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[1] A large‐scale crop model is forced by a range of
climate datasets over West Africa to test the sensitivity of
simulated yields to errors in input rainfall. The model
skill, defined as the correlation between observed and
simulated yield anomalies over 1968–1990 at the country
scale, is used for assessment. We show that there are
two essential rainfall features for the model to skillfully
simulate interannual yield variability at the country scale:
cumulative annual variability and frequency. At such a
scale, providing additional information on intraseasonal
variability, such as the chronology of rain events, does not
improve the model skill. We suggest that such information
is relevant at smaller spatial scales but is not spatially
consistent enough to impact large‐scale yield variability.
Citation: Berg, A., B. Sultan, and N. de Noblet‐Ducoudré
(2010), What are the dominant features of rainfall leading to real-
istic large‐scale crop yield simulations in West Africa?, Geophys.
Res. Lett., 37, L05405, doi:10.1029/2009GL041923.

1. Introduction

[2] Agriculture is considered as the most weather‐dependant
of human activities [Oram, 1989]. The interannual variability
of crop yields often reflects the variability of weather con-
ditions [Lobell and Field, 2007]. In the tropics in particular,
fluctuations in climate can lead to severe socio‐economic
impacts in developing countries [Challinor et al., 2003].
[3] Improved climate prediction offers interesting poten-

tial benefits to agriculture: numerous studies have tried to
link seasonal prediction outputs from global climate models
(GCMs) to crop models, thus translating climate forecasts
into seasonal crop predictions (for a review, see Hansen et
al. [2006]). On longer time scales, combining GCMs and
crop models also provides a tool to assess the impacts of
future climate change on crop production [e.g., Jones and
Thornton, 2003].
[4] However, such impact studies ultimately rely on the

accuracy of climate input data. GCMs errors inevitably prop-
agate through the combined climate/crop modelling system.
In particular, GCMs show systematic biases in rainfall: pre-
cipitation patterns are often poorly represented, and rainfall
temporal characteristics (frequency, intensity) are biased
[Randall et al., 2007].
[5] This study aims at assessing the impact of such errors

on the performance of yield prediction. We take West Africa
as a case study, which well illustrates the dependence of
crop production on climate variability (rainfall, in this case).

By progressively correcting model rainfall towards observa-
tions, we build successive climate datasets, which are used
to drive a large‐scale crop model. We analyse how the
model skill responds to the quality of the rainfall forcing,
and determine what features of rainfall are essential to the
accuracy of yield prediction. The model skill is defined as
the model ability to simulate the observed time series of
yield anomalies at large (i.e., national) scale: only the issue
of interannual variability is considered here.

2. Model, Data, and Experiment

2.1. ORCHIDEE‐mil

[6] ORCHIDEE is the dynamic global vegetation model
developed at IPSL (Institut Pierre‐Simon Laplace). When
coupled to a climate model, it simulates water, carbon and
energy exchanges between the land surface and the atmo-
sphere, explicitly computing vegetation growth [Krinner et
al., 2005]. It can also be forced by climate data, to assess
the impact of climate on ecosystems.
[7] To account for global vegetation, ORCHIDEE in its

standard version uses 10 natural Plant Functional Types
(PFT), and two agricultural PFTs. While the standard ver-
sion essentially approximates croplands by grasslands, a
new version has recently been developed for tropical C4
crops (ORCHIDEE‐mil) [Berg et al., 2010]. It includes
some parameterizations and processes taken from the crop
model SARRAH which is routinely used by agronomists
over West Africa to simulate tropical cereals like millet and
sorghum [Dingkuhn et al., 2003; Sultan et al., 2005].

2.2. Climate Datasets

2.2.1. Rainfall Datasets
[8] Since reanalysis products constitute the most accurate

description of weather at the resolution of the GCM, using
them as input to a crop model somehow provides an upper
limit on the accuracy of the combined (climate and crop)
modelling system [Challinor et al., 2005]. We thus use pre-
cipitation from the NCEP/NCAR reanalysis [Kistler et al.,
2001] as an example of good model output; other products
(e.g., ERA‐40) could also have been used for such a purpose.
[9] As for rain observations, we use two datasets to span

the uncertainty: CRU (Climate Research Unit) [New et
al., 1999, 2000] and IRD (Institut de Recherche pour le
Développement) data [Sultan and Janicot, 2000; Janicot
and Sultan, 2001] These two datasets are rain gauges
measurements interpolated on 1° � 1° grids, but CRU data
are only monthly whereas IRD data are daily.
2.2.2. Construction of the Climate Forcing Datasets
[10] We design a range of 1° � 1° forcing datasets for

