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IDENTIFICATION OF POLYNOMIAL CHAOS REPRESENTATIONS
IN HIGH DIMENSION FROM A SET OF REALIZATIONS

G. PERRIN*t, C. SOIZE*, D. DUHAMEL', AND C. FUNFSCHILLING?

Abstract.

This paper deals with the identification in high dimension of polynomial chaos expansion of
random vectors from a set of realizations. Due to numerical and memory constraints, the usual poly-
nomial chaos identification methods are based on a series of truncations that induces a numerical
bias. This bias becomes very detrimental to the convergence analysis of polynomial chaos identifi-
cation in high dimension. This paper therefore proposes a new formulation of the usual polynomial
chaos identification algorithms to avoid this numerical bias. After a review of the polynomial chaos
identification method, the influence of the numerical bias on the identification accuracy is quantified.
The new formulation is then described in details, and illustrated on two examples.
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1. Introduction. In spite of always more accurate numerical solvers, determin-
istic models are not able to represent most of the experimental data, which are vari-
able and often uncertain by nature. Hence, the application fields of non deterministic
modeling, which can take into account the model parameters variability as well as the
model error uncertainties, has kept increasing. Uncertainties are therefore introduced
in computational mechanical models with more and more degrees of freedom. In this
context, the characterization of the probability distribution Py, (dx) of N,-dimension
random vector 7 from sets of experimental measurements is bound to play a key role,
in particular, in high dimension, that is to say for a large value of IV,,. In this work, it
is assumed that P,(dx) = p,(z)de in which the probability density function (PDF)
pn is a function in the set F(D,R™T) of all the positive-valued functions defined on
any part D of RV% and for which integral over D is 1.

Two kinds of methods can be used to build such a PDF: the direct and the
indirect methods. Among the direct methods, the Prior Algebraic Stochastic Modeling
(PASM) methods postulate an algebraic representation n ~ t8(2, w), with t2!& a
prior transformation, = a given random vector and w a vector of parameters to
identify. In the same category, the methods based on the Information Theory and
the Maximum Entropy Principle (MEP) have been developped (see [13] and [27]) to
compute p, from the only available information of random vector 1. This information
can be seen as the admissible set C*4 for Pyt

¢ = {pT, € F(D,R") | / py(x)de =1,
P , (1.1)
V1l<m< M, /ng(x)p,,(x)dx = fm}
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2 POLYNOMIAL CHAOS IN HIGH DIMENSION

where {f,,, 1 <m < M} gathers M given vectors which are respectively associated
with a given vector-valued functions {g,,, 1 <m < M}. Hence, the MPE allows
building p,, as the solution of the optimization problem:

po = are e {= [ po(a)1og (pg(a) do | (12)

prECad

On the other hand, the indirect methods allow the construction of the PDF p,, of
the considered random vector 1 from a transformation ¢ of a known random vector
&= («fl, ...,gNg) of given dimension N, < N,;:

n=t(¢), (1.3)

defining a transformation T between p,, and the PDF p¢ of &:

py =T (pe)- (1.4)

The construction of the transformation t is thus the key point of these indi-
rect methods. In this context, the isoprobabilistic transformations such as the Nataf
transformation (see [20]) or the Rosenblatt transformation (see [23]) have allowed the
development of interesting results in the second part of the twentieth century but are
still limited to very small dimension cases and not to the high dimension case consid-
ered in this work. Nowadays, the most popular indirect methods are the polynomial
chaos expansion (PCE) methods, which have been first introduced by Wiener [33] for
stochastic processes, and pioneered by Ghanem and Spanos [10] [II] for the use of it
in computational sciences. In the last decade, this very promising method has thus
been applied in many works (see, for instance [I], [2], [3], [4], [5], [], [8], [9], [12],
[14, [15], [16], [19], [18], 7], [211, [22], [24], [26], [28], [31], [32], [25], [34]). The PCE
is based on a direct projection of the random vector 7 on a chosen hilbertian basis
Borth = {¥a (&), a0 € NNo } of all the second-order random vectors with values in RV»:

n= > y'%a(é), (1.5)
acNNg
€ Ya(b) = X0, (&) ® ... ® Xay, (€n,), (1.6)

where z — X,,(x) is the normalized polynomial basis of degree a, associated with the
PDF pe¢, of the random variable &, and o is the multi-index of the multidimensional
polynomial basis element 1, (€). Building the transformation ¢ requires therefore the
construction of the projection vectors {y("), ac NNH}.

The present work is devoted to the identification in high dimension of the PCE
coefficients {y(®, o € N¥¢}, when the only available information on the random
vector 7 is a set of v°*P independent realizations {77(1), e ,n(”exp)}.

In practice, the PCE of n has first to be truncated:
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™ S(N) = Y yal€), (1.7)
acA,
Ng
A, = a= (al, ...,aNg) | || = Zaz <pp= {a(l), e ,a(N)}, (1.8)
(=1

where n°M°5(N) is the projection of ) on the N-dimension subspace spanned by
{¥a(€), a € A, } C Boren. It can be noticed that N increases very quickly with
respect to the dimension IV, of £ and the maximum degree p of the truncated basis

{a(§), a€ Ay}, as:

N = (Ng +p)!/ (Ng! pl). (1.9)

Methods to perform the convergence analysis in high dimension with respect to a
given error threshold on the PCE residue n — n"2$(N) are therefore of great concern
to justify the truncation parameters N, and p.

In this prospect, the article [29] provides advanced algorithms to compute the
PCE coefficients from the v**P independent realizations {77(1), e ,n(”exp)} by focus-
ing on the maximization of the likelihood. In particular, one of the key point of
these algorithms is the calculation of (N x v*"°%) real matrix [¥] of independent
realizations of the truncated PCE basis {)a (§), a € A,}:

(W] = [®(&(01),p) - (& (Oheneos),p)], (1.10)
‘I’(€7p): (wa(l) (gla"' 7§Ng)a"' 7wa(N) (51)"' )gNg))’ (111)
where the set {£(601),--+,& (0,cn0s)} gathers vP2° independent realizations of the

random vector &.

Recurrence formula or algebraic explicit representations are generally used to
compute such matrix [¥], which are supposed to verify the asymptotical property:

1
lim  ——[U][¥]" = [Iy], (1.12)
yehaos_y | oo p/Chaos
as a direct consequence of the orthonormality of the PCE basis {¢a, a € A, }, where
[Iy] is the N-dimension identity matrix.

However, for numerically admissible values of "% (between 1000 and 10000), it
has been shown in [30] that the difference —o [][W]7 — [Iy] can be very significant
when high values of the maximum degree p can be encountered with simultaneously
significant values of N,. This difference induces a detrimental bias in the PCE identifi-

cation, which makes the convergence of classical PCE in high dimension very difficult.
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In [30], it is therefore proposed a method using singular matrix decomposition to nu-
merically adapt classical generations of [¥], and make this difference be zero for any
values of p and N,. Nevertheless, this conditionning on [¥] modifies the initial struc-
ture of [¥], and makes the identified PCE coefficients {y("‘), ac Ap} impossible to
be reused on an other matrix [¥*] of vha°5:* new realizations of ¥ (&, p).

As an extension of the works described in [29] and [30], this article proposes
an original decomposition of the PCE coefficients {y("‘), ac Ap}, that reduces the
numerical bias introduced during the identification by the finite dimension of [¥]
and for large values of degree p. This new formulation is particulary adapted to the
high dimension, and allows the identified coefficients to be reused for other matrix of
realizations [U*].

