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CENTRAL LIMIT THEOREMS FOR LINEAR STATISTICS OF HEAVY

TAILED RANDOM MATRICES

FLORENT BENAYCH-GEORGES, ALICE GUIONNET, CAMILLE MALE

Abstract. We show central limit theorems (CLT) for the Stieltjes transforms or more
general analytic functions of symmetric matrices with independent heavy tailed entries,
including entries in the domain of attraction of α-stable laws and entries with moments
exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For
the second model, we also prove a central limit theorem of the moments of its empirical
eigenvalues distribution. The limit laws are Gaussian, but unlike to the case of standard
Wigner matrices, the normalization is the one of the classical CLT for independent random
variables.

1. Introduction and statement of results

Recall that a Wigner matrix is a symmetric random matrix A = (ai,j)i,j=1,...,N such that

1. the sub-diagonal entries of A are independent and identically distributed (i.i.d.),

2. the random variables
√
Nai,j are distributed according to a measure µ that does

not depend on N and have all moments finite.

This model was introduced in 1956 by Wigner [37] who proved the convergence of the
moments

(1) lim
N→∞

E

[ 1

N
Tr(Ap)

]

=

∫

xp

√
4− x2

2π
dx

when µ is centered with unit variance. Moments can be easily replaced by bounded con-
tinuous functions in the above convergence and this convergence holds almost surely. As-
sumption 2 can also be weakened to assume only that the second moment is finite. The
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fluctuations around this limit or around the expectation were first studied by Jonsson [28]
in the (slightly different) Wishart model, then by Sinai and Soshnikov [35] with p ≪ N1/2

possibly going to infinity with N . Since then, a long list of further-reaching results have
been obtained: the central limit theorem was extended to so-called matrix models where
the entries interact via a potential in [27], the set of test functions was extended and the
assumptions on the entries of the Wigner matrices weakened in [7, 6, 29], a more gen-
eral model of band matrices was considered in [2] (see also [29, 5] for general covariance
matrices), unitary matrices where considered in [19], and Chatterjee developed a general
approach to these questions in [17], under the condition that the law µ can be written as
a transport of the Gaussian law. Finally, but this is not really our concern here, the fluc-
tuations of the trace of words in several random matrices were studied in [16, 25, 32, 26].
It turns out that in these cases

Tr(Ap)− E
[
Tr(Ap)

]

converges towards a Gaussian variable whose covariance depends on the first four moments
of µ. Moments can also be replaced by regular enough functions and Assumption 2 can
be weakened to assume that the fourth moment only is finite. The latter condition is
however necessary as the covariance for the limiting Gaussian depends on it. The absence
of normalization by

√
N shows that the eigenvalues of A fluctuate very little, as precisely

studied by Erdös, Schlein, Yau, Tao, Vu and their co-authors, who analyzed their rigidity
in e.g. [21, 22, 36].

In this article, we extend these results for two variations of the Wigner matrix model
where Assumption 2 is removed or weakened: we consider cases where µ does not have any
second moment or cases where µ depends on N , with moments growing with N . In these
cases, Wigner’s convergence theorem (1) does not hold, even when moments are replaced
by smooth bounded functions. The analogue of the convergence (1) was studied when the

common law µ of the entries of
√
NA belongs to the domain of attraction of an α-stable

law (in which case the normalization in
√
N has to be adapted) or µ depends on N and

has moments blowing up with N . We describe these models below more precisely.

Definition 1.1 (Models of symmetric heavy tailed matrices with i.i.d. sub-diagonal en-
tries).
Let A = (ai,j)i,j=1,...,N be a random symmetric matrix with i.i.d. sub-diagonal entries.

1. We say that A is a Lévy matrix of parameter α in ]0, 2[ when A = X/aN where the
absolute values of the entries Xij of X are in the domain of attraction of α-stable
distribution, more precisely

(2) P (|Xij| ≥ u) =
L(u)

uα

with a slowly varying function L, and

aN = inf{u : P (|Xij| ≥ u) ≤ 1

N
}
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(aN = L̃(N)N1/α, with L̃(·) a slowly varying function).
2. We say that A is a Wigner matrix with exploding moments with parameter

(Ck)k≥1 whenever the entries of A are centered, for any k ≥ 1

(3) NE
[
(aij)

2k
]
−→
N→∞

Ck,

and
∑

k≥2Ck > 0.

Notice that if there exists a Ck > 0 for a k ≥ 2, then actually Ck > 0 for any k ≥ 2
[31, Appendix A]. A Lévy matrix whose entries are truncated in an appropriate way is a
Wigner matrix with exploding moments [10, 31, 38]. The adjacency matrix of an Erdös-
Rényi graph, i.e. a matrix A such that

(4) Aij = 1 with probability p/N and 0 with probability 1− p/N,

is also an exploding moments Wigner matrix. In this case the fluctuations were already
studied in [34].

The weak convergence of the empirical eigenvalues distribution of a Lévy matrix has
been established in [10] (see also [15, 8, 13]) where it was shown that for any bounded
continuous function f ,

lim
N→∞

1

N
Tr(f(A)) =

∫

f(x)dµα(x) a.s.

where µα is a heavy tailed probability measure which depends only on α. Moreover, µα

converges towards the semicircle law as α goes to 2.

The convergence in moments, in expectation and in probability, of the empirical eigen-
values distribution of a Wigner matrix with exploding moments has been established by
Zakharevich in [38]. If we assume that the sequence (Ck)k≥1 has at most exponential
growth, i.e. that for a constant C, for all k,

(5) Ck ≤ Ck,

then for any continuous bounded function f ,

lim
N→∞

1

N
Tr(f(A)) =

∫

f(x)dµC(x) a.s.

where µC is a probability measure which depends only on the sequence C := (Ck)k≥1.

We shall first establish the fluctuations of moments of a Wigner matrix with exploding
moments around their limit, namely prove the following theorem.

Theorem 1.2 (The CLT for moments of Wigner matrices with exploding moments).
Let A = (ai,j)i,j=1,...,N be a Wigner matrix with exploding moments with parameter (Ck)k≥1.
Then the process

(6)

(
1√
N

TrAK − E

[ 1√
N

TrAK
])

K≥1

converges in distribution to a centered Gaussian process.
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The expression of the covariance of the process is of combinatorial nature, given it later
in Section 2, Formula (30) and Theorem 2.2.

