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DYNAMICAL SYSTEMSUSING A STOCHASTIC LINEARIZATION METHOD
WITH RANDOM COEFFICIENTS

by

C. Soize AND O. LE FURr
Office National d'Etudes et de Recherchésaspatiales, BP 72, 92322 @tillon Cedex, France

ABSTRACT

It is known that an efficient approach for modal identificatad a weakly nonlinear multidimensional
second-order dynamical system consists in using a modetlmasequivalent stochastic linearization
with constant coefficients. Such a model leads to a good ifietion of the total power of the
stationary response but can give an incorrect identifinatibthe matrix-valued spectral density
functions. The objective of this paper is to present an ifleation procedure which is based on the
use of a stochastic linearization method with random caeffts. The model is then defined as a
multidimensional linear second-order dynamical systeth wvandom coefficients. An optimization
procedure is developed to identify the parameters of thbaiitity law of the random coefficients.
The identification procedure is described step by step.lligjma example is presented and shows the
interest of the method proposed.

1. INTRODUCTION

This paper deals with modal identification of weakly nondinenultidimensional second-order dy-
namical systems. In the case of linear dynamical behaviemtodal identification methods are well
developed due to the use of the linear vibration theory oficstires. For general nonlinear dynamical
systems, some different strategies exist to identify syshesns by nonlinear models (for instance,
nonlinear ARMAX or \olterra series). The present paper eons the weakly nonlinear case for
which, the unique objective is the identification of a giveanlinear multidimensional dynamical
system by an infinite family of linear multidimensional dyniaal systems, this family being spanned
by a second-order dynamical system with random operatoh& €lgenfrequencies and associated
eigenmodes are then deduced from the linearized repréieenidnich is identified (consequently, the
eigenfrequencies are random variables). Using broad-&tatidnary random excitation and constant
coefficients of the model yields the classical Stochastiehrization Method with Constant Coeffi-
cients (SLMCC). The SLMCC was introduced by Caughey in 19¢&/jthin the context of prediction
methods. Many developments have been proposed in thisinoedlsis date and an excellent synopsis
was made by Roberts and Spanos in 1990 [2]. In the field ofifikatton procedures, it should be
noted that difficulties arise due to the presence of the madsxtwhich is unknown and which
must be identified. Fifitre [3] developed a method for identifying such an equivialieear model

in which mass, damping and stiffness matrices are constahtiaknown. His approach is based
on an extension of Kozin's works [4,5] and can be considesed method based on the SLMCC.
Generally speaking, it is known that the SLMCC yields a vaygdjapproximation of the second-order
statistical moments of the stationary response of secoteradynamical systems. Consequently, an
identification method based on such a procedure yields amadgnt linear dynamical system which
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can restitute the second-order moments. Unfortunatelgpime cases, although the second-order
moments are correctly estimated, the matrix-valued spledensity function of the response may
be erroneous. This difficulty was first shown by Miles for a -@limensional nonlinear dynamical
system[6]. For such nonlinear dynamical systems, methasts wroposed to calculate the power
spectral density function of the stationary response witlhising Monte Carlo numerical simulation
(Miles [6], Bouc [7,8] and Soize [9,10]). The matrix-valusgectral density function can generally
not be calculated explicitly for multidimensional nonlaredynamical systems, except for particular
cases related to linear dynamical systems with random peramexcitations (see for instance Soize
[11]). Recently, Bellizzi and Bouc [12] proposed an intéiregs method for multidimensional systems
in the context of prediction methods.

The Stochastic Linearization Method with Random Coeffitiéd8SLMRC) [9,10] is adapted to identi-
fication procedures and allows the identification to be impdowith respect to the classical SLMCC.
This fact was recently proved by Soize [13] for one-degrefremdom nonlinear second-order dy-
namical systems. This method, based on a linear dynamicd¢imath random coefficients, has just
been extended by Le Fur [14] for the identification of wealdplnear multidimensional second-order
dynamical systems.