West Africa, in which rainfall is progressively corrected,
from model rainfall to observations. Successive corrections
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are applied to NCEP/NCAR rainfall in terms of annual cu-
mulative rainfall, monthly cumulative rainfall, rain fre-
quency. The following climate forcing datasets are built:
[11] 1. NCEP: rainfall is raw NCEP/NCAR rainfall, in-

terpolated on 1° � 1° grid cells [from Ngo‐Duc et al., 2005].
[12] 2. NCEP_AR: rainfall is NCEP/NCAR rainfall cor-

rected by annual cumulative rainfall, either from IRD or
from CRU. Each year, for each pixel, each rain event in
NCEP/NCAR is scaled by the ratio (for that year) of annual
rainfall in IRD (or CRU) to annual rainfall in NCEP/NCAR.
[13] 3. NCEP_MR: rainfall is NCEP/NCAR rainfall cor-

rected by monthly cumulative rainfall, either from IRD or
from CRU. Each year, each month, for each pixel, each rain
event in NCEP/NCAR is corrected by the ratio of monthly
rainfall in IRD (or CRU) tomonthly rainfall in NCEP/NCAR.
[14] 4. FREQ: IRD daily events are used instead of NCEP/

NCAR events; however, each month these events are ran-
domly permuted, in order to lose the real timing of rain
events but keep the observed frequency of rainfall. Rainfall is
either monthly scaled to IRD monthly amounts or CRU
amounts. Note that since total rainfall remains unchanged,
the change in rain frequency also means a change in the daily
amounts of rainfall.
[15] 5. OBS: IRD daily events are used, either as such, or

scaled to CRU monthly amounts. OBS thus has the real
frequency and timing of rainfall.
[16] These datasets differ only by their representation of

rainfall: in all datasets, variables other than rainfall are
NCEP/NCAR variables corrected by CRU data [Ngo‐Duc et

al., 2005]. Limited by the spatial extension and time period
of the IRD data, all these datasets cover a domain of 17°W–
20°E, 9°N–20°N, over 1968–1990. The successive correc-
tions applied to NCEP/NCAR rainfall are cumulative: for
instance, NCEP_MR has the right monthly cycle and the
right annual rainfall.

2.3. Simulations

[17] ORCHIDEE is run off‐line over the selected domain,
forced with each dataset (over 1968–1990), with a 30‐year
spin‐up on the first year to initialize soil water content. Since
we are interested in crop productivity alone, the prescribed
vegetation map only includes croplands. Pixels are averaged
over each country (below 16°N, the Sahara border) to derive
a national simulated yield. Since some data is missing in
the IRD rainfall dataset (pixels or years), a common mask is
a posteriori applied to all simulations to allow comparing
the different results. Thus, only the following countries
are considered: Mali, Burkina‐Faso, Senegal and Niger.
National observed millet yields are taken from the FAO
database (Food and Agriculture Organization of the United
Nations). Since in this study we are only interested in inter-
annual variability, all time series (simulated and observed
yields, rainfall) are a posteriori linearly detrended.

3. Results

3.1. Main Differences in the Rainfall Datasets

[18] Figure 1a shows that IRD and CRU rainfall datasets
are consistent in terms of interannual variability of annual

Figure 1. (a) Annual rainfall over 1968–1990, averaged over Mali, Niger Burkina‐Faso and Senegal, from IRD, CRU and
NCEP datasets. Figures give the correlation between CRU, or NCEP, and IRD. (b) Probabilistic distribution function for
daily rainfall amounts from IRD (black) and NCEP (red) datasets, over the whole simulation domain. (c) Difference, in
days, between average sowing dates over 1968–1990 in NCEP and IRD simulations (NCEP‐IRD); white pixels are IRD
missing data.
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rainfall. However they show large differences in rainfall
amounts. NCEP/NCAR, on the other hand, does not accu-
rately capture the observed interannual variability of annual
rainfall, as illustrated by the low correlation with observa-
tions (either IRD or CRU). In addition, the probabilistic dis-
tribution function of daily rainfall in NCEP/NCAR is biased,
with too many medium rain events (between 5 and 15mm)
and not enough larger events (above 15mm) (Figure 1b). This
illustrates the well‐known “drizzle rain” bias of climate
models. Finally, although NCEP/NCAR correctly represents
the atmospheric dynamics of the monsoon (pre‐onset, onset
[Sultan and Janicot, 2003]), first rain events tend to occur too
late each year over most of the simulation domain, as shown
by the difference in average sowing dates computed by
ORCHIDEE‐mil between the NCEP and IRD simulations
(Figure 1c).