Note that the speed of the central limit theorem is N−1/2 as for independent square
integrable random variables, differently from what happens for standard Wigner’s matrices.
This phenomenon has already been observed for adjacency matrix of random graphs [9, 20]
and we will see below that it also holds for Lévy matrices. It suggests that the repulsive
interactions exhibited by the eigenvalues of most models of random matrices with not too
large entries (see the first paragraph of this introduction) are absent or much less strong
in the context of heavy tailed matrices.

For Lévy matrices, moments do not make sense and one should consider smooth bounded
test functions. We start as is common in random matrix theory, with the study of the
normalized trace of the resolvant of A, given for z ∈ C\R by

G(z) :=
1

z −A
.

By the previous results, for both Lévy and exploding moments Wigner matrices satisfying
(5), N−1 TrG(z) converges in probability to a deterministic limit as the parameter N
tends to infinity. We study the associated fluctuations. In fact, even in the case of Wigner
matrices with exploding moments, the CLT for moments does not imply a priori the CLT
for Stieltjes functions even though concentration inequalities hold on the right scale, see
[14], as one cannot approximate for the total variation norm smooth bounded functions
by polynomials unless on compact subset, a point which is not clear in this heavy tail
setting. However, with additional arguments based on martingale technology, we shall
prove the following result, valid for both Lévy matrices and Wigner matrices with exploding
moments.

Theorem 1.3 (CLT for Stieltjes transforms). Let A be an N by N Hermitian matrix with
i.i.d. real entries below the diagonal defined in Definition 1.1, satisfying (5) in the case of
Wigner matrices with exploding moments. Let

(7) φN(λ) := E
[
exp(−iλ|a11|2)

]
,

defined for any λ in C−, with C
− := {λ ∈ C ; ℑλ < 0}. Assume that there is a function Φ

on C− such that as N → ∞, we have the convergence

(8) N(φN (λ)− 1) −→ Φ(λ).

uniformly on compact subsets of C−.

Then, the process

(9)

(
1√
N

TrG(z)− 1√
N
E
[
TrG(z)

]
)

z∈C\R

converges in distribution (in the sense of finite marginals) to a centered complex Gaussian
process Z(z), z ∈ C\R, whose covariance is defined by the formulas:

(10) Z(z) = Z(z) and C(z, z′) := E[Z(z)Z(z′)] = L(z, z′)− L(z)L(z′),
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where the analytic functions L(·) and L(·, ·) are given respectively in Formulas (13) and
(14).

Note that the uniform convergence on compact subsets, in (8), implies that Φ is analytic
on C

− and continuous on C−.

As a consequence, we can extend the central limit theorem to a larger class of functions.

Corollary 1.4. Let A be the set of analytic functions f on the strip {z = a + ib, a ∈
R, |b| ≤ ǫ} for some ǫ > 0 so that there exists γ > 1 so that for a large enough

(11) |f(a± iǫ)| ≤ a−γ .

Then under the hypotheses of Theorem 1.3, the process

(12)
(

ZN(f) :=
1√
N

Tr f(A)− 1√
N
E
[
Tr f(A)

]
; f ∈ A

)

converges in law towards a centered Gaussian process (Z(f) ; f ∈ A) with covariance de-

fined by the facts that Z(f
c
) = Z(f), with f

c
the function of A defined by the formula

f
c
(z) := f(z), and

Cov(f, g) :=
1

(2iπ)2

∫

Γ

dz

∫

Γ

dz′f(z)g(z′)C(z, z′) ,

where Γ =]−∞+ iǫ,+∞+ iǫ[ ∪ ] +∞− iǫ,−∞− iǫ[ and C(z, z′) is the function of (10).
The result extends to the closure of A for the total variation norm.

Before giving the explicit form of the maps involved in the formula of the covariance, let
us first discuss the hypothesis made at Equation (8).

• For a Lévy matrix, if A = X/aN with |Xij| in the domain of attraction of an α-
stable law, X2

ij is in the domain of attraction of an α/2-stable law, and we have
(see [23]) that

Φ(λ) = −σ(iλ)α/2

for some constant σ ≥ 0.
• For a Wigner matrix with exploding moments, at least on the formal level, we have

φN(λ) = 1 +
1

N

∑

k≥1

(−iλ)k

k!
NE
[
|a11|2k

]
.

Therefore, if (3) holds together with the reinforcement of (5) into

sup
N≥1

NE
[
(aij)

2k
]
≤ Ck,

then (8) is satisfied. In particular, the case where A is the adjacency matrix of an
Erdös-Rényi graph defined at (4) satisfies the assumptions with

Φ(λ) = p(e−iλ − 1).
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The covariance in Theorem 1.3 is defined in terms of the functions L(·) and L(·, ·) that
have the following form: for any u in ]0, 1[ and any z, z′ in C \ R,

L(z) = −
∫ sgnℑ(z)∞

0

1

t
∂ze

itz+ρz(t)dt(13)

L(z, z′) =

∫ 1

0

Ψu(z, z′)du, where(14)

Ψu(z, z′) =

∫ sgnℑ(z)∞

0

∫ sgnℑ(z)∞

0

1

tt′
∂2
z,z′e

itz+it′z′+ρu
z,z′

(t,t′)
dtdt′(15)

and where the maps ρz(t) and ρuz,z′(t, t
′) are given as the non random limits

ρz(t) = lim
N→∞

1

N − 1

N−1∑

j=1

Φ
(
tGk(z)jj

)
, a.s(16)

ρuz,z′(t, t
′) = lim

N→∞
k/N→u

1

N − 1

N−1∑

j=1

Φ
(
tGk(z)jj + t′G′

k(z
′)jj
)
, a.s(17)

where Gk(z) = (z−Ak)
−1 for Ak the matrix obtained from A by deleting the k-th row and

column, and G′
k(z

′) = (z′−A′
k)

−1 for A′
k a copy of Ak where the entries (i, j) for i, j ≥ k are

independent of Ak and the other are those of Ak. Also, we assume tℑz ≥ 0 and t′ℑz′ ≥ 0
in (16) and (17).

The existence of the limits in (16) and (17) is a consequence of a generalized conver-
gence in moments, namely the convergence in distribution of traffics, of (Ak, A

′
k) stated in

[31], see Lemma 3.2. However, under stronger assumptions, independent proofs of these
convergences and more intrinsic characterizations of ρz and ρuz,z′ are provided in Theorems
1.5 and 1.6 below.

