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IDENTIFICATION OF POLYNOMIAL CHAOS REPRESENTATIONSIN HIGH DIMENSION FROM A SET OF REALIZATIONSG. PERRIN∗†‡ , C. SOIZE∗, D. DUHAMEL†, AND C. FUNFSCHILLING‡Abstra
t.This paper deals with the identi�
ation in high dimension of polynomial 
haos expansion ofrandom ve
tors from a set of realizations. Due to numeri
al and memory 
onstraints, the usual poly-nomial 
haos identi�
ation methods are based on a series of trun
ations that indu
es a numeri
albias. This bias be
omes very detrimental to the 
onvergen
e analysis of polynomial 
haos identi�-
ation in high dimension. This paper therefore proposes a new formulation of the usual polynomial
haos identi�
ation algorithms to avoid this numeri
al bias. After a review of the polynomial 
haosidenti�
ation method, the in�uen
e of the numeri
al bias on the identi�
ation a

ura
y is quanti�ed.The new formulation is then des
ribed in details, and illustrated on two examples.Key words. polynomial 
haos expansion, high dimension, 
omputation.AMS subje
t 
lassi�
ations. 60H35, 60H15, 60H25, 60H40, 65C501. Introdu
tion. In spite of always more a

urate numeri
al solvers, determin-isti
 models are not able to represent most of the experimental data, whi
h are vari-able and often un
ertain by nature. Hen
e, the appli
ation �elds of non deterministi
modeling, whi
h 
an take into a

ount the model parameters variability as well as themodel error un
ertainties, has kept in
reasing. Un
ertainties are therefore introdu
edin 
omputational me
hani
al models with more and more degrees of freedom. In this
ontext, the 
hara
terization of the probability distribution Pη(dx) of Nη-dimensionrandom ve
tor η from sets of experimental measurements is bound to play a key role,in parti
ular, in high dimension, that is to say for a large value of Nη. In this work, itis assumed that Pη(dx) = pη(x)dx in whi
h the probability density fun
tion (PDF)
pη is a fun
tion in the set F(D,R+) of all the positive-valued fun
tions de�ned onany part D of RNη and for whi
h integral over D is 1.Two kinds of methods 
an be used to build su
h a PDF: the dire
t and theindire
t methods. Among the dire
t methods, the Prior Algebrai
 Sto
hasti
 Modeling(PASM) methods postulate an algebrai
 representation η ≈ talg(Ξ,w), with talg aprior transformation, Ξ a given random ve
tor and w a ve
tor of parameters toidentify. In the same 
ategory, the methods based on the Information Theory andthe Maximum Entropy Prin
iple (MEP) have been developped (see [13℄ and [27℄) to
ompute pη from the only available information of random ve
tor η. This information
an be seen as the admissible set Cad for pη:

Cad =
{
pη ∈ F(D,R+) |

∫

D
pη(x)dx = 1,

∀1 ≤ m ≤M,

∫

D
gm(x)pη(x)dx = fm

}, (1.1)
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2 POLYNOMIAL CHAOS IN HIGH DIMENSIONwhere {fm, 1 ≤ m ≤M} gathers M given ve
tors whi
h are respe
tively asso
iatedwith a given ve
tor-valued fun
tions {gm, 1 ≤ m ≤M}. Hen
e, the MPE allowsbuilding pη as the solution of the optimization problem:
pη = arg max

pη∈Cad

{
−
∫

D
pη(x) log (pη(x)) dx

}
. (1.2)On the other hand, the indire
t methods allow the 
onstru
tion of the PDF pη ofthe 
onsidered random ve
tor η from a transformation t of a known random ve
tor

ξ =
(
ξ1, ..., ξNg

) of given dimension Ng ≤ Nη:
η = t (ξ) , (1.3)de�ning a transformation T between pη and the PDF pξ of ξ:
pη = T (pξ) . (1.4)The 
onstru
tion of the transformation t is thus the key point of these indi-re
t methods. In this 
ontext, the isoprobabilisti
 transformations su
h as the Nataftransformation (see [20℄) or the Rosenblatt transformation (see [23℄) have allowed thedevelopment of interesting results in the se
ond part of the twentieth 
entury but arestill limited to very small dimension 
ases and not to the high dimension 
ase 
onsid-ered in this work. Nowadays, the most popular indire
t methods are the polynomial
haos expansion (PCE) methods, whi
h have been �rst introdu
ed by Wiener [33℄ forsto
hasti
 pro
esses, and pioneered by Ghanem and Spanos [10℄ [11℄ for the use of itin 
omputational s
ien
es. In the last de
ade, this very promising method has thusbeen applied in many works (see, for instan
e [1℄, [2℄, [3℄, [4℄, [5℄, [7℄, [8℄, [9℄, [12℄,[14℄, [15℄, [16℄, [19℄, [18℄, [17℄, [21℄, [22℄, [24℄, [26℄, [28℄, [31℄, [32℄, [25℄, [34℄). The PCEis based on a dire
t proje
tion of the random ve
tor η on a 
hosen hilbertian basis

Borth =
{
ψα(ξ),α ∈ N

Ng
} of all the se
ond-order random ve
tors with values in R

Nη :
η =

∑

α∈N
Ng

y(α)ψα(ξ), (1.5)
ξ 7→ ψα(ξ) = Xα1(ξ1)⊗ ...⊗XαNg

(ξNg ), (1.6)where x 7→ Xαℓ
(x) is the normalized polynomial basis of degree αℓ asso
iated with thePDF pξℓ of the random variable ξℓ, and α is the multi-index of the multidimensionalpolynomial basis element ψα(ξ). Building the transformation t requires therefore the
onstru
tion of the proje
tion ve
tors {y(α), α ∈ N

Ng
}.The present work is devoted to the identi�
ation in high dimension of the PCE
oe�
ients {y(α), α ∈ N

Ng
}, when the only available information on the randomve
tor η is a set of νexp independent realizations {η(1), · · · ,η(νexp)

}.In pra
ti
e, the PCE of η has �rst to be trun
ated:
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η ≈ ηchaos(N) =

∑

α∈Ap

y(α)ψα(ξ), (1.7)
Ap =



α =

(
α1, ..., αNg

)
| |α| =

Ng∑

ℓ=1

αℓ ≤ p



 =

{
α(1), · · · ,α(N)

}
, (1.8)where ηchaos(N) is the proje
tion of η on the N -dimension subspa
e spanned by

{ ψα(ξ), α ∈ Ap } ⊂ Borth. It 
an be noti
ed that N in
reases very qui
kly withrespe
t to the dimension Ng of ξ and the maximum degree p of the trun
ated basis
{ψα(ξ), α ∈ Ap}, as:

N = (Ng + p)!/ (Ng! p!) . (1.9)Methods to perform the 
onvergen
e analysis in high dimension with respe
t to agiven error threshold on the PCE residue η−ηchaos(N) are therefore of great 
on
ernto justify the trun
ation parameters Ng and p.In this prospe
t, the arti
le [29℄ provides advan
ed algorithms to 
ompute thePCE 
oe�
ients from the νexp independent realizations {η(1), · · · ,η(νexp)
} by fo
us-ing on the maximization of the likelihood. In parti
ular, one of the key point ofthese algorithms is the 
al
ulation of (N × νchaos

) real matrix [Ψ] of independentrealizations of the trun
ated PCE basis {ψα (ξ) , α ∈ Ap}:
[Ψ] = [Ψ (ξ (θ1) , p) · · · Ψ (ξ (θνchaos) , p)] , (1.10)

Ψ (ξ, p) =
(
ψα(1)

(
ξ1, · · · , ξNg

)
, · · · , ψα(N)

(
ξ1, · · · , ξNg

))
, (1.11)where the set {ξ (θ1) , · · · , ξ (θνchaos)} gathers νchaos independent realizations of therandom ve
tor ξ.Re
urren
e formula or algebrai
 expli
it representations are generally used to
ompute su
h matrix [Ψ], whi
h are supposed to verify the asymptoti
al property:

lim
νchaos→+∞

1

νchaos
[Ψ][Ψ]T = [IN ], (1.12)as a dire
t 
onsequen
e of the orthonormality of the PCE basis {ψα,α ∈ Ap}, where

[IN ] is the N -dimension identity matrix.However, for numeri
ally admissible values of νchaos (between 1000 and 10000), ithas been shown in [30℄ that the di�eren
e 1
νchaos [Ψ][Ψ]T − [IN ] 
an be very signi�
antwhen high values of the maximum degree p 
an be en
ountered with simultaneouslysigni�
ant values of Ng. This di�eren
e indu
es a detrimental bias in the PCE identi�-
ation, whi
h makes the 
onvergen
e of 
lassi
al PCE in high dimension very di�
ult.