3.2. Model Performance in Predicting Interannual
Variability

[19] Figure 2 shows the model score, defined as the cor-
relation over 1968–1990 between observed and simulated
annual national yield, for all countries and for each climate
forcing. The median score provides an aggregated measure
of the model skill over the simulation domain (while not
overweighting extreme values). It is nil in the NCEP sim-
ulation, but it increases as the rain forcing becomes more
realistic, up to 0.55 in the OBS simulation. Most of this
increase takes place in two steps: when the right inter-
annual variability of annual rainfall is included (from NCEP
to NCEP_AR), and when the right rain frequency is included
(fromNCEP_MR to FREQ). The median score only becomes
significant after this second step. Correcting the monthly cycle
or including the real timing of rain events does not sub-
stantially increase the median score. Beyond this increasing

trend, there is a large dispersion between countries (~0.5),
with Burkina‐Faso always showing the lowest score, and
Niger tending to show the highest one. There are no sys-
tematic differences between simulations with CRU or with
IRD annual rain amounts.

3.3. Effect of Cumulative Rainfall Variability

[20] Agriculture in Sudano‐Sahelian West Africa is mostly
water‐limited: observed national yields are strongly corre-
lated, on a year‐to‐year basis, with observed annual rainfall
(from CRU or from IRD) (Table 1). Cumulative rainfall is
the first‐order large‐scale “climate signal” [Challinor et al.,
2003] in yield data – correlations with other variables are
not significant (not shown). Since NCEP/NCAR rainfall is
poorly correlated with rainfall observations (section 3.1),
FAO yields are not significantly correlated with NCEP/
NCAR annual rainfall (Table 1).
[21] Simulated yields in ORCHIDEE are also mostly

water‐limited: in nearly all cases, simulated yields are sig-
nificantly correlated with the annual rainfall from the forc-
ing dataset (Figure 3a). As a consequence from these two

Figure 2. Model score (correlation between observed and simulated yields) across the different simulations, for different
countries. The dotted line is the 5% significance level (for a correlation over 23 years). The solid black line is the median
score. Colours refer to countries, symbols to the targeted annual amounts (IRD or CRU).

Table 1. Correlations Over 1968–1990 Between Observed FAO
Yields and Annual Rainfall Either From NCEP Reanalysis or From
Observationsa

NCEP Rainfall Observed Rainfall (IRD/CRU)

Mali 0.21 0.41/0.32
Niger 0.18 0.58/0.61
Burkina‐Faso 0.15 0.47/0.46
Senegal 0.26 0.72/0.68

aAll time series are linearly detrended. Observations are from IRD or
CRU. Correlations significant at the 5% level are in bold.
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relationships (in observations and in the model), yields
simulated with NCEP/NCAR can not be expected to cor-
relate well with observations. Conversely, including the
proper cumulative rainfall variability, like in NCEP_AR,
increases the model score. In other words, one can not
simulate yield variability without the right cumulative
rainfall variability in input. Since NCEP/NCAR reanalysis
can already be considered as a good description of climate at
the GCM scale, one may question the ability of any climate
model to perform better than NCEP/NCAR in terms of yield
simulation.

3.4. Effect of Daily Rainfall Distribution

[22] Between NCEP_MR and FREQ, the model median
score increases a second time. This results from a more
realistic representation of daily rainfall temporal character-
istics (frequency, intensity), since both simulations have the
same monthly and annual cumulative rainfall.
[23] The correlation between simulated yields and input

annual rainfall increases between the two simulations
(Figure 3a). Since observed yields are also strongly corre-

lated to rainfall, this leads, all other things being equal, to a
higher correlation between simulated and observed yields.
[24] Simulated yield/rainfall correlations reflect the strength

