Calculatingα

Λi

as a function ofβ
Λi

andλ
(1)
i yields

α
Λi

=
2βΛi

1 + λ
(1)
i + 1

2

√

π
β

Λi

. (9)

Because of the independence of random variables{Λ1, . . . ,Λn}, the probability law of theRn-valued
random variableL is written as

PL = ⊗n
i=1PΛi

. (10)
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The right-hand side of Eq. (7) corresponds to a second-orderexpansion in orthogonal polynomials
with respect to the weightWΛi

(see [9,10,14]). This means that for alli in {1, . . . , n}, probability law
P

Λi
has a probability density function with respect to a Gaussian measure. It should be noted that the

support ofP
Λi

is interval[λ(1)
i ,+∞[.

The stationary solution of Eq. (5) is constructed using the properties of conditional probabilities. We
therefore introduce a family of linear stochastic differential equations corresponding to Eq. (5) with
[Λ] = [λ] in which [λ] is the parameter of the family. LetSΛ be the set of(n× n) real diagonal
matrices such that

SΛ =
{

[λ ] | [λ ]ii ≥ λ
(1)
i , i ∈ {1, . . . , n}

}

. (11)

As above,matrix[λ ] ∈ SΛ is identified to theRn-valued vectorl = (λ1, . . . , λn) such thatλi = [λ ]ii.
We introduce the family of second-order linear differential equations for[λ ] in SΛ, such that

[Mg] ŸΛ(t;l) + [Cg] ẎΛ(t;l) + [Kg]
(

[ I ] + [λ ]
)

YΛ(t;l) = [Φ]T F(t) . (12)

Since for alli in {1, . . . , n}, 1 + [λ ]ii ≥ 1 + λ
(1)
i > 0 and stochastic processF is independent of

random vectorL, the following results can be demonstrated [14].
(1)- Equation (12) has a unique Gaussian,second-order, centered, stationary solution denotedYΛ(t;l).
This process can be constructed by linear filtering of process[Φ]TF, whose frequency response function
ω 7→ [HΛ(ω;l)] can be written as

[HΛ(ω;l)] =
[

−ω2 [Mg] + iω [Cg] + [Kg]([ I ] + [λ ])
]−1

. (13)

Its matrix-valued spectral density function[SYΛ
(ω;l)] can then be written as

[SYΛ
(ω;l)] = [HΛ(ω;l)] [Φ]T [SF(ω)] [Φ] [HΛ(ω;l)]∗ . (14)

(2)- Equation (5) has a unique second-order, centered, stationary solutionY defined by

Y(t) = YΛ(t;L) , (15)

and stochastic processY has a square integrable matrix-valued spectral density function given by the
relation

[SY(ω)] =

∫Rn

[SYΛ
(ω;l)]PL(dλ) , (16)

in which [SYΛ
(ω;l)] is given by Eq. (14) andPL by Eqs. (6)-(10).

3. IDENTIFICATION PROCEDURE

The identification procedure consists in calculating the parameters of probability lawPL in order to
minimize the "distance" between the matrix-valued spectral density function of the model responses
and measured (experimental) responses.

3.1 Definition of the Measured Matrix-Valued Spectral Density Function Expressed in Modal Coordi-
nates

Let Q be theRn-valued stationary stochastic process such thatQ = [Φ]−1X in which X is the
measured stationary stochastic process (experimental responses) and[Φ] are the estimated eigenmodes
introduced in Section 2 . We then deduce that for all realω, the matrix-valued spectral density function
[SQ(ω)] of processQ can be written as

[SQ(ω)] = [Φ]−1[SX (ω)] [Φ]−T . (17)
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3.2 Rewriting the Model Matrix-Valued Spectral Density Function Expressed in Modal Coordinates

Let l(1) andA be the vectors inRn such thatl(1) = (λ
(1)
1 , . . . , λ

(1)
n ) andA = (A1, . . . , An) with

Ai = 1/
√

βΛi
, i ∈ {1, . . . , n} . (18)

Let x = (x1, . . . ,xn) be the vector inR2n such thatx = (A,l(1)) andxi = (Ai, λ
(1)
i ). LetD be the

domain ofx which is such that

D =
{

(A,l(1)) ∈ R2n | Ai > 0 , 1 + λ
(1)
i > 0 , ∀ i ∈ {1, . . . , n}

}

. (19)

In order to indicate the dependence ofPL and[SY] in x, we rewrite these quantities asP xL and[Sx
Y ]

respectively.