Let us mention that the map (t, z) 7→ ρz(t) characterizes the limiting eigenvalues dis-
tribution of A, since under the assumptions of Theorem 1.3, for all z ∈ C+, we have the
almost sure convergence

lim
N→∞

1

N
TrGN(z) = i

∫ ∞

0

eitz+ρz(t)dt.

This fact was known in the Lévy case [10] and is proved in Corollary 3.3 for Wigner matrices
with exploding moments.

Theorem 1.5 (A fixed point equation for ρz(t)). We assume the hypotheses of Theorem
1.3 and, moreover, we assume that we have the following decomposition for all z ∈ C−:

Φ(z) =

∫ ∞

0

g(y)ei
y
z dy(18)

where g(y) is a function such that for some constants K, γ > −1, κ ≥ 0, we have

|g(y)| ≤ K1y≤1y
γ +K1y≥1y

κ, ∀y > 0.(19)
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Then the function (z ∈ C+, λ ∈ R+) 7→ ρz(λ) is analytic in its first argument and contin-
uous in the second, with non positive real part, and characterized among the set of such
functions by the formula

(20) ρz(λ) = λ

∫ ∞

0

g(λy)eiyz+ρz(y)dy.

The assumption (18) is satisfied for our main examples.

• In the heavy tailed case, we have Φ(x) = −σ(ix)
α
2 , hence the Hypothesis made at

(18) is true, with g(y) = Cy
α
2
−1. Indeed, for any z ∈ C+, an application of residues

formula gives

(21) Γ(α/2) = −i

∫ +∞

t=0

(−izt)
α
2
−1eitzzdt,

(here, xγ has cut on R−).
• In the case of the Erdös-Rényi adjacency matrix, Φ(x) = p(e−ix − 1) so that

(22) Φ(x) = −p

∫ ∞

0

J1(s)e
ix−1s2

4 ds = −p

∫ ∞

0

J1(2
√
s)eix

−1s 1√
s
ds

where J1(s) =
s
2

∑

k≥0
(−s2/4)k

k!(k+1)!
is a Bessel function of the first kind. J1 is bounded

on R+.
• More generally, if Φ is so that Φ(x−1) is in L1, by Fourier integral formula we can
write it

Φ
(1

x

)

=

∫ ∞

−∞
Φ̂−1(y)e

iyxdy

with Φ̂−1 the Fourier transform of Φ(1/x). Hence, if Φ̂−1 is supported on R+ we
have

Φ(x) =

∫ ∞

0

Φ̂−1(y)e
−iy/xdy,

so that our hypothesis is satisfied if Φ̂−1 satisfies (19).

Note that the asymptotics of Wigner matrices with bound moments is also described by
(20). In this case Φ(λ) = −iλ, so g(y) = −i and ρz(t) = −it lim

N→∞
1
N
TrG(z), which leads

to the classical quadratic equation

(23) s(z) := lim
N→∞

1

N
TrG(z) =

1

z − s(z)
.

Let us now give a fixed point characterization for the function ρz,z′(t, t
′) of (17).

Theorem 1.6 (A fixed point system of equations for ρuz,z′(t, t
′)). We assume the hypotheses

of Theorem 1.3 and, moreover, we assume that Φ satisfies the formula

(24) Φ(x+ y) =

∫ ∞

0

∫ ∞

0

ei
v
x
+i v

′

y dτ(v, v′) +

∫

ei
v
xdµ(v) +

∫

ei
v′

y dµ(v′)
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for some complex measures τ, µ on respectively R+ × R+ and R+ such that for all b > 0,
∫
e−bvd|µ|(v) is finite for some constants K > 0, −1 < γ, γ′ ≤ 0 and κ, κ′ ≥ 0, we have

d|τ |(v, v′)
dvdv′

≤ K
(
vγ1v∈]0,1] + vκ1v∈]1,∞[

)(
v′

γ′1v′∈]0,1] + v′
κ′1v′∈]1,∞[

)

Then, ρuz,z′(t, s) = uρu,1z,z′(t, s)+(1−u)ρu,2z,z′(t, s) where ρ
u,1, ρu,2 are solution of the fixed point

system of equations

ρu,1z,z′(t, s) =

∫ sgnz ∞

0

∫ sgnz′ ∞

0

ei
v
t
z+i v

′

s
z′e

ρu
z,z′

( v
t
, v

′

s
)
dτ(v, v′)

+

∫ sgnz ∞

0

ei
v
t eρz(

v
t
)dµ(v) +

∫ sgnz′ ∞

0

ei
v
s eρz′ (

v
s
)dµ(v)

ρu,2z,z′(t, s) =

∫ sgnz ∞

0

∫ sgnz′ ∞

0

ei
v
t
z+i v

′

s
z′e

uρu,1
z,z′

( v
t
, v

′

s
)+(1−u)[ρz(

v
t
)+ρz′(

v′

s
)]
dτ(v, v′)

+

∫ sgnz ∞

0

ei
v
t eρz(

v
t
)dµ(v) +

∫ sgnz′ ∞

0

ei
v
s eρz′ (

v
s
)dµ(v)(25)

There is a unique analytic solution (ρu,1, ρu,2) from Λ = {t/ℑz > 0, s/ℑz′ > 0} into
{z ; ℜ(z) ≤ 0}2.

In our main examples:

• (24) is satisfied in the case of the Erdös-Rényi graph adjacency matrices. Indeed,
in this case, by (22),

Φ(x+ y) = p(ex+y − 1)

= p(ex − 1)(ey − 1) + p(ex − 1) + p(ey − 1)

= p

∫ ∞

0

J1(v)dv

∫ ∞

0

J1(v
′)dv′ei

v2

4x
+i v

′2

4y

−p

∫ ∞

0

J1(v)dve
i v

2

4x − p

∫ ∞

0

J1(v
′)dv′ei

v′
2

4y

so that if ν denotes the measure on R+ defined by

dν(v) = J1(2
√
v)

1√
v
dv

then we can take τ = pν⊗2 and µ = −pν, which satisfies our assumption with
γ′ = γ = −1/2, κ′ = κ = 0.
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• For Lévy matrices, where Φ(x) = Cαx
α/2, (24) holds as well. In fact, in this case

we have for all x, y ∈ C+,

Φ(x−1 + y−1) = Cα(
1

x
+

1

y
)α/2

= Cα
1

(x)α/2
1

(y)α/2
(x+ y)α/2

= Cα

∫ ∞

0

dw

∫ ∞

0

dw′
∫ ∞

0

dvwα/2−1(w′)α/2−1v−α/2−1eiwx+iw′y(eiv(x+y) − 1)

so that our hypothesis holds with µ = 0 and

dτ(v, v′)

dvdv′
= Cα

∫

0≤u≤v∧v′
duu−α/2−1[(v − u)α/2−1(v′ − u)α/2−1 − vα/2−1(v′)α/2−1]

It is not hard to verify that τ satisfies our hypotheses with γ = γ′ = 1 − α/4 and
κ′ = κ = 0.