of the water limitation on crop productivity in the model. This
is illustrated by the increase in correlations as mean annual
rainfall decreases (Figure 3b). For instance, correlations in the
NCEP simulation are generally higher because annual rainfall
is lower (Figure 1a). Therefore, the higher correlation in
FREQ than in NCEP_MR means that rainfall with a proper
frequency constrains crop productivity more strongly than
“drizzle” rainfall. This can also be seen in the decrease in
average simulated yield (not shown): 12% on average for
Mali and Senegal. Drizzle rainfall induces a positive bias in
simulated plant productivity: small and frequent rain events
reduce water stress, increasing the plant’s ability to assimilate
carbon. This is a well‐known bias in crop modelling: using
large‐scale climate model outputs as forcing tends to artifi-
cially increase crop production [e.g., Baron et al., 2005].
Here, we show that it also undermines the model skill, as it
weakens the correlation between input rainfall and simulated
yield.

Figure 3. (a) Correlations over 1968–1990 between simulated yields and annual rainfall across the various simulations.
Dotted line shows the 5% significance level. Black bars are simulations with IRD annual rainfall, grey bars the ones with
CRU annual rainfall. (b) Same correlations, all simulations and all countries, as a function of mean annual rainfall.
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3.5. Effect of Intraseasonal Distribution

[25] The median model score only very slightly increases
between NCEP_AR and NCEP_MR. Similarly, there is no
increase in model score between the FREQ and OBS simu-
lations. At the scale considered here, information on the
chronology of rainfall – whether monthly or daily ‐ does not
add to the model skill.
[26] Intraseasonal rainfall chronology has been shown to

have significant effects on millet yields in West Africa at
plot scale [e.g., Winkel et al., 1997]. Figure 4 shows that the
model responds at the pixel scale to the differences in
rainfall forcing between the FREQ and OBS simulations.
Although we do not have the small‐scale yield observations
to evaluate the simulations over each pixel, we believe
ORCHIDEE‐mil, as a process‐based model with a daily
temporal resolution, is able to capture some of the impacts
of rainfall chronology on yields at this scale. However, the
aggregation towards national scale substantially reduces the
differences between the two simulations (Figure 4): local
impacts compensate each other over the whole country.
Hence, correlations between simulated and observed yields
do not differ between FREQ and OBS. This suggests that
intraseasonal distribution variability does not show a spatial
consistency large enough to impact simulated yields aggre-
gated on a wider scale. Around each pixel, the area within
which intraseasonal rainfall events are significantly correlated
is no larger than a few pixels (1.27 on average). Although
such results are likely to be resolution‐dependant and require
further investigation, they suggest that intraseasonal distri-
bution variability is relevant at smaller spatial scales, but is

not spatially consistent enough to impact simulated large‐
scale yield variability. This may further suggest that simple
statistical models based on growing season averages can
favourably compare at large scale with process‐based models
[Lobell and Field, 2007, 2008]. Here indeed, observed rainfall/
yield correlations (tabl.1) are on average similar to the model
score when forced by observations (0.53 and 0.55, respec-
tively); however, a fairer comparison would imply an out‐of‐
sample assessment of the statistical relationship. In general, as
they do not resolve biophysical processes, statistical models
may not perform well when projected under changing cli-
mates and environments (for instance, increased atmospheric
CO2 levels) [Challinor et al., 2003].

4. Conclusion

[27] By forcing ORCHIDEE‐mil over West Africa with a
range of climate datasets, we assessed the sensitivity of the
model skill to different features of rainfall. The two essential
rainfall features for the model to skillfully simulate yield
variability at the country scale are cumulative annual rainfall
variability and rainfall temporal characteristics (frequency/
intensity). Although our results are limited to West Africa,
we feel confident that they can be extrapolated to similar
water‐limited crop regions. At such a scale, providing
additional information on the intrasesaonal rainfall distri-
bution does not seem to improve the model skill. Whether
this last result is resolution‐ or region‐dependant remains
to be investigated.
[28] Our results come from a single crop model: their

robustness could be further assessed by repeating our anal-

Figure 4. Frequency distribution of the relative differences in yields between FREQ and OBS simulations. Calculations
are done at the pixel scale (open bars) and at the country scale (hatched grey bars), all pixels (or countries) and all years
considered.
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ysis with other models; however, they already give indica-
tions on the characteristics of rainfall that climate models
should ideally be able to simulate if climate forecasts are to
be used to drive crop simulations. The increase in model
score in this study, as rainfall is progressively corrected,
suggests that improvements in GCM simulations are likely
to translate into more accurate yield predictions.
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