3.3 Definition of the Distance

Since the measured and the model matrix-valued spectral density functions are square integrable, the
following cost function can be used to express the distance:

H(x) =
n

∑

i=1

‖ [SQ]ii − [Sx
Y ]ii ‖2 =

n
∑

i=1

∫R([SQ(ω)]ii − [Sx
Y(ω)]ii

)2
dω . (20)

3.4 Definition of an Optimization Problem

The identification procedure is defined as the following optimization problem: findx0 in D such that

H(x0) = minx∈D
H(x) . (21)

It should be noted (see Eqs. (13), (14) and (16)) that diagonal terms[Sx
Y]ii depend on all the components

of x due to the fact that matrix[Cg] used in the calculation of[HΛ(ω;l)] is not diagonal.

In order to replace problem (21) byn independent optimization problems inR2, elements[Sx
Y(ω)]ii are

approximated by[Sxi

Y (ω)]ii obtained by neglecting the extra-diagonal part in matrix[Cg]. It should
be noted that this approximation (introduced only to simplify the optimization problem) is not used
in the final calculation of matrix[Sx

Y(ω)] (see Section 4). Then, from Eqs. (2), (6)-(9), (13), (14) and
(16), we deduce that for alli in {1, . . . , n}

[Sxi

Y (ω)]ii =
2eiis(ω)

1+λ
(1)
i +Ai

√
π/2

∫ +∞

0

(1+Aix+λ
(1)
i )xe−x2

dx
(

(1+Aix+λ
(1)
i )[Kg]ii−ω2[Mg]ii

)2
+ω2[Cg]

2
ii

, (22)

in which eii = {[Φ]T [B ] [Φ]}ii. For eachi in {1, . . . , n}, we define the functional on
]0 ,+∞[×] − 1 ,+∞[⊂ R2 such that

Ji(xi) =

∫R{

[SQ(ω)]ii − [Sxi

Y (ω)]ii

}2

dω . (23)

Consequently, the optimization problem on a subset ofR2n defined by Eq. (21), is replaced by then
following optimization problems on a subset ofR2

Ji(xi,0) = minxi∈ ]0,+∞[×]−1,+∞[
Ji(xi) , i ∈ {1, . . . , n} . (24)
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3.5 Solving the Constraint Optimization Problems

It should be noted that each constraint optimization problem defined by Eq. (24) is not standard
becauseJi is not a convex function. Consequently the following methodhas been used:
- Step1: Determine a bounded subdomain

Ci = [A2,i, A1,i] × [λ
(1)
1,i , λ

(1)
2,i ] (25)

included in unbounded domain]0,+∞[×] − 1,+∞[ such thatCi contains the solution, in order to
limit the space of the research for a solution.
- Step 2: Use a global optimization algorithm onCi based on an adaptive random search [15] which
allows a first approximationxi,a of the solution of (24) to be constructed.
- Step 3: Finally, use a local optimization method onCi based on the Gauss-Newton algorithm and
initialized withxi,a, giving solutionxi,0 of problem (24).

3.6 Construction of Bounded SubdomainCi

To locate the center of subdomainCi, we directly construct an approximation ofxi,0 in writing the
equality of the second-order moments

E{Yi(t)
2} = E{Qi(t)

2} . (26)

Then, integrating Eq. (22) onR with respect toω yields

E{Yi(t)
2} ≃ eii

2[Cg]ii[Kg]ii(1 + λ
(1)
i + Ai

√
π/2)

. (27)

Equality (26) is equivalent to writing (see Fig. 1) thatxi = (Ai, λ
(1)
i ) belongs to the line∆i defined

by the equation

Ai =
2√
π

( eii

2[Cg]ii[Kg]iiE{Qi(t)2}
− λ

(1)
i − 1

)

. (28)

-1

0

c i

A
A A

 

i

x

2,i 1,i
i

λ

∆
i

λ

λ

(1)

(1)

(1)

2,i

1,i

Jmin,i

Fig. 1. Scheme defining the bounded subdomainCi

Let Jmin,i be the minimum ofJi on ∆i. We then define the bounded domainCi such thatJi(xi) <

εJmin,i for all xi varying on the segment[x1,i,x2,i] wherex1,i = (A1,i, λ
(1)
1,i ) ∈ ∆i andx2,i =

(A2,i, λ
(1)
2,i ) ∈ ∆i, and whereε is a given constant greater than 1.
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4. CALCULATION OF THE MODEL MATRIX-VALUED SPECTRAL DENSITYFUNCTION

In this section, we present the calculation of matrix-valued spectral density function[SY(ω)] forx = x0 wherex0 results from the identification procedure (see Section 3). Knowing[SY(ω)] which is
the identified model of measured matrix[SQ(ω)] expressed in terms of modal coordinates, we deduce
the identified model[SZ(ω)] of the measured matrix[SX (ω)] relative to the physical coordinates. We
have the relation

[SZ(ω)] = [Φ] [SY(ω)] [Φ]T .