The purpose of this paper is to present a new approach fotifiglag weakly nonlinear multidimen-
sional second-order dynamical systems based on the idatitihh of a linear model with random
coefficients. In order to improve the clarity of the paperhaee limited the presentation of the theory
to the case of stiffness nonlinearities. This theory candiented to the case of damping and stiffness
nonlinearities as it is shown in Soize [10]. Nevertheldss Malidation for the multidimensional case
has been performed for stiffness nonlinearities. Below resg@nt

a multidimensional stochastic linear model with randorafticients which allows a set of parametric
probabilities to be defined.

amethod for identifying the model parameters using a miration criterion for the difference between
the matrix-valued spectral density functions of the modsponses and measured responses (so called
reference responses or experimental responses). The pardeteter identification problem leads us
to solve an optimization problem.

an appropriate numerical method to solve the optimizapiablem introduced above (which is not
standard).

an example which validates the method proposed.

2. CONSTRUCTION OF A STOCHASTIC DIFFERENTIAL EQUATION
WITH RANDOM COEFFICIENTS

We consider a weakly nonlinear dynamical system of dimensio> 1 subjected to an external
random excitation. This dynamical system is written as @hlewing stochastic differential equation

[M)X(t) + [ClX(t) + [K] X (t) +ef (X(t) = F(t) (1)

in which matrices[M |, [C'] and [K | are positive definite; functiofi from R” into R™ is odd,
continuous and nonlinear; excitation fofgés a Gaussian, second-order, centered, stationary, mean-
square continuous stochastic process indexe® byith values inR™. The matrix-valued spectral
density function of procedsis written as

[Sr(w)] = s(W)[B] (2)

where[B] is a positive matrix and is a positive-valued function defined dhhaving the required
properties such that procdsss physically realizable and approaches an ideal nornatizaerow-band
noise.
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Within the context of an identification problem, it is assuhtieat stochastic differential equation (1)
has a unique stationary, second-order, centered stockasitionX having a matrix-valued spectral
density functionSx]. Furthermore, functiofSx| is assumed to be square integrableRon

Applying the identification procedure developed by &ilé [3] (based on a stochastic linearization
method with constant coefficients) yields the followingelam stochastic differential equation B

(M X (1) + [CIX(H) + [E]X() = F(t) 3)

in which F is the stochastic process used in Eq. (1) and matfiegs, [C.] and[K ] result from the
identification procedure and are positive definite.

We introduce the eigenmodgs € R™ and the associated eigenfrequenciesf the conservative
problem associated with Eq. (3), which are the solutionshef deneralized eigenvalue problem
[K.]¢ =w? [M,]p. Let[D] be the(n x n) real matrix of the eigenmodes such thd};;, = {e.};-
We introduce modal coordinat€¥ such thatX = [®] Q. Substituting this change of coordinates in
Eqg. (3) yields ) .

[M,]Q(t) + [C,] Q1) + [K,] Q(t) = [@]TF(1) (4)
where[M ] = [@]" M ][®], [C,] = [2]" [C,][®] and[K,] = [M,][Q*] = [2]" [K,][®] are
(nx n) real positive-definite matrices. Matricg¥ |, [K ] and[Q?] are diagonal anfl, ] is adense
matrix in the general case.

We associate with Eq. (4) the following stochastic difféi@requation with random coefficients

(MY (1) +[Cy] Y () + K] (1] +[A]) Y(1) = [2]TF(t) ()

g]

where[A] is a random variable with values in tkie x n) real diagonal matrices. We introduce the
vectorA = (Aq,...,A,) of its diagonal entries\; = [A];;. Itis assumed thafA,,..., A, } are
independent real-valued random variables. The probglait P, (d\) of the real-valued random
variableA; is defined by a probability density functign (A) onR with respect tai\:

P, (dX) =p,,(N)dX (6)
in which for all A € R,
Pa,(A) = (T+XNW, (A) (7)
Real function\ — W, () defined orR is such that

B, (A=A1)?
Wy, ) =10 VO = A PO (8)

Equations (6)-(8) define a parametric family of probalteitivhere the unknown parameters , 3,
and)\gl) verify the conditionsy, >0, 3, >0, 1+ )\51) > 0. SinceP, (dA) is a probability,
P, (R) = 1 and consequently, the three parameteys 3, and)\gl) are dependent. Calculating
as a function of3, and)\gl) yields

T )

A,
SRS RS\ SO NI Syl o
TAT Ty Ba,

Because of the independence of random variaplgs. . . , A,, }, the probability law of thé&k™-valued
random variable\ is written as

(67

P, = ®7z‘ﬁb:IPAi : (10)
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The right-hand side of Eq. (7) corresponds to a second-@xjgansion in orthogonal polynomials
with respect to the weighV,  (see [9,10,14]). This means that for it {1,...,n}, probability law
P, has a probability density function with respect to a Gaussiaasure. It should be noted that the

support ofP, is interval[A{"), +oo].