In Section 2, the PCE identification from a set of experimental data with an arbi-
trary measure is described. In particular, the role played by the matrix of independent
realizations [¥] is emphasized. Section 3 focuses on the convergence properties of this
matrix [¥] with respect to three statistical measures, and describes an innovative
method to generate this matrix without using computational recurrence formula nor
algebraic explicit representation. In Section 4, the new formulation of the PCE iden-
tification problem is given. Finally, are presented in Section 5 two applications of the
former method with a Gaussian measure.

2. PCE identification of random vectors from a set of independent
realizations. In this section, a description of the PCE identification with respect to
an arbitrary measure is given. The objective is to summarize the different key steps
of the PCE identification method and the way they are practically implemented.

After having defined the theoretical frame of the PCE identification, the cost-
function that leads to the computation of the PCE coefficients {y®), a € A,} is
presented, for given truncation parameters IV, and p. At last, to justify the choice
of these truncation parameters, a method to perform the convergence analysis is
introduced.

2.1. Theoretical frame. Let (O, T, P) be a probability space. Let L% (6, RN7)
be the space of all the second-order NV,-dimension random vectors defined on (6, 7, P)
with values in R¥%, equipped with the inner product (.,.):

U, V) = /@ U (9)V(8)dP(8) = E (UTV) YU,V eI%(0RY), (21)

where F (.) is the mathematical expectation.

Let n = (771, e a77N7,) be an element of L% (@,RN"). It is assumed that v**P
independent realizations {n®,.-- "™} of n are known and gathered in the
(N x v**P) real matrix [“P]:

[nexp] _ [7’](1) n(”exp)} . (2-2)

Equation (I7) can be rewritten as:

NS (N) = [y ® (&, p), (2.3)
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[y] = [y("m) y("m)}. (2.4)

The orthonormality property of the projection basis {¢a(£), a € A,} yields the
condition:

E(¥(p)¥(Ep)") = In] (25)
Since ¥, (&) = 1, it can be seen that:

E (nhos(N)) = y(&). (2.6)

Let [R,] and [Rg"**5(N)] be the autocorrelation matrix of the random vectors 7
and nhaos(N):

Ry = E (mm"), (2.7)

[R%haos(N)} - B (,’,’ChaOS(N) (,r'chaos(N))T> _ [y]E (lIl(ﬁ,p)‘I’(ﬁ,p)T) [y]T _ [y] [y]T
(2.8)

2.2. Identification of the polynomial chaos expansion coefficients. In
this section, particular values of the truncation parameters IV, and p are considered.
Let My, ~ be the space of all the (N, x N) real matrices. For a given value of [y*] in
M, N, the random vector U ([y*]) = [y*]¥ (§,p) is a N,-dimension random vector,
for which the autocorrelation is equal to [y*][y*]”. Let py(jy+)) be its multidimensional
PDF.

When the only available information on 7 is a set of ¥**P independent, realizations,
the optimal coefficients matrix [y] of its truncated PCE, n°h°5(N) = [y]® (&, p), can
be seen as the argument which maximizes the log-likelihood Ly (jy+1) ([n°*P]) of U ([y*]):

= L . eXP1) | 2.9

[y] arg max Lol ) (™)) (2.9)

Ly qy (7)) = Z In pur((y+)) (n(i)> . (2.10)
=1

2.3. Practical solving of the log-likelihood maximization.

2.3.1. The need for statistical algorithms to maximize the log-likelihood.
The log-likelihood Ly ((,+)) ([7°P]) being non-convex, deterministic algorithms such as
gradient algorithms cannot be applied to solve Eq. (29), and random search algo-
rithms have to be used. Hence, the precision of the PCE has to be correlated to a
numerical cost M, which corresponds to a number of independent trials of [y*] in
Mny,n. Let YV = {[y*](r), 1<r< M} be a set of M elements, which have been
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chosen randomly in My, n. For a given numerical cost M, the most accurate PCE
coefficients matrix [y] is approximated by:

[y] = [yy] = arg max Ly 1y (=P]) . (2.11)
y*]ey

2.3.2. Restriction of the maximization domain. From the v°*P independent
realizations {n™), .-, n(*"*)}, the mean value E(n) and the autocorrelation matrix
[R;,] of m can be estimated by:

1eXP

1

B (n) ~ (") = —= 3" 0, (2.12)
i=1
wmmam-szn%@) = I (2.13)

A good way to improve the efficiency of the numerical identification of [y] is then
to restrict the research set to O, C My, v, with:

O, = {[y] = [y(“(l)),--- ,y(“(m)} € My, n |

i X (2.14)
Y@ =5, [yly)” = (R}

which, taking into account Eqs. (2.8) and (2.8), guarantees by construction that:

{u@w<ﬂ @A“W, (2.15)

E nchaos _) — ﬁ exp

Hence, the PCE coefficients matrix [y] can be approximated as the argument in
O, that maximizes the log-likelihood Ly (f,+)) ([nP]). By defining W the set that
gathers M randomly raised elements of O,, [y] can then be assessed as the solution
of the new optimization problem:

= L P 2.16
W]~ lyw] = arg max Ly ((177]) (2.16)

2.3.3. Approximation of the log-likelihood function. From a particular
matrix of realizations [¥] (which is defined in Eq. (LI0)), if [y*] is an element of
On, v°haos independent realizations {U ([y*], 0n) = [y*]® (£(0,),p),1 <n < Vchaos}
of the random vector U ([y*]) can be computed and gathered in the matrix [U]:

Ul=[U(y"],01) - U([y], Openaoe)] = [y™][¥]. (2.17)

Hence, using Gaussian Kernels, the PDF pys(f,-)) of U ([y*]) can be directly esti-
mated by its non parametric estimator py:
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v € RY, py e (@) ~

Vchaos NW

~

pu (z) =

. exp -2 (sck—Uka*],en))Q !
(27T)N77/2 pchaos ch\]:nl hi = 2 Pt hy
(2.18)

where h = (hl, - h Nn) is the multidimensionnal optimal Silverman bandwith vector
(see [6]) of the Kernel smoothing estimation of pgr((,«)):

4 1/(Ny+4)
> : (2.19)

V]-SkSNn; hkaUk<m
n

where oy, is the empirical estimation of the standard deviation of each component
Uy of U. It has to be noticed that py only depends on the bandwidth vector h, and
the two matrices [y*] and [¥]. Hence, according to the Eqs. (2I0), (ZI7) and (ZI]),
for a given value of M%°% the maximization of the log-likelihood function Lu((y*))
can be replaced by the maximization of the cost-function C([n®*P], [y*],[¥]) such that:

] ~ [yo,| = arg Jhax C(™), ly™], [w)), (2.20)
where:
C(n*®], [y*], [¥]) = Cc + Cv (™), [y], [¥]), (2.21)
N'W
Co=—v™®In | (2m)/2phees T by, | (2.22)
k=1

v

exp pchaos N, ) _ . 2
Cv([n™P), [y"], (W) = > In | > exp 7%2 <"k U;i[y ]’9")> . (2.23)

i=1 k=1

Hence, the optimization problem defined by Eq. (2I6) can finally be estimated
by:

[v] ~ [yb,] = arg Jmax C ([, [y"], [2)). (2.24)

The optimization problem defined by Eq. (2.24) is now supposed to be solved
with the advanced algorithms described in [29] to optimize the trials of the elements of
W for a given computation cost M. The higher the value of M is, the better the PCE
identification should be. Therefore, this value has to be chosen as high as possible
while respecting the computational ressource limitation.
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2.3.4. Accuracy of the PCE identification. For a given computation cost
M, let [y ] be an optimal solution of Eq. 224). [y | is a numerical estimation

of the PCE coefficients matrix [y]. For a new (N x v'°%*) real matrix [¥*] of
independent realizations (°"2°%* can be higher than »h8°%), the robustness of [ygn ]

regarding the choice of [¥] can then be estimated by comparing C ([ne"p], [y(l‘g/{]], [\I/])

and C ([neXP], vey, ], [\Il*]) In addition, if »°*P new independent realizations of n
were available and gathered in the matrix [p®*P"¥] the over-learning of the method

could be measured by comparing C ([nexP], [y(]\gn], [\I/]) and C ([ne"pvnew], [y(]\gn], [\I/])

At last, for the same computation cost M, if [ygn’new] is a new optimal solution of Eq.