Since matrix[Cg] is dense, the direct calculation of the model matrix-valuedspectral density function
defined by Eq. (16) requires calculating an-uple integral onRn for eachω. This calculation can only
be carried out by numerical integration. Consequently, it cannot be made for large values ofn (for
instance whenn is 10 or 20 (or more)). We therefore construct an approximation which leads us to
calculate onlyn simple integrals onR. This approximation is constructed as follows.
(1)- Damping matrix[Cg] is written as[Cg] = [C0

g] + [∆Cg] in which [C0
g] is its diagonal part and

[∆Cg] its extra-diagonal part.
(2)- For all realω and[λ] in SΛ, we introduce the(n× n) complex diagonal matrix

[H0
Λ(ω;l)] =

[

−ω2[Mg] + iω[C0
g] + [Kg]([ I ] + [λ ])

]−1
. (29)

It should be noted that[H0
Λ(ω;l)]ii depends only onλi. Matrix [HΛ(ω;l)] can then be rewritten as

[HΛ(ω;l)] =
(

[ I ] + iω [H0
Λ(ω;l)] [∆Cg]

)−1

[H0
Λ(ω;l)] . (30)

(3)- For all realω and[λ] in SΛ, we can write
(

[ I ] + iω [H0
Λ(ω;l)] [∆Cg]

)−1

= [ I ] − iω [H0
Λ(ω;l)] [∆Cg] + O

{

‖ω [H0
Λ(ω;l)] [∆Cg]‖2

}

.

(31)
Assuming that for all realω in the frequency band of analysis, the term inO in the right-hand side of
Eq. (31) is negligible and substituting Eq. (31) into Eq. (30), we obtain the approximation

[HΛ(ω;l)] ≃ [H0
Λ(ω;l)] − iω[H0

Λ(ω;l)][∆Cg][H
0
Λ(ω;l)] . (32)

It should be noted that matrix[HΛ(ω;l)] is a(n× n) complex symmetric dense matrix.
(4)- Substituting Eq. (32) into Eq. (14) and using Eqs. (16) and (6)-(10) yields an explicit expression
for matrix [SY(ω)]. For all i in {1, . . . , n},

[SY(ω)]ii ≃ 2S
(1)
i s(ω)

{

eii − 2ω2
∑

k 6=i

[Cg]kk
[Cg]ik

eikS
(1)
k

}

, (33)

and fori andj in {1, . . . , n} with i 6= j,

[SY(ω)]ij ≃ 4S
(2)
i S

(2)

j s(ω)
{

eij − iω
∑

k 6=i,j

[Cg]ik
ekjS

(2)
k + iω

∑

k 6=i,j

[Cg]kj
eikS

(2)

k

}

+iωs(ω)[Cg]ij

{

eiiS
(1)
i S

(2)

j − ejjS
(2)
i S

(1)
j

}

, (34)

with

S
(1)
i =

1

1+λ
(1)
i,0 +Ai,0

√
π/2

∫ +∞

0

(1 + Ai,0x + λ
(1)
i,0 ) x e−x2

dx
(

(1+Ai,0x+λ
(1)
i,0 )[Kg]ii−ω2[Mg]ii

)2
+ ω2[Cg]

2
ii

,

S
(2)
i =

1

1+λ
(1)
i,0 +Ai,0

√
π/2

∫ +∞

0

(1 + Ai,0x + λ
(1)
i,0 ) x e−x2

dx

−ω2[Mg]ii + iω[Cg]ii + (1+Ai,0x+λ
(1)
i,0 ) [Kg]ii

.
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5. EXAMPLE

5.1 Measured Quantities

For this example, we constructed an "experimental data base" using a Monte Carlo numerical simu-
lation in the time domain of the second-order nonlinear dynamical system defined by Eq. (1) with
n = 5, where the nonlinear mappingf is defined byf

(

X (t)
)

=
(

[K]11X1(t)
3, . . . , [K]55X5(t)

3
)

with
ε = 1875, where the frequency band of narrow-band processF is [14 Hz, 28 Hz] and where[K]jj are
the diagonal terms of matrix[K] appearing in Eq. (1). Matrices[M ], [C] and[K] were generated by
the formulas[M ] = [S]−T [M] [S]−1, [C] = [S]−T [ C ] [S]−1 and[K] = [S]−T [K] [S]−1, where

[S] =











0.208513 0.333334 0.301512 0.447214 0.447214
0.208513 −0.333334 0.301512 −0.447214 0.447214
0.625543 0.577350 0.522233 0.447214 0.0
0.625543 0.577350 −0.522233 −0.447214 0.0
0.361158 −0.333334 −0.522233 0.447214 0.774597