Let us conclude this introduction with three remarks.

(1) Let A = X/aN , with X = (Xij) be a symmetric real N × N random matrix with
i.i.d. entries independent of N such that

P (|Xij| ≥ u) =
L(u)

u2
,

with L(·) a slowly varying function at +∞ and

aN = inf{u : P (|Xij| ≥ u) ≤ 1

N
}

(in other words, A is an α = 2 version of the Lévy matrices defined at Definition 1.1).
Then using Example c) p. 44. of [23] instead of the hypothesis made at Equation
(7), one can prove that as N → ∞, the empirical spectral law of A converges almost
surely to the semi-circle law with support [−2, 2] (see (23)). This result somehow
“fills the gap” between heavy-tailed matrices and finite second moment Wigner
matrices. It allows for example to state that if P (|Xij| ≥ u) ∼ cu−2, with c > 0,
even though the entries of X do not have any second moment, we have that the
empirical spectral law of X√

cn log(n)
converges almost surely to the semi-circle law

with support [−2, 2].
(2) About applications of our results to standard Wigner matrices, i.e. real sym-

metric matrices A with i.i.d. centered entries (up to the symmetry) with variance
1/N : one can see from the proofs that Theorems 1.3 and 1.5 and Corollary 1.4
also apply for such matrices and that the function Φ of (8) is then linear, which
implies that L(z, z′) = L(z)L(z′) for all z, z′, so that the covariance is null. In
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this case, (20) is the self-consistent equation satisfied by the Stieltjes transform of
the semi-circle law, namely (23), and Corollary 1.4 only means that for functions
f ∈ A, we have, for the convergence in probability,

(26) Tr f(A)− E
[
Tr f(A)

]
= o(

√
N).

When the entries of the Wigner matrix A have a fourth moment, (26) does not
bring any new information, because it is already well-known that its LHT converges
in distribution to a Gaussian law. However, for Wigner matrices whose entries
have a second but not a fourth moment, (26) brings new information. Indeed,
for such matrices, which could be called “semi heavy-tailed random matrices”, the
convergence to the semi circle law holds (see [4] or the remark right above that
one) but the largest eigenvalues do not tend to the upper-bound of the support

of the semi-circle law, are asymptotically in the scale N
4−α
2α (with α ∈ (2, 4) as in

Equation (2) when such an exponent exists) and distributed according to a Poisson
process (see [3]), and it is not clear what the rate of convergence to the semi-circle
law will be. Equation (26) says that this rate is ≪ N−1/2.

(3) About recentering with respect to the limit instead of the expectation, everything
depends only on the rate of convergence in (3) or in (7). For instance, if NE(a2k11)−
Ck = o(

√
N

−1
) for any k ≥ 1, then

√
N

(

E

[ 1

N
TrAk

]

− lim
N→∞

E

[ 1

N
TrAk

])

−→
N→∞

0,

but otherwise a non trivial recentering should occur. See the end of Section 2.

Notation: In this article, the power functions are defined on C\R− via the standard
determination of the argument on this set taking values in (−π, π). The set C+ (resp. C−)
denotes the open upper (resp. lower) half plane.

2. CLT for the moments of Wigner matrices with exploding moments

The goal of this section is to prove Theorem 1.2. In order to prove the CLT for the
moments of the empirical eigenvalues distribution of A, we use a modification of the method
of moments inspired by [30] which consists in studying more general functionals of the
entries of the matrix (the so-called traffic cumulants) than only its moments. We describe
this approach below. Let A be a Wigner matrix with exploding moments. Let K ≥ 1 be
an integer. The trace of the K-th power of A can be expanded in the following way.

1

N
TrAK =

1

N

N∑

i1,...,iK=1

A(i1, i2) . . . A(iK−1, iK)A(iK , i1)

=
∑

π∈P(K)

1

N

∑

i∈Sπ

A(i1, i2) . . .A(iK−1, iK)A(iK , i1)

︸ ︷︷ ︸

τ0N [π]

,
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where P(K) is the set of partitions of {1, . . . , K} and Sπ is the set of multi-indices i =
(i1, . . . , iK) in {1, . . . , N}K such that n ∼π m ⇔ in = im.

We interpret τ 0N as a functional on graphs instead of partitions. Let π be a partition of
{1, . . . , K}. Let T π = (V,E) be the undirected graph (with possibly multiple edges and
loops) whose set of vertices V is π and with multi-set of edges E given by: there is one
edge between two blocks Vi and Vj of π for each n in {1, . . . , K} such that n ∈ Vi and
n+ 1 ∈ Vj (with notation modulo K). Then, one has

τ 0N(π) = τ 0N [T
π](27)

if for graph T = (V,E), we have denoted

τ 0N (T ) =
1

N

∑

φ:V→[N ]
injective

∏

e∈E
A
(
φ(e)

)
,(28)

where [N ] = {1, . . . , N} and for any edge e = {i, j} we have denoted A
(
φ(e)

)
= A

(
φ(i), φ(j)

)
.

There is no ambiguity in the previous definition since the matrix A is symmetric.

In order to prove the convergence of

(
ZN(K)

)

K≥1
=

(
1√
N

TrAK − E

[ 1√
N

TrAK
])

K≥1

to a Gaussian process, it is sufficient to prove the convergence of

(
ZN(T

π)
)

π∈∪KP(K)
:=

(√
N
(

τ 0N [T
π]− E

[
τ 0N [T

π]
])
)

π∈∪KP(K)

(29)

to a Gaussian process, since

(
ZN(K)

)

K≥1
=

(
∑

π∈P(K)

ZN(T
π)

)

K≥1

.(30)

Before giving the proof of this fact, we recall a result from [31], namely the convergence of
τ 0N [T

π] for any partition π. These limits are involved in our computation of the covariance
of the limiting process of

(
ZN(T

π)
)

π∈∪KP(K)
, and this convergence will be useful in the

proof of the CLT for Stieltjes transforms latter.