[@24), the global accuracy of the identification stems from the comparison between
¢ (Ir=Pmen, [yl 1,[97]) and € ([oeee), [y "), [97]).

2.4. Identification of the PCE truncation parameters. As shown in In-
troduction, two truncation parameters, IV, and p, appear in the truncated PCE,
nhaos(N) = [y|®(&,p), of n. The values of these parameters have to be determined
from a convergence analysis. The objective of this section is thus to give the funda-
mental elements to perform such a convergence analysis.

2.4.1. Definition of a log error function. For each component 7"@s(N) of

the truncated PCE, nh2°s(N) = [y]®(&,p), of m, the L'-log error function erry is
introduced as described in [29]:

V1<k<N,, erry(Ngp) = / llogio (pn, (z1)) — logro (pnzhaos (xk)) |dxr, (2.25)

Bl

where:
e BI is the support of n,";
® Py, and pyeneos are the PDF of 7 and nhaos respectively.

The multidimensional error function err(Ng,p) is then deduced from the unidi-
mensional L!-log error function as:

NW
err(Ng,p) = Zerrk(Ng,p). (2.26)
k=1

The parameters Ny and p have thus to be determined to minimize the multidi-
mensional L!-log error function err(Ny,p).

For given values of truncation parameters N, and p, it is reminded that PCE
coefficients matrix [y] is searched in order to maximize the multidimensional log-
likelihood function, which allows us to consider a priori strongly correlated problems.
Once this matrix [y] is identified, it is possible to generate as many independent
realizations of truncated PCE n°"°%( V) as needed to estimate as precisely as possible
the non parametric estimator py of its multidimensional PDF. The number v**P of
available experimental realizations of 1 is however limited. This number is generally
too small for the non parametric estimator of multidimensional PDF p,, of n to be
relevant, whereas it is most of the time large enough to define the estimators of the
marginals of p,,. Therefore, the log-error functions defined by Eqs. (2.25) and (2.26)
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only consider the marginals of the PDF of p,, and p%haos. In addition, the logarithm
function has been introduced in order to measure the errors of the very small values
of the probability density function (the tails of the probability density function).

2.4.2. Definition of an admissible set for the truncation parameters.
As it exists an isoprobabilistic transformation between 1 and (El, RN Nn)’ where
{Ek, 1 <k < N,} is a set of N, independent centered normalized Gaussian random
variables, the convergence analysis can be restricted to the values of N, which verify:

Ny, < N, (2.27)

Moreover, imposing the (N, x N) real matrix [y] to be in O,, amounts to imposing

Nn(lgﬂ+3_) constraints on [y], which implies:

@NEN’”L?’.

NnNZ N”] (‘]\;77+3)

(2.28)

However, the algorithms developed in [29], on which the solving of the optimiza-
tion problem, defined by Eq. (2:24)), is based, need the more restrictive condition:

N> N, +1. (2.29)

We will therefore consider Q(N,) the set of the admissible values for p and N,
with:

Q(Nn) = {(paNg) € N27 | Ng < Nna N = (Ng +p)'/(Ng' p') > Nn + 1} (230)

Theoretically, increasing p and N, adds terms in the PCE of the considered
random vector, and therefore should induce the decrease of the error function:

Y p* > p, N; > Ng, err(Ng,p) > max {err(Ng*,p),err(Ng,p*)} >

min {err(Ng*,p), err(Ng,p*)} > err(Ng*,p*).

(2.31)

However, the higher the values of p and IV, are, the bigger the PCE coeflicients
matrix is, the harder the numerical identification is. Hence, introducing ¢ as an error
threshold, which has to be adapted to the problem, let P(e, N,)) be the set:

P(e, Ny) = {(p, Ng) € Q(NNy) | err(Ng,p) < e}. (2.32)

Finally, given the error threshold &, rather than directly minimizing the L'-log
error function err(Ny, p), it appears to be more accurate to look for the optimal values
of p and N, that minimize the size of the projection basis N = (N, + p)!/ (Ng! p!):

(7, Ny) = axe - NDEB () (N3 27)/ (N3 0). (23

If the polynomial order (which is a priori unknown) of the non truncated PCE

of m is infinite, it may not exist values of p and N, in P(e, N,) for error function

err(Ny, p) to be inferior to small values of €. In this case, the former algorithms can

nevertheless be used to find the most accurate values of p and N, with respect to an
available computational cost.
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3. Adaptation of the PCE identification method in high dimension. As
it has been presented in the former sections, the (N x v12°) real matrix [¥] gathers
v°haos independent realizations of the N-dimension PCE basis {¢a(£), a € A,}.
Egs. (Z23) and ([Z24) underline the fact that the numerical identification of the
PCE coefficients [y] can be seen as the minimization of a cost function involving the
elements of the (N, x v*"3°%) real matrix of independent realizations [U] = [y][¥] and
the elements of the (N, x v**P) real matrix [p°P] = [p™) ... n*"")]. In theoretical
terms, this cost function should be minimum when the multidimensional PDF py
of U = [y]¥(&,p) is as near as possible to the multidimensional PDF p, of . In
practical terms, this cost function is however minimum when py is as near as possible
to Py, where py and p, are the multidimensional non parametric estimators of pyr
and p,, defined by Eq. (ZI8). With respect to »*P and v°haos three bias are then
introduced in the PCE identification:

e a bias due to a lack of information on 7:

b(l)(VexP) = /RM, [Py () — py(z)|de, (3.1)

e a bias due to a lack of information on U:

b(2)(uchaos) = /]RN |Z/)\U(;1;) _pU(fE)|d$, (32)

e a bias due to the truncation and to the fact that the global maximum is not
necessary reached:

b (o ehaos) — / 1Pu(@) — P (@)|da. (3.3)
RNn
These three bias could also be expressed with respect to the statistical moments
of p and U. For instance, when focusing on the autocorrelation matrix, let err®, err?
and err® be the autocorrelation errors corresponding respectively to the bias b™), ()
and b®):

err (v ®) = | [Ry] = [Ryw™®)]|| /Rl (3.4)
eer(VChaOS) _ H[R;haOS(N)] _ [EU(VChaOS)]HF/ ||[R;haOS(N)]HF : (3.5)
err? (v, %) = ||[Ro ()] = [By )| /(R . (3.6)

where ||.||» is the Frobenius norm of matrices, and where it is reminded from Egs.