The stationary solution of Eq. (5) is constructed using tleperties of conditional probabilities. We
therefore introduce a family of linear stochastic diffdf@hequations corresponding to Eq. (5) with
[A] = [A] in which [A] is the parameter of the family. Le&ly be the set ofn x n) real diagonal
matrices such that

SA:{[)\] | [A]iiZAgl),z’e{l,...,n}} . (11)

As above, matrix\ | € S, isidentified toth&k™-valued vectoh = (A1, ..., \,,) suchthat; = [\ ];.
We introduce the family of second-order linear differeigiquations fof A ] in S, such that

(M) Ya(t;N) + [QQ]YA(t;X) + K ([I]+ X)) Ya(t:N) = [®)TF(t) . (12)

Since for alli in {1,...,n}, 1+ [A]; > 1+ )\51) > ( and stochastic processis independent of
random vector, the following results can be demonstrated [14].
(1)- Equation (12) has a unique Gaussian, second-ordéereeh stationary solution denotéd (¢; X ).
This process can be constructed by linear filtering of pre@gs F, whose frequency response function
w +— [Hp(w;N)] can be written as
. —1
[Ha(wiN)] = [~w? [M] +iw [Cg) + [K ([ T+ [AD] - (13)
Its matrix-valued spectral density functi@$l, , (w; X)] can then be written as
[Sy (@i N)] = [Ha(w; N)] [@]7 [Sr(w)] [@] [Ha (w; N)]* (14)
(2)- Equation (5) has a unique second-order, centereirséay solutionY defined by

Y(t) =Yalt;A) (15)

and stochastic proce¥shas a square integrable matrix-valued spectral densigtiumgiven by the
relation

Sv(@)] = [ [Sv@NIP @) (16)
in which [Sy, (w;X)] is given by Eq. (14) and®, by Egs. (6)-(10).

3. IDENTIFICATION PROCEDURE

The identification procedure consists in calculating thexpeeters of probability lawP, in order to
minimize the "distance" between the matrix-valued spédeasity function of the model responses
and measured (experimental) responses.

3.1 Definition of the Measured Matrix-Valued Spectral DgnBunction Expressed in Modal Coordi-
nates

Let Q be theR"-valued stationary stochastic process such at [®]~'X in which X is the
measured stationary stochastic process (experimenpalmess) anfid| are the estimated eigenmodes
introduced in Section 2. We then deduce that for all kedhe matrix-valued spectral density function
[So(w)] of procesx can be written as

[Se(w)] = [@] ' [Sx(w)][@] 7" . (17)
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3.2 Rewriting the Model Matrix-Valued Spectral Density Etlon Expressed in Modal Coordinates
LetA\() andA be the vectors iR™ such thah® = (A", ... Ay andA = (4;,..., A,) with

Ai=1/y/8, . i€f{l,...,n} . (18)

Lett = (£,,...,¢&,) be the vector iR?" such that = (A, X)) andg,; = (4;, A"). LetD be the
domain of¢ which is such that

D:{(A,x“))ene?" | Ai>0,1+)\§1)>0,Vie{1,...,n}} . (19)

In order to indicate the dependencergf and[Sy] in &, we rewrite these quantities & and[S$]
respectively.

3.3 Definition of the Distance
Since the measured and the model matrix-valued spectraitgéumnctions are square integrable, the
following cost function can be used to express the distance:

2

(&) = 3 I1Seli ~ (551 P = 3 [ (Se(@) ~ [S5@l)"do . (0

3.4 Definition of an Optimization Problem

The identification procedure is defined as the followingmjtation problem: find in D such that

H(&o) = min H(E) . (21)

It should be noted (see Egs. (13), (14) and (16)) that didgerraS[S\E(]ii depend on allthe components
of § due to the fact that matri)C ;| used in the calculation g7, (w; X)] is not diagonal.