Proposition 2.1 (Convergence of generalized moments). Let A be a Wigner matrix with
exploding moments with parameter (Ck)k≥1. For any partition π in ∪KP(K), with τ 0N [T

π]
defined in (27),

E
[
τ 0N [T

π]
]
−→
N→∞

τ 0[T π] :=

{ ∏

k≥1C
qk
k if T π is a fat tree,

0 otherwise,

where a fat tree is a graph that becomes a tree when the multiplicity of the edges is forgotten,
and for T such a graph we have denoted qk the number of edges of T with multiplicity 2k.
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Theorem 2.2 (Fluctuations of generalized moments). Let A be a Wigner matrix with
exploding moments. Then, the process

(
ZN(T

π)
)

π∈∪KP(K)
defined by (29) converges to a

centered Gaussian process
(
z(T π)

)

π∈∪KP(K)
whose covariance is given by: for any T π1, T π2,

E
[
z(T π1)z(T π2)

]
=

∑

T∈P♯(T
π1 ,Tπ2 )

τ 0[T ],

where τ 0[T ] is given by Proposition 2.1 and P♯(T
π1, T π2) is the set of graphs obtained by

considering disjoint copies of the graphs T π1 and T π2 and gluing them by requiring that
they have at least an edge (and therefore two “adjacent” vertices) in common.

Proof. We show the convergence of joint moments of
(
ZN(T

π)
)
. Gaussian distribution be-

ing characterized by its moments, this will prove the theorem. Let T1 = (V1, E1), . . . , Tp =
(Vn, En) be finite undirected graphs, each of them being of the form T π for a partition π.
We first write

E

[

ZN(T1) . . . ZN(Tn)
]

=
1

N
n
2

∑

φ1,...,φn

φj :Vj→[N ] inj.

E

[
n∏

j=1

(
∏

e∈Ej

A
(
φj(e)

)
− E

[ ∏

e∈Ej

A
(
φj(e)

)]
)]

︸ ︷︷ ︸

ωN (φ1,...,φn)

=
∑

σ∈P(V1,...,Vn)

1

N
n
2

∑

(φ1,...,φn)∈Sσ

ωN(φ1, . . . , φn),

where

• P(V1, . . . , Vn) is the set of partitions of the disjoint union of V1, . . . , Vn whose blocks
contain at most one element of each Vj,

• Sσ is the set of families of injective maps, φj : Vj → [N ], j = 1, . . . , n, such that for
any v ∈ Vj , v

′ ∈ Vj′, one has φj(v) = φj′(v
′) ⇔ v ∼σ v′.

First, it should be noticed that by invariance in law of A by conjugacy by permutation
matrices, for any σ in P(V1, . . . , Vn) and (φ1, . . . , φn) in Sσ, the quantity ωN(φ1, . . . , φn)
depends only on σ. We then denote ωN(σ) = ωN(φ1, . . . , φn). Moreover, choosing a
partition in P(V1, . . . , Vn) is equivalent to merge certain vertices of different graphs among
T1, . . . , Tn. We equip P(V1, . . . , Vn) with the edges of T1, . . . , Tn and say that two vertices
are adjacent if there is an edge between them. We denote by P♯(V1, . . . , Vn) the subset
of P(V1, . . . , Vn) such that any graph has two adjacent vertices that are merged to two
adjacent vertices of an other graph. By the independence of the entries of X and the
centering of the components in ωN , for any σ in P(V1, . . . , Vn) \ P♯(V1, . . . , Vn) one has
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ωN(σ) = 0. Hence, since the cardinal of Sσ is N !
(N−|σ|)! , we get

E

[

ZN(T1) . . . ZN(Tn)
]

=
∑

σ∈P♯(V1,...,Vn)

N−n
2

N !

(N − |σ|)! ωN(σ)

=
∑

σ∈P♯(V1,...,Vn)

N−n
2
+|σ| ωN(σ)

(
1 +O(N−1)

)
.(31)

Let σ in P♯(V1, . . . , Vn). We now analyze the term ωN(σ). We first expand its product.

ωN(σ) =
∑

B⊂{1,...,n}
(−1)n−|B|

E

[
∏

j∈B

∏

e∈Ej

A
(
φj(e)

)
]

×
∏

j /∈B
E

[
∏

e∈Ej

A
(
φj(e)

)
]

.

Let B ⊂ {1, . . . , n}. Denote by TB the graph obtained by merging the vertices of Tj ,
j ∈ B that belong to a same block of σ. For any k ≥ 1 denote by pk the number of vertices
of TB where k loops are attached. For any k ≥ ℓ ≥ 0, denote by qk,ℓ the number of pair
of vertices that are linked by k edges in one direction and ℓ edges in the other. Denote by
µN the common law of the entries of

√
NA. By independence of the entries of A, for any

(φ1, . . . , φn) in Sσ, one has

E

[
∏

j∈B

∏

e∈Ej

A
(
φj(e)

)
]

=
∏

k≥1

(∫
tkdµN(t)

N
k
2

)pk ∏

k,ℓ≥0

(∫
tk+ℓdµN(t)

N
k+ℓ
2

)qk,ℓ

= N−|ĒB|
∏

k≥1

(∫
tkdµN(t)

N
k
2
−1

)pk ∏

k,ℓ≥0

(∫
tk+ℓdµN(t)

N
k+ℓ
2

−1

)qk,ℓ

︸ ︷︷ ︸

δN (B)

,(32)

where |ĒB| is the number of edges of TB once the multiplicity and the orientation of edges
are forgotten. Recall assumption (3): for any k ≥ 1,

NE
[
(ai,j)

2k
]
= E

[
(
√
Nai,j)

2k

Nk−1

]

=

∫
t2kdµN(t)

Nk−1
−→
N→∞

Ck.

By the Cauchy-Schwarz inequality, for any k ≥ 1,

∫
|t|k+1dµN(t)

N
k+1
2

−1
≤
√∫

t2kdµN(t)

Nk−1
×
√
∫

t2dµN(t) = O(1).