4 POLYNOMIAL CHAOS IN HIGH DIMENSIONIn [30℄, it is therefore proposed a method using singular matrix de
omposition to nu-meri
ally adapt 
lassi
al generations of [Ψ], and make this di�eren
e be zero for anyvalues of p and Ng. Nevertheless, this 
onditionning on [Ψ] modi�es the initial stru
-ture of [Ψ], and makes the identi�ed PCE 
oe�
ients {y(α),α ∈ Ap

} impossible tobe reused on an other matrix [Ψ∗] of νchaos,∗ new realizations of Ψ(ξ, p).As an extension of the works des
ribed in [29℄ and [30℄, this arti
le proposesan original de
omposition of the PCE 
oe�
ients {y(α),α ∈ Ap

}, that redu
es thenumeri
al bias introdu
ed during the identi�
ation by the �nite dimension of [Ψ]and for large values of degree p. This new formulation is parti
ulary adapted to thehigh dimension, and allows the identi�ed 
oe�
ients to be reused for other matrix ofrealizations [Ψ∗].In Se
tion 2, the PCE identi�
ation from a set of experimental data with an arbi-trary measure is des
ribed. In parti
ular, the role played by the matrix of independentrealizations [Ψ] is emphasized. Se
tion 3 fo
uses on the 
onvergen
e properties of thismatrix [Ψ] with respe
t to three statisti
al measures, and des
ribes an innovativemethod to generate this matrix without using 
omputational re
urren
e formula noralgebrai
 expli
it representation. In Se
tion 4, the new formulation of the PCE iden-ti�
ation problem is given. Finally, are presented in Se
tion 5 two appli
ations of theformer method with a Gaussian measure.2. PCE identi�
ation of random ve
tors from a set of independentrealizations. In this se
tion, a des
ription of the PCE identi�
ation with respe
t toan arbitrary measure is given. The obje
tive is to summarize the di�erent key stepsof the PCE identi�
ation method and the way they are pra
ti
ally implemented.After having de�ned the theoreti
al frame of the PCE identi�
ation, the 
ost-fun
tion that leads to the 
omputation of the PCE 
oe�
ients {y(α), α ∈ Ap

} ispresented, for given trun
ation parameters Ng and p. At last, to justify the 
hoi
eof these trun
ation parameters, a method to perform the 
onvergen
e analysis isintrodu
ed.2.1. Theoreti
al frame. Let (Θ, T ,P) be a probability spa
e. Let L2
P
(
Θ,RNη

)be the spa
e of all the se
ond-orderNη-dimension random ve
tors de�ned on (Θ, T ,P)with values in R
Nη , equipped with the inner produ
t 〈., .〉:

〈U ,V 〉 =
∫

Θ

UT (θ)V (θ)dP (θ) = E
(
UTV

)
, ∀ U ,V ∈ L2

P
(
Θ,RNη

)
, (2.1)where E (.) is the mathemati
al expe
tation.Let η =

(
η1, · · · , ηNη

) be an element of L2
P
(
Θ,RNη

). It is assumed that νexpindependent realizations {η(1), · · · ,η(νexp)
} of η are known and gathered in the

(Nη × νexp) real matrix [ηexp]:
[ηexp] =

[
η(1) · · · η(νexp)

]
. (2.2)Equation (1.7) 
an be rewritten as:

ηchaos(N) = [y]Ψ(ξ, p), (2.3)
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[y] =

[
y(α(1)) · · · y(α(N))

]
. (2.4)The orthonormality property of the proje
tion basis {ψα(ξ), α ∈ Ap} yields the
ondition:

E
(
Ψ(ξ, p)Ψ(ξ, p)T

)
= [IN ]. (2.5)Sin
e ψα(1)(ξ) = 1, it 
an be seen that:

E
(
ηchaos(N)

)
= y(α

(1)). (2.6)Let [Rη] and [Rchaos
η (N)] be the auto
orrelation matrix of the random ve
tors ηand ηchaos(N):

[Rη] = E
(
ηηT

)
, (2.7)

[
Rchaos

η (N)
]
= E

(
ηchaos(N)

(
ηchaos(N)

)T)
= [y]E

(
Ψ(ξ, p)Ψ(ξ, p)T

)
[y]T = [y][y]T .(2.8)2.2. Identi�
ation of the polynomial 
haos expansion 
oe�
ients. Inthis se
tion, parti
ular values of the trun
ation parameters Ng and p are 
onsidered.Let MNηN be the spa
e of all the (Nη ×N) real matri
es. For a given value of [y∗] in

MNηN , the random ve
tor U ([y∗]) = [y∗]Ψ (ξ, p) is a Nη-dimension random ve
tor,for whi
h the auto
orrelation is equal to [y∗][y∗]T . Let pU([y∗]) be its multidimensionalPDF.When the only available information on η is a set of νexp independent realizations,the optimal 
oe�
ients matrix [y] of its trun
ated PCE, ηchaos(N) = [y]Ψ(ξ, p), 
anbe seen as the argument whi
h maximizes the log-likelihoodLU([y∗]) ([η
exp]) ofU([y∗]):

[y] = arg max
[y∗]∈MNηN

LU([y∗]) ([η
exp]) , (2.9)

LU([y∗]) ([η
exp]) =

νexp∑

i=1

ln pU([y∗])

(
η(i)

)
. (2.10)2.3. Pra
ti
al solving of the log-likelihood maximization.2.3.1. The need for statisti
al algorithms to maximize the log-likelihood.The log-likelihood LU([y∗]) ([η

exp]) being non-
onvex, deterministi
 algorithms su
h asgradient algorithms 
annot be applied to solve Eq. (2.9), and random sear
h algo-rithms have to be used. Hen
e, the pre
ision of the PCE has to be 
orrelated to anumeri
al 
ost M , whi
h 
orresponds to a number of independent trials of [y∗] in
MNηN . Let Y =

{
[y∗](r), 1 ≤ r ≤M

} be a set of M elements, whi
h have been
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hosen randomly in MNηN . For a given numeri
al 
ost M , the most a

urate PCE
oe�
ients matrix [y] is approximated by:
[y] ≈ [yY ] = arg max

[y∗]∈Y
LU([y∗]) ([η

exp]) . (2.11)2.3.2. Restri
tion of the maximization domain. From the νexp independentrealizations {η(1), · · · ,η(νexp)
}, the mean value E(η) and the auto
orrelation matrix

[Rη] of η 
an be estimated by:
E (η) ≈ η̂(νexp) =

1

νexp

νexp∑

i=1

η(i), (2.12)
[Rη] ≈ [R̂η(ν

exp)] =
1

νexp

νexp∑

i=1

η(i)
(
η(i)

)T
=

1

νexp
[ηexp][ηexp]T . (2.13)A good way to improve the e�
ien
y of the numeri
al identi�
ation of [y] is thento restri
t the resear
h set to Oη ⊂ MNηN , with:

Oη =
{
[y] =

[
y(α(1)), · · · ,y(α(N))

]
∈ MNηN |

y(α(1)) = η̂(νexp), [y][y]T = [R̂η(ν
exp)]

}
,

(2.14)whi
h, taking into a

ount Eqs. (2.6) and (2.8), guarantees by 
onstru
tion that:
{

[Rchaos
η (N)] = [R̂η(ν

exp)],
E
(
ηchaos(N)

)
= η̂(νexp).

(2.15)Hen
e, the PCE 
oe�
ients matrix [y] 
an be approximated as the argument in
Oη that maximizes the log-likelihood LU([y∗]) ([η

exp]). By de�ning W the set thatgathers M randomly raised elements of Oη, [y] 
an then be assessed as the solutionof the new optimization problem:
[y] ≈ [yW ] = arg max

[y∗]∈W
LU([y∗]) ([η

exp]) . (2.16)2.3.3. Approximation of the log-likelihood fun
tion. From a parti
ularmatrix of realizations [Ψ] (whi
h is de�ned in Eq. (1.10)), if [y∗] is an element of
Oη, νchaos independent realizations {U ([y∗], θn) = [y∗]Ψ (ξ(θn), p) , 1 ≤ n ≤ νchaos

}of the random ve
tor U([y∗]) 
an be 
omputed and gathered in the matrix [U ]:
[U ] = [U ([y∗], θ1) · · · U ([y∗], θνchaos)] = [y∗][Ψ]. (2.17)Hen
e, using Gaussian Kernels, the PDF pU([y∗]) of U ([y∗]) 
an be dire
tly esti-mated by its non parametri
 estimator p̂U :
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∀x ∈ R

Nη , pU([y∗])(x) ≈

p̂U (x) =
1

(2π)
Nη/2 νchaos

∏Nη

k=1 hk

νchaos∑

n=1

exp


−1

2

Nη∑

k=1

(
xk − Uk([y

∗], θn)

hk

)2

,(2.18)where h =

(
h1, · · · , hNη

) is the multidimensionnal optimal Silverman bandwith ve
tor(see [6℄) of the Kernel smoothing estimation of pU([y∗]):
∀ 1 ≤ k ≤ Nη, hk = σ̂Uk

(
4

(2 +Nη)νexp

)1/(Nη+4)

, (2.19)where σ̂Uk
is the empiri
al estimation of the standard deviation of ea
h 
omponent

Uk of U . It has to be noti
ed that p̂U only depends on the bandwidth ve
tor h, andthe two matri
es [y∗] and [Ψ]. Hen
e, a

ording to the Eqs. (2.10), (2.17) and (2.18),for a given value of νchaos, the maximization of the log-likelihood fun
tion LU([y∗])
an be repla
ed by the maximization of the 
ost-fun
tion C([ηexp], [y∗], [Ψ]) su
h that:
[y] ≈ [yOη ] = arg max

[y∗]∈Oη

C([ηexp], [y∗], [Ψ]), (2.20)where:
C([ηexp], [y∗], [Ψ]) = CC + CV ([ηexp], [y∗], [Ψ]), (2.21)
CC = −νexp ln


(2π)Nη/2 νchaos

Nη∏

k=1

hk


 , (2.22)

CV ([ηexp], [y∗], [Ψ]) =

νexp∑

i=1

ln




νchaos∑

n=1

exp


−1

2

Nη∑

k=1

(
η
(i)
k − Uk([y

∗], θn)

hk

)2



 . (2.23)Hen
e, the optimization problem de�ned by Eq. (2.16) 
an �nally be estimatedby:

[y] ≈ [yMOη
] = arg max

[y∗]∈W
C ([νexp], [y∗], [Ψ]) . (2.24)The optimization problem de�ned by Eq. (2.24) is now supposed to be solvedwith the advan
ed algorithms des
ribed in [29℄ to optimize the trials of the elements of

W for a given 
omputation 
ostM . The higher the value of M is, the better the PCEidenti�
ation should be. Therefore, this value has to be 
hosen as high as possiblewhile respe
ting the 
omputational ressour
e limitation.
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ura
y of the PCE identi�
ation. For a given 
omputation 
ost
M , let [yMOη

] be an optimal solution of Eq. (2.24). [yMOη
] is a numeri
al estimationof the PCE 
oe�
ients matrix [y]. For a new (

N × νchaos,∗
) real matrix [Ψ∗] ofindependent realizations (νchaos,∗ 
an be higher than νchaos), the robustness of [yMOη

]regarding the 
hoi
e of [Ψ] 
an then be estimated by 
omparing C
(
[ηexp], [yMOη

], [Ψ]
)and C

(
[ηexp], [yMOη

], [Ψ∗]
). In addition, if νexp new independent realizations of ηwere available and gathered in the matrix [ηexp,new], the over-learning of the method
ould be measured by 
omparing C

(
[ηexp], [yMOη

], [Ψ]
) and C

(
[ηexp,new], [yMOη

], [Ψ]
).At last, for the same 
omputation 
ost M , if [yM,new

Oη
] is a new optimal solution of Eq.(2.24), the global a

ura
y of the identi�
ation stems from the 
omparison between

C
(
[ηexp,new], [yMOη

], [Ψ∗]
) and C

(
[ηexp,new], [yM,new

Oη
], [Ψ∗]

).2.4. Identi�
ation of the PCE trun
ation parameters. As shown in In-trodu
tion, two trun
ation parameters, Ng and p, appear in the trun
ated PCE,
ηchaos(N) = [y]Ψ(ξ, p), of η. The values of these parameters have to be determinedfrom a 
onvergen
e analysis. The obje
tive of this se
tion is thus to give the funda-mental elements to perform su
h a 
onvergen
e analysis.2.4.1. De�nition of a log error fun
tion. For ea
h 
omponent ηchaosk (N) ofthe trun
ated PCE, ηchaos(N) = [y]Ψ(ξ, p), of η, the L1-log error fun
tion errk isintrodu
ed as des
ribed in [29℄:
∀ 1 ≤ k ≤ Nη, errk(Ng, p) =

∫

BIk

|log10 (pηk
(xk))− log10

(
pηchaos

k
(xk)

)
|dxk, (2.25)where:

• BIk is the support of ηexpk ;
• pηk

and pηchaos
k

are the PDF of ηk and ηchaosk respe
tively.The multidimensional error fun
tion err(Ng , p) is then dedu
ed from the unidi-mensional L1-log error fun
tion as:
err(Ng , p) =

Nη∑

k=1

errk(Ng, p). (2.26)The parameters Ng and p have thus to be determined to minimize the multidi-mensional L1-log error fun
tion err(Ng, p).For given values of trun
ation parameters Ng and p, it is reminded that PCE
oe�
ients matrix [y] is sear
hed in order to maximize the multidimensional log-likelihood fun
tion, whi
h allows us to 
onsider a priori strongly 
orrelated problems.On
e this matrix [y] is identi�ed, it is possible to generate as many independentrealizations of trun
ated PCE ηchaos(N) as needed to estimate as pre
isely as possiblethe non parametri
 estimator p̂U of its multidimensional PDF. The number νexp ofavailable experimental realizations of η is however limited. This number is generallytoo small for the non parametri
 estimator of multidimensional PDF pη of η to berelevant, whereas it is most of the time large enough to de�ne the estimators of themarginals of pη . Therefore, the log-error fun
tions de�ned by Eqs. (2.25) and (2.26)
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onsider the marginals of the PDF of pη and pchaosη . In addition, the logarithmfun
tion has been introdu
ed in order to measure the errors of the very small valuesof the probability density fun
tion (the tails of the probability density fun
tion).2.4.2. De�nition of an admissible set for the trun
ation parameters.As it exists an isoprobabilisti
 transformation between η and (Ξ1, · · · ,ΞNη

), where
{Ξk, 1 ≤ k ≤ Nη} is a set of Nη independent 
entered normalized Gaussian randomvariables, the 
onvergen
e analysis 
an be restri
ted to the values of Ng whi
h verify:

Ng ≤ Nη. (2.27)Moreover, imposing the (Nη ×N) real matrix [y] to be in Oη amounts to imposing
Nη(Nη+3)

2 
onstraints on [y], whi
h implies:
NηN ≥ Nη (Nη + 3)

2
⇔ N ≥ Nη + 3

2
. (2.28)However, the algorithms developed in [29℄, on whi
h the solving of the optimiza-tion problem, de�ned by Eq. (2.24), is based, need the more restri
tive 
ondition:

N ≥ Nη + 1. (2.29)We will therefore 
onsider Q(Nη) the set of the admissible values for p and Ngwith:
Q(Nη) =

{
(p,Ng) ∈ N

2, | Ng ≤ Nη, N = (Ng + p)!/(Ng! p!) ≥ Nη + 1
}
. (2.30)Theoreti
ally, in
reasing p and Ng adds terms in the PCE of the 
onsideredrandom ve
tor, and therefore should indu
e the de
rease of the error fun
tion:

∀ p∗ ≥ p, N∗
g ≥ Ng, err(Ng , p) ≥ max

{
err(N∗

g , p), err(Ng , p
∗)
}
≥

min
{
err(N∗

g , p), err(Ng , p
∗)
}
≥ err(N∗

g , p
∗).

(2.31)However, the higher the values of p and Ng are, the bigger the PCE 
oe�
ientsmatrix is, the harder the numeri
al identi�
ation is. Hen
e, introdu
ing ε as an errorthreshold, whi
h has to be adapted to the problem, let P(ε,Nη) be the set:
P(ε,Nη) = {(p,Ng) ∈ Q(Nη) | err(Ng , p) ≤ ε} . (2.32)Finally, given the error threshold ε, rather than dire
tly minimizing the L1-logerror fun
tion err(Ng , p), it appears to be more a

urate to look for the optimal valuesof p and Ng that minimize the size of the proje
tion basis N = (Ng + p)!/ (Ng! p!):

(p,Ng) = arg min
(p∗,N∗

g )∈P(ε,Nη)

(
N∗

g + p∗
)
!/
(
N∗

g ! p
∗!
)
. (2.33)If the polynomial order (whi
h is a priori unknown) of the non trun
ated PCEof η is in�nite, it may not exist values of p and Ng in P(ε,Nη) for error fun
tion

err(Ng , p) to be inferior to small values of ε. In this 
ase, the former algorithms 
annevertheless be used to �nd the most a

urate values of p and Ng with respe
t to anavailable 
omputational 
ost.
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ation method in high dimension. Asit has been presented in the former se
tions, the (N × νchaos
) real matrix [Ψ] gathers

νchaos independent realizations of the N -dimension PCE basis {ψα(ξ), α ∈ Ap}.Eqs. (2.23) and (2.24) underline the fa
t that the numeri
al identi�
ation of thePCE 
oe�
ients [y] 
an be seen as the minimization of a 
ost fun
tion involving theelements of the (Nη × νchaos
) real matrix of independent realizations [U ] = [y][Ψ] andthe elements of the (Nη × νexp) real matrix [ηexp] = [η(1) · · · η(νexp)]. In theoreti
alterms, this 
ost fun
tion should be minimum when the multidimensional PDF pUof U = [y]Ψ(ξ, p) is as near as possible to the multidimensional PDF pη of η. Inpra
ti
al terms, this 
ost fun
tion is however minimum when p̂U is as near as possibleto p̂η, where p̂U and p̂η are the multidimensional non parametri
 estimators of pUand pη de�ned by Eq. (2.18). With respe
t to νexp and νchaos, three bias are thenintrodu
ed in the PCE identi�
ation:

• a bias due to a la
k of information on η:
b(1)(νexp) =

∫

R
Nη

|p̂η(x)− pη(x)|dx, (3.1)
• a bias due to a la
k of information on U :

b(2)(νchaos) =

∫

R
Nη

|p̂U (x)− pU (x)|dx, (3.2)
• a bias due to the trun
ation and to the fa
t that the global maximum is notne
essary rea
hed:

b(3)(νexp, νchaos) =

∫

R
Nη

|p̂η(x)− p̂U (x)|dx. (3.3)These three bias 
ould also be expressed with respe
t to the statisti
al momentsof η and U . For instan
e, when fo
using on the auto
orrelation matrix, let err1, err2and err3 be the auto
orrelation errors 
orresponding respe
tively to the bias b(1), b(2)and b(3):
err1(νexp) =

∥∥∥[Rη]− [R̂η(ν
exp)]

∥∥∥
F
/ ‖[Rη]‖F , (3.4)

err2(νchaos) =
∥∥∥[Rchaos

η (N)]− [R̂U (ν
chaos)]

∥∥∥
F
/
∥∥[Rchaos

η (N)]
∥∥
F
, (3.5)

err3(νexp, νchaos) =
∥∥∥[R̂U (ν

chaos)]− [R̂η(ν
exp)]

∥∥∥
F
/
∥∥∥[R̂η(ν

exp)]
∥∥∥
F
, (3.6)where ‖.‖F is the Frobenius norm of matri
es, and where it is reminded from Eqs.(2.8) and (2.13) that:





[
R̂η(ν

exp)
]
= 1

νexp [η
exp][ηexp]T ,[

R̂U (ν
chaos)

]
= 1

νchaos [U ][U ]T = [y]
(

1
νchaos [Ψ][Ψ]T

)
[y]T ,[

Rchaos
η (N)

]
= [y][y]T .

(3.7)
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e, the smaller these three errors are, the more pre
ise the PCE identi�
ationis. The νexp independent realizations {η(1), · · · ,η(νexp)
} being the maximum availableinformation on η, the bias b(1) and the auto
orrelation error err1 
annot be de
reased,whereas the set Oη, whi
h was introdu
ed to guarantee that [Rchaos

η (N)] = [R̂η(ν
exp)],aims at redu
ing b(2), b(3), err2 and err3. Therefore, imposing [y] to be in Oη leadsus to:

err2
(
νchaos

)
= err3

(
νexp, νchaos

)

=

∥∥∥∥[y]
(

1

νchaos
[Ψ][Ψ]T − [IN ]

)
[y]T

∥∥∥∥
F

/
∥∥[y][IN ][y]T

∥∥
F
.

(3.8)The following asymptoti
al property 
an thus be dedu
ed from Eq. (1.12):
lim

νchaos→+∞
err2

(
νchaos

)
= lim

νchaos→+∞
err3

(
νexp, νchaos

)
= 0, (3.9)whi
h is equivalent to say that the larger νchaos is, the more a

urate the PCE iden-ti�
ation should be. However, from a pra
ti
al point of view, the value of νchaos is�xed by the available 
omputation ressour
es. As an extension of the work presentedin [30℄, this se
tion aims at quantifying the divergen
e of the ratio:

r =

∥∥∥∥
1

νchaos
[Ψ][Ψ]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F , (3.10)when the trun
ation parameters Ng and p in
rease for several statisti
al measures.From Eq. (3.8), r, de�ned by Eq. (3.10), 
an be seen as a general 
hara
terization ofthe auto
orrelation errors err2 and err3. This divergen
e being very detrimental tothe PCE identi�
ation in high dimension, a new de
omposition of the PCE 
oe�
ientmatrix [y] will be then presented in this se
tion to make err2 and err3 be zero forany value of Ng and p.3.1. De
omposition of the matrix of independent realizations. To betteremphasize the in�uen
e of the trun
ation parameters on the ratio r, a rewriting ofthe matrix [Ψ] is �rst presented.3.1.1. Theoreti
al basis of the de
omposition. From Eq. (1.10), matrix [Ψ]gathers νchaos 
olumns {Ψ (ξ(θn), p) , 1 ≤ n ≤ νchaos
}, whi
h are independent realiza-tions of the N -dimension PCE basis {ψα(ξ), α ∈ Ap}. This basis being orthonormalleads us to the asymptoti
al 
ondition on [Ψ], de�ned by Eq. (1.12). Moreover, Eq.(1.6) implies that [Ψ] 
an be expressed as:

[Ψ] = [A][M ], (3.11)where [A] is the (N ×N) real matrix that gathers the 
oe�
ients of the orthonormalpolynomials with respe
t to the probability measure of the Ng-dimension PCE germ,
ξ =

(
ξ1, · · · , ξNg

), and [M ] is a (N × νchaos
) real matrix of νchaos independent real-izations of the multi-index monomials Mα (ξ) = ξα1

1 × · · · × ξ
αNg

Ng
, for any value α in

Ap:



12 POLYNOMIAL CHAOS IN HIGH DIMENSION
[M ] = [E (ξ (θ1) , p) · · · E (ξ (θνchaos) , p)] , (3.12)
E (ξ, p) = (Mα(1) (ξ) , · · · ,Mα(N) (ξ)) . (3.13)If [A] is independent of [M ], Eq. (3.11) 
erti�es that, if the 
olumns of [M ] are inde-pendent, then the 
olumns of [Ψ] stay independent. Let [RE ] be the auto
orrelationmatrix of the random ve
tor E (ξ, p):

[RE ] = E
(
E (ξ, p)E (ξ, p)

T
)
. (3.14)It 
an be dedu
ed from Eqs. (1.12), (3.11), (3.12) and (3.14) that:

[RE ] = lim
νchaos→+∞

1

νchaos
[M ][M ]T = [A]−1[A]−T . (3.15)A

ording to this de
omposition, 
omputing the 
lassi
al Gram-S
hmidt orthog-onalization to identify the polynomial basis 
oe�
ients only requires the 
al
ulationof [A]−T , whi
h 
orresponds to the Cholesky de
omposition matrix of the positivede�nite matrix [RE ]. Hen
e, by 
onstru
tion, the matrix [Ψ] 
an be written as theprodu
t of a lower triangular matrix [A] and a matrix [M ] of independent realizationsof a multi-index random ve
tor E(ξ, p).3.1.2. Pra
ti
al 
omputation of matrix [Ψ]. Thanks to Eq. (3.11), matrix

[Ψ] 
an be numeri
ally 
omputed without requiring 
omputational re
urren
e formulanor algebrai
 expli
it representation. An illustration of the method is presented here-inafter for a PCE based on a Gaussian mesure. This development 
an be dire
tlyextented to any value of p and Ng, as well as to other statisti
al measures. Let ξ1 and
ξ2 be two independent normalized Gaussian random variables, su
h that ξ = (ξ1, ξ2),and α = (α1, α2). Choosing p = 2 and Ng = 2, whi
h 
orresponds to N = 6, leads tothe following de�nition of E (ξ, p):

E (ξ, 2) =
(
1, ξ1, ξ2, ξ1ξ2, ξ

2
1 , ξ

2
2

)
. (3.16)A

ording to this equation, matrix [M ] 
an thus be easily dedu
ed from νchaos in-dependent realizations of ξ. Moreover, let [α] be the (Ng ×N) real matrix whi
hgathers the admissible values for α in Ap:

[α] =

[
0 1 0 1 2 0
0 0 1 1 0 2

]
↔ Ap = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)} .(3.17)The random variables ξ1 and ξ2 being independent, normalized and Gaussian, theauto
orelation matrix [RE ] 
an thus be written as:

∀i, j ∈ {1, · · · , N} , [RE ]ij = E
(
ξ
[α]1i+[α]1j
1 × ...× ξ

[α]Ngi+[α]Ngj

Ng

)

= E
(
ξ
[α]1i+[α]1j
1

)
× ...× E

(
ξ
[α]Ngi+[α]Ngj

Ng

)
,

(3.18)
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{
E (ξqℓ ) = 0 if q is not even,
E (ξqℓ ) =

q!
(q/2)!2q/2

if q is even. (3.19)Therefore, Eq. (3.15) allows us to numeri
ally �nd ba
k in [A] the multidimensionalHermite polynomials Hα1 × · · · ×HαNg
:

∀x ∈ R,





H0(x1)×H0(x2) = 1
H1(x1)×H0(x2) = x1
H0(x1)×H1(x2) = x2
H1(x1)×H1(x2) = x1x2

H2(x1)×H0(x2) =
x2
1−1√
2

H0(x1)×H2(x2) =
x2
2−1√
2

↔ [A] =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−1√
2

0 0 0 1√
2

0
−1√
2

0 0 0 0 1√
2



.(3.20)Noti
ing that:

• if ξ is a random variable uniformly distributed on [−1, 1]:
{
E (ξq) = 0 if q is not even,
E (ξq) = 1

q+1 if q is even, (3.21)
• if the random variable ξ is a random variable that is 
hara
terized by anormalized exponential distribution on [0,+∞ [ :

E (ξq) = q!, (3.22)this method 
an dire
tly be generalized to the uniform and exponential 
ases to 
om-pute the multidimensional Legendre and Laguerre polynomial 
oe�
ients, but also toan arbitrary probability measure for the germ ξ.3.2. In�uen
e of the trun
ation parameters and of the 
hoi
e for thePCE probability measure. The 
onvergen
e properties of ratio r when νchaos tendsto in�nity are strongly related to the statisti
al properties of germ ξ. This se
tionaims therefore to emphasize the dominant trends of this spe
i�
 link, and to highlightthe di�
ulties brought about by the divergen
e of ratio r, when trying to performanalysis of 
onvergen
e in high dimension.The de�nition of the Frobenius norm allows us to write that:
r =

∥∥∥∥
1

νchaos
[Ψ][Ψ]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F =
√
NΣ(νchaos), (3.23)where Σ(νchaos) is su
h that:

{
Σ(νchaos)

}2
=

1

N2

∑

1≤i,j≤N

((
1

νchaos
[Ψ][Ψ]T − [IN ]

)

ij

)2

. (3.24)
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onstru
tion, {Σ(νchaos)}2 is an assessment of the mean value of the squared dif-feren
e between the elements of 1
νchaos [Ψ][Ψ]T and the elements of the identity matrix

[IN ]. Hen
e, if {Σ(νchaos)}2 remains 
onstant when the size N of the polynomialbasis in
reases, the ratio r should in
rease as √N . Moreover, Eqs. (3.11) and (3.15)yield,
1

νchaos
[Ψ][Ψ]T − [IN ] = [A]

(
1

νchaos
[M ][M ]T − [RE ]

)
[A]T . (3.25)For all (i, j) in {1, · · · , N}2, [RE ]ij is su
h that:

[RE ]ij = E

(
ξ
α

(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng

+α
(j)
Ng

Ng

)
. (3.26)Let [R̂E ] be the following estimator of [RE ]:

[R̂E ]ij =
1

νchaos

νchaos∑

n=1

(
Ξ
(n)
1

)α(i)
1 +α

(j)
1 × · · · ×

(
Ξ
(n)
Ng

)α(i)
Ng

+α
(j)
Ng
, (3.27)where {Ξ(n) =

(
Ξ
(n)
1 , · · · ,Ξ(n)

Ng

)
, 1 ≤ n ≤ νchaos

} is a set of νchaos independent Ng-dimension random ve
tors, whi
h have the same PDF than ξ. The 
entral limittheorem yields that, for all (i, j) in {1, · · · , N}2, we have:
√√√√√

νchaos

Var

(
ξ
α

(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng

+α
(j)
Ng

Ng

)
(
[R̂E ]ij − [RE ]ij

) in law−→ N (0, 1), (3.28)where N (0, 1) is the normalized Gaussian distribution, and Var(.) is the varian
e. Un-der this formalism, it 
an be noti
ed that 1
νchaos [M ][M ]T is one parti
ular realizationof [R̂E ]. Hen
e, from Eqs. (3.24), (3.25) and (3.28), we dedu
e that:

• if Var(ξα(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng

+α
(j)
Ng

Ng

)
≤ Var

(
ξ
α

(i)
1 +α

(j)
1

1 × · · · × ξ
α

(i)
Ng+1+α

(j)
Ng+1

Ng+1

),then Σ(νchaos) potentially in
reases with respe
t to Ng.
• if Var(ξα(i)

ℓ

ℓ

)
≤ Var

(
ξ
α

(j)
ℓ

ℓ

) for α(i)
ℓ ≤ α

(j)
ℓ , then Σ(νchaos) potentially in-
reases with respe
t to p.As an illustration, for ea
h 
ouple (Ng, p) su
h that 1 ≤ p ≤ 10 and 1 ≤ Ng ≤ 6,three sets, {[Ψ(m)

U (p,Ng)], 1 ≤ m ≤ 1000}, {[Ψ(m)
G (p,Ng)], 1 ≤ m ≤ 1000} and

{[Ψ(m)
E (p,Ng)], 1 ≤ m ≤ 1000}, are 
omputed, su
h that [Ψ(m)

U (p,Ng)], [Ψ(m)
G (p,Ng)]and [Ψ

(m)
G (p,Ng)] refer to parti
ular (N × νchaos

) real matri
es of independent realisa-tions of the basis {ψα, α(ξ) ∈ Ap}, in the uniform, the Gaussian and the exponential
ases, respe
tively. Hen
e, de�ning:
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



rmU (νchaos) =
∥∥∥ 1
νchaos [Ψ

(m)
U (p,Ng)][Ψ

(m)
U (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmG (νchaos) =
∥∥∥ 1
νchaos [Ψ

(m)
G (p,Ng)][Ψ

(m)
G (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmE (νchaos) =
∥∥∥ 1
νchaos [Ψ

(m)
E (p,Ng)][Ψ

(m)
E (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

(3.29)allows us to 
ompute, in ea
h 
ase, three approximations errorthoU (p,Ng), errorthoG (p,Ng)and errorthoE (p,Ng) of the mean value of the ratio r, de�ned in Eq. (3.23), su
h that:




errorthoU (p,Ng) =
1

1000

∑1000
m=1 r

m
U (νchaos),

errorthoG (p,Ng) =
1

1000

∑1000
m=1 r

m
G (νchaos),

errorthoE (p,Ng) =
1

1000

∑1000
m=1 r

m
E (νchaos).

(3.30)For νchaos = 1000, in �gure 3.1, the two fa
tors whi
h make the ratio r diverge withrespe
t to p and Ng 
an therefore be emphasized. On the �rst hand, if in
reasing
p or Ng does not in
rease the varian
e of the elements of E(ξ, p), whi
h is the 
aseif the PCE germ ξ is 
hara
terized by an uniform distribution (see Eq. (3.21)), theratio r in
reases approximately as √

N . On the other hand, if in
reasing p or Ngin
reases the varian
e of the element of E(ξ, p), as it is the 
ase if the PCE germ ξ is
hara
terized by a Gaussian or exponential distribution (see Eqs. (3.19) and (3.22)),the ratio r diverges very qui
kly with respe
t to the trun
ation parameters, and biasthe PCE identi�
ation results.As a 
on
lusion, for a �xed value of νchaos, the di�eren
e 1
νchaos [Ψ][Ψ]T − [IN ]in
reases when p and Ng in
rease. Therefore, imposing [y] to be in Oη introdu
es anumeri
al bias in the PCE identi�
ation, whi
h be
omes very important when highvalues of p and Ng are needed. Su
h a phenomenon prevents thus to perform theanalysis of 
onvergen
e of the PCE in high dimension, espe
ially when dealing withGaussian and exponential PCE germs.3.3. Adaptation of the optimization problem. In this se
tion, �xed val-ues for νchaos, p and Ng are 
onsidered. A

ording to the notations of Se
tion 3.1,a (N × νchaos

) real matrix of independent realizations [Ψ] = [A][M ] 
an then be
onstru
ted. Under the 
ondition νchaos ≥ N , 1
νchaos [M ][M ]T is positive de�nite by
onstru
tion, whi
h allows writing:

1

νchaos
[M ][M ]T = [L][L]T , (3.31)where [L] is the Cholesky de
omposition of 1

νchaos [M ][M ]T , whi
h yields:
1

νchaos
[Ψ][Ψ]T = [A][L][L]T [A]T = [B][B]T , (3.32)

[B] = [A][L]. (3.33)The matrix:
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[Ψ̃] = [B]−1[Ψ], (3.34)is then introdu
ed, su
h that by 
onstru
tion:
1

νchaos
[Ψ̃][Ψ̃]T = [IN ]. (3.35)Using the notations of Se
tion 2, let [y∗] be a (Nη ×N) real matrix su
h that therandom ve
tor U is de�ned as:

U = [y∗]Ψ(ξ, p). (3.36)Hen
e, νchaos independent realizations of U 
an be dire
tly dedu
ed from thematrix [Ψ] and gathered in the matrix [U ] = [y∗][Ψ]. De�ning [z] su
h that:
[z] = [y∗][B], (3.37)therefore yields the equality:

[U ] = [y∗][Ψ] =
(
[z][B]−1

) (
[B][Ψ̃]

)
= [z][Ψ̃]. (3.38)If [z] is in Oη, [z][z]T = [R̂η(ν

exp)], whi
h implies that:




[
R̂U (ν

chaos)
]
= 1

νchaos [U ][U ]T = [z]
(

1
νchaos [Ψ̃][Ψ̃]T

)
[z]T = [z][z]T = [R̂η(ν

exp)],

[RU ] = E
(
UUT

)
= limνchaos→∞[R̂U (ν

chaos)] = [R̂η(ν
exp)]. (3.39)From Eqs. (3.5) and (3.6), it 
an thus be dedu
ed that imposing [z] to be an element of

Oη guarantees that, for any νchaos ≥ N , we have err2(νchaos) = err3(νexp, νchaos) = 0.Hen
e, whereas the optimization problem de�ned by Eq. (2.24) is perturbed byauto
orrelation errors, the new optimization problem:




[
yMOη

]
=
[
zMOη

]
[B−1],[

zMOη

]
= argmax[z∗]∈W C

(
[ηexp], [z∗], [Ψ̃]

)
,

(3.40)is no more a�e
ted, whi
h allows us to 
onsider high values of the trun
ation parame-ters Ng and p. Equation (3.38) underlines that the two former optimization problemsare equivalent, as the independent realizations of U have just been rewritten. Onlythe resear
h set, for the PCE 
oe�
ient matrix, has been modi�ed, whi
h allows thenumeri
al bias due to the �nite dimension of [Ψ] to be redu
ed.Finally, if [y] is the 
oe�
ients matrix of the trun
ated PCE, ηchaos(N), of randomve
tor η, su
h that ηchaos(N) = [y]Ψ(ξ, p), a good estimation of [y] in high dimension
an be 
omputed by solving the optimization problem de�ned by Eq. (3.40).



18 POLYNOMIAL CHAOS IN HIGH DIMENSION3.4. Remarks on the new optimization problem. It has to be noti
ed that
[Ψ̃] is unique, and keeps exa
tly the same stru
ture than [Ψ]. Indeed, let [Lasym] =
[A]−1 be the Cholesky de
omposition matrix of the auto
orrelation matrix [RE ], whi
his de�ned by Eq. (3.14). Hen
e, from Eq. (3.11), [Ψ] = [Lasym]−1[M ], whi
h has tobe 
ompared to [Ψ̃] = [B]−1[Ψ] =

(
[L]−1[A]−1

)
([A][M ]) = [L]−1[M ], where [L] and

[Lasym] are two lower triangular matri
es. Whereas [Lasym] implies the asymptoti
alorthonormality, [L] guarantees the numeri
al orthonormality. Moreover, from Eq.(3.40), the optimal PCE 
oe�
ients matrix [y] is approximated as a produ
t of twomatri
es:
[y] ≈

[
zMOη

]
[B]−1. (3.41)For a �xed value of N , [B] is strongly dependent on νchaos and [Ψ]. From Eq. (1.12),it also veri�es the asymptoti
al property:

lim
νchaos→∞

[B] = [IN ], (3.42)whi
h implies that [zMOη
] 
onverges towards [y] if su�
iently high values of νchaos is
onsidered. Hen
e, the less dependent on [Ψ] the matrix [zMOη

] is, the more a

uratethe 
hoi
e of νchaos is, and the better the PCE identi�
ation is.If another (N × νchaos,∗
) real matrix [Ψ∗] of independent realizations is 
on-sidered, the matri
es [B∗] and [Ψ̃∗] = [B∗]−1[Ψ∗] 
an be 
omputed a

ording toEqs. (3.33) and (3.34). As it has previously been seen, [Ψ∗], [Ψ̃] and [Ψ̃∗] keepthe same stru
ture. The a

ura
y of [zMOη

] 
an thus be estimated by 
omparing
C([νexp], [zMOη

], [Ψ][B]−1) and C([νexp], [zMOη
], [Ψ∗][B∗]−1).In parti
ular, νchaos,∗ and νchaos 
an be di�erent. Finally, on
e the 
oe�
ientmatrix [zMOη

] has been 
omputed, the higher νchaos,∗ is, the more a

urate and generalthe validation is.4. Appli
ation. The method proposed in the two former se
tions is applied totwo examples that both deal with the identi�
ation of the trun
ated PCE 
oe�
ientsof a random ve
tor η 
hara
terized by a multidimensional analyti
al distributions.The �rst one is built with Nη = 3, the se
ond one with Nη = 50. A

ording to thenotations of the former se
tions, the set of the νexp independent realizations used in thePCE identi�
ation are gathered in [ηexp]. Another set of νref independent realizations(νref ≫ νexp) is used as a referen
e to validate the di�erent modelings. The idea ofthis se
tion is thus to show to what extent the whole method des
ribed in the formerse
tions allows 
omputing 
onvergen
e analysis and relevant PCE identi�
ation ofthe random ve
tor η from a limited number of information, [ηexp]. Moreover, adistin
tion has to be made between the PDF modeling, a
hieved thanks to a PCE,and its estimation from PCE samples, 
omputed thanks to non parametri
al methods.In this 
ontext, let νchaos be the number of independent realizations used to 
arry outthe PCE identi�
ation, and νchaos,∗ the number of independent realizations of theidenti�ed PCE random ve
tor, whi
h will be used to draw graphi
al representations.For the two appli
ations, the Gaussian measure is 
hosen for the PCE of η, and
νexp = 1000.



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 19It is reminded that, in this work, the term high dimension refers to the fa
t thatthe dimension Nη of unknown random ve
tor η is high.4.1. Appli
ation in low dimension. The obje
tive of this se
tion is to applythe whole PCE method to a Nη = 3-dimension 
ase. First, the statisti
al propertiesof the unknown random ve
tor η are presented. Se
ondly, a 
onvergen
e analysisis 
arried out in order to 
al
ulate the optimal trun
ation parameters Ng and p ofthe PCE, ηchaos(N), of η. Then, the PCE 
oe�
ients are identi�ed from the νexpindependent realizations, [ηexp], of η. At last, the relevan
e of the PCE modeling isanalysed.4.1.1. Generation of the random ve
tor to identify. Let [X ] be a (3× 6)real-valued random matrix whose 
oe�
ients are uniformly and independently 
hosenbetween -1 and 1, su
h that η is de�ned a

ording to the notations of Se
tion 3 as:
η = [X ]E (ξexp, 2) , (4.1)where ξexp = (ξexp1 , ξexp2 ) is a normalized Gaussian random ve
tor whi
h 
omponentsare independent. The 
omponents of η are however strongly dependent, and the PCEtrun
ation parameters to be found ba
k by the 
onvergen
e analysis are pexp = 2 and

N exp
g = 2.Let {ξexp (θ1) , · · · , ξexp (θνexp)} and {ξexp (θ1) , · · · , ξexp (θνref )} be νexp and νrefindependent realizations of the random ve
tor ξexp, su
h that the matri
es of inde-pendent realizations [ηexp] and [ηref] are given by:

[ηexp] = [X ] [E (ξexp (θ1) , 2) · · · E (ξexp (θνexp) , 2)] , (4.2)
[
ηref
]
= [X ] [E (ξexp (θ1) , 2) · · · E (ξexp (θνref ) , 2)] . (4.3)Let {p̂ref,kη , 1 ≤ k ≤ 3
} be the Kernel smoothing estimations of the marginal PDFs ofea
h 
omponent of η, whi
h are 
omputed thanks to the νref independent realizationsof η gathered in [ηref ]. In this example, νref = 2× 106 ≫ νexp = 1000. It is remindedthat the PCE identi�
ation of η is only a
hieved thanks to the matrix of independentrealizations [ηexp], whi
h is 
onsidered as the only available information. The PDFs{

p̂ref,kη , 1 ≤ k ≤ 3
} are moreover supposed to build the marginal PDFs of the referen
e

η. 4.1.2. Identi�
ation of the PCE trun
ation parameters. Using the nota-tions of Se
tion 2.4, the boundary intervals BI1, BI2 and BI3 for whi
h the 
onvergen
eanalysis is a
hieved, are 
hosen su
h that:
∀ 1 ≤ k ≤ 3, BIk =

{
x ∈ R | p̂ref,kη (x) ≥ 1

νexp

}
. (4.4)Figure 4.1 displays the referen
e marginal PDFs of η, as well as the marginalPDFs {p̂exp,kη , 1 ≤ k ≤ 3

} estimated from the νexp independent realizations only. The
1/νexp toleran
e is also plotted so that the boundary intervals 
an therefore be dedu
edfrom these graphs.
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Figure 4.1: Graphs of the marginal PDFs of η.
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Figure 4.2: Convergen
e analysis of the PCE of η.
Figure 4.2 shows the values of err (Ng, p), for nine pairs (Ng, p) in Q(3). On thesegraphs, the gradient break of N 7→ err (N) is observed at N = 6, whi
h allows us to�nd ba
k the initial solution pexp = 2 and N exp

g = 2. For this small dimension 
ase,the optimal trun
ation parameters p and Ng given by the 
onvergen
e analysis areequal to the parameters of the analyti
al referen
e PCE.4.1.3. PCE Identi�
ation. The former 
onvergen
e analysis leads us to thefollowing PCE of η:
η ≈ ηchaos(6) =

6∑

j=1

yjΨj (ξ1, ξ2) = [y]Ψ (ξ1, ξ2) , (4.5)where ξ1 and ξ2 are two independent normalized Gaussian random variables. Weare now going to 
ompare [yclass] and [ynew], where [yclass] stems from the 
lassi
alproblem de�ned by Eq. (2.24), whereas [ynew] 
omes from the maximization of thenew formulation de�ned by Eq. (3.40). In this appli
ation, νchaos = 1000, and the twoPCE identi�
ations have been 
omputed thanks to the same numeri
al 
ostM = 104,whi
h means thatM = 104 independent random trials of [yclass] and [ynew] have beenused to maximize the log-likelihood. The value of M has been 
hosen su�
ientlyhigh for the PCE error fun
tion err(Ng , p) to be independent of M . Hen
e, fora new matrix of independent realizations, [Ψ∗], of size (6× νchaos,∗
), independentrealizations [ηclass(6)] and [ηnew(6)] of ηchaos(6) are dedu
ed, with respe
t to the twooptimization options:

[ηclass(6)] = [yclass][Ψ∗], (4.6)
[ηnew(6)] = [ynew][Ψ∗]. (4.7)Let
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[Rexp

η ] =
1

νexp
[ηexp][ηexp]T , (4.8)

[Rref
η ] =

1

νref
[ηref ][ηref ]T , (4.9)

[Rclass
η ] =

1

νchaos,∗
[ηclass(6)][ηclass(6)]T , (4.10)

[Rnew
η ] =

1

νchaos,∗
[ηnew(6)][ηnew(6)]T (4.11)be four estimations of the auto
orrelation matrix [Rη] of η. It is supposed that [Rref

η ]is the best approximation of [Rη] and will be 
onsidered as the referen
e. A

ording tothe Eqs. (3.4), (3.5) and (3.6), the auto
orrelation errors err1,class, err2,class, err3,classand err1,new, err2,new, err3,new are then 
omputed in ea
h 
ase. In �gure 4.3, it 
anthus be veri�ed that:
∀ νchaos,∗ ≥ 6, err2,new(νchaos,∗) = err3,new(νchaos,∗, νexp) = 0, (4.12)
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Figure 4.4: Comparison of the marginal PDFs of η and ηchaos(6).
lim

νchaos,∗→+∞
err2,class(νchaos,∗) = err3,class(νchaos,∗, νexp) = 0. (4.13)In parti
ular, for the value νchaos,∗ = νchaos = 1000, it 
an be noti
ed that thevalues of err2,class(νchaos,∗) and err3,class(νchaos,∗, νexp) are signi�
ant when 
omparedto err1,class(νexp), whi
h introdu
es an additive bias in the identi�
ation.
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omparison between the marginal PDFs p̂ref,kη , p̂exp,kη , p̂class,kηand p̂new,k
η , for 1 ≤ k ≤ 3. These PDFs are estimated using Kernel smoothing on theindependent realizations gathered in the matri
es [ηref ], [ηexp], [ηclass(6)] and [ηnew(6)],respe
tively, with νchaos,∗ = 106 ≫ νchaos = 1000. First, from only νexp = 1000independent realizations of η, it 
an be seen that the marginal PDFs are well des
ribedby the PCE random ve
tors ηnew(6) and ηclass(6). In parti
ular, the PDFs tails arevery well 
hara
terized. The PCE method is therefore an extremely e�
ient tool tobuild arbitrary multidimensional PDFs. Se
ondly, it 
an be noti
ed that, for a same
omputational 
ost M , the new PCE identi�
ation formulation leads us to betterresults than the 
lassi
al one. Finally, to still improve these PCE, more trials in Oηwould be ne
essary to better 
hara
terize [yclass] and [ynew]. In order to obtain a PCEthat 
orresponds still more pre
isely to the referen
e random ve
tor η, an in
rease of

νexp, that is to say, more information about η, would have been required.4.1.4. Relevan
e of the PCE 
ompared to Kernel Mixture and PASM.From adequa
y tests, likelihood estimations and graphi
al representations, the ideaof this se
tion is to show the assets of the new PCE formulation when dealing withthe identi�
ation of multidimensional distributions from a limited knowledge on therandom ve
tor of interest η 
ompared to Kernel Mixture (KM) and Prior Algebrai
Sto
hasti
 Modeling (PASM). In this prospe
t, two PDFs p̂η(x) and p̂PASM
η (x,w) arebuilt using a KM approa
h and a PASM method. The input data of these modelingsare still the matrix of independent realizations [ηexp] =

[
η(1) · · · η(νexp)

]. On
ethe KM, the PASM and the two PCE proje
tion matri
es, [yclass] and [ynew], are
onstru
ted, Q independent realizations are 
omputed from the four distributions,from whi
h 
omparisons to the referen
e solution are a
hieved. For this appli
ation,
Q = 106.Constru
tion of independent realisations.

• Kernel Mixture.Considering an independent Gaussian multidimensional Kernel, a non paramet-ri
al PDF p̂η(x) is postulated as a sum of νexp Gaussian PDFs {pi, 1 ≤ i ≤ νexp} tomodel pη(x):
p̂η(x) =

νexp∑

i=1

1

νexp
pi(x), (4.14)

pi(x) =

Nη∏

k=1

1√
2πhk

exp

(
−1

2

(
xk − ηik
hk

)2
)
, (4.15)

h = σ̂

(
4

(2 +Nη) νexp

)1/(Nη+4)

, (4.16)where x 7→ pi (x) is the Nη-dimension multivariate Gaussian PDF, with mean value
η(i) and 
ovarian
e matrix  h1 0 · · · 0

0 h2
. . . ...... . . . . . . 0

0 · · · 0 hNη



, h is the multidimensionnal op-
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al estimation of the standard devi-ation of ea
h 
omponent ηk of η. Let ηker be the Kernel Mixture 
hara
terized bythe PDF x 7→ p̂η(x). The Q independent realizations {ηker,1, · · · ,ηker,Q
} of ηker arethen 
omputed and gathered in the matrix [ηker].

• Prior Algebrai
 Sto
hasti
 Modeling.From the νexp independent realizations of η, the Nη marginal 
umulative distri-butions Fηk
of ηk, with 1 ≤ k ≤ Nη, are estimated using a non parametri
 statisti
almethod. In addition, a Gaussian 
opula Cgauss

rank (see [6℄ for more details about the
opula) based on the rank 
orrelation is 
hosen (this type of 
opula has been 
hosenas it is the most 
ommonly used in the PASM approa
hes):
Cgauss

rank (x1, · · · , xNη ) = φ
Nη

rank

(
φ−1(x1), · · · , φ−1(xNη )

)
, (4.17)

φ
Nη

rank(u) =

∫ u1

−∞
· · ·
∫ uNη

−∞

1

(2π)
Nη/2

√
det ([Rrank])

exp

(
−1

2
uT [Rrank]u

)
du1 · · · duNη ,(4.18)

φ(v) =
1√
2π

∫ v

−∞
exp

(
−v

2

2

)
dv, (4.19)

[Rrank]ij = 2 sin
(π
6
ρSij

)
, (4.20)where ρSij is the Spearman 
orrelation 
oe�
ient between ηi and ηj . Let ηcop be therandom ve
tor 
hara
terized by the 
opula Cgauss

rank and the marginal 
umulative dis-tributions {Fηk
, 1 ≤ k ≤ Nη}. Q independent realizations of ηcop are thus gatheredin the matrix [ηcop].

• Polynomial 
haos expansion.Finally, using the matri
es [yclass] and [ynew] of Se
tion 4.1.3, and a new (6×Q)real matrix [ΨQ] of realizations, Q independent realizations of ηclass(6) and ηnew(6)are gathered in the matrix [ηclass] = [yclass][ΨQ] and [ηnew] = [ynew][ΨQ].Relevan
e of the PCE modeling when identifying multidimensionalPDFs from a limited amount of independent realizations. Using the resultsof Parametri
al Statisti
s, this se
tion assesses the relevan
e of the four methods to
onstru
t multidimensional PDFs. Three kinds of analysis are a
hieved: adequa
ytests, 2D graphi
al representations, and multidimensional likelihood 
omputations.
• Adequa
y tests.From the matri
es of independent realizations [ηker], [ηcop], [ηclass] and [ηnew], theestimations {F̂ ker

k , 1 ≤ k ≤ Nη

}, {F̂ cop
k , 1 ≤ k ≤ Nη

}, {F̂ class
k , 1 ≤ k ≤ Nη

} and
{
F̂ new
k , 1 ≤ k ≤ Nη

} of the 
umulative distribution fun
tions (CDF) of ea
h 
ompo-nents of ηker, ηcop, ηclass(6) and ηnew(6) are respe
tively assessed. Let η̃(1), · · · , η̃(Nη)be the 1 × νexp-dimension linear forms 
orresponding to the lines of [ηexp]. For
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1 ≤ k ≤ Nη, η̃(k) gathers therefore the νexp independent realizations of the 
om-ponent ηk of η, whi
h have been used to 
ompute the statisti
al modelings. For
1 ≤ k ≤ Nη, the Kolmogorov-Smirnov adequa
y tests are then performed. For ea
h
omponent ηk of η, the null distribution of the Kolmogorov-Smirnov statisti
s is 
om-puted under the null hypothesis that the νexp independent realizations of η̃(k) aredrawn from the distribution of the 
hosen sto
hasti
 model. Table 4.1 gives the β-value for ea
h sto
hasti
 model, whi
h is de�ned as the probability of obtaining atest statisti
 at least as extreme as the one that was a
tually observed, assuming thatthe null hypothesis is true. Without surprise, this table allows us to verify that themodeling based on the Gaussian 
opula and the empiri
al PDFs of ea
h 
omponentsof η gives the best results. Moreover, with an error level of 5%, only the tests forthe 
opula model and the PCE identi�
ation based on the new formulation are posi-tive. The 
lassi
al PCE and the Kernel mixture modelings are indeed less relevant to
hara
terize the marginal PDFs of η.CDF F̂ class

1 F̂ new
1 F̂ ker

1 F̂ cop
1

β-value 0.3779 0.6331 0.2142 0.9996CDF F̂ class
2 F̂ new

2 F̂ ker
2 F̂ cop

2

β-value 0.0000 0.0967 0.0000 0.4573CDF F̂ class
3 F̂ new

3 F̂ ker
3 F̂ cop

3

β-value 0.0000 0.8692 0.0411 0.9849Table 4.1: Computation of the β-values 
orresponding to the di�erent sto
hasti
models.
• Two-dimensions graphi
al analysis.From [ηref ], [ηker], [ηcop], [ηclass] and [ηnew], the estimations x 7→ p̂refη (x), x 7→

p̂kerη (x), x 7→ p̂copη (x), x 7→ p̂classη (x) and x 7→ p̂newη (x) of the multidimensional PDFof η, ηker, ηcop, ηclass(6), ηnew(6) are respe
tively 
omputed using the non paramet-ri
 statisti
al estimation de�ned by Eq. (2.18). Proje
tions of these fun
tions arepresented in Figures 4.5, 4.6 and 4.7. In ea
h �gure, the surfa
e plot 
hara
terizesthe referen
e PDF (based on the νref = 2 × 106 independent realizations), and the
ontour plot refers to isovalues of the proje
ted PDF of interest. It 
an therefore beseen that the new formulation of the PCE gives very good results in identifying mul-tidimensional PDFs. In addition, in this example, the Kernel mixture model is moreadapted than the 
opula based model to 
hara
terize the multidimensional PDFs.
• Likelihood estimations.From Eq. (2.10), the multidimensional log-likelihood fun
tions Lηker ([ηexp]),

Lηcop ([ηexp]), Lηclass ([ηexp]) and Lηnew ([ηexp]) are estimated from the realizationsmatri
es [ηexp], [ηker], [ηcop], [ηclass] and [ηnew], in order to evaluate the multidimen-sional relevan
e of the di�erent sto
hasti
 models. In the same manner, [ηref ]1000 is de-�ned as the 1000 �rst 
olumns of [ηref ], and the log-likelihood fun
tions Lηker