,

and where[M] is the identity matrix (generalized masses equal to 1),[K] = [M] [Ω]2 in which [Ω] is
the diagonal matrix whose diagonal is2π×[ 18.0 , 20.0 , 20.4 , 22.0 , 23.0 ] and finally,[ C ] is a diagonal
matrix whose diagonal is[ 4.5 , 5.0 , 5.13 , 5.5 , 5.8 ]. Digital signal processing on the time-simulated
sample paths of the stationary response was applied to estimate the "measured" matrix-valued spectral
density function[SX (ω)] for ω in the frequency band of analysis.
It should be noted that some eigenfrequenciesΩj of the underlying linear dynamical system associated
with the nonlinear dynamical system are close (20.0 Hz and 20.4 Hz). In presence of nonlinearities,
this kind of situation is generally recognized as a difficultproblem within the context of structural
dynamic identification. This is why we chose such an example,in order to demonstrate the interest of
the identification method presented above. The elements[SX (ω)]ii for i in {1, 2, 3, 4, 5} and some el-
ements of the matrix-valued coherence function[γX (ω)]ij = |[SX (ω)]ij |([SX (ω)]ii[SX (ω)]jj)

−1/2

of estimated matrix[SX (ω)] are shown in Figs. 2 to 4.

5.2 Model Identification

The procedure presented in Section 3 is used to identify the parametersxi of the model. The results
obtained are shown in Table 1.

i 1 2 3 4 5

α
Λi,0

3.13 103 2.38 103 7.46 102 9.37 102 7.19 102

β
Λi,0

1.55 103 1.17 103 3.67 102 4.61 102 3.53 102

λ
(1)
i,0 −3.56 10−2 −4.09 10−2 −6.22 10−2 −5.81 10−2 −6.53 10−2

Table 1. Parameters of the model resulting from the identification procedure

5.3 Results on Matrix-Valued Spectral Density Functions

(1)- Figs. 2 and 3 are related to the comparisons between the matrix-valued spectral density functions
obtained by "experiments" and by identification of the modelwith constant coefficients. Fig. 2 shows
the comparison between[SX ]ii and[SX]ii for i in {1, 2, 3, 4, 5}. It is recalled that that matrix[SX]
is the spectral density function of the stationary responseof Eq. (3). Fig. 3 shows the comparison
between[γX ]ij and[γX]ij for somei 6= j. These results correspond to those obtained by Fillâtre [3].
It should be noted that this first identification already yields a good identification (taking into account
the intrinsic difficulties of the example considered), but as mentioned in Section 1, this kind of results
can be improved using a more advanced model for identification (see below).
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Fig. 2. Power spectral density functions[SX ]ii and[SX]ii:
experiments

- - - - - identification with stochastic linearization methodwith constant parameters
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Fig. 3. Coherence functions[γX ]ij and[γX]ij :
experiments

- - - - - identification with stochastic linearization methodwith constant parameters
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(2)- Figs. 4 and 5 are related to the comparisons between the matrix-valued spectral density functions
obtained by "experiments" and by identification of the modelwith random coefficients for which the
procedure was described in Sections 2 to 4. Fig. 4 shows the comparison between[SX ]ii and[SZ]ii
for i in {1, 2, 3, 4, 5} and Fig. 5 shows the comparison between[γX ]ij and[γZ]ij for somei 6= j. It
can be seen that the results obtained are much better than above.
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Fig. 4. Power spectral density functions[SX ]ii and[SZ]ii:
experiments

- - - - - identification with stochastic linearization methodwith random parameters
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Fig. 5. Coherence functions[γX ]ij and[γZ]ij :
experiments

- - - - - identification with stochastic linearization methodwith random parameters

6. CONCLUSION

This work started from previous research on modal identification of weakly nonlinear multidimensional
second-order dynamical systems (based on the use of the equivalent stochastic linearization with
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constant coefficients). In some cases, this method has difficulty identifying the matrix-valued spectral
density function of the stationary responses. In the present work, we have used the previous work to
identify the mean part of the model. In order to improve the identification of spectral quantities, we
developed a method based on stochastic linearization with random coefficients. This new identification
procedure seems to be very efficient and can be implemented easily. The results show that this
method yields better results than the previous one. Nevertheless, this method could be improved by
introducing some statistical dependence between the components of the random coefficients expressed
in the modal coordinates (or possibly by introducing extra-diagonal terms). It should be noted that
in this last case, the optimization problem introduced in the method could not be split into several
optimization problems with a smaller size. This being the case, the efficiency of such a procedure
would have to be studied with great care.
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11. C. Soize 1994 The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit
Steady-State Solutions. Singapore : World Scientific.

12. S. Bellizzi and R. Bouc 1995 2e Colloque National en Calcul des Structures, 16-19 mai 1995,
Giens (France), Ed. Herm̀es, Tome 1, 75–80. Spectres de puissance de systèmes non-lińeaires vi-
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