Hence, since the measure µN is centered, the quantity δN(B) is bounded. Denote Tσ the
graph obtained by merging the vertices of T1, . . . , Tn that belong to a same block of σ, |Ēσ|
its number of edges when orientation and multiplicity is forgotten, and by cσ its number
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of components. We obtain from (31) and (32)

E

[

ZN(T1) . . . ZN(Tn)
]

=
∑

σ∈P♯(V1,...,Vn)

∑

B⊂{1,...,n}
N−n

2
+|σ|−|ĒB|−∑

j /∈B |Ē{j}|(−1)n−|B|δN(B)
∏

j /∈B
δN ({j})

(
1 +O(N−1)

)

=
∑

σ∈P♯(V1,...,Vn)

∑

B⊂{1,...,n}
N cσ−n

2 ×N |Ēσ|−|ĒB|−
∑

j /∈B |Ē{j}| ×N |σ|−cσ−|Ēσ|

×(−1)n−|B|δN (B)
∏

j /∈B
δN({j})×

(
1 +O(N−1)

)

A partition σ ∈ P♯(V1, . . . , Vn) induces a partition σ̄ of {1, . . . , n}: i ∼σ̄ j if and only if
Ti and Tj belong to a same connected component of Tσ. Denote by P2(n) the set of pair
partitions of {1, . . . , n}. One has

N cσ−n
2 = 1σ̄∈P2(n) +O(N−1).(33)

Secondly, one has |Ēσ| − |ĒB| −
∑

j /∈B |Ē{j}| ≤ 0 with equality if and only if B =

{1, . . . , n}, so that

N |Ēσ|−|ĒB|−
∑

j /∈B |Ē{j}| = 1B={1,...,n} +O(N−1).(34)

Moreover, by the relation [24, Lemma 1.1] between the number of vertices, edges and
components of a graph, |σ| − cσ − |Ēσ| is the number of cycles of T̄σ, the graph obtained
from Tσ by forgetting the multiplicity and the orientation of its edges. Hence, we have

N |σ|−cσ−|Ēσ| = 1T̄σ is a forest +O(N−1).(35)

By (33), (34) and (35), if we denote δN (σ) = δN({1, . . . , n}) we get

E

[

ZN(T1) . . . ZN(Tn)
]

=
∑

π∈P2(n)

∑

σ∈P♯(V1,...,Vn)
s.t. σ̄=π

1T̄σ is a forest of n
2

trees δN(σ) +O(N−1)

=
∑

π∈P2(n)

∏

{i,j}∈π

∑

σ∈P♯(Vi,Vj)

1T̄σ is a tree δN(σ) +O(N−1),(36)

where we have used the independence of the entries of A to split δN . The case n = 2 gives

E

[

ZN(T1)ZN(T2)
]

=
∑

σ∈P♯(V1,V2)

1T̄σ is a tree δ(σ)

︸ ︷︷ ︸

M (2)(T1,T2)

+o(1),

where δ(σ) = lim
N→∞

δN (σ), which exists since T̄σ is a tree. Indeed, in the definition (32) of

δ(σ), we have pk = qk,ℓ = 0 for any k 6= ℓ. Moreover, we obtain that δ(σ) = τ 0[Tσ] defined
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in Proposition 2.1, and the sum over σ on P♯(V1, V2) can be replaced by a sum over graphs
T obtained by identifying certain adjacent vertices of T1 with adjacent edges T2, since τ

0[T ]
is zero if T is not a fat tree. We then obtain as expected the limiting covariance

M (2)(T1, T2) =
∑

T∈P♯(T1,T2)

τ 0[T ].

The general case n ≥ 3 in (36) gives the Wick formula

E

[

ZN(T1) . . . ZN(Tn)
]

=
∑

π∈P2(n)

∏

{i,j}∈π
M (2)(Ti, Tj) + o(1),

which characterizes the Gaussian distribution. �

Remark about the recentering with respect to the limit instead of the expectation: in
our computations, up to (36) the errors terms are of order O(N−1), and so if NE[a2k11 ] =

Ck+ o(
√
N) for any k ≥ 1, then δN(σ) = δ(σ)+ o(

√
N) and hence one can replace the o(1)

by o(
√
N) at the end of the proof.

3. CLT for Stieltjes transform and the method of martingales

Let A = (ai,j)i,j=1,...,N be either a Lévy matrix of parameter α ∈ (0, 2), or a Wigner
matrix with exploding moments of parameter (Ck)k≥1. For any z in C \ R, recall that
G(z) = (z − A)−1. To prove Theorem 1.3, we show that any linear combination of the
random variables

ZN(z) :=
1√
N

TrG(z)− E

[ 1√
N

TrG(z)
]

, z ∈ C \R,

and their complex transposes converges in distribution to a complex Gaussian variable.
Since G(z) = G(z̄), it is enough to fix a linear combination

(37) M(N) :=

p
∑

i=1

λiZN(zi),

for some fixed p ≥ 1 and λ1, . . . , λp ∈ C, z1, . . . , zp ∈ C\R, and prove that M(N) is
asymptotically Gaussian with the adequate covariance.

3.1. The method of martingales differences and reduction to the case p = 1. For
all N , we have

M(N)− E[M(N)] =

N∑

k=1

Xk with Xk := (Ek − Ek−1)
[
M(N)

]
,

where Ek denotes the conditional expectation with respect to the σ-algebra generated by
the k first columns of A. In view of Theorem 6.7 of the appendix about fluctuations of
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martingales, it is enough to prove that we have

(38)

N∑

k=1

Ek−1[X
2
k ] −→

N→∞

p
∑

i,j=1

λiλj(L(zi, zj)− L(zi)L(zj)),

(39)
N∑

k=1

Ek−1

[
|Xk|2

]
−→
N→∞

p
∑

i,j=1

λiλj(L(zi, zj)− L(zi)L(zj))

and that for each ε > 0,

(40)

N∑

k=1

E[|Xk|21|Xk |≥ε] −→
N→∞

0.

Notice first that (38) implies (39). Let us now prove (40). The proof of (38) will then
be the main difficulty of the proof of Theorem 1.3.

Proof of (40). Let Ak be the symmetric matrix with size N−1 obtained by removing the k-
th row and the k-th column of A and set Gk(z) :=

1
z−Ak

. Note that EkGk(z) = Ek−1Gk(z),
so that we can write

Xk =

p
∑

i=1

λi × (Ek − Ek−1)[
1√
N
(TrG(zi)− TrGk(zi))].