23) and (ZI3) that:

[Rywo®)] = S o)
|y (o) = A= [UIU]T = 3] (e [9]19]7) )7 (3.7)

chaos

[Rehaos(N)] = [y][y)™
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Hence, the smaller these three errors are, the more precise the PCE identification

is. The v**? independent realizations {n®, -, n(*"")} being the maximum available

information on 1, the bias b(!) and the autocorrelation error err! cannot be decreased,

whereas the set O, which was introduced to guarantee that [RS"(N)] = [En(ue"p)],

aims at reducing b®), b®), err?

us to:

and err®. Therefore, imposing [y] to be in O, leads

67‘7‘2 (Vchaos) _ 67“7“3 (Vexp, Vchaos)

1 (3.8)
S ) I e
F
The following asymptotical property can thus be deduced from Eq. (LI2):
lim  err? (I/Chaos) = lim err® (v°P, I/Chaos) =0, (3.9)

Vchaos_>+oo Vchaos_>+oo

which is equivalent to say that the larger »°P2°% is, the more accurate the PCE iden-
tification should be. However, from a practical point of view, the value of v°"2°s is
fixed by the available computation ressources. As an extension of the work presented

in [30], this section aims at quantifying the divergence of the ratio:

1

pchaos

[wIe)” — [In]| /NNl (3.10)

F

when the truncation parameters N, and p increase for several statistical measures.
From Eq. (88), r, defined by Eq. (8I0), can be seen as a general characterization of
the autocorrelation errors err? and err®. This divergence being very detrimental to
the PCE identification in high dimension, a new decomposition of the PCE coefficient
matrix [y] will be then presented in this section to make err? and err® be zero for

any value of N, and p.

3.1. Decomposition of the matrix of independent realizations. To better
emphasize the influence of the truncation parameters on the ratio r, a rewriting of
the matrix [P] is first presented.

3.1.1. Theoretical basis of the decomposition. From Eq. (I.I0), matrix [V]
gathers 112 columns {\Il (&0n),p), 1<n< I/Chaos}, which are independent realiza-
tions of the N-dimension PCE basis {1« (&), a € A,}. This basis being orthonormal
leads us to the asymptotical condition on [¥], defined by Eq. (I12). Moreover, Eq.
(L8) implies that [¥] can be expressed as:

(W] = [A][M], (3.11)

where [4] is the (IV x N) real matrix that gathers the coefficients of the orthonormal
polynomials with respect to the probability measure of the Ng-dimension PCE germ,
&= (&4, - ,&,), and [M] is a (N x vh2°s) real matrix of @S independent real-

izations of the multi-index monomials My (§) = &* x -+ X {f\‘,:’g, for any value a in

A
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[M] = [E(&(01),p) -+ E(&(Orencs),p)], (3.12)

E(&p) = Maw (&), Mamw (§)). (3.13)

If [A] is independent of [M], Eq. (811) certifies that, if the columns of [M] are inde-
pendent, then the columns of [¥] stay independent. Let [Rg] be the autocorrelation
matrix of the random vector &€ (&, p):

Re) = E (£(€n) E€p)). (3.14)
It can be deduced from Eqgs. (L12), BII), BI2) and BI4) that:

1
Rel = Jim MM = (4] 4] (3.15)
According to this decomposition, computing the classical Gram-Schmidt orthog-
onalization to identify the polynomial basis coefficients only requires the calculation
of [A]~T, which corresponds to the Cholesky decomposition matrix of the positive
definite matrix [Rg]. Hence, by construction, the matrix [¥] can be written as the
product of a lower triangular matrix [A] and a matrix [M] of independent realizations
of a multi-index random vector (&, p).

3.1.2. Practical computation of matrix [V]. Thanks to Eq. (BI1]), matrix
[¥] can be numerically computed without requiring computational recurrence formula
nor algebraic explicit representation. An illustration of the method is presented here-
inafter for a PCE based on a Gaussian mesure. This development can be directly
extented to any value of p and Ny, as well as to other statistical measures. Let £; and
& be two independent normalized Gaussian random variables, such that & = (&1, &),
and a = (a1, a2). Choosing p = 2 and N, = 2, which corresponds to N = 6, leads to
the following definition of € (&, p):

8(672) = (1a§1a§27£1§27£%7£§) . (316)

According to this equation, matrix [M] can thus be easily deduced from °"2°% in-
dependent realizations of & Moreover, let [a] be the (IV, x N) real matrix which
gathers the admissible values for o in A,:

0

o] = 10 1
=10 01

2 0
1 0 2 :| A A’P ={(0,0),(1,0),(0,1),(1,1),(2,0),(0,2)}.
(3.17)
The random variables £; and & being independent, normalized and Gaussian, the
autocorelation matrix [Rg] can thus be written as:

Vi, j € {1, o 7]\[}7 [Re]ij _ (da]u-i-[a]u Y % é—][\alegi‘i’[a]Ngj)

(ﬂa]uﬂa]lj) X oo X E( E\?‘jNgiJf[a]Ngj) ’ (3.18)

E
E
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where, for 1 </ < Ng:

{ E(¢]) =0 if q is not even, (3.19)

E (&)= (q/;)’ﬁ if q is even.

Therefore, Eq. (BI5) allows us to numerically find back in [A] the multidimensional
Hermite polynomials H,, x --- x H,

O(Ng
Ho(a1) x Ho(w2) =1 1 000 0 O
Hi(x1) x Ho(x2) = 21 0100 0 0
Ho(x1) x Hi(22) = 2 0010 0 0
Ve €R,\ Hi(z1) x Hi(z2) = ayz2 < A= 0o 001 0o o
Hy(z1) x Ho(zg) = B2t L o000 L o
o) ) e \—/%000\65 L
Ho(x1) x Hay(z2) = =75 2 V2
(3.20)
Noticing that:
e if ¢ is a random variable uniformly distributed on [—1, 1]:
E(£7) =0 if q is not even,
{ E(£7) = qﬁ if q is even, (3.21)

e if the random variable ¢ is a random variable that is characterized by a
normalized exponential distribution on [0, +00 [:

E (&) =q!, (3.22)

this method can directly be generalized to the uniform and exponential cases to com-
pute the multidimensional Legendre and Laguerre polynomial coefficients, but also to
an arbitrary probability measure for the germ &.

3.2. Influence of the truncation parameters and of the choice for the
PCE probability measure. The convergence properties of ratio » when °"°% tends
to infinity are strongly related to the statistical properties of germ &. This section
aims therefore to emphasize the dominant trends of this specific link, and to highlight
the difficulties brought about by the divergence of ratio r, when trying to perform
analysis of convergence in high dimension.

