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IDENTIFICATION OF POLYNOMIAL CHAOS REPRESENTATIONSIN HIGH DIMENSION FROM A SET OF REALIZATIONSG. PERRIN∗†‡ , C. SOIZE∗, D. DUHAMEL†, AND C. FUNFSCHILLING‡Abstrat.This paper deals with the identi�ation in high dimension of polynomial haos expansion ofrandom vetors from a set of realizations. Due to numerial and memory onstraints, the usual poly-nomial haos identi�ation methods are based on a series of trunations that indues a numerialbias. This bias beomes very detrimental to the onvergene analysis of polynomial haos identi�-ation in high dimension. This paper therefore proposes a new formulation of the usual polynomialhaos identi�ation algorithms to avoid this numerial bias. After a review of the polynomial haosidenti�ation method, the in�uene of the numerial bias on the identi�ation auray is quanti�ed.The new formulation is then desribed in details, and illustrated on two examples.Key words. polynomial haos expansion, high dimension, omputation.AMS subjet lassi�ations. 60H35, 60H15, 60H25, 60H40, 65C501. Introdution. In spite of always more aurate numerial solvers, determin-isti models are not able to represent most of the experimental data, whih are vari-able and often unertain by nature. Hene, the appliation �elds of non deterministimodeling, whih an take into aount the model parameters variability as well as themodel error unertainties, has kept inreasing. Unertainties are therefore introduedin omputational mehanial models with more and more degrees of freedom. In thisontext, the haraterization of the probability distribution Pη(dx) of Nη-dimensionrandom vetor η from sets of experimental measurements is bound to play a key role,in partiular, in high dimension, that is to say for a large value of Nη. In this work, itis assumed that Pη(dx) = pη(x)dx in whih the probability density funtion (PDF)
pη is a funtion in the set F(D,R+) of all the positive-valued funtions de�ned onany part D of RNη and for whih integral over D is 1.Two kinds of methods an be used to build suh a PDF: the diret and theindiret methods. Among the diret methods, the Prior Algebrai Stohasti Modeling(PASM) methods postulate an algebrai representation η ≈ talg(Ξ,w), with talg aprior transformation, Ξ a given random vetor and w a vetor of parameters toidentify. In the same ategory, the methods based on the Information Theory andthe Maximum Entropy Priniple (MEP) have been developped (see [13℄ and [27℄) toompute pη from the only available information of random vetor η. This informationan be seen as the admissible set Cad for pη:

Cad =
{
pη ∈ F(D,R+) |

∫

D
pη(x)dx = 1,

∀1 ≤ m ≤M,

∫

D
gm(x)pη(x)dx = fm

}, (1.1)
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2 POLYNOMIAL CHAOS IN HIGH DIMENSIONwhere {fm, 1 ≤ m ≤M} gathers M given vetors whih are respetively assoiatedwith a given vetor-valued funtions {gm, 1 ≤ m ≤M}. Hene, the MPE allowsbuilding pη as the solution of the optimization problem:
pη = arg max

pη∈Cad

{
−
∫

D
pη(x) log (pη(x)) dx

}
. (1.2)On the other hand, the indiret methods allow the onstrution of the PDF pη ofthe onsidered random vetor η from a transformation t of a known random vetor

ξ =
(
ξ1, ..., ξNg

) of given dimension Ng ≤ Nη:
η = t (ξ) , (1.3)de�ning a transformation T between pη and the PDF pξ of ξ:
pη = T (pξ) . (1.4)The onstrution of the transformation t is thus the key point of these indi-ret methods. In this ontext, the isoprobabilisti transformations suh as the Nataftransformation (see [20℄) or the Rosenblatt transformation (see [23℄) have allowed thedevelopment of interesting results in the seond part of the twentieth entury but arestill limited to very small dimension ases and not to the high dimension ase onsid-ered in this work. Nowadays, the most popular indiret methods are the polynomialhaos expansion (PCE) methods, whih have been �rst introdued by Wiener [33℄ forstohasti proesses, and pioneered by Ghanem and Spanos [10℄ [11℄ for the use of itin omputational sienes. In the last deade, this very promising method has thusbeen applied in many works (see, for instane [1℄, [2℄, [3℄, [4℄, [5℄, [7℄, [8℄, [9℄, [12℄,[14℄, [15℄, [16℄, [19℄, [18℄, [17℄, [21℄, [22℄, [24℄, [26℄, [28℄, [31℄, [32℄, [25℄, [34℄). The PCEis based on a diret projetion of the random vetor η on a hosen hilbertian basis

Borth =
{
ψα(ξ),α ∈ N

Ng
} of all the seond-order random vetors with values in R

Nη :
η =

∑

α∈N
Ng

y(α)ψα(ξ), (1.5)
ξ 7→ ψα(ξ) = Xα1(ξ1)⊗ ...⊗XαNg

(ξNg ), (1.6)where x 7→ Xαℓ
(x) is the normalized polynomial basis of degree αℓ assoiated with thePDF pξℓ of the random variable ξℓ, and α is the multi-index of the multidimensionalpolynomial basis element ψα(ξ). Building the transformation t requires therefore theonstrution of the projetion vetors {y(α), α ∈ N

Ng
}.The present work is devoted to the identi�ation in high dimension of the PCEoe�ients {y(α), α ∈ N

Ng
}, when the only available information on the randomvetor η is a set of νexp independent realizations {η(1), · · · ,η(νexp)

}.In pratie, the PCE of η has �rst to be trunated:
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η ≈ ηchaos(N) =

∑

α∈Ap

y(α)ψα(ξ), (1.7)
Ap =



α =

(
α1, ..., αNg

)
| |α| =

Ng∑

ℓ=1

αℓ ≤ p



 =

{
α(1), · · · ,α(N)

}
, (1.8)where ηchaos(N) is the projetion of η on the N -dimension subspae spanned by

{ ψα(ξ), α ∈ Ap } ⊂ Borth. It an be notied that N inreases very quikly withrespet to the dimension Ng of ξ and the maximum degree p of the trunated basis
{ψα(ξ), α ∈ Ap}, as:

N = (Ng + p)!/ (Ng! p!) . (1.9)Methods to perform the onvergene analysis in high dimension with respet to agiven error threshold on the PCE residue η−ηchaos(N) are therefore of great onernto justify the trunation parameters Ng and p.In this prospet, the artile [29℄ provides advaned algorithms to ompute thePCE oe�ients from the νexp independent realizations {η(1), · · · ,η(νexp)
} by fous-ing on the maximization of the likelihood. In partiular, one of the key point ofthese algorithms is the alulation of (N × νchaos

) real matrix [Ψ] of independentrealizations of the trunated PCE basis {ψα (ξ) , α ∈ Ap}:
[Ψ] = [Ψ (ξ (θ1) , p) · · · Ψ (ξ (θνchaos) , p)] , (1.10)

Ψ (ξ, p) =
(
ψα(1)

(
ξ1, · · · , ξNg

)
, · · · , ψα(N)

(
ξ1, · · · , ξNg

))
, (1.11)where the set {ξ (θ1) , · · · , ξ (θνchaos)} gathers νchaos independent realizations of therandom vetor ξ.Reurrene formula or algebrai expliit representations are generally used toompute suh matrix [Ψ], whih are supposed to verify the asymptotial property:

lim
νchaos→+∞

1

νchaos
[Ψ][Ψ]T = [IN ], (1.12)as a diret onsequene of the orthonormality of the PCE basis {ψα,α ∈ Ap}, where

[IN ] is the N -dimension identity matrix.However, for numerially admissible values of νchaos (between 1000 and 10000), ithas been shown in [30℄ that the di�erene 1
νchaos [Ψ][Ψ]T − [IN ] an be very signi�antwhen high values of the maximum degree p an be enountered with simultaneouslysigni�ant values of Ng. This di�erene indues a detrimental bias in the PCE identi�-ation, whih makes the onvergene of lassial PCE in high dimension very di�ult.



4 POLYNOMIAL CHAOS IN HIGH DIMENSIONIn [30℄, it is therefore proposed a method using singular matrix deomposition to nu-merially adapt lassial generations of [Ψ], and make this di�erene be zero for anyvalues of p and Ng. Nevertheless, this onditionning on [Ψ] modi�es the initial stru-ture of [Ψ], and makes the identi�ed PCE oe�ients {y(α),α ∈ Ap

} impossible tobe reused on an other matrix [Ψ∗] of νchaos,∗ new realizations of Ψ(ξ, p).As an extension of the works desribed in [29℄ and [30℄, this artile proposesan original deomposition of the PCE oe�ients {y(α),α ∈ Ap

}, that redues thenumerial bias introdued during the identi�ation by the �nite dimension of [Ψ]and for large values of degree p. This new formulation is partiulary adapted to thehigh dimension, and allows the identi�ed oe�ients to be reused for other matrix ofrealizations [Ψ∗].In Setion 2, the PCE identi�ation from a set of experimental data with an arbi-trary measure is desribed. In partiular, the role played by the matrix of independentrealizations [Ψ] is emphasized. Setion 3 fouses on the onvergene properties of thismatrix [Ψ] with respet to three statistial measures, and desribes an innovativemethod to generate this matrix without using omputational reurrene formula noralgebrai expliit representation. In Setion 4, the new formulation of the PCE iden-ti�ation problem is given. Finally, are presented in Setion 5 two appliations of theformer method with a Gaussian measure.2. PCE identi�ation of random vetors from a set of independentrealizations. In this setion, a desription of the PCE identi�ation with respet toan arbitrary measure is given. The objetive is to summarize the di�erent key stepsof the PCE identi�ation method and the way they are pratially implemented.After having de�ned the theoretial frame of the PCE identi�ation, the ost-funtion that leads to the omputation of the PCE oe�ients {y(α), α ∈ Ap

} ispresented, for given trunation parameters Ng and p. At last, to justify the hoieof these trunation parameters, a method to perform the onvergene analysis isintrodued.2.1. Theoretial frame. Let (Θ, T ,P) be a probability spae. Let L2
P
(
Θ,RNη

)be the spae of all the seond-orderNη-dimension random vetors de�ned on (Θ, T ,P)with values in R
Nη , equipped with the inner produt 〈., .〉:

〈U ,V 〉 =
∫

Θ

UT (θ)V (θ)dP (θ) = E
(
UTV

)
, ∀ U ,V ∈ L2

P
(
Θ,RNη

)
, (2.1)where E (.) is the mathematial expetation.Let η =

(
η1, · · · , ηNη

) be an element of L2
P
(
Θ,RNη

). It is assumed that νexpindependent realizations {η(1), · · · ,η(νexp)
} of η are known and gathered in the

(Nη × νexp) real matrix [ηexp]:
[ηexp] =

[
η(1) · · · η(νexp)

]
. (2.2)Equation (1.7) an be rewritten as:

ηchaos(N) = [y]Ψ(ξ, p), (2.3)
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[y] =

[
y(α(1)) · · · y(α(N))

]
. (2.4)The orthonormality property of the projetion basis {ψα(ξ), α ∈ Ap} yields theondition:

E
(
Ψ(ξ, p)Ψ(ξ, p)T

)
= [IN ]. (2.5)Sine ψα(1)(ξ) = 1, it an be seen that:

E
(
ηchaos(N)

)
= y(α

(1)). (2.6)Let [Rη] and [Rchaos
η (N)] be the autoorrelation matrix of the random vetors ηand ηchaos(N):

[Rη] = E
(
ηηT

)
, (2.7)

[
Rchaos

η (N)
]
= E

(
ηchaos(N)

(
ηchaos(N)

)T)
= [y]E

(
Ψ(ξ, p)Ψ(ξ, p)T

)
[y]T = [y][y]T .(2.8)2.2. Identi�ation of the polynomial haos expansion oe�ients. Inthis setion, partiular values of the trunation parameters Ng and p are onsidered.Let MNηN be the spae of all the (Nη ×N) real matries. For a given value of [y∗] in

MNηN , the random vetor U ([y∗]) = [y∗]Ψ (ξ, p) is a Nη-dimension random vetor,for whih the autoorrelation is equal to [y∗][y∗]T . Let pU([y∗]) be its multidimensionalPDF.When the only available information on η is a set of νexp independent realizations,the optimal oe�ients matrix [y] of its trunated PCE, ηchaos(N) = [y]Ψ(ξ, p), anbe seen as the argument whih maximizes the log-likelihoodLU([y∗]) ([η
exp]) ofU([y∗]):

[y] = arg max
[y∗]∈MNηN

LU([y∗]) ([η
exp]) , (2.9)

LU([y∗]) ([η
exp]) =

νexp∑

i=1

ln pU([y∗])

(
η(i)

)
. (2.10)2.3. Pratial solving of the log-likelihood maximization.2.3.1. The need for statistial algorithms to maximize the log-likelihood.The log-likelihood LU([y∗]) ([η

exp]) being non-onvex, deterministi algorithms suh asgradient algorithms annot be applied to solve Eq. (2.9), and random searh algo-rithms have to be used. Hene, the preision of the PCE has to be orrelated to anumerial ost M , whih orresponds to a number of independent trials of [y∗] in
MNηN . Let Y =

{
[y∗](r), 1 ≤ r ≤M

} be a set of M elements, whih have been



6 POLYNOMIAL CHAOS IN HIGH DIMENSIONhosen randomly in MNηN . For a given numerial ost M , the most aurate PCEoe�ients matrix [y] is approximated by:
[y] ≈ [yY ] = arg max

[y∗]∈Y
LU([y∗]) ([η

exp]) . (2.11)2.3.2. Restrition of the maximization domain. From the νexp independentrealizations {η(1), · · · ,η(νexp)
}, the mean value E(η) and the autoorrelation matrix

[Rη] of η an be estimated by:
E (η) ≈ η̂(νexp) =

1

νexp

νexp∑

i=1

η(i), (2.12)
[Rη] ≈ [R̂η(ν

exp)] =
1

νexp

νexp∑

i=1

η(i)
(
η(i)

)T
=

1

νexp
[ηexp][ηexp]T . (2.13)A good way to improve the e�ieny of the numerial identi�ation of [y] is thento restrit the researh set to Oη ⊂ MNηN , with:

Oη =
{
[y] =

[
y(α(1)), · · · ,y(α(N))

]
∈ MNηN |

y(α(1)) = η̂(νexp), [y][y]T = [R̂η(ν
exp)]

}
,

(2.14)whih, taking into aount Eqs. (2.6) and (2.8), guarantees by onstrution that:
{

[Rchaos
η (N)] = [R̂η(ν

exp)],
E
(
ηchaos(N)

)
= η̂(νexp).

(2.15)Hene, the PCE oe�ients matrix [y] an be approximated as the argument in
Oη that maximizes the log-likelihood LU([y∗]) ([η

exp]). By de�ning W the set thatgathers M randomly raised elements of Oη, [y] an then be assessed as the solutionof the new optimization problem:
[y] ≈ [yW ] = arg max

[y∗]∈W
LU([y∗]) ([η

exp]) . (2.16)2.3.3. Approximation of the log-likelihood funtion. From a partiularmatrix of realizations [Ψ] (whih is de�ned in Eq. (1.10)), if [y∗] is an element of
Oη, νchaos independent realizations {U ([y∗], θn) = [y∗]Ψ (ξ(θn), p) , 1 ≤ n ≤ νchaos

}of the random vetor U([y∗]) an be omputed and gathered in the matrix [U ]:
[U ] = [U ([y∗], θ1) · · · U ([y∗], θνchaos)] = [y∗][Ψ]. (2.17)Hene, using Gaussian Kernels, the PDF pU([y∗]) of U ([y∗]) an be diretly esti-mated by its non parametri estimator p̂U :
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∀x ∈ R

Nη , pU([y∗])(x) ≈

p̂U (x) =
1

(2π)
Nη/2 νchaos

∏Nη

k=1 hk

νchaos∑

n=1

exp


−1

2

Nη∑

k=1

(
xk − Uk([y

∗], θn)

hk

)2

,(2.18)where h =

(
h1, · · · , hNη

) is the multidimensionnal optimal Silverman bandwith vetor(see [6℄) of the Kernel smoothing estimation of pU([y∗]):
∀ 1 ≤ k ≤ Nη, hk = σ̂Uk

(
4

(2 +Nη)νexp

)1/(Nη+4)

, (2.19)where σ̂Uk
is the empirial estimation of the standard deviation of eah omponent

Uk of U . It has to be notied that p̂U only depends on the bandwidth vetor h, andthe two matries [y∗] and [Ψ]. Hene, aording to the Eqs. (2.10), (2.17) and (2.18),for a given value of νchaos, the maximization of the log-likelihood funtion LU([y∗])an be replaed by the maximization of the ost-funtion C([ηexp], [y∗], [Ψ]) suh that:
[y] ≈ [yOη ] = arg max

[y∗]∈Oη

C([ηexp], [y∗], [Ψ]), (2.20)where:
C([ηexp], [y∗], [Ψ]) = CC + CV ([ηexp], [y∗], [Ψ]), (2.21)
CC = −νexp ln


(2π)Nη/2 νchaos

Nη∏

k=1

hk


 , (2.22)

CV ([ηexp], [y∗], [Ψ]) =

νexp∑

i=1

ln




νchaos∑

n=1

exp


−1

2

Nη∑

k=1

(
η
(i)
k − Uk([y

∗], θn)

hk

)2



 . (2.23)Hene, the optimization problem de�ned by Eq. (2.16) an �nally be estimatedby:

[y] ≈ [yMOη
] = arg max

[y∗]∈W
C ([νexp], [y∗], [Ψ]) . (2.24)The optimization problem de�ned by Eq. (2.24) is now supposed to be solvedwith the advaned algorithms desribed in [29℄ to optimize the trials of the elements of

W for a given omputation ostM . The higher the value of M is, the better the PCEidenti�ation should be. Therefore, this value has to be hosen as high as possiblewhile respeting the omputational ressoure limitation.



8 POLYNOMIAL CHAOS IN HIGH DIMENSION2.3.4. Auray of the PCE identi�ation. For a given omputation ost
M , let [yMOη

] be an optimal solution of Eq. (2.24). [yMOη
] is a numerial estimationof the PCE oe�ients matrix [y]. For a new (

N × νchaos,∗
) real matrix [Ψ∗] ofindependent realizations (νchaos,∗ an be higher than νchaos), the robustness of [yMOη

]regarding the hoie of [Ψ] an then be estimated by omparing C
(
[ηexp], [yMOη

], [Ψ]
)and C

(
[ηexp], [yMOη

], [Ψ∗]
). In addition, if νexp new independent realizations of ηwere available and gathered in the matrix [ηexp,new], the over-learning of the methodould be measured by omparing C

(
[ηexp], [yMOη

], [Ψ]
) and C

(
[ηexp,new], [yMOη

], [Ψ]
).At last, for the same omputation ost M , if [yM,new

Oη
] is a new optimal solution of Eq.(2.24), the global auray of the identi�ation stems from the omparison between

C
(
[ηexp,new], [yMOη

], [Ψ∗]
) and C

(
[ηexp,new], [yM,new

Oη
], [Ψ∗]

).2.4. Identi�ation of the PCE trunation parameters. As shown in In-trodution, two trunation parameters, Ng and p, appear in the trunated PCE,
ηchaos(N) = [y]Ψ(ξ, p), of η. The values of these parameters have to be determinedfrom a onvergene analysis. The objetive of this setion is thus to give the funda-mental elements to perform suh a onvergene analysis.2.4.1. De�nition of a log error funtion. For eah omponent ηchaosk (N) ofthe trunated PCE, ηchaos(N) = [y]Ψ(ξ, p), of η, the L1-log error funtion errk isintrodued as desribed in [29℄:
∀ 1 ≤ k ≤ Nη, errk(Ng, p) =

∫

BIk

|log10 (pηk
(xk))− log10

(
pηchaos

k
(xk)

)
|dxk, (2.25)where:

• BIk is the support of ηexpk ;
• pηk

and pηchaos
k

are the PDF of ηk and ηchaosk respetively.The multidimensional error funtion err(Ng , p) is then dedued from the unidi-mensional L1-log error funtion as:
err(Ng , p) =

Nη∑

k=1

errk(Ng, p). (2.26)The parameters Ng and p have thus to be determined to minimize the multidi-mensional L1-log error funtion err(Ng, p).For given values of trunation parameters Ng and p, it is reminded that PCEoe�ients matrix [y] is searhed in order to maximize the multidimensional log-likelihood funtion, whih allows us to onsider a priori strongly orrelated problems.One this matrix [y] is identi�ed, it is possible to generate as many independentrealizations of trunated PCE ηchaos(N) as needed to estimate as preisely as possiblethe non parametri estimator p̂U of its multidimensional PDF. The number νexp ofavailable experimental realizations of η is however limited. This number is generallytoo small for the non parametri estimator of multidimensional PDF pη of η to berelevant, whereas it is most of the time large enough to de�ne the estimators of themarginals of pη . Therefore, the log-error funtions de�ned by Eqs. (2.25) and (2.26)



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 9only onsider the marginals of the PDF of pη and pchaosη . In addition, the logarithmfuntion has been introdued in order to measure the errors of the very small valuesof the probability density funtion (the tails of the probability density funtion).2.4.2. De�nition of an admissible set for the trunation parameters.As it exists an isoprobabilisti transformation between η and (Ξ1, · · · ,ΞNη

), where
{Ξk, 1 ≤ k ≤ Nη} is a set of Nη independent entered normalized Gaussian randomvariables, the onvergene analysis an be restrited to the values of Ng whih verify:

Ng ≤ Nη. (2.27)Moreover, imposing the (Nη ×N) real matrix [y] to be in Oη amounts to imposing
Nη(Nη+3)

2 onstraints on [y], whih implies:
NηN ≥ Nη (Nη + 3)

2
⇔ N ≥ Nη + 3

2
. (2.28)However, the algorithms developed in [29℄, on whih the solving of the optimiza-tion problem, de�ned by Eq. (2.24), is based, need the more restritive ondition:

N ≥ Nη + 1. (2.29)We will therefore onsider Q(Nη) the set of the admissible values for p and Ngwith:
Q(Nη) =

{
(p,Ng) ∈ N

2, | Ng ≤ Nη, N = (Ng + p)!/(Ng! p!) ≥ Nη + 1
}
. (2.30)Theoretially, inreasing p and Ng adds terms in the PCE of the onsideredrandom vetor, and therefore should indue the derease of the error funtion:

∀ p∗ ≥ p, N∗
g ≥ Ng, err(Ng , p) ≥ max

{
err(N∗

g , p), err(Ng , p
∗)
}
≥

min
{
err(N∗

g , p), err(Ng , p
∗)
}
≥ err(N∗

g , p
∗).

(2.31)However, the higher the values of p and Ng are, the bigger the PCE oe�ientsmatrix is, the harder the numerial identi�ation is. Hene, introduing ε as an errorthreshold, whih has to be adapted to the problem, let P(ε,Nη) be the set:
P(ε,Nη) = {(p,Ng) ∈ Q(Nη) | err(Ng , p) ≤ ε} . (2.32)Finally, given the error threshold ε, rather than diretly minimizing the L1-logerror funtion err(Ng , p), it appears to be more aurate to look for the optimal valuesof p and Ng that minimize the size of the projetion basis N = (Ng + p)!/ (Ng! p!):

(p,Ng) = arg min
(p∗,N∗

g )∈P(ε,Nη)

(
N∗

g + p∗
)
!/
(
N∗

g ! p
∗!
)
. (2.33)If the polynomial order (whih is a priori unknown) of the non trunated PCEof η is in�nite, it may not exist values of p and Ng in P(ε,Nη) for error funtion

err(Ng , p) to be inferior to small values of ε. In this ase, the former algorithms annevertheless be used to �nd the most aurate values of p and Ng with respet to anavailable omputational ost.



10 POLYNOMIAL CHAOS IN HIGH DIMENSION3. Adaptation of the PCE identi�ation method in high dimension. Asit has been presented in the former setions, the (N × νchaos
) real matrix [Ψ] gathers

νchaos independent realizations of the N -dimension PCE basis {ψα(ξ), α ∈ Ap}.Eqs. (2.23) and (2.24) underline the fat that the numerial identi�ation of thePCE oe�ients [y] an be seen as the minimization of a ost funtion involving theelements of the (Nη × νchaos
) real matrix of independent realizations [U ] = [y][Ψ] andthe elements of the (Nη × νexp) real matrix [ηexp] = [η(1) · · · η(νexp)]. In theoretialterms, this ost funtion should be minimum when the multidimensional PDF pUof U = [y]Ψ(ξ, p) is as near as possible to the multidimensional PDF pη of η. Inpratial terms, this ost funtion is however minimum when p̂U is as near as possibleto p̂η, where p̂U and p̂η are the multidimensional non parametri estimators of pUand pη de�ned by Eq. (2.18). With respet to νexp and νchaos, three bias are thenintrodued in the PCE identi�ation:

• a bias due to a lak of information on η:
b(1)(νexp) =

∫

R
Nη

|p̂η(x)− pη(x)|dx, (3.1)
• a bias due to a lak of information on U :

b(2)(νchaos) =

∫

R
Nη

|p̂U (x)− pU (x)|dx, (3.2)
• a bias due to the trunation and to the fat that the global maximum is notneessary reahed:

b(3)(νexp, νchaos) =

∫

R
Nη

|p̂η(x)− p̂U (x)|dx. (3.3)These three bias ould also be expressed with respet to the statistial momentsof η and U . For instane, when fousing on the autoorrelation matrix, let err1, err2and err3 be the autoorrelation errors orresponding respetively to the bias b(1), b(2)and b(3):
err1(νexp) =

∥∥∥[Rη]− [R̂η(ν
exp)]

∥∥∥
F
/ ‖[Rη]‖F , (3.4)

err2(νchaos) =
∥∥∥[Rchaos

η (N)]− [R̂U (ν
chaos)]

∥∥∥
F
/
∥∥[Rchaos

η (N)]
∥∥
F
, (3.5)

err3(νexp, νchaos) =
∥∥∥[R̂U (ν

chaos)]− [R̂η(ν
exp)]

∥∥∥
F
/
∥∥∥[R̂η(ν

exp)]
∥∥∥
F
, (3.6)where ‖.‖F is the Frobenius norm of matries, and where it is reminded from Eqs.(2.8) and (2.13) that:





[
R̂η(ν

exp)
]
= 1

νexp [η
exp][ηexp]T ,[

R̂U (ν
chaos)

]
= 1

νchaos [U ][U ]T = [y]
(

1
νchaos [Ψ][Ψ]T

)
[y]T ,[

Rchaos
η (N)

]
= [y][y]T .

(3.7)



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 11Hene, the smaller these three errors are, the more preise the PCE identi�ationis. The νexp independent realizations {η(1), · · · ,η(νexp)
} being the maximum availableinformation on η, the bias b(1) and the autoorrelation error err1 annot be dereased,whereas the set Oη, whih was introdued to guarantee that [Rchaos

η (N)] = [R̂η(ν
exp)],aims at reduing b(2), b(3), err2 and err3. Therefore, imposing [y] to be in Oη leadsus to:

err2
(
νchaos

)
= err3

(
νexp, νchaos

)

=

∥∥∥∥[y]
(

1

νchaos
[Ψ][Ψ]T − [IN ]

)
[y]T

∥∥∥∥
F

/
∥∥[y][IN ][y]T

∥∥
F
.

(3.8)The following asymptotial property an thus be dedued from Eq. (1.12):
lim

νchaos→+∞
err2

(
νchaos

)
= lim

νchaos→+∞
err3

(
νexp, νchaos

)
= 0, (3.9)whih is equivalent to say that the larger νchaos is, the more aurate the PCE iden-ti�ation should be. However, from a pratial point of view, the value of νchaos is�xed by the available omputation ressoures. As an extension of the work presentedin [30℄, this setion aims at quantifying the divergene of the ratio:

r =

∥∥∥∥
1

νchaos
[Ψ][Ψ]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F , (3.10)when the trunation parameters Ng and p inrease for several statistial measures.From Eq. (3.8), r, de�ned by Eq. (3.10), an be seen as a general haraterization ofthe autoorrelation errors err2 and err3. This divergene being very detrimental tothe PCE identi�ation in high dimension, a new deomposition of the PCE oe�ientmatrix [y] will be then presented in this setion to make err2 and err3 be zero forany value of Ng and p.3.1. Deomposition of the matrix of independent realizations. To betteremphasize the in�uene of the trunation parameters on the ratio r, a rewriting ofthe matrix [Ψ] is �rst presented.3.1.1. Theoretial basis of the deomposition. From Eq. (1.10), matrix [Ψ]gathers νchaos olumns {Ψ (ξ(θn), p) , 1 ≤ n ≤ νchaos
}, whih are independent realiza-tions of the N -dimension PCE basis {ψα(ξ), α ∈ Ap}. This basis being orthonormalleads us to the asymptotial ondition on [Ψ], de�ned by Eq. (1.12). Moreover, Eq.(1.6) implies that [Ψ] an be expressed as:

[Ψ] = [A][M ], (3.11)where [A] is the (N ×N) real matrix that gathers the oe�ients of the orthonormalpolynomials with respet to the probability measure of the Ng-dimension PCE germ,
ξ =

(
ξ1, · · · , ξNg

), and [M ] is a (N × νchaos
) real matrix of νchaos independent real-izations of the multi-index monomials Mα (ξ) = ξα1

1 × · · · × ξ
αNg

Ng
, for any value α in

Ap:
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[M ] = [E (ξ (θ1) , p) · · · E (ξ (θνchaos) , p)] , (3.12)
E (ξ, p) = (Mα(1) (ξ) , · · · ,Mα(N) (ξ)) . (3.13)If [A] is independent of [M ], Eq. (3.11) erti�es that, if the olumns of [M ] are inde-pendent, then the olumns of [Ψ] stay independent. Let [RE ] be the autoorrelationmatrix of the random vetor E (ξ, p):

[RE ] = E
(
E (ξ, p)E (ξ, p)

T
)
. (3.14)It an be dedued from Eqs. (1.12), (3.11), (3.12) and (3.14) that:

[RE ] = lim
νchaos→+∞

1

νchaos
[M ][M ]T = [A]−1[A]−T . (3.15)Aording to this deomposition, omputing the lassial Gram-Shmidt orthog-onalization to identify the polynomial basis oe�ients only requires the alulationof [A]−T , whih orresponds to the Cholesky deomposition matrix of the positivede�nite matrix [RE ]. Hene, by onstrution, the matrix [Ψ] an be written as theprodut of a lower triangular matrix [A] and a matrix [M ] of independent realizationsof a multi-index random vetor E(ξ, p).3.1.2. Pratial omputation of matrix [Ψ]. Thanks to Eq. (3.11), matrix

[Ψ] an be numerially omputed without requiring omputational reurrene formulanor algebrai expliit representation. An illustration of the method is presented here-inafter for a PCE based on a Gaussian mesure. This development an be diretlyextented to any value of p and Ng, as well as to other statistial measures. Let ξ1 and
ξ2 be two independent normalized Gaussian random variables, suh that ξ = (ξ1, ξ2),and α = (α1, α2). Choosing p = 2 and Ng = 2, whih orresponds to N = 6, leads tothe following de�nition of E (ξ, p):

E (ξ, 2) =
(
1, ξ1, ξ2, ξ1ξ2, ξ

2
1 , ξ

2
2

)
. (3.16)Aording to this equation, matrix [M ] an thus be easily dedued from νchaos in-dependent realizations of ξ. Moreover, let [α] be the (Ng ×N) real matrix whihgathers the admissible values for α in Ap:

[α] =

[
0 1 0 1 2 0
0 0 1 1 0 2

]
↔ Ap = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)} .(3.17)The random variables ξ1 and ξ2 being independent, normalized and Gaussian, theautoorelation matrix [RE ] an thus be written as:

∀i, j ∈ {1, · · · , N} , [RE ]ij = E
(
ξ
[α]1i+[α]1j
1 × ...× ξ

[α]Ngi+[α]Ngj

Ng

)

= E
(
ξ
[α]1i+[α]1j
1

)
× ...× E

(
ξ
[α]Ngi+[α]Ngj

Ng

)
,

(3.18)
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{
E (ξqℓ ) = 0 if q is not even,
E (ξqℓ ) =

q!
(q/2)!2q/2

if q is even. (3.19)Therefore, Eq. (3.15) allows us to numerially �nd bak in [A] the multidimensionalHermite polynomials Hα1 × · · · ×HαNg
:

∀x ∈ R,





H0(x1)×H0(x2) = 1
H1(x1)×H0(x2) = x1
H0(x1)×H1(x2) = x2
H1(x1)×H1(x2) = x1x2

H2(x1)×H0(x2) =
x2
1−1√
2

H0(x1)×H2(x2) =
x2
2−1√
2

↔ [A] =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−1√
2

0 0 0 1√
2

0
−1√
2

0 0 0 0 1√
2



.(3.20)Notiing that:

• if ξ is a random variable uniformly distributed on [−1, 1]:
{
E (ξq) = 0 if q is not even,
E (ξq) = 1

q+1 if q is even, (3.21)
• if the random variable ξ is a random variable that is haraterized by anormalized exponential distribution on [0,+∞ [ :

E (ξq) = q!, (3.22)this method an diretly be generalized to the uniform and exponential ases to om-pute the multidimensional Legendre and Laguerre polynomial oe�ients, but also toan arbitrary probability measure for the germ ξ.3.2. In�uene of the trunation parameters and of the hoie for thePCE probability measure. The onvergene properties of ratio r when νchaos tendsto in�nity are strongly related to the statistial properties of germ ξ. This setionaims therefore to emphasize the dominant trends of this spei� link, and to highlightthe di�ulties brought about by the divergene of ratio r, when trying to performanalysis of onvergene in high dimension.The de�nition of the Frobenius norm allows us to write that:
r =

∥∥∥∥
1

νchaos
[Ψ][Ψ]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F =
√
NΣ(νchaos), (3.23)where Σ(νchaos) is suh that:

{
Σ(νchaos)

}2
=

1

N2

∑

1≤i,j≤N

((
1

νchaos
[Ψ][Ψ]T − [IN ]

)

ij

)2

. (3.24)



14 POLYNOMIAL CHAOS IN HIGH DIMENSIONBy onstrution, {Σ(νchaos)}2 is an assessment of the mean value of the squared dif-ferene between the elements of 1
νchaos [Ψ][Ψ]T and the elements of the identity matrix

[IN ]. Hene, if {Σ(νchaos)}2 remains onstant when the size N of the polynomialbasis inreases, the ratio r should inrease as √N . Moreover, Eqs. (3.11) and (3.15)yield,
1

νchaos
[Ψ][Ψ]T − [IN ] = [A]

(
1

νchaos
[M ][M ]T − [RE ]

)
[A]T . (3.25)For all (i, j) in {1, · · · , N}2, [RE ]ij is suh that:

[RE ]ij = E

(
ξ
α

(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng

+α
(j)
Ng

Ng

)
. (3.26)Let [R̂E ] be the following estimator of [RE ]:

[R̂E ]ij =
1

νchaos

νchaos∑

n=1

(
Ξ
(n)
1

)α(i)
1 +α

(j)
1 × · · · ×

(
Ξ
(n)
Ng

)α(i)
Ng

+α
(j)
Ng
, (3.27)where {Ξ(n) =

(
Ξ
(n)
1 , · · · ,Ξ(n)

Ng

)
, 1 ≤ n ≤ νchaos

} is a set of νchaos independent Ng-dimension random vetors, whih have the same PDF than ξ. The entral limittheorem yields that, for all (i, j) in {1, · · · , N}2, we have:
√√√√√

νchaos

Var

(
ξ
α

(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng

+α
(j)
Ng

Ng

)
(
[R̂E ]ij − [RE ]ij

) in law−→ N (0, 1), (3.28)where N (0, 1) is the normalized Gaussian distribution, and Var(.) is the variane. Un-der this formalism, it an be notied that 1
νchaos [M ][M ]T is one partiular realizationof [R̂E ]. Hene, from Eqs. (3.24), (3.25) and (3.28), we dedue that:

• if Var(ξα(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng

+α
(j)
Ng

Ng

)
≤ Var

(
ξ
α

(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng+1+α

(j)
Ng+1

Ng+1

),then Σ(νchaos) potentially inreases with respet to Ng.
• if Var(ξα(i)

ℓ

ℓ

)
≤ Var

(
ξ
α

(j)
ℓ

ℓ

) for α(i)
ℓ ≤ α

(j)
ℓ , then Σ(νchaos) potentially in-reases with respet to p.As an illustration, for eah ouple (Ng, p) suh that 1 ≤ p ≤ 10 and 1 ≤ Ng ≤ 6,three sets, {[Ψ(m)

U (p,Ng)], 1 ≤ m ≤ 1000}, {[Ψ(m)
G (p,Ng)], 1 ≤ m ≤ 1000} and

{[Ψ(m)
E (p,Ng)], 1 ≤ m ≤ 1000}, are omputed, suh that [Ψ(m)

U (p,Ng)], [Ψ(m)
G (p,Ng)]and [Ψ

(m)
G (p,Ng)] refer to partiular (N × νchaos

) real matries of independent realisa-tions of the basis {ψα, α(ξ) ∈ Ap}, in the uniform, the Gaussian and the exponentialases, respetively. Hene, de�ning:
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rmU (νchaos) =
∥∥∥ 1
νchaos [Ψ

(m)
U (p,Ng)][Ψ

(m)
U (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmG (νchaos) =
∥∥∥ 1
νchaos [Ψ

(m)
G (p,Ng)][Ψ

(m)
G (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmE (νchaos) =
∥∥∥ 1
νchaos [Ψ

(m)
E (p,Ng)][Ψ

(m)
E (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

(3.29)allows us to ompute, in eah ase, three approximations errorthoU (p,Ng), errorthoG (p,Ng)and errorthoE (p,Ng) of the mean value of the ratio r, de�ned in Eq. (3.23), suh that:




errorthoU (p,Ng) =
1

1000

∑1000
m=1 r

m
U (νchaos),

errorthoG (p,Ng) =
1

1000

∑1000
m=1 r

m
G (νchaos),

errorthoE (p,Ng) =
1

1000

∑1000
m=1 r

m
E (νchaos).

(3.30)For νchaos = 1000, in �gure 3.1, the two fators whih make the ratio r diverge withrespet to p and Ng an therefore be emphasized. On the �rst hand, if inreasing
p or Ng does not inrease the variane of the elements of E(ξ, p), whih is the aseif the PCE germ ξ is haraterized by an uniform distribution (see Eq. (3.21)), theratio r inreases approximately as √

N . On the other hand, if inreasing p or Nginreases the variane of the element of E(ξ, p), as it is the ase if the PCE germ ξ isharaterized by a Gaussian or exponential distribution (see Eqs. (3.19) and (3.22)),the ratio r diverges very quikly with respet to the trunation parameters, and biasthe PCE identi�ation results.As a onlusion, for a �xed value of νchaos, the di�erene 1
νchaos [Ψ][Ψ]T − [IN ]inreases when p and Ng inrease. Therefore, imposing [y] to be in Oη introdues anumerial bias in the PCE identi�ation, whih beomes very important when highvalues of p and Ng are needed. Suh a phenomenon prevents thus to perform theanalysis of onvergene of the PCE in high dimension, espeially when dealing withGaussian and exponential PCE germs.3.3. Adaptation of the optimization problem. In this setion, �xed val-ues for νchaos, p and Ng are onsidered. Aording to the notations of Setion 3.1,a (N × νchaos

) real matrix of independent realizations [Ψ] = [A][M ] an then beonstruted. Under the ondition νchaos ≥ N , 1
νchaos [M ][M ]T is positive de�nite byonstrution, whih allows writing:

1

νchaos
[M ][M ]T = [L][L]T , (3.31)where [L] is the Cholesky deomposition of 1

νchaos [M ][M ]T , whih yields:
1

νchaos
[Ψ][Ψ]T = [A][L][L]T [A]T = [B][B]T , (3.32)

[B] = [A][L]. (3.33)The matrix:
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Figure 3.1: Graphs of the errors errorthoU , errorthoG and errorthoE with respet to thetrunation parameters Ng and p.
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[Ψ̃] = [B]−1[Ψ], (3.34)is then introdued, suh that by onstrution:
1

νchaos
[Ψ̃][Ψ̃]T = [IN ]. (3.35)Using the notations of Setion 2, let [y∗] be a (Nη ×N) real matrix suh that therandom vetor U is de�ned as:

U = [y∗]Ψ(ξ, p). (3.36)Hene, νchaos independent realizations of U an be diretly dedued from thematrix [Ψ] and gathered in the matrix [U ] = [y∗][Ψ]. De�ning [z] suh that:
[z] = [y∗][B], (3.37)therefore yields the equality:

[U ] = [y∗][Ψ] =
(
[z][B]−1

) (
[B][Ψ̃]

)
= [z][Ψ̃]. (3.38)If [z] is in Oη, [z][z]T = [R̂η(ν

exp)], whih implies that:




[
R̂U (ν

chaos)
]
= 1

νchaos [U ][U ]T = [z]
(

1
νchaos [Ψ̃][Ψ̃]T

)
[z]T = [z][z]T = [R̂η(ν

exp)],

[RU ] = E
(
UUT

)
= limνchaos→∞[R̂U (ν

chaos)] = [R̂η(ν
exp)]. (3.39)From Eqs. (3.5) and (3.6), it an thus be dedued that imposing [z] to be an element of

Oη guarantees that, for any νchaos ≥ N , we have err2(νchaos) = err3(νexp, νchaos) = 0.Hene, whereas the optimization problem de�ned by Eq. (2.24) is perturbed byautoorrelation errors, the new optimization problem:




[
yMOη

]
=
[
zMOη

]
[B−1],[

zMOη

]
= argmax[z∗]∈W C

(
[ηexp], [z∗], [Ψ̃]

)
,

(3.40)is no more a�eted, whih allows us to onsider high values of the trunation parame-ters Ng and p. Equation (3.38) underlines that the two former optimization problemsare equivalent, as the independent realizations of U have just been rewritten. Onlythe researh set, for the PCE oe�ient matrix, has been modi�ed, whih allows thenumerial bias due to the �nite dimension of [Ψ] to be redued.Finally, if [y] is the oe�ients matrix of the trunated PCE, ηchaos(N), of randomvetor η, suh that ηchaos(N) = [y]Ψ(ξ, p), a good estimation of [y] in high dimensionan be omputed by solving the optimization problem de�ned by Eq. (3.40).



18 POLYNOMIAL CHAOS IN HIGH DIMENSION3.4. Remarks on the new optimization problem. It has to be notied that
[Ψ̃] is unique, and keeps exatly the same struture than [Ψ]. Indeed, let [Lasym] =
[A]−1 be the Cholesky deomposition matrix of the autoorrelation matrix [RE ], whihis de�ned by Eq. (3.14). Hene, from Eq. (3.11), [Ψ] = [Lasym]−1[M ], whih has tobe ompared to [Ψ̃] = [B]−1[Ψ] =

(
[L]−1[A]−1

)
([A][M ]) = [L]−1[M ], where [L] and

[Lasym] are two lower triangular matries. Whereas [Lasym] implies the asymptotialorthonormality, [L] guarantees the numerial orthonormality. Moreover, from Eq.(3.40), the optimal PCE oe�ients matrix [y] is approximated as a produt of twomatries:
[y] ≈

[
zMOη

]
[B]−1. (3.41)For a �xed value of N , [B] is strongly dependent on νchaos and [Ψ]. From Eq. (1.12),it also veri�es the asymptotial property:

lim
νchaos→∞

[B] = [IN ], (3.42)whih implies that [zMOη
] onverges towards [y] if su�iently high values of νchaos isonsidered. Hene, the less dependent on [Ψ] the matrix [zMOη

] is, the more auratethe hoie of νchaos is, and the better the PCE identi�ation is.If another (N × νchaos,∗
) real matrix [Ψ∗] of independent realizations is on-sidered, the matries [B∗] and [Ψ̃∗] = [B∗]−1[Ψ∗] an be omputed aording toEqs. (3.33) and (3.34). As it has previously been seen, [Ψ∗], [Ψ̃] and [Ψ̃∗] keepthe same struture. The auray of [zMOη

] an thus be estimated by omparing
C([νexp], [zMOη

], [Ψ][B]−1) and C([νexp], [zMOη
], [Ψ∗][B∗]−1).In partiular, νchaos,∗ and νchaos an be di�erent. Finally, one the oe�ientmatrix [zMOη

] has been omputed, the higher νchaos,∗ is, the more aurate and generalthe validation is.4. Appliation. The method proposed in the two former setions is applied totwo examples that both deal with the identi�ation of the trunated PCE oe�ientsof a random vetor η haraterized by a multidimensional analytial distributions.The �rst one is built with Nη = 3, the seond one with Nη = 50. Aording to thenotations of the former setions, the set of the νexp independent realizations used in thePCE identi�ation are gathered in [ηexp]. Another set of νref independent realizations(νref ≫ νexp) is used as a referene to validate the di�erent modelings. The idea ofthis setion is thus to show to what extent the whole method desribed in the formersetions allows omputing onvergene analysis and relevant PCE identi�ation ofthe random vetor η from a limited number of information, [ηexp]. Moreover, adistintion has to be made between the PDF modeling, ahieved thanks to a PCE,and its estimation from PCE samples, omputed thanks to non parametrial methods.In this ontext, let νchaos be the number of independent realizations used to arry outthe PCE identi�ation, and νchaos,∗ the number of independent realizations of theidenti�ed PCE random vetor, whih will be used to draw graphial representations.For the two appliations, the Gaussian measure is hosen for the PCE of η, and
νexp = 1000.



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 19It is reminded that, in this work, the term high dimension refers to the fat thatthe dimension Nη of unknown random vetor η is high.4.1. Appliation in low dimension. The objetive of this setion is to applythe whole PCE method to a Nη = 3-dimension ase. First, the statistial propertiesof the unknown random vetor η are presented. Seondly, a onvergene analysisis arried out in order to alulate the optimal trunation parameters Ng and p ofthe PCE, ηchaos(N), of η. Then, the PCE oe�ients are identi�ed from the νexpindependent realizations, [ηexp], of η. At last, the relevane of the PCE modeling isanalysed.4.1.1. Generation of the random vetor to identify. Let [X ] be a (3× 6)real-valued random matrix whose oe�ients are uniformly and independently hosenbetween -1 and 1, suh that η is de�ned aording to the notations of Setion 3 as:
η = [X ]E (ξexp, 2) , (4.1)where ξexp = (ξexp1 , ξexp2 ) is a normalized Gaussian random vetor whih omponentsare independent. The omponents of η are however strongly dependent, and the PCEtrunation parameters to be found bak by the onvergene analysis are pexp = 2 and

N exp
g = 2.Let {ξexp (θ1) , · · · , ξexp (θνexp)} and {ξexp (θ1) , · · · , ξexp (θνref )} be νexp and νrefindependent realizations of the random vetor ξexp, suh that the matries of inde-pendent realizations [ηexp] and [ηref] are given by:

[ηexp] = [X ] [E (ξexp (θ1) , 2) · · · E (ξexp (θνexp) , 2)] , (4.2)
[
ηref
]
= [X ] [E (ξexp (θ1) , 2) · · · E (ξexp (θνref ) , 2)] . (4.3)Let {p̂ref,kη , 1 ≤ k ≤ 3
} be the Kernel smoothing estimations of the marginal PDFs ofeah omponent of η, whih are omputed thanks to the νref independent realizationsof η gathered in [ηref ]. In this example, νref = 2× 106 ≫ νexp = 1000. It is remindedthat the PCE identi�ation of η is only ahieved thanks to the matrix of independentrealizations [ηexp], whih is onsidered as the only available information. The PDFs{

p̂ref,kη , 1 ≤ k ≤ 3
} are moreover supposed to build the marginal PDFs of the referene

η. 4.1.2. Identi�ation of the PCE trunation parameters. Using the nota-tions of Setion 2.4, the boundary intervals BI1, BI2 and BI3 for whih the onvergeneanalysis is ahieved, are hosen suh that:
∀ 1 ≤ k ≤ 3, BIk =

{
x ∈ R | p̂ref,kη (x) ≥ 1

νexp

}
. (4.4)Figure 4.1 displays the referene marginal PDFs of η, as well as the marginalPDFs {p̂exp,kη , 1 ≤ k ≤ 3

} estimated from the νexp independent realizations only. The
1/νexp tolerane is also plotted so that the boundary intervals an therefore be deduedfrom these graphs.
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Figure 4.1: Graphs of the marginal PDFs of η.
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Figure 4.2: Convergene analysis of the PCE of η.
Figure 4.2 shows the values of err (Ng, p), for nine pairs (Ng, p) in Q(3). On thesegraphs, the gradient break of N 7→ err (N) is observed at N = 6, whih allows us to�nd bak the initial solution pexp = 2 and N exp

g = 2. For this small dimension ase,the optimal trunation parameters p and Ng given by the onvergene analysis areequal to the parameters of the analytial referene PCE.4.1.3. PCE Identi�ation. The former onvergene analysis leads us to thefollowing PCE of η:
η ≈ ηchaos(6) =

6∑

j=1

yjΨj (ξ1, ξ2) = [y]Ψ (ξ1, ξ2) , (4.5)where ξ1 and ξ2 are two independent normalized Gaussian random variables. Weare now going to ompare [yclass] and [ynew], where [yclass] stems from the lassialproblem de�ned by Eq. (2.24), whereas [ynew] omes from the maximization of thenew formulation de�ned by Eq. (3.40). In this appliation, νchaos = 1000, and the twoPCE identi�ations have been omputed thanks to the same numerial ostM = 104,whih means thatM = 104 independent random trials of [yclass] and [ynew] have beenused to maximize the log-likelihood. The value of M has been hosen su�ientlyhigh for the PCE error funtion err(Ng , p) to be independent of M . Hene, fora new matrix of independent realizations, [Ψ∗], of size (6× νchaos,∗
), independentrealizations [ηclass(6)] and [ηnew(6)] of ηchaos(6) are dedued, with respet to the twooptimization options:

[ηclass(6)] = [yclass][Ψ∗], (4.6)
[ηnew(6)] = [ynew][Ψ∗]. (4.7)Let
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[Rexp

η ] =
1

νexp
[ηexp][ηexp]T , (4.8)

[Rref
η ] =

1

νref
[ηref ][ηref ]T , (4.9)

[Rclass
η ] =

1

νchaos,∗
[ηclass(6)][ηclass(6)]T , (4.10)

[Rnew
η ] =

1

νchaos,∗
[ηnew(6)][ηnew(6)]T (4.11)be four estimations of the autoorrelation matrix [Rη] of η. It is supposed that [Rref

η ]is the best approximation of [Rη] and will be onsidered as the referene. Aording tothe Eqs. (3.4), (3.5) and (3.6), the autoorrelation errors err1,class, err2,class, err3,classand err1,new, err2,new, err3,new are then omputed in eah ase. In �gure 4.3, it anthus be veri�ed that:
∀ νchaos,∗ ≥ 6, err2,new(νchaos,∗) = err3,new(νchaos,∗, νexp) = 0, (4.12)



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 23

−80 −60 −40 −20 0
0

0.04

0.08

 

 

PSfrag replaements
values of η1PDFofη 1 p̂ref,1η

p̂exp,1η
p̂class,1η
p̂new,1
η

−40 −30 −20 −10 0

10
−6

10
−4

10
−2

 

 

PSfrag replaements
values of η1PDFofη 1 p̂ref,1η

p̂exp,1η
p̂class,1η
p̂new,1
η

−30 −20 −10 0

0.05

0.1

0.15

0.2

0.25

 

 

PSfrag replaements
values of η2PDFofη 2

p̂ref,2η
p̂exp,2η
p̂class,2η
p̂new,2
η

−30 −20 −10 0

10
−3

10
−2

10
−1

 

 

PSfrag replaements
values of η2PDFofη 2

p̂ref,2η

p̂exp,2η

p̂class,2η

p̂new,2
η

−20 0 20

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 

PSfrag replaements
values of η3PDFofη 3 p̂ref,3η

p̂exp,3η
p̂class,3η
p̂new,3
η

−20 0 20

10
−3

10
−2

10
−1

 

 

PSfrag replaements
values of η3PDFofη 3

p̂ref,3η
p̂exp,3η
p̂class,3η
p̂new,3
η

Figure 4.4: Comparison of the marginal PDFs of η and ηchaos(6).
lim

νchaos,∗→+∞
err2,class(νchaos,∗) = err3,class(νchaos,∗, νexp) = 0. (4.13)In partiular, for the value νchaos,∗ = νchaos = 1000, it an be notied that thevalues of err2,class(νchaos,∗) and err3,class(νchaos,∗, νexp) are signi�ant when omparedto err1,class(νexp), whih introdues an additive bias in the identi�ation.



24 POLYNOMIAL CHAOS IN HIGH DIMENSIONFigure 4.4 shows a omparison between the marginal PDFs p̂ref,kη , p̂exp,kη , p̂class,kηand p̂new,k
η , for 1 ≤ k ≤ 3. These PDFs are estimated using Kernel smoothing on theindependent realizations gathered in the matries [ηref ], [ηexp], [ηclass(6)] and [ηnew(6)],respetively, with νchaos,∗ = 106 ≫ νchaos = 1000. First, from only νexp = 1000independent realizations of η, it an be seen that the marginal PDFs are well desribedby the PCE random vetors ηnew(6) and ηclass(6). In partiular, the PDFs tails arevery well haraterized. The PCE method is therefore an extremely e�ient tool tobuild arbitrary multidimensional PDFs. Seondly, it an be notied that, for a sameomputational ost M , the new PCE identi�ation formulation leads us to betterresults than the lassial one. Finally, to still improve these PCE, more trials in Oηwould be neessary to better haraterize [yclass] and [ynew]. In order to obtain a PCEthat orresponds still more preisely to the referene random vetor η, an inrease of

νexp, that is to say, more information about η, would have been required.4.1.4. Relevane of the PCE ompared to Kernel Mixture and PASM.From adequay tests, likelihood estimations and graphial representations, the ideaof this setion is to show the assets of the new PCE formulation when dealing withthe identi�ation of multidimensional distributions from a limited knowledge on therandom vetor of interest η ompared to Kernel Mixture (KM) and Prior AlgebraiStohasti Modeling (PASM). In this prospet, two PDFs p̂η(x) and p̂PASM
η (x,w) arebuilt using a KM approah and a PASM method. The input data of these modelingsare still the matrix of independent realizations [ηexp] =

[
η(1) · · · η(νexp)

]. Onethe KM, the PASM and the two PCE projetion matries, [yclass] and [ynew], areonstruted, Q independent realizations are omputed from the four distributions,from whih omparisons to the referene solution are ahieved. For this appliation,
Q = 106.Constrution of independent realisations.

• Kernel Mixture.Considering an independent Gaussian multidimensional Kernel, a non paramet-rial PDF p̂η(x) is postulated as a sum of νexp Gaussian PDFs {pi, 1 ≤ i ≤ νexp} tomodel pη(x):
p̂η(x) =

νexp∑

i=1

1

νexp
pi(x), (4.14)

pi(x) =

Nη∏

k=1

1√
2πhk

exp

(
−1

2

(
xk − ηik
hk

)2
)
, (4.15)

h = σ̂

(
4

(2 +Nη) νexp

)1/(Nη+4)

, (4.16)where x 7→ pi (x) is the Nη-dimension multivariate Gaussian PDF, with mean value
η(i) and ovariane matrix  h1 0 · · · 0

0 h2
. . . ...... . . . . . . 0

0 · · · 0 hNη



, h is the multidimensionnal op-



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 25timal Silverman bandwidth, and σ̂k is the empirial estimation of the standard devi-ation of eah omponent ηk of η. Let ηker be the Kernel Mixture haraterized bythe PDF x 7→ p̂η(x). The Q independent realizations {ηker,1, · · · ,ηker,Q
} of ηker arethen omputed and gathered in the matrix [ηker].

• Prior Algebrai Stohasti Modeling.From the νexp independent realizations of η, the Nη marginal umulative distri-butions Fηk
of ηk, with 1 ≤ k ≤ Nη, are estimated using a non parametri statistialmethod. In addition, a Gaussian opula Cgauss

rank (see [6℄ for more details about theopula) based on the rank orrelation is hosen (this type of opula has been hosenas it is the most ommonly used in the PASM approahes):
Cgauss

rank (x1, · · · , xNη ) = φ
Nη

rank

(
φ−1(x1), · · · , φ−1(xNη )

)
, (4.17)

φ
Nη

rank(u) =

∫ u1

−∞
· · ·
∫ uNη

−∞

1

(2π)
Nη/2

√
det ([Rrank])

exp

(
−1

2
uT [Rrank]u

)
du1 · · · duNη ,(4.18)

φ(v) =
1√
2π

∫ v

−∞
exp

(
−v

2

2

)
dv, (4.19)

[Rrank]ij = 2 sin
(π
6
ρSij

)
, (4.20)where ρSij is the Spearman orrelation oe�ient between ηi and ηj . Let ηcop be therandom vetor haraterized by the opula Cgauss

rank and the marginal umulative dis-tributions {Fηk
, 1 ≤ k ≤ Nη}. Q independent realizations of ηcop are thus gatheredin the matrix [ηcop].

• Polynomial haos expansion.Finally, using the matries [yclass] and [ynew] of Setion 4.1.3, and a new (6×Q)real matrix [ΨQ] of realizations, Q independent realizations of ηclass(6) and ηnew(6)are gathered in the matrix [ηclass] = [yclass][ΨQ] and [ηnew] = [ynew][ΨQ].Relevane of the PCE modeling when identifying multidimensionalPDFs from a limited amount of independent realizations. Using the resultsof Parametrial Statistis, this setion assesses the relevane of the four methods toonstrut multidimensional PDFs. Three kinds of analysis are ahieved: adequaytests, 2D graphial representations, and multidimensional likelihood omputations.
• Adequay tests.From the matries of independent realizations [ηker], [ηcop], [ηclass] and [ηnew], theestimations {F̂ ker

k , 1 ≤ k ≤ Nη

}, {F̂ cop
k , 1 ≤ k ≤ Nη

}, {F̂ class
k , 1 ≤ k ≤ Nη

} and
{
F̂ new
k , 1 ≤ k ≤ Nη

} of the umulative distribution funtions (CDF) of eah ompo-nents of ηker, ηcop, ηclass(6) and ηnew(6) are respetively assessed. Let η̃(1), · · · , η̃(Nη)be the 1 × νexp-dimension linear forms orresponding to the lines of [ηexp]. For
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1 ≤ k ≤ Nη, η̃(k) gathers therefore the νexp independent realizations of the om-ponent ηk of η, whih have been used to ompute the statistial modelings. For
1 ≤ k ≤ Nη, the Kolmogorov-Smirnov adequay tests are then performed. For eahomponent ηk of η, the null distribution of the Kolmogorov-Smirnov statistis is om-puted under the null hypothesis that the νexp independent realizations of η̃(k) aredrawn from the distribution of the hosen stohasti model. Table 4.1 gives the β-value for eah stohasti model, whih is de�ned as the probability of obtaining atest statisti at least as extreme as the one that was atually observed, assuming thatthe null hypothesis is true. Without surprise, this table allows us to verify that themodeling based on the Gaussian opula and the empirial PDFs of eah omponentsof η gives the best results. Moreover, with an error level of 5%, only the tests forthe opula model and the PCE identi�ation based on the new formulation are posi-tive. The lassial PCE and the Kernel mixture modelings are indeed less relevant toharaterize the marginal PDFs of η.CDF F̂ class

1 F̂ new
1 F̂ ker

1 F̂ cop
1

β-value 0.3779 0.6331 0.2142 0.9996CDF F̂ class
2 F̂ new

2 F̂ ker
2 F̂ cop

2

β-value 0.0000 0.0967 0.0000 0.4573CDF F̂ class
3 F̂ new

3 F̂ ker
3 F̂ cop

3

β-value 0.0000 0.8692 0.0411 0.9849Table 4.1: Computation of the β-values orresponding to the di�erent stohastimodels.
• Two-dimensions graphial analysis.From [ηref ], [ηker], [ηcop], [ηclass] and [ηnew], the estimations x 7→ p̂refη (x), x 7→

p̂kerη (x), x 7→ p̂copη (x), x 7→ p̂classη (x) and x 7→ p̂newη (x) of the multidimensional PDFof η, ηker, ηcop, ηclass(6), ηnew(6) are respetively omputed using the non paramet-ri statistial estimation de�ned by Eq. (2.18). Projetions of these funtions arepresented in Figures 4.5, 4.6 and 4.7. In eah �gure, the surfae plot haraterizesthe referene PDF (based on the νref = 2 × 106 independent realizations), and theontour plot refers to isovalues of the projeted PDF of interest. It an therefore beseen that the new formulation of the PCE gives very good results in identifying mul-tidimensional PDFs. In addition, in this example, the Kernel mixture model is moreadapted than the opula based model to haraterize the multidimensional PDFs.
• Likelihood estimations.From Eq. (2.10), the multidimensional log-likelihood funtions Lηker ([ηexp]),

Lηcop ([ηexp]), Lηclass ([ηexp]) and Lηnew ([ηexp]) are estimated from the realizationsmatries [ηexp], [ηker], [ηcop], [ηclass] and [ηnew], in order to evaluate the multidimen-sional relevane of the di�erent stohasti models. In the same manner, [ηref ]1000 is de-�ned as the 1000 �rst olumns of [ηref ], and the log-likelihood funtions Lηker

(
[ηref ]1000

),
Lηcop

(
[ηref ]1000

), Lηclass

(
[ηref ]1000

) and Lηnew

(
[ηref ]1000

) are omputed. These val-ues are gathered in Table 4.2. It an thus be veri�ed that the new formulation of thePCE identi�ation gives the best results when onsidering the maximization of thelog-likelihood.
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(d) (x1, x2) 7→ p̂newη (x1, x2, E (η3))Figure 4.5: Comparison of 2D ontours plots in the plane [x3 = E(η3)].
Lηker ([ηexp]) Lηcop ([ηexp]) Lηclass ([ηexp]) Lηnew ([ηexp])
−8.0712.103 −8.7530.103 −8.1844.103 −7.8624.103

Lηker

(
[ηref ]1000

)
Lηcop

(
[ηref ]1000

)
Lηclass

(
[ηref ]1000

)
Lηnew

(
[ηref ]1000

)

−8.1933.103 −8.5535.103 −8.1797.103 −7.8457.103Table 4.2: Computation of the multidimensional log-likelihood orresponding to thedi�erent stohasti models.
As a onlusion for this example, in low dimension, it an be seen that the newformulation of the PCE identi�ation is very relevant when trying to identify multidi-mensional distributions from a limited number of measurements. Indeed, it allows usto build multidimensional distributions that are still relevant for experimental datathat have not been used in the identi�ation proess.
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(d) (x1, x3) 7→ p̂newη (x1, E (η2) , x3)Figure 4.6: Comparison of 2D ontours plots in the plane [x2 = E(η2)].4.2. Appliation in high dimension. The idea of this seond appliation is tounderline the ability of the new PCE formulation to arry out onvergene analysis inhigh dimension. Indeed, as it has been shown in Setion 3, for a given value of νchaos,when the size N of the polynomial basis inreases, and more speially when the maxi-mum degree p of the polynomial basis beomes high, the di�erene 1
νchaos [Ψ][Ψ]T−[IN ]introdues a signi�ant numerial bias whih perturbs the lassial PCE identi�ation.In opposite, the new PCE formulation, whih avoids omputational autoorrelationerrors, allows the numerial algorithms to be muh more stable and to give morerelevant results.4.2.1. Generation of a high dimension random vetor. Using the samenotations than in Setions 2.1 and 4.1.1, let [XHD] be a (Nη ×N) real matrix whoseentries are randomly generated, suh that random vetor η is given by:

η = [XHD]Ψ (ξexp, pexp) , (4.21)
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ξexp =

(
ξexp1 , ξexp2 , · · · , ξexpNg

)
, (4.22)where {ξexpk , 1 ≤ k ≤ Nη} is a set of Nη independent normalized Gaussian randomvariables. As in Setion 4.1, we de�ne a (Nη × νexp) real matrix [ηexp], whih gathers

νexp independent realizations of η:
[ηexp] = [XHD][Ψexp], (4.23)

[Ψexp] = [Ψ (ξexp(θ1), p
exp) · · · Ψ (ξexp(θνexp), pexp)] . (4.24)The omponents of the random vetor η are again strongly dependent. As a numerialillustration, it is supposed that νexp = 1000, pexp = 9,N exp

g = 3, N = (9+3)!/(9! 3!) =
220, Nη = 50. A high value of pexp is deliberately hosen, in order to emphasize the



30 POLYNOMIAL CHAOS IN HIGH DIMENSIONdi�ulties of the lassial PCE formulation to arry out onvergene analysis in highdimension. Nevertheless, this high value of p implies an ill-onditionning of [Ψexp],suh that η an have very high values.4.2.2. Identi�ation of the PCE trunation parameters. Aording to Eq.(2.3), the trunated PCE, ηchaos(N), of η is given by:
ηchaos(N) = [y]Ψ(ξ, p). (4.25)Eq. (2.29) implies that the number Ny of elements of [y] has to be higher than

Nη (Nη + 1). When Nη is large, this leads us to the identi�ation of thousands ofoe�ients. However, as it has been said in Setion 2.4, the higher Ny is, the lesspreise is the PCE identi�ation, for a given omputational ost M . In addition,Setion 3 has emphasized the ill-onditionning of matrix [Ψ] for high values of p. Thismotivates the de�nition of a new set Q̃(pmax, Nmax), suh that the optimal values
popt and Nopt

g are given by:
Q̃(pmax, Nmax) = {(p,Ng) , Ng ≤ Nη, p ≤ pmax, (Ng + p)!/ (Ng! p!) ≤ Nmax} ,(4.26)

(popt, Nopt
g ) = arg min

(p,Ng)∈Q̃(pmax,Nmax)
err(Ng, p), (4.27)where err(Ng , p) is omputed from M independent matries in Oη. For a �xed value

νchaos = 1000, the detrimental in�uene of the autoorrelation errors err2 and err3of Eqs. (3.5) and (3.6) an then be notied in Figure 4.8, when high values of N (andmore speially high values of p) are onsidered. The error funtions errclass(Ng, p)and errnew(Ng, p) orrespond, respetively, to the lassial formulation and the newformulation of the PCE identi�ation. It an be seen that for p ≥ 8, the ratio
errclass(Ng, p)/err

new(Ng, p) beomes greater than �ve, whereas the two methodolo-gies are globally similar for low values of p. Hene, the auray of the lassial methodseems to be limited to low values of p and is therefore less relevant for onvergeneanalysis whih handle high polynomial orders. At last, the �ve lowest values of thenumerial assessments of errnew(Ng, p) are gathered in Table 4.3. It an be seen thatthe new formulation allows �nding bak the ouple (pexp, N exp
g ) as the minimum ofthe error funtion. Nevertheless, keeping in mind that the lowest N is, the easiest theidenti�ation is, this result also shows that using the ouple (p,Ng) = (11, 2) ouldbe interesting.ouples (p,Ng) (11,2) (9,3) (7,4) (6,5) (2,27)values of N 78 220 330 462 406

errnew(Ng, p) 0.06104 0.06005 0.06228 0.06301 0.06521Table 4.3: Lowest values of errnew(Ng, p) with respet to (p,Ng).
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Figure 4.8: Comparison of the results for the onvergene analysis of the twoPCE identi�ation formulations.4.3. PCE Identi�ation. From the νexp independent realizations of η, a PCEidenti�ation using the new formulation an be omputed for the trunation param-eters p = 9 and Ng = 3, whih orrespond to N = 220. The results of the numerialidenti�ation with a omputational ost of M = 1000 are given in Figure 4.9. Thevalue of M has been hosen for the PCE error funtion err(Ng , p) to be independentof M . In this �gure, the marginal PDFs p̂chaosη41
and p̂chaosη39

of ηnew41 (220) and ηnew39 (220)are ompared to the experimental estimations p̂expη41
and p̂expη39

of the omponents η41and η39, respetively. The values ηnew41 (220) and ηnew39 (220) orrespond to the mini-mum and to the maximum values of the unidimensional error funtion errk(3, 11), for
1 ≤ k ≤ 50, whih is de�ned by Eq. (2.25). In order to evaluate the distane betweenthese estimations and the true marginal PDFs of η, the marginal PDFs estimated bythe non parametri statistial Kernel method, with νref = 2 × 105 independent real-izations of η41 and η39, are added to the �gures. These PDFs are onsidered as thereferene. These �gures therefore emphasize that the new PCE identi�ation methodallows building a stohasti model of the distribution of η that suits the experimentalmarginal PDFs.5. Conlusion. In the last deade, the inreasing omputational power has en-ouraged the development of omputational models with inreasing degrees of free-dom. Hene, developing omputational methods whih an be applied to very highdimension ases is urrently of great interest.In this onern, this paper emphasized the e�ieny of the PCE when buildingmultidimensional distributions. After having quanti�ed the detrimental in�uene ofa numerial bias in the usual PCE identi�ation methods in high dimension, thispaper proposed a new formulation to allow performing relevant onvergene analysisand PCE identi�ation with respet to an arbitrary measure for the high dimensionase. Finally, the method proposed allows making the PCE range reahable for manyengineering appliations with many degrees of freedom.Aknowledgments. This work was supported by SNCF (Innovation and Re-searh Department) and by the Frenh Researh Ageny (Grant No: ANR-2010-BLAN-0904).



32 POLYNOMIAL CHAOS IN HIGH DIMENSION

−20 −10 0 10 20

0,04

0,08

0,12

 

 

PSfrag replaements values of η41PDFs p̂expη41

p̂chaosη41referene
−20 −10 0 10 20

10
−3

10
−2

10
−1

 

 

PSfrag replaements values of η41
PDFs p̂expη41

p̂chaosη41referene

−20 −10 0 10 20

0.04

0.08

0.12

 

 

PSfrag replaements values of η39
PDFs p̂expη39

p̂chaosη39referene
−20 −10 0 10 20

10
−3

10
−2

10
−1

 

 

PSfrag replaements values of η39
PDFs

p̂expη39

p̂chaosη39refereneFigure 4.9: Graphs of the estimated marginal PDFs for two partiular omponents of
η. REFERENCES[1℄ M. Arnst, R. Ghanem, and C. Soize, Identi�ation of bayesian posteriors for oe�ientsof haos expansions, Journal of Computational Physis, 229 (9) (2010), pp. 3134�3154.[2℄ S. Das, R. Ghanem, and S. Finette, Polynomial haos representation of spatio-temporalrandom �eld from experimental measurements, J. Comput. Phys., 228 (2009), pp. 8726�8751.[3℄ B. Debusshere, H. Najm, P. Pébay, O. M. Knio, R. G. Ghanem, and O. P. L.Maître, Numerial hallenges in the use of polynomial haos representations for stohas-ti proesses, SIAM J. Si. Comput., 26 (2004), pp. 698�719.[4℄ C. Deseliers, R. Ghanem, and C. Soize, Maximum likelihood estimation of stohastihaos representations from experimental data, Internat. J. Numer. Methods Engrg., 66(2006), pp. 978�1001.[5℄ C. Deseliers, C. Soize, and R. Ghanem, Identi�ation of haos representations of elastiproperties of random media using experimental vibration tests, Comput. Meh., 39 (2007),pp. 831�838.[6℄ A. Dutfoy, Referene guide, tutorial, Open TURNS version 0.11.3, 2008.[7℄ R. Ghanem and R. Doostan, Charaterization of stohasti system parameters from exper-imental data: A bayesian inferene approah, J. Comput. Phys., 217 (2006), pp. 63�81.[8℄ R. Ghanem, S. Masri, M. Pellissetti, and R. Wolfe, Identi�ation and predition ofstohasti dynamial systems in a polynomial haos basis, Comput. Methods Appl. Meh.Engrg., 194 (2005), pp. 1641�1654.[9℄ R. Ghanem and J. Red-Horse, Propagation of unertainty in omplex physial systems usinga stohasti �nite element approah, Phys. D, 133 (1999), pp. 137�144.



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 33[10℄ R. Ghanem and P. Spanos, Polynomial haos in stohasti �nite elements, Journal of AppliedMehanis, Transations of teh ASME 57 (1990), pp. 197�202.[11℄ R. Ghanem and P. D. Spanos, Stohasti Finite Elements: A Spetral Approah, rev. ed.,Dover Publiations, New York, 2003.[12℄ D. Ghosh and R. Ghanem, Stohasti onvergene aeleration through basis enrihment ofpolynomial haos expansions, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 162�184.[13℄ E. T. Jaynes, Information theory and statistial mehanis, The Physial Review, 106 (4)(1963), pp. 620�630.[14℄ O. M. Knio and O. P. L. Maître, Unertainty propagation in fd using polynomial haosdeomposition, Fluid Dynam. Res., 38 (2006), pp. 616�640.[15℄ O. Le Maître and O. Knio, Spetral Methods for Unertainty Quanti�ation, Springer, 2010.[16℄ D. Luor, C. H. Su, and G. E. Karniadakis, Generalized polynomial haos and randomosillators, Internat. J. Numer. Methods Engrg., 60 (2004), pp. 571�596.[17℄ Y. M. Marzouk and H. N. Najm, Dimensionality redution and polynomial haos aeler-ation of bayesian inferene in inverse problems, J. Comput. Phys., 228 (2009), pp. 1862�1902.[18℄ Y. M. Marzouk, H. N. Najm, and L. A. Rahn, spetral methods for e�ient bayesiansolution of inverse problems, J. Comput. Phys., 224 (2007), pp. 560�586.[19℄ H. Matthies, Stohasti �nite elements: Computational approahes to stohasti partial dif-ferential equations, Zamm-Zeitshrift für Angewandte Mathematik und Mehanik, 88 (11)(2008), pp. 849�873.[20℄ A. Nataf, Détermination des distributions de probabilité dont les marges sont données,Comptes Rendus de l'Aadémie des Sienes, 225 (1986), pp. 42�43.[21℄ A. Nouy, A. Clement, F. Shoefs, and N. Moes, An extended stohasti �nite elementmethod for solving stohasti partial di�erential equations on random domains, MethodsAppl. Meh. Engrg., 197 (2008), pp. 4663�4682.[22℄ J. R. Red-Horse and A. S. Benjamin, A probabilisti approah to unertainty quanti�ationwith limited information, Reliability Engrg. System Safety, 85 (2004), pp. 183�190.[23℄ M. Rosenblatt, Remarks on a multivariate transformation, Annals of Mathematial Statis-tis, 23 (1952), pp. 470�472.[24℄ S. Sakamoto and R. Ghanem, Polynomial haos deomposition for the simulation of non-gaussian nonstationary stohasti proesses, J. Engrg. Mehanis, 128 (2002), pp. 190�201.[25℄ S. Sarkar, S. Gupta, and I. Ryhlik, Wiener haos expansions for estimating rain-�owfatigue damage in randomly vibrating strutures with unertain parameters., ProbabilistiEngineering Mehanis, 26 (2011), pp. 387�398.[26℄ G. I. Shueller, On the treatment of unertainties in strutural mehanis and analysis,Computational and Strutures, 85 (2007), pp. 235�243.[27℄ C. Soize, Constrution of probability distributions in high dimension using the maximumentropy priniple. appliations to stohasti proesses, random �elds and random matries.,International Journal for Numerial Methods in Engineering, 76(10) (2008), pp. 1583�1611.[28℄ C. Soize, Generalized probabilisti approah of unertainties in omputational dynamis us-ing random matries and polynomial haos deompositions., Internat. J. Numer. MethodsEngrg., 81 (2010), pp. 939�970.[29℄ C. Soize, Identi�ation of high-dimension polynomial haos expansions with random oe�-ients for non-gausian tensor-valued random �elds using partial and limited experimentaldata., Computer Methods in Applied Mehanis and Engineering, 199 (2010), pp. 2150�2164.[30℄ C. Soize and C. Deseliers, Computational aspets for onstruting realizations of poly-nomial haos in high dimension., SIAM Journal on Sienti� Computing, 32(5) (2010),pp. 2820�2831.[31℄ C. Soize and R. Ghanem, Physial systems with random unertainties: Chaos representationswith arbitrary probability measure, SIAM J. Si. Comput., 26 (2004).[32℄ G. Stefanou, A. Nouy, and A. Clement, Identi�ation of random shapes from imagesthrough polynomial haos expansion of random level set funtions., Internat. J. Numer.Methods Engrg., 79 (2009), pp. 127�155.[33℄ N. Wiener, The homogeneous haos, Amerian Journal of Mathematis, 60 (1938), pp. 897�936.[34℄ D. Xiu and G. E. Karniadakis,The wiener-askey polynomial haos for stohasti di�erentialequations, SIAM Journal on Sienti� Computing, 24, No. 2 (2002), pp. 619�644.