Hence by (82) of Lemma 6.5 in the appendix, there is C such that for all N and all k,

|Xk| ≤
Cmaxi |λi||ℑzi|−1

√
N

.

Thus for N large enough, we have that for all k, |Xk|21|Xk |≥ε = 0 and (40) is proved. �

We now pass to the main part of the proof of Theorem 1.3, namely the proofs of (38)
and (39). It is divided into several steps.

Let us first show that we can get rid of the linear combination in (37) and assume p = 1.
We have

Xk = (Ek − Ek−1)
[
M(N)

]
=

p
∑

i=1

λi(Ek − Ek−1)[
1√
N

TrG(zi)],

hence, as TrG(zi) = TrG(zi), both X2
k and |Xk|2 are linear combinations of terms of the

form

(Ek − Ek−1)[
1√
N

TrG(z)]× (Ek − Ek−1)[
1√
N

TrG(z′)],
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with z, z′ ∈ C\R. As a consequence, we shall only fix z, z′ ∈ C\R and prove that for

Yk := (Ek − Ek−1)[
1√
N

TrG(z)] and Y ′
k := (Ek − Ek−1)[

1√
N

TrG(z′)],

we have the convergence in probability

(41) CN :=

N∑

k=1

Ek−1[YkY
′
k] −→

N→∞
L(z, z′)− L(z)L(z′).

First, for Gk as introduced in the proof of (40) above, as EkGk(z) = Ek−1Gk(z) again,
we have Yk = (Ek − Ek−1)[

1√
N
(TrG(z)− TrGk(z))]. Hence by Lemma 6.5, we can write

(42) Yk =
1√
N
(Ek − Ek−1)

1 + a∗
kGk(z)

2ak

z − akk − a∗
kGk(z)ak

,

where ak is the k-th column of A where the k-th entry has been removed. To prove (41),
we shall first show that we can get rid of the off diagonal terms

∑

j 6=ℓ ak(j)ak(ℓ)Gk(z)jℓ
and

∑

j 6=ℓ ak(j)ak(ℓ)(Gk(z)
2)jℓ in the above expression.

3.2. Removing the off-diagonal terms. In this section, we prove that we can replace
Yk in (41) by

(43) Ỹk :=
1√
N
(Ek − Ek−1)

1 +
∑N−1

j=1 ak(j)
2(Gk(z)

2)jj

z −∑N−1
j=1 ak(j)2Gk(z)jj

.

Note first that by Equation (85) of Lemma 6.6 in the appendix, we have, with probability
one, for all z ∈ C\R,

∣
∣
∣
∣
∣

1 +
∑

j ak(j)
2(Gk(z)

2)jj

z −∑j ak(j)2Gk(z)jj

∣
∣
∣
∣
∣
≤ 2|ℑz|−1

hence

(44) |Ỹk| ≤
4|ℑz|−1

√
N

.

Lemma 3.1. Let Ỹ ′
k be defined in the same way as Ỹk in (43), replacing z by z′. Set also

(45) C̃N :=

N∑

k=1

Ek−1[ỸkỸ
′
k ].

Then for CN defined as in (41), as N → ∞, we have the convergence

(46) CN − C̃N
L1

−→ 0.
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Proof. First note that for both Lévy and exploding moments matrices, for any (N − 1)×
(N − 1) matrix B with spectral radius ‖B‖,

a∗
kBak =

∑

j

ak(j)
2(B)jj + εN(B)

where there exists δ > 0 and a finite constant C so that for all t > 0, all matrix B,

(47) P (|εN(B)| ≥ t) ≤ C‖B‖2
t2N2δ

+
C

N2δ
.

By definition, εN(B) =
∑

ℓ 6=j ak(ℓ)ak(j)Bjk. In the case of exploding moments, we have

E

[∣
∣εN(B)

∣
∣
2
]

=
∑

i 6=j

∑

i′ 6=j′

E[ak(i)ak(j)bijak(i
′)ak(j

′)bi′j′]

≤ 2
∑

i 6=j

E
[
ak(i)

2
]
E
[
ak(j)

2
]
|bi,j |2

≤ 2

N

(
NE
[
ak(1)

2
])2‖B‖2 ,

from which (47) follows by Tchebychev’s inequality with δ = 1/2. For Lévy matrices, we
put for κ ∈ (0, 1

2(2−α)
)

εN(B) =
∑

j 6=ℓ

ak(ℓ)ak(j)Bℓj = (1maxj |ak(j)|≤Nκ + 1maxj |ak(j)|>Nκ)εN(B) .

By [10, Lemma 4.3], and the same computation as above, for any t > 0 we have

P

(

{|εN | ≥ t} ∩ {max
j

|akj| ≤ Nκ}
)

≤ 2

t2N1−2κ(2−α)ℑz2

whereas there exists a finite constant C so that

P

(

max
j

|akj| ≥ Nκ

)

≤ C

Nακ
,

which prove (47) in this setting with 2δ = min{ακ, 1− 2κ(2− α)}.
We apply (47) with B = Gk(z) and B = Gk(z)

2. Since the function of two complex vari-
ables ϕ(x1, x2) :=

1+x1

z−x2
has a uniformly bounded gradient on the set {(x1, x2) ∈ C2 ; ℑx2 ≤

0}, it follows that

(48)
1 + a∗

kGk(z)
2ak

z − akk − a∗
kGk(z)ak

=
1 +

∑

j ak(j)
2(Gk(z)

2)jj

z −∑j ak(j)2Gk(z)jj
+ ε′N

where |ε′N | ≤ C ′[|εN(Gk(z))|+ |εN(Gk(z)
2)|] for some finite constant C ′. Now, we can use

(81), (82) and (85) to assert that the two first terms, in (48), are bounded by a constant
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uniformly in N and k. Hence, ε′N is uniformly bounded. It follows that there exists a finite
constant C ′′ so that for any t > 0,

E[|ε′N |2] ≤
C ′′

N2δ
+ C ′′t2 + 4C ′′

∫ C′′

t

s

s2N2δℑz2ds .

Taking t = N−δ we conclude

E[|ε′N |2] ≤
C ′′′ logN

N2δ

To sum up, we have

(49) Yk = Ỹk + γk Y ′
k = Ỹ ′

k + γ′
k,

where the error terms γk, γ
′
k are O(N− 1

2
−δ × logN) uniformly in k for the L2 norm.