(
[ηref ]1000

),
Lηcop

(
[ηref ]1000

), Lηclass

(
[ηref ]1000

) and Lηnew

(
[ηref ]1000

) are 
omputed. These val-ues are gathered in Table 4.2. It 
an thus be veri�ed that the new formulation of thePCE identi�
ation gives the best results when 
onsidering the maximization of thelog-likelihood.
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ontours plots in the plane [x3 = E(η3)].
Lηker ([ηexp]) Lηcop ([ηexp]) Lηclass ([ηexp]) Lηnew ([ηexp])
−8.0712.103 −8.7530.103 −8.1844.103 −7.8624.103

Lηker

(
[ηref ]1000

)
Lηcop

(
[ηref ]1000

)
Lηclass

(
[ηref ]1000

)
Lηnew

(
[ηref ]1000

)

−8.1933.103 −8.5535.103 −8.1797.103 −7.8457.103Table 4.2: Computation of the multidimensional log-likelihood 
orresponding to thedi�erent sto
hasti
 models.
As a 
on
lusion for this example, in low dimension, it 
an be seen that the newformulation of the PCE identi�
ation is very relevant when trying to identify multidi-mensional distributions from a limited number of measurements. Indeed, it allows usto build multidimensional distributions that are still relevant for experimental datathat have not been used in the identi�
ation pro
ess.
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(d) (x1, x3) 7→ p̂newη (x1, E (η2) , x3)Figure 4.6: Comparison of 2D 
ontours plots in the plane [x2 = E(η2)].4.2. Appli
ation in high dimension. The idea of this se
ond appli
ation is tounderline the ability of the new PCE formulation to 
arry out 
onvergen
e analysis inhigh dimension. Indeed, as it has been shown in Se
tion 3, for a given value of νchaos,when the size N of the polynomial basis in
reases, and more spe
ially when the maxi-mum degree p of the polynomial basis be
omes high, the di�eren
e 1
νchaos [Ψ][Ψ]T−[IN ]introdu
es a signi�
ant numeri
al bias whi
h perturbs the 
lassi
al PCE identi�
ation.In opposite, the new PCE formulation, whi
h avoids 
omputational auto
orrelationerrors, allows the numeri
al algorithms to be mu
h more stable and to give morerelevant results.4.2.1. Generation of a high dimension random ve
tor. Using the samenotations than in Se
tions 2.1 and 4.1.1, let [XHD] be a (Nη ×N) real matrix whoseentries are randomly generated, su
h that random ve
tor η is given by:

η = [XHD]Ψ (ξexp, pexp) , (4.21)



G. PERRIN, C. SOIZE, D. DUHAMEL AND C. FUNFSCHILLING 29

 

 

−15 −5 5

−10

0

10

2

4

6

8

10x 10
−4

PSfrag repla
ements
x2

x
3

(a) (x2, x3) 7→ p̂kerη (E (η1) , x2, x3)

 

 

−15 −5 5

−10

0

10

2

4

6

8

10x 10
−4

PSfrag repla
ements
x2

x
3

(b) (x2, x3) 7→ p̂
cop
η (E (η1) , x2, x3)

 

 

−15 −5 5

−10

0

10

2

4

6

8

10x 10
−4

PSfrag repla
ements
x2

x
3

(
) (x2, x3) 7→ p̂classη (E (η1) , x2, x3)

 

 

−15 −5 5

−10

0

10

2

4

6

8

10x 10
−4

PSfrag repla
ements
x2

x
3

(d) (x2, x3) 7→ p̂newη (E (η1) , x2, x3)Figure 4.7: Comparison of 2D 
ontours plots in the plane [x1 = E(η1)].
ξexp =

(
ξexp1 , ξexp2 , · · · , ξexpNg

)
, (4.22)where {ξexpk , 1 ≤ k ≤ Nη} is a set of Nη independent normalized Gaussian randomvariables. As in Se
tion 4.1, we de�ne a (Nη × νexp) real matrix [ηexp], whi
h gathers

νexp independent realizations of η:
[ηexp] = [XHD][Ψexp], (4.23)

[Ψexp] = [Ψ (ξexp(θ1), p
exp) · · · Ψ (ξexp(θνexp), pexp)] . (4.24)The 
omponents of the random ve
tor η are again strongly dependent. As a numeri
alillustration, it is supposed that νexp = 1000, pexp = 9,N exp

g = 3, N = (9+3)!/(9! 3!) =
220, Nη = 50. A high value of pexp is deliberately 
hosen, in order to emphasize the
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ulties of the 
lassi
al PCE formulation to 
arry out 
onvergen
e analysis in highdimension. Nevertheless, this high value of p implies an ill-
onditionning of [Ψexp],su
h that η 
an have very high values.4.2.2. Identi�
ation of the PCE trun
ation parameters. A

ording to Eq.(2.3), the trun
ated PCE, ηchaos(N), of η is given by:
ηchaos(N) = [y]Ψ(ξ, p). (4.25)Eq. (2.29) implies that the number Ny of elements of [y] has to be higher than

Nη (Nη + 1). When Nη is large, this leads us to the identi�
ation of thousands of
oe�
ients. However, as it has been said in Se
tion 2.4, the higher Ny is, the lesspre
ise is the PCE identi�
ation, for a given 
omputational 
ost M . In addition,Se
tion 3 has emphasized the ill-
onditionning of matrix [Ψ] for high values of p. Thismotivates the de�nition of a new set Q̃(pmax, Nmax), su
h that the optimal values
popt and Nopt

g are given by:
Q̃(pmax, Nmax) = {(p,Ng) , Ng ≤ Nη, p ≤ pmax, (Ng + p)!/ (Ng! p!) ≤ Nmax} ,(4.26)

(popt, Nopt
g ) = arg min

(p,Ng)∈Q̃(pmax,Nmax)
err(Ng, p), (4.27)where err(Ng , p) is 
omputed from M independent matri
es in Oη. For a �xed value

νchaos = 1000, the detrimental in�uen
e of the auto
orrelation errors err2 and err3of Eqs. (3.5) and (3.6) 
an then be noti
ed in Figure 4.8, when high values of N (andmore spe
ially high values of p) are 
onsidered. The error fun
tions errclass(Ng, p)and errnew(Ng, p) 
orrespond, respe
tively, to the 
lassi
al formulation and the newformulation of the PCE identi�
ation. It 
an be seen that for p ≥ 8, the ratio
errclass(Ng, p)/err

new(Ng, p) be
omes greater than �ve, whereas the two methodolo-gies are globally similar for low values of p. Hen
e, the a

ura
y of the 
lassi
al methodseems to be limited to low values of p and is therefore less relevant for 
onvergen
eanalysis whi
h handle high polynomial orders. At last, the �ve lowest values of thenumeri
al assessments of errnew(Ng, p) are gathered in Table 4.3. It 
an be seen thatthe new formulation allows �nding ba
k the 
ouple (pexp, N exp
g ) as the minimum ofthe error fun
tion. Nevertheless, keeping in mind that the lowest N is, the easiest theidenti�
ation is, this result also shows that using the 
ouple (p,Ng) = (11, 2) 
ouldbe interesting.
ouples (p,Ng) (11,2) (9,3) (7,4) (6,5) (2,27)values of N 78 220 330 462 406

errnew(Ng, p) 0.06104 0.06005 0.06228 0.06301 0.06521Table 4.3: Lowest values of errnew(Ng, p) with respe
t to (p,Ng).
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Figure 4.8: Comparison of the results for the 
onvergen
e analysis of the twoPCE identi�
ation formulations.4.3. PCE Identi�
ation. From the νexp independent realizations of η, a PCEidenti�
ation using the new formulation 
an be 
omputed for the trun
ation param-eters p = 9 and Ng = 3, whi
h 
orrespond to N = 220. The results of the numeri
alidenti�
ation with a 
omputational 
ost of M = 1000 are given in Figure 4.9. Thevalue of M has been 
hosen for the PCE error fun
tion err(Ng , p) to be independentof M . In this �gure, the marginal PDFs p̂chaosη41
and p̂chaosη39

of ηnew41 (220) and ηnew39 (220)are 
ompared to the experimental estimations p̂expη41
and p̂expη39

of the 
omponents η41and η39, respe
tively. The values ηnew41 (220) and ηnew39 (220) 
orrespond to the mini-mum and to the maximum values of the unidimensional error fun
tion errk(3, 11), for
1 ≤ k ≤ 50, whi
h is de�ned by Eq. (2.25). In order to evaluate the distan
e betweenthese estimations and the true marginal PDFs of η, the marginal PDFs estimated bythe non parametri
 statisti
al Kernel method, with νref = 2 × 105 independent real-izations of η41 and η39, are added to the �gures. These PDFs are 
onsidered as thereferen
e. These �gures therefore emphasize that the new PCE identi�
ation methodallows building a sto
hasti
 model of the distribution of η that suits the experimentalmarginal PDFs.5. Con
lusion. In the last de
ade, the in
reasing 
omputational power has en-
ouraged the development of 
omputational models with in
reasing degrees of free-dom. Hen
e, developing 
omputational methods whi
h 
an be applied to very highdimension 
ases is 
urrently of great interest.In this 
on
ern, this paper emphasized the e�
ien
y of the PCE when buildingmultidimensional distributions. After having quanti�ed the detrimental in�uen
e ofa numeri
al bias in the usual PCE identi�
ation methods in high dimension, thispaper proposed a new formulation to allow performing relevant 
onvergen
e analysisand PCE identi�
ation with respe
t to an arbitrary measure for the high dimension
ase. Finally, the method proposed allows making the PCE range rea
hable for manyengineering appli
ations with many degrees of freedom.A
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