The definition of the Frobenius norm allows us to write that:

1

Vchaos

[w)[w)" — [In]

. /N = VNS@™), (3.23)

where Y (v1%°%) is such that:
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By construction, {E(VChaOS)}2 is an assessment of the mean value of the squared dif-
ference between the elements of ——[W][W]7 and the elements of the identity matrix
[In]. Hence, if {E(VChaOS)}2 remains constant when the size N of the polynomial
basis increases, the ratio r should increase as v N. Moreover, Eqs. (311 and (BI5)

yield,

ﬁ[‘ﬂ] [0]" — [In] = [4] <ﬁ[M][M]T —~ [Rg]> (A7 (3.25)

For all (i,5) in {1,--- ,N}?, [Relij is such that:

g9

RONINE) ol +alf)
elii = NEERD 4 . A
[Relij =E (& SR (3-26)

Let [Re] be the following estimator of [Re]:

chaos . . . .
~ 1~ —(n) af? +a? —(n) aﬁéi, +a5\172,
Reliy = =5 > (27) x-eox (20)) . (321)
n=1
where {E(") = (Eﬁ”’, . ,E%g) , 1 <n <phaost s a set of v12°% independent N,-

dimension random vectors, which have the same PDF than £ The central limit
theorem yields that, for all (¢,5) in {1,--- ,N}Q, we have:

Vchaos

(1Rels — [Rely) ™3V N(0,1),  (3.29)

O aﬂ@iﬁa%;)
g9

Var(§1 X x €y

where N (0, 1) is the normalized Gaussian distribution, and Var(.) is the variance. Un-
der this formalism, it can be noticed that —t= [M][M]7 is one particular realization
of [Re]. Hence, from Eqs. (324), (325) and B28), we deduce that:

ol 1o

() 4 o) () () a9 +al®)
. ay ' tay . Ng 9 ayFay . Ng+1T%Ng+1
e if Var (‘51 X ><§Ng ) < Var (‘51 X X€Ng+1 ),
then ¥(v°ha°%) potentially increases with respect to Ny.
(i) ) . .
e if Var (5?4 ) < Var (E?’Z ) for a&l) < a(j), then Y (v°h2°%) potentially in-

creases with respect to p.

As an illustration, for each couple (Ng,p) such that 1 < p <10 and 1 < N, <6,
three sets, {[\I/gn)(p, Ng)], 1 < m < 1000}, {[\Il(Gm)(p, Ng), 1 < m < 1000} and
{10 (p, Ny)], 1 < m < 1000}, are computed, such that [¥{™ (p, N,)], [¥5™ (p, N,)]
and [0 (p, N,)] refer to particular (N x vhaos) real matrices of independent realisa-
tions of the basis {)a, a(€) € A}, in the uniform, the Gaussian and the exponential
cases, respectively. Hence, defining:
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() = || e [0 (o, NI (0 No)IT = (]| /1wl e
8 (o) = | sk (28 (o, N E” (o, NI = )| /Nl (3:29)
rip (o) = || e [0 (o, NI (0 No)IT = (]| /1wl e

allows us to compute, in each case, three approximations err@*h°(p, N, ), err&the(p, N,)
and err@®™°(p, Ny) of the mean value of the ratio r, deﬁned in Eq. (3:23)), such that:

err ortho(p7 ) — 1000 Zizgz ,,qgm(l/chaos)7
er ortho(p7 9) = 1000 ZIOOO TgL(VChaos)a (3.30)
err ortho(p7 ) — 1000 Zm 1 r%@(ychaos).

For v°h2° — 1000, in figure .1} the two factors which make the ratio  diverge with
respect to p and N, can therefore be emphasized. On the first hand, if increasing
p or N, does not increase the variance of the elements of £(&, p), which is the case
if the PCE germ £ is characterized by an uniform distribution (see Eq. (2ZI)), the
ratio r increases approximately as v/N. On the other hand, if increasing p or Ny
increases the variance of the element of £(&, p), as it is the case if the PCE germ £ is
characterized by a Gaussian or exponential distribution (see Eqs. (819) and (B3:22))),
the ratio r diverges very quickly with respect to the truncation parameters, and bias
the PCE identification results.

As a conclusion, for a fixed value of "%, the difference —= [¥][U]7 — [Iy]
increases when p and N, increase. Therefore, imposing [y] to be in O, introduces a
numerical bias in the PCE identification, which becomes very important when high
values of p and N, are needed. Such a phenomenon prevents thus to perform the
analysis of convergence of the PCE in high dimension, especially when dealing with

Gaussian and exponential PCE germs.

3.3. Adaptation of the optimization problem. In this section, fixed val-
ues for v°12°s p and N, are considered. According to the notations of Section [B.1]
a (N x v°ha°s) real matrix of independent realizations [U] = [A][M] can then be
constructed. Under the condition v > N, — L [M][M]" is positive definite by
construction, which allows writing;:

1
I/chaos

[M][M]" = [L][L]", (3.31)

where [L] is the Cholesky decomposition of —A—[M][M]”, which yields:

—aos NI = [AJIL][L)T[A)" = [B][B]", (3.32)

[B] = [A][L]. (3.33)

The matrix:
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Figure 3.1: Graphs of the errors errg®ho  err2r®™e and err9f®° with respect to the

truncation parameters Ny and p.
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[¥] = [B)~'[¥], (3.34)

is then introduced, such that by construction:

m[‘l’][‘l’]T = [In]. (3.35)
Using the notations of Section [ let [y*] be a (N, x N) real matrix such that the
random vector U is defined as:

U = [y %(&.p). (3.36)

Hence, v°"%°s independent realizations of U can be directly deduced from the
matrix [¥] and gathered in the matrix [U] = [y*][¥]. Defining [z] such that:

2] = [y"][B], (3.37)

U] = [y"11w] = (2181 7) (1B119]) = [1[9]. (3.38)

If [z] is in Oy, [2][z]T = [ﬁn(ye"p)], which implies that:

[Bur1%)] = b D01 = (3] (atem BT ) 17 = [l = Ry (00,
[Ry] = E (UUT) = limyenaos oo [Rr (v22%%)] = [R,) (v°P)).

(3.39)

From Eqgs. (33) and 38), it can thus be deduced that imposing [z] to be an element of

O, guarantees that, for any vh2°s > N we have err? (v°haos) = epy3 (peP, ychaos) = (,

Hence, whereas the optimization problem defined by Eq. (224)) is perturbed by
autocorrelation errors, the new optimization problem:

ub| = ] B, (3.40)
2y | = argmai.. e € ([1°7], [+, [91)

is no more affected, which allows us to consider high values of the truncation parame-
ters N, and p. Equation (3:338)) underlines that the two former optimization problems
are equivalent, as the independent realizations of U have just been rewritten. Only
the research set, for the PCE coefficient matrix, has been modified, which allows the
numerical bias due to the finite dimension of [¥] to be reduced.

Finally, if [y] is the coefficients matrix of the truncated PCE, n"*°%(N), of random
vector 7, such that n°h2°s(N) = [y]® (&, p), a good estimation of [y] in high dimension
can be computed by solving the optimization problem defined by Eq. (3:40).
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_ 3.4. Remarks on the new optimization problem. It has to be noticed that
[¥] is unique, and keeps exactly the same structure than [¥]. Indeed, let [L*Y™] =
[A]~! be the Cholesky decomposition matrix of the autocorrelation matrix [Rg], which
is defined by Eq. (B.I4). Hence, from Eq. GII), [¥] = [L*¥™]~1[M], which has to
be compared to [¥] = [B]~![¥] = ([L]HA]7Y) ([A][M]) = [L]~*[M], where [L] and
[L?*Y™] are two lower triangular matrices. Whereas [L?*Y™] implies the asymptotical
orthonormality, [L] guarantees the numerical orthonormality. Moreover, from Eq.
340), the optimal PCE coefficients matrix [y] is approximated as a product of two
matrices:

[y] ~ [zg ] (B]1. (3.41)

For a fixed value of N, [B] is strongly dependent on v*"*°% and [¥]. From Eq. (T12),
it also verifies the asymptotical property:

lim [B] = [In], (3.42)
pchaos s o0
which implies that [z%7 | converges towards [y] if sufficiently high values of v°ha°s is

considered. Hence, the less dependent on [¥] the matrix [z%7 | is, the more accurate
the choice of v°P2°% is, and the better the PCE identification is.

If another (N X VChaOS’*) real matrix [U*] of independent realizations is con-
sidered, the matrices [B*] and [U*] = [B*]~![¥*] can be computed according to
Egs. (333) and (334). As it has previously been seen, [U*], [¥] and [¥*] keep
the same structure. The accuracy of [zg[n ] can thus be estimated by comparing
C([v*P, [2& ), [P][B]~") and C([v™*P], [, ], [¥*][B*]~1).

In particular, v°"2°%* and 1r°"2° can be different. Finally, once the coefficient
matrix [z%7 ] has been computed, the higher v°"2°%* is  the more accurate and general
the validation is.

4. Application. The method proposed in the two former sections is applied to
two examples that both deal with the identification of the truncated PCE coefficients
of a random vector 1 characterized by a multidimensional analytical distributions.
The first one is built with IV, = 3, the second one with N,, = 50. According to the
notations of the former sections, the set of the **P independent realizations used in the
PCE identification are gathered in [°?]. Another set of v™f independent realizations
(vref > v™P) is used as a reference to validate the different modelings. The idea of
this section is thus to show to what extent the whole method described in the former
sections allows computing convergence analysis and relevant PCE identification of
the random vector m from a limited number of information, [n®*P]. Moreover, a
distinction has to be made between the PDF modeling, achieved thanks to a PCE,
and its estimation from PCE samples, computed thanks to non parametrical methods.
In this context, let ¥°P2° be the number of independent realizations used to carry out
the PCE identification, and v°*2°%* the number of independent realizations of the
identified PCE random vector, which will be used to draw graphical representations.
For the two applications, the Gaussian measure is chosen for the PCE of 5, and
VP =1000.
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It is reminded that, in this work, the term high dimension refers to the fact that
the dimension N, of unknown random vector 7 is high.

4.1. Application in low dimension. The objective of this section is to apply
the whole PCE method to a IV,, = 3-dimension case. First, the statistical properties
of the unknown random vector 77 are presented. Secondly, a convergence analysis
is carried out in order to calculate the optimal truncation parameters N, and p of
the PCE, nhas(N), of . Then, the PCE coefficients are identified from the 1°*P
independent realizations, [®*P], of n. At last, the relevance of the PCE modeling is
analysed.

4.1.1. Generation of the random vector to identify. Let [X] be a (3 x 6)
real-valued random matrix whose coefficients are uniformly and independently chosen
between -1 and 1, such that 7 is defined according to the notations of Section [ as:

n = [X]€ (6°%,2), (4.1)

where £€7P = (7P, £5™P) is a normalized Gaussian random vector which components
are independent. The components of 7 are however strongly dependent, and the PCE
truncation parameters to be found back by the convergence analysis are p®*P = 2 and
New — 2,

Let {€P (01), -+ ,&€7P (Byexp)} and {€7P (01),- -+, €P (Ot )} be vo*P and vt
independent realizations of the random vector £, such that the matrices of inde-
pendent realizations [n®*P] and [nref} are given by:

[n™P] = [X][E (€77 (01),2) -+ E(£7F (Buexr),2)], (4.2)

(7] = [X][E (€7 (61),2) -+ E (€7 (B,0e1),2)]. (4.3)

Let {f)f]eka, 1 < k < 3} be the Kernel smoothing estimations of the marginal PDFs of
each component of 7, which are computed thanks to the v**f independent realizations
of n gathered in [™f]. In this example, v**! = 2 x 10% > v*® = 1000. It is reminded
that the PCE identification of 7 is only achieved thanks to the matrix of independent
realizations [p°*P], which is considered as the only available information. The PDFs

{ﬁfff’k, 1<k < 3} are moreover supposed to build the marginal PDFs of the reference
1.
4.1.2. Identification of the PCE truncation parameters. Using the nota-

tions of Section[Z4] the boundary intervals BI;, BI; and BI3 for which the convergence
analysis is achieved, are chosen such that:

1/eXP

1
V1<k<3, Bly = {xeR|ﬁf]ef’k(x)2 } (4.4)

Figure E1] displays the reference marginal PDFs of 77, as well as the marginal
PDFs {po*, 1 < k < 3} estimated from the v independent realizations only. The
1/v°*P tolerance is also plotted so that the boundary intervals can therefore be deduced
from these graphs.
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Figure 4.1: Graphs of the marginal PDFs of n.
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Figure 4.2: Convergence analysis of the PCE of .

Figure 4.2l shows the values of err (Ny, p), for nine pairs (Ng, p) in Q(3). On these
graphs, the gradient break of N — err (N) is observed at N = 6, which allows us to
find back the initial solution p®® = 2 and Ng* = 2. For this small dimension case,
the optimal truncation parameters p and N, given by the convergence analysis are
equal to the parameters of the analytical reference PCE.

4.1.3. PCE Identification. The former convergence analysis leads us to the
following PCE of n:

6
nanT6) =Y Y (6, 6) = WP (6,&), (4.5)

j=1

where & and & are two independent normalized Gaussian random variables. We
are now going to compare [y°%%] and [y*¢V], where [y/***] stems from the classical
problem defined by Eq. (2:24), whereas [y"°"] comes from the maximization of the
new formulation defined by Eq. (3.40). In this application, "% = 1000, and the two
PCE identifications have been computed thanks to the same numerical cost M = 104,
which means that M = 10* independent random trials of [y°#%] and [y"°"] have been
used to maximize the log-likelihood. The value of M has been chosen sufficiently
high for the PCE error function err(Ny,p) to be independent of M. Hence, for
a new matrix of independent realizations, [¥*], of size (6 x v*"°%*) independent
realizations [n°25(6)] and [n"®%(6)] of n"a°5(6) are deduced, with respect to the two
optimization options:

[11°°(6)] = [y****]["], (4.6)

("™ (6)] = [y"™][7]. (4.7)

Let
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[R52] = )], (18)
(R3] = o ], (19)
(R = e O] (6)) (4.10)
(RE) = — o I (O]l O] (4.11)

be four estimations of the autocorrelation matrix [R,] of . It is supposed that [R;Ef]
is the best approximation of [R,] and will be considered as the reference. According to
the Eqs. (.4), (3.3) and [B.6), the autocorrelation errors errlclass epp2.class - opp3.class
and errt eV epp2eW epp3neW are then computed in each case. In figure B3] it can
thus be verified that:

v Vchaos,* 2 6, err2,new(ychaos,*) _ eTTS,new(Vchaos,*’ Vexp) _ 07 (412)
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Figure 4.4: Comparison of the marginal PDFs of 7 and 1°"%°3(6).

lim err
Vchaos ¥ 400

2,class(l/chaos,*) = err

3,class(ychaos,*’ VeXP) = 0. (413)

In particular, for the value pchaos* = pchaos — 1000, it can be noticed that the
values of ery2:c13ss (pchaos,xy an eppd:class (jchaosx 1 exp) are significant when compared
to errl:class (peP) " which introduces an additive bias in the identification.
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Figure .4 shows a comparison between the marginal PDFs pef-F, poxpk | pelass.k
and ﬁﬁ;eka, for 1 <k < 3. These PDFs are estimated using Kernel smoothing on the
independent realizations gathered in the matrices [*!], [n°*P], [°12%(6)] and [V (6)],
respectively, with v°haos* — 106 > pchaos — 1000. First, from only v** = 1000
independent realizations of n, it can be seen that the marginal PDFs are well described
by the PCE random vectors n"¢%(6) and n°'%*3(6). In particular, the PDFs tails are
very well characterized. The PCE method is therefore an extremely efficient tool to
build arbitrary multidimensional PDFs. Secondly, it can be noticed that, for a same
computational cost M, the new PCE identification formulation leads us to better
results than the classical one. Finally, to still improve these PCE, more trials in O,
would be necessary to better characterize [y°/2%] and [y"*¥]. In order to obtain a PCE
that corresponds still more precisely to the reference random vector 7, an increase of
v**Pthat is to say, more information about 7, would have been required.

4.1.4. Relevance of the PCE compared to Kernel Mixture and PASM.
From adequacy tests, likelihood estimations and graphical representations, the idea
of this section is to show the assets of the new PCE formulation when dealing with
the identification of multidimensional distributions from a limited knowledge on the
random vector of interest i compared to Kernel Mixture (KM) and Prior Algebraic
Stochastic Modeling (PASM). In this prospect, two PDFs p,,(x) and ﬁf,ASM(a:, w) are
built using a KM approach and a PASM method. The input data of these modelings
are still the matrix of independent realizations [p*?] = [p® .. p®"]. Once
the KM, the PASM and the two PCE projection matrices, [y°%] and [y"¢V], are
constructed, @ independent realizations are computed from the four distributions,
from which comparisons to the reference solution are achieved. For this application,
Q = 10°.

Construction of independent realisations.

¢ Kernel Mixture.

Considering an independent Gaussian multidimensional Kernel, a non paramet-
rical PDF p, () is postulated as a sum of »**P Gaussian PDFs {p;, 1 <1i < v**P} to
model p,(x):

Pn(x) = Z ijppi(m); (4.14)

=1
N, P\ 2
1 1z —mp
(2) = (T ) 11
e =11 mk“‘p< 7 (2 )) (1.15)
4 1/(Ny+4)
h=6(—" 11
o ((Z—FN,])VQXP) ) ( 6)

where & — p; (x) is the N,-dimension multivariate Gaussian PDF, with mean value
hy 0 - 0

ha

7@ and covariance matrix , h is the multidimensionnal op-
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timal Silverman bandwidth, and o is the empirical estimation of the standard devi-
ation of each component 7, of 1. Let n*°" be the Kernel Mixture characterized by
the PDF  — p,(x). The @ independent realizations {nke’”’l, e ,nke“Q} of p*°r are
then computed and gathered in the matrix [n*°*].

e Prior Algebraic Stochastic Modeling.

From the v**P independent realizations of 1, the N,, marginal cumulative distri-
butions F;, of n, with 1 <k < N, are estimated using a non parametric statistical
method. In addition, a Gaussian copula CZ2° (see [6] for more details about the
copula) based on the rank correlation is chosen (this type of copula has been chosen

as it is the most commonly used in the PASM approaches):

Cim (@1 san,) = G (07 (@), 07 (). (4.17)

w“ unm 1 1
qﬁﬁl u :/ / exp <—uT Rrank u> duy -+ -dun,),
(%) oo Jooo (2m)N0/2\/det ([RK]) v ' N
(4.18)

(v) = \/LQ_F /_UOo exp (—”;) o, (4.19)

ran 3 ™
[RT");; = 2sin (Ep;‘gj) ; (4.20)

where pfj is the Spearman correlation coefficient between 7; and n;. Let n°°P be the
random vector characterized by the copula C% ' and the marginal cumulative dis-

tributions {Fy,, 1 <k < N,}. @ independent realizations of 7P are thus gathered
in the matrix [°P].

e Polynomial chaos expansion.
Finally, using the matrices [y°/2%] and [y"°"] of Section I3}, and a new (6 x Q)
real matrix [W¥] of realizations, @ independent realizations of %(6) and "% (6)
are gathered in the matrix [2%] = [y°1ass][U Q] and [p"eV] = [yPeV][¥?].

Relevance of the PCE modeling when identifying multidimensional
PDFs from a limited amount of independent realizations. Using the results
of Parametrical Statistics, this section assesses the relevance of the four methods to
construct multidimensional PDFs. Three kinds of analysis are achieved: adequacy
tests, 2D graphical representations, and multidimensional likelihood computations.

e Adequacy tests.
From the matrices of independent realizations [n*¢], [°°P], [72%%] and [p™¢¥], the

estimations {ﬁlfer, 1<k< Nn}, {ﬁ,ﬁc’p, 1<k< Nn}, {ﬁ,glass, 1<k< Nn} and
{ﬁ,?ew, 1<k< Nn} of the cumulative distribution functions (CDF) of each compo-

nents of nker, R°°P, N353 (6) and N (6) are respectively assessed. Let ﬁ(l), e ,ﬁ(N")
be the 1 x v**P-dimension linear forms corresponding to the lines of [p°*P]. For
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1 <k <N, ﬁ(k) gathers therefore the v°*P independent realizations of the com-
ponent 7, of 1, which have been used to compute the statistical modelings. For
1 <k < N,, the Kolmogorov-Smirnov adequacy tests are then performed. For each
component 7 of 7, the null distribution of the Kolmogorov-Smirnov statistics is com-
puted under the null hypothesis that the v**P independent realizations of ﬁ(k) are
drawn from the distribution of the chosen stochastic model. Table 1] gives the (-
value for each stochastic model, which is defined as the probability of obtaining a
test statistic at least as extreme as the one that was actually observed, assuming that
the null hypothesis is true. Without surprise, this table allows us to verify that the
modeling based on the Gaussian copula and the empirical PDFs of each components
of m gives the best results. Moreover, with an error level of 5%, only the tests for
the copula model and the PCE identification based on the new formulation are posi-
tive. The classical PCE and the Kernel mixture modelings are indeed less relevant to
characterize the marginal PDFs of 7.

CDF Fflass Flnew F11<er F1C0p
(B-value 0.3779 0.6331 0.2142 0.9996
CDF Figass Ry 5 5P
(B-value 0.0000 0.0967 0.0000 0.4573
CDF Figlass Fyev Fker F5P
[B-value 0.0000 0.8692 0.0411 0.9849

Table 4.1: Computation of the ([-values corresponding to the different stochastic
models.

e Two-dimensions graphical analysis.

From [n™f], [n*°"], [°°P], [n°®%] and [n"°V], the estimations x > %Ef(m), T —
ﬁger(m), x — ppP(z), T — ﬁ%lass(m) and x — pp°"(z) of the multidimensional PDF
of m, pker, p°°P  n°13s3(6), n"eV(6) are respectively computed using the non paramet-
ric statistical estimation defined by Eq. (ZI8). Projections of these functions are
presented in Figures 5] and 7 In each figure, the surface plot characterizes
the reference PDF (based on the v™f = 2 x 10° independent realizations), and the
contour plot refers to isovalues of the projected PDF of interest. It can therefore be
seen that the new formulation of the PCE gives very good results in identifying mul-
tidimensional PDFs. In addition, in this example, the Kernel mixture model is more
adapted than the copula based model to characterize the multidimensional PDFs.

e Likelihood estimations.

From Eq. (ZI0), the multidimensional log-likelihood functions L,xer ([n®P]),
Lyeor ([N™P]), Lyetass ([n°P]) and Lynew ([n**P]) are estimated from the realizations
matrices [n°*P], [n¥*], [p°°P], [n°'#%] and [n™°V], in order to evaluate the multidimen-
sional relevance of the different stochastic models. In the same manner, [nref]looo is de-
fined as the 1000 first columns of [**f], and the log-likelihood functions L, e ([171°*]1000),
Laeor ([1°°]1000), L, class (7**f1000) and Loynew ([77]1000) are computed. These val-
ues are gathered in Table It can thus be verified that the new formulation of the
PCE identification gives the best results when considering the maximization of the
log-likelihood.
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(c) (z1,22) = DY

(1‘171‘27 E (773))

T1

(b) (z1,22) = Py P (21,22, E (13))

(d) (w1,22) =

P (w1, 2, E (13))

Figure 4.5: Comparison of 2D contours plots in the plane [z3 = E(n3)].

27

-3

~x10

Lyer ([1°*P])

Laeor ([n7P])

Ly etass ([°%P])

n

Lnew ([n°P])

—8.0712.103 —8.7530.10°3 —8.1844.103 —7.8624.103
Loeer (1% T1000) | Laeor (7 M1000) | Logerass ([1%T1000) | Lagrew (177 1000)
—8.1933.10° —8.5535.10° —8.1797.10° —7.8457.10°

Table 4.2: Computation of the multidimensional log-likelihood corresponding to the
different stochastic models.

As a conclusion for this example, in low dimension, it can be seen that the new
formulation of the PCE identification is very relevant when trying to identify multidi-
mensional distributions from a limited number of measurements. Indeed, it allows us
to build multidimensional distributions that are still relevant for experimental data
that have not been used in the identification process.
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Figure 4.6: Comparison of 2D contours plots in the plane [z = E(n2)].

4.2. Application in high dimension. The idea of this second application is to
underline the ability of the new PCE formulation to carry out convergence analysis in
high dimension. Indeed, as it has been shown in Section [3 for a given value of v°hacs,
when the size IV of the polynomial basis increases, and more specially when the maxi-
mum degree p of the polynomial basis becomes high, the difference —-—[¥][¥]" —[Iy]
introduces a significant numerical bias which perturbs the classical PCE identification.
In opposite, the new PCE formulation, which avoids computational autocorrelation
errors, allows the numerical algorithms to be much more stable and to give more
relevant results.

4.2.1. Generation of a high dimension random vector. Using the same
notations than in Sections 2] and 1.1} let [XHP] be a (N,, x N) real matrix whose
entries are randomly generated, such that random vector 7 is given by:

n = [XTP]W (£57, pP) (4.21)
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(c) (ma,x3) = PY(E (m) , w2, 3) (d) (w2,23) = Py (E (m),z2,73)

Figure 4.7: Comparison of 2D contours plots in the plane [z; = E(n)].

£exp = ( ixpv gxpv Tty ?\Zp) 5 (422)

where {{F, 1 <k < N,} is a set of N, independent normalized Gaussian random
variables. As in Section 1] we define a (NN,) x v**P) real matrix [n°*P], which gathers
v**P independent realizations of n:

[1°%] = [XTP][wee], (4.23)

(W] = [® (£7P(601),p™P) -+ W (E7F(Orex), p™)]. (4.24)

The components of the random vector 7 are again strongly dependent. As a numerical
illustration, it is supposed that v* = 1000, p®® = 9, N*? = 3, N = (9+3)!/(9! 3!) =
220, N, = 50. A high value of p**® is deliberately chosen, in order to emphasize the
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difficulties of the classical PCE formulation to carry out convergence analysis in high
dimension. Nevertheless, this high value of p implies an ill-conditionning of [¥**P],
such that 1 can have very high values.

4.2.2. Identification of the PCE truncation parameters. According to Eq.
(23), the truncated PCE, nha°(N), of n is given by:

NS (N) = [y ¥ (&, p). (4.25)

Eq. (Z29) implies that the number N, of elements of [y] has to be higher than
N, (N, +1). When N, is large, this leads us to the identification of thousands of
coefficients. However, as it has been said in Section 2:4] the higher N, is, the less
precise is the PCE identification, for a given computational cost M. In addition,
Section Bl has emphasized the ill-conditionning of matrix [¥] for high values of p. This
motivates the definition of a new set é(pmaX,N max) - guch that the optimal values
p°P* and NP* are given by:

é(pmax’Nmax) = {(paNg)a Ng § N777 P § pmax’ (Ng +p)'/ (Ng' p') S NmaX}’
(4.26)

(p°P, N;pt) = arg min err(Ng, p), (4.27)
(p,Ng)€Q(pmax, Nmax)

where err(Ng, p) is computed from M independent matrices in O,,. For a fixed value
vehaos — 1000, the detrimental influence of the autocorrelation errors err? and err3
of Eqs. (33) and (36) can then be noticed in Figure .8 when high values of N (and
more specially high values of p) are considered. The error functions errcass (Ng,p)
and err™®¥(Ng, p) correspond, respectively, to the classical formulation and the new
formulation of the PCE identification. It can be seen that for p > &, the ratio
err®2s5 (N, p)/err™®¥ (N, p) becomes greater than five, whereas the two methodolo-
gies are globally similar for low values of p. Hence, the accuracy of the classical method
seems to be limited to low values of p and is therefore less relevant for convergence
analysis which handle high polynomial orders. At last, the five lowest values of the
numerical assessments of err™®™ (N, p) are gathered in Table 43l It can be seen that
the new formulation allows finding back the couple (pP, NJ*P) as the minimum of
the error function. Nevertheless, keeping in mind that the lowest N is, the easiest the
identification is, this result also shows that using the couple (p, Ng) = (11,2) could
be interesting.

couples (p, Ny) | (11,2) | (9,3) (7,4) (6,5) (2,27)
values of N 78 220 330 462 406
err™¥(Ng,p) | 0.06104 | 0.06005 | 0.06228 | 0.06301 | 0.06521

Table 4.3: Lowest values of err™®¥ (N, p) with respect to (p, Nyg).
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Figure 4.8: Comparison of the results for the convergence analysis of the two
PCE identification formulations.

4.3. PCE Identification. From the v**P independent realizations of 1, a PCE
identification using the new formulation can be computed for the truncation param-
eters p = 9 and N, = 3, which correspond to N = 220. The results of the numerical
identification with a computational cost of M = 1000 are given in Figure The
value of M has been chosen for the PCE error function err(Ng,p) to be independent
of M. In this figure, the marginal PDFs ﬁﬁﬁf‘os and ﬁ%’gos of nj$%(220) and 755" (220)
are compared to the experimental estimations ﬁf}ﬁ’ and ﬁf,’;g of the components 741
and 739, respectively. The values n7§%¥(220) and 735" (220) correspond to the mini-
mum and to the maximum values of the unidimensional error function erry(3,11), for
1 < k <50, which is defined by Eq. (Z25). In order to evaluate the distance between
these estimations and the true marginal PDFs of 7, the marginal PDFs estimated by
the non parametric statistical Kernel method, with v**f = 2 x 10° independent real-
izations of 141 and 739, are added to the figures. These PDFs are considered as the
reference. These figures therefore emphasize that the new PCE identification method
allows building a stochastic model of the distribution of 7 that suits the experimental
marginal PDFs.

5. Conclusion. In the last decade, the increasing computational power has en-
couraged the development of computational models with increasing degrees of free-
dom. Hence, developing computational methods which can be applied to very high
dimension cases is currently of great interest.

In this concern, this paper emphasized the efficiency of the PCE when building
multidimensional distributions. After having quantified the detrimental influence of
a numerical bias in the usual PCE identification methods in high dimension, this
paper proposed a new formulation to allow performing relevant convergence analysis
and PCE identification with respect to an arbitrary measure for the high dimension
case. Finally, the method proposed allows making the PCE range reachable for many
engineering applications with many degrees of freedom.
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