But

∆k := YkY
′
k − ỸkỸ

′
k = Ỹkγ

′
k + Ỹ ′

kγk + γkγ
′
k,

so to conclude, it is enough to prove that the RHS is o(N−1) in L1, uniformly in k. We
have

E[|Ỹkγ
′
k + Ỹ ′

kγk + γkγ
′
k|] ≤ ‖Ỹk‖L2‖γ′

k‖L2 + ‖Ỹ ′
k‖L2‖γk‖L2 + ‖γk‖L2‖γ′

k‖L2 ,

with Ỹk = OL∞(N−1/2) (and the same for Ỹ ′
k) by (44) so that (49) implies that

E[|∆k|] ≤ C ′′′ logNN−1− δ
2

which proves the lemma. �

It remains to prove that the sequence C̃N introduced at (45) converges in probability as
N goes to infinity. Note that we have

(50) C̃N =

∫ 1

u=0

NEk−1[Ỹk(u)Ỹ
′
k(u)]du with k(u) := ⌈Nu⌉.

By (44), the integrand is uniformly bounded by 4|ℑz|−1. Hence, by dominated convergence,
it is enough to prove that for any fixed u ∈ (0, 1), as k,N tend to infinity in such a way
that k/N −→ u, we have the convergence in probability of

(51) NEk−1[ỸkỸ
′
k].

Now, set

(52) fk :=
1 +

∑

j ak(j)
2(Gk(z)

2)jj

z −∑j ak(j)2Gk(z)jj
f ′
k :=

1 +
∑

j ak(j)
2(Gk(z

′)2)jj

z −∑N
i=1 ak(j)2Gk(z′)jj

.

We have
√
NỸk = (Ek − Ek−1)fk and the same for Ỹ ′

k , so

NEk−1(ỸkỸ
′
k) = Ek−1[EkfkEkf

′
k]− Ek−1fkEk−1f

′
k.
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Let us denote by Eak
the expectation with respect to the randomness of the k-th column

of A (i.e. the conditional expectation with respect to the σ-algebra generated by the aij’s
such that k /∈ {i, j}). Note that Ek−1 = Eak

◦ Ek = Ek ◦ Eak
, hence

NEk−1(ỸkỸ
′
k) = Eak

[EkfkEkf
′
k]− EkEak

fk × EkEak
f ′
k.

Now, note that if one introduces (on a possibly enlarged probability space where the
conditional expectations Ek−1,Ek,Eak

keep their definitions as the conditional expectations
with respect to the same σ-algebras as above) an N ×N random symmetric matrix

(53) A′ = [a′ij ]1≤i,j≤N

such that:

• the a′ij ’s such that i > k and j > k are i.i.d. copies of a11 (modulo the fact that A′

is symmetric), independent of A,
• for all other pairs (i, j), a′ij = aij ,

then we have
EkfkEkf

′
k = Ek(fk × f ′′

k ),

where f ′′
k is defined out of A′ in the same way as f ′

k is defined out of A in (52) (note that
the k-th column is the same in A and in A′). It follows that

NEk−1(ỸkỸ
′
k) = Eak

[Ek(fk × f ′′
k )]− EkEak

fk × EkEak
f ′
k

= Ek[Eak
(fk × f ′′

k )]− EkEak
fk × EkEak

f ′
k.(54)

We shall in the sequel prove that as N tends to infinity, regardless to the value of k, we
have the almost sure convergences

(55) Eak
fk −→ L(z) Eak

f ′
k −→ L(z′)

and that for any fixed u ∈ (0, 1), as N, k tend to infinity in such a way that k/N −→ u,
we have the almost sure convergence

(56) Eak
(fk × f ′′

k ) −→ Ψu(z, z′).

The convergences of (55) and (56) are based on an abstract convergence result stated in
next section, where we use the convergence of generalized moments of Proposition 2.1.
They are stated in Lemmas 3.4 and 3.5 respectively.

Note that by Lemma 6.6,

(57) |fk| ≤ 4|ℑz|−1,

so once (55) and (56) proved, the convergences will also hold in L2, hence by continuity of
the conditional expectations, we will have the convergence in L2

Ek[Eak
(fk(u) × f ′′

k(u))]− EkEak
fk × EkEak

f ′
k −→ Ψu(z, z′)− L(z)L(z′).

Thus by (54), we will have proved the convergence of (51), hence concluded the proof
of the theorem.
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3.3. An abstract convergence result. Remember that Ak = (aij) is the square matrix
of size N − 1 obtained by removed the k-th row and the k-th column of A, that Gk(z) =
(z−Ak)

−1 and that A′
k is a copy of Ak where the entries (i, j) for i, j > k are independent

of Ak and the other are those of Ak. We denote G′
k(z

′) = (z′ − A′
k)

−1.

Lemma 3.2. As N goes to infinity and k
N

tends to u in (0, 1), the random probability
measure on C2

(58) νk,N
z,z′ :=

1

N − 1

N−1∑

j=1

δ{Gk(z)jj ,G
′
k(z

′)jj}, z, z′ ∈ C \ R.

converges weakly almost surely to a non random probability measure νu
z,z′ on C2.

Proof. By e.g. Theorem C.8 of [1], it is enough to prove that for any bounded and Lipschitz

function f , νk,N
z,z′ (f) converges almost surely to νu

z,z′(f). Moreover, adapting the proof of
Lemma 6.4, one can easily see that for any such f ,

νk,N
z,z′ (f)− E[νk,N

z,z′ (f)]

converges almost surely to zero. The only modification of the proof is to complete the
resolvent identity by remarking that

(z−Ak)
−2−(z−AB

k )
−2 = (z−AB

k )
−2
(
z(Ak−AB

k )−(Ak−AB
k )

2−2AB
k (Ak−AB

k )
)
(z−Ak)

−2,

which gives that this matrix has rank bounded by 3× rank(A−B). Hence it is enough to

prove that the deterministic sequence E[νk,N
z,z′ ( · )] converges weakly. These measures are

supported by the compact subset B(0, |ℑz|−1)2, hence the sequence is tight and it suffices
to prove that it admits at most one accumulation point.

Let us show how the Lévy case can be deduced from the case of Wigner matrices with
exploding moments. For any B > 0, let us