In order to replace problem (21) yindependent optimization problemska, eIement$S$(w)]u are
approximated b)ﬁS& (w)]: obtained by neglecting the extra-diagonal part in mdttly]. It should

be noted that this approximation (introduced only to sifggie optimization problem) is not used
in the final calculation of matri*S$ (w)] (see Section 4). Then, from Egs. (2), (6)-(9), (13), (14) and
(16), we deduce that for allin {1,...,n}

£ 2e;8(w) oo (1+Aix+)\§1))xe’m2 dx
[SY ()]s = (1) 1) 2 5 (22)
LA+ AT 2 Jo o (LA + A7) K i —w? [My]i) " +w?[C ]
in which e;; = {[®]T [B][®]}s. For eachi in {1,...,n}, we define the functional on
10, +oo[x] — 1, +o00[C R? such that
2
5(€) = [ {180l ~ 155 (s} do (23)

Consequently, the optimization problem on a subsé&sfdefined by Eq. (21), is replaced by the
following optimization problems on a subset®f

Ji(&; = i Ji(&; s e {l,...,n . 24
€)=, mn &) . ie (L) 24
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3.5 Solving the Constraint Optimization Problems

It should be noted that each constraint optimization probtefined by Eq. (24) is not standard
because’; is not a convex function. Consequently the following methad been used:
- Stepl Determine a bounded subdomain

Ci = [Azs, A x A A5)) (25)

1,27

included in unbounded domaijf, +oo[x] — 1, +oc[ such thatC; contains the solution, in order to
limit the space of the research for a solution.

- Step 2 Use a global optimization algorithm a@h based on an adaptive random search [15] which
allows a first approximatio§; ,, of the solution of (24) to be constructed.

- Step 3 Finally, use a local optimization method @n based on the Gauss-Newton algorithm and
initialized with €; ,, giving solutiong; o of problem (24).

3.6 Construction of Bounded Subdoméjn

To locate the center of subdomaip we directly construct an approximation f, in writing the
equality of the second-order moments

E{Y;(t)*} = B{Qi(t)*} . (26)
Then, integrating Eq. (22) oR with respect tav yields

€ii

2(C Nl K )i (1 + A + 4;/7/2)

BE{Yi(t)*} =~ (27)

Equality (26) is equivalent to writing (see Fig. 1) thigt= (A;, Agl)) belongs to the ling\; defined
by the equation

2 €ii (1)
4= 2 AWy 28
7 O, K L B O ) (28)
(1)
Ai
0 Aaii Ay A
1)
)\ 2,i
(1) C;
Al,i :
Ai
Rt O R
J

Fig. 1. Scheme defining the bounded subdongain

Let Jimin,; be the minimum of/; on A;. We then define the bounded doma&insuch that/;(€;) <
eJmin,; for all €; varying on the segmernt, ;, €, ;] where€¢,; = (A1,i,)\§i)) € A, and€,y; =
(Az, ASQ) € A;, and where is a given constant greater than 1.
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4. CALCULATION OF THE MODEL MATRIX-VALUED SPECTRAL DENSITYFUNCTION

In this section, we present the calculation of matrix-velspectral density functiopSy (w)] for

&€ = £, wheret results from the identification procedure (see Section 3jowing[Sy (w)] which is

the identified model of measured matfbg (w)] expressed in terms of modal coordinates, we deduce
the identified modellSz (w)] of the measured matrip§ x (w)] relative to the physical coordinates. We

have the relation
[Sz(w)] = [@] [Sy (w)] [@]"

Since matriXC'] is dense, the direct calculation of the model matrix-valsigectral density function
defined by Eq. (16) requires calculatingaiple integral orR™ for eachw. This calculation can only
be carried out by numerical integration. Consequentlyaitmot be made for large valuesof(for
instance whem is 10 or 20 (or more)). We therefore construct an approximmatvhich leads us to
calculate onlyn simple integrals ofR. This approximation is constructed as follows.

(1)- Damping matriXC' /] is written as[C',| = [Qg] +[AC,] in which [Qg] is its diagonal part and
[AC, ] its extra-diagonal part.

(2)- For all reakv and[\] in Sa, we introduce thén x n) complex diagonal matrix

[HR (wiN)] = [~w’[M,] + iw[CY] + [K([1] + [A])]
It should be noted thd#7? (w; \)];; depends only on\;. Matrix [H, (w;X\)] can then be rewritten as

- (29)

[Ha@iN)] = ([1]+ i [HR@N][AC,])  [HR (@) (30)
(3)- For all reakv and[A] in Sa, we can write

-1
(1] +iw [HR@N]AC,]) = [1] - iw [HRU @ N] [AC,] + O {lw [H] (@: \)] [AC, ]2}
(31)
Assuming that for all reab in the frequency band of analysis, the terndnn the right-hand side of
Eqg. (31) is negligible and substituting Eq. (31) into Eq. )(30e obtain the approximation
[Ha(wiN)] = [H (w3 N)] — iw[HR (w3 N][AC | [HR (w; V)] (32)
It should be noted that matrit{ (w;X)] is a(n x n) complex symmetric dense matrix.
(4)- Substituting Eq. (32) into Eq. (14) and using Egs. (116} 6)-(10) yields an explicit expression
for matrix [Sy (w)]. Foralliin {1,...,n},

[Sy (w)]ii ~ 28’( ) {e” — 202 Z zkesz( )} , (33)
k#i
and fori andj in {1,...,n} with i # j,
[Sy(W)]ij ~ 45(2)5( ) {ew iw Z ZkekjS,(f) + iw Z [Qg]kjeikg,(f)}
k#1,j k#i,j
+Z-ws(w)[gg]i] {6“5(1)5(2) SZ(2)SJ(1)} , (34)
with
o) _ (1+ A oz + )\518) re~ dr

(2

+oo
1+A“)+Azof/2/o 1+Azox+A( DK Lo —w? (M ]i)° +w?[C,]2

(1+A; 0x+)\( ))xe’ﬁdaz

5(2) /+OO
1+)\(1)+A1 0\/_/2 0 —WQ zz + ZLU[C ] (14_14Z 0$+)\(1)) [ 9]”
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5. EXAMPLE

5.1 Measured Quantities

For this example, we constructed an "experimental datd'hesseg a Monte Carlo numerical simu-
lation in the time domain of the second-order nonlinear dyical system defined by Eq. (1) with
n = 5, where the nonlinear mappifigs defined byf (X (¢)) = ([K]11X1(¢)3, ..., [K]55X5(t)) with

e = 1875, where the frequency band of narrow-band pro¢eis{14 Hz, 28 Hz] and wherf];; are
the diagonal terms of matrid<| appearing in Eq. (1). Matricdd/], [C] and[K] were generated by
the formulagM] = [S]=7 [M][S]7L, [C] = [S]~T [C][S]~! and[K] = [S]~T [K][S]~!, where

0.208513 0.333334  0.301512 0.447214  0.447214
0.208513 —0.333334 0.301512 —0.447214 0.447214

[S] = [ 0.625543 0.577350  0.522233 0.447214 0.0 )
0.625543  0.577350 —0.522233 —0.447214 0.0
0.361158 —0.333334 —0.522233 0.447214  0.774597

and wherg M| is the identity matrix (generalized masses equal tdkl) = [M] [©2]? in which [Q] is
the diagonal matrix whose diagona®isx [ 18.0,20.0,20.4,22.0,23.0 ] andfinally,[ C ] is a diagonal
matrix whose diagonal is4.5,5.0,5.13,5.5,5.8]. Digital signal processing on the time-simulated
sample paths of the stationary response was applied toastthe "measured" matrix-valued spectral
density functionSx (w)] for w in the frequency band of analysis.

It should be noted that some eigenfrequen@iesf the underlying linear dynamical system associated
with the nonlinear dynamical system are close (20.0 Hz andl B@). In presence of nonlinearities,
this kind of situation is generally recognized as a diffiquibblem within the context of structural
dynamic identification. This is why we chose such an exaniplerder to demonstrate the interest of
the identification method presented above. The eleni8gtév)];; foriin {1,2,3,4,5} and some el-
ements of the matrix-valued coherence funcfign (w)]i; = [[Sx (w)]i;]([Sx (W)]is[Sa (w)];;) /2

of estimated matrixSx (w)] are shown in Figs. 2 to 4.

5.2 Model Identification

The procedure presented in Section 3 is used to identify dinenpeterg,; of the model. The results
obtained are shown in Table 1.

i 1 2 3 4 5

" 3.13 107 2.38 107 7.46 102 9.37 102 7.19 10°
B, 1.55 103 1.17 103 3.67 102 4.61 102 3.53 102
Ay | —3561072 | —4.091072 | —6.221072 | —5811072 | —6.531072

Table 1. Parameters of the model resulting from the ideatifio procedure

5.3 Results on Matrix-Valued Spectral Density Functions

(1)- Figs. 2 and 3 are related to the comparisons betweendkbéxmralued spectral density functions
obtained by "experiments" and by identification of the mawigh constant coefficients. Fig. 2 shows
the comparison betwe€g§x];; and[Sx];; for i in {1,2,3,4,5}. Itis recalled that that matrixSx]

is the spectral density function of the stationary resparideq. (3). Fig. 3 shows the comparison
betweervyx];; and[yx];; for somei # j. These results correspond to those obtained btFalI[3].

It should be noted that this first identification already gfeh good identification (taking into account
the intrinsic difficulties of the example considered), baih@ntioned in Section 1, this kind of results
can be improved using a more advanced model for identificdtiee below).
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Fig. 2. Power spectral density functioffsy |;; and[Sx];;:
______experiments
----- identification with stochastic linearization methedh constant parameters
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Fig. 3. Coherence functionisx];; and[yx];;:
______experiments

----- identification with stochastic linearization methaidh constant parameters
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(2)- Figs. 4 and 5 are related to the comparisons betweendkbéxmralued spectral density functions
obtained by "experiments" and by identification of the masigh random coefficients for which the
procedure was described in Sections 2 to 4. Fig. 4 shows ti@adson betweefSx|;; and[Sz]:;
foriin {1,2,3,4,5} and Fig. 5 shows the comparison betwéeg|;; and[yz];; for somei # j. It
can be seen that the results obtained are much better thaa.abo

x 10~ coeff (1,1) o x 1078 coeff (2,2)
1 L
6 L
4+
0.5}
2 L
00— 00— ’ ' .
15 20 25 30
Hertz Hertz
x 10" coeff (3,3) x 10" coeff (4,4)
15 \ ‘ ‘ 3 ;
2.5}
2 L
1.5}
1 L
0.5
0 p— . L
10 15 20 25 30
Hertz Hertz
x 10" coeff (5,5)
2 ‘ ‘
1.5}
1 L
0.5
ol=——= ‘ ‘ ]
15 20 25 30
Hertz

Fig. 4. Power spectral density functioftsy |;; and[Sz];;:
experiments
----- identification with stochastic linearization methaih random parameters
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Fig. 5. Coherence functionsx|;; and[vyz];:
experiments
----- identification with stochastic linearization methwith random parameters

6. CONCLUSION

This work started from previous research on modal identibioaf weakly nonlinear multidimensional
second-order dynamical systems (based on the use of theatqii stochastic linearization with
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10.

11.

12.

13.

constant coefficients). In some cases, this method hasulliffidentifying the matrix-valued spectral
density function of the stationary responses. In the ptegerk, we have used the previous work to
identify the mean part of the model. In order to improve theniification of spectral quantities, we
developed a method based on stochastic linearization arittham coefficients. This new identification
procedure seems to be very efficient and can be implemently.ed he results show that this
method yields better results than the previous one. Nesiedh, this method could be improved by
introducing some statistical dependence between the coempeof the random coefficients expressed
in the modal coordinates (or possibly by introducing extimgonal terms). It should be noted that
in this last case, the optimization problem introduced i ilrethod could not be split into several
optimization problems with a smaller size. This being thee¢dhe efficiency of such a procedure
would have to be studied with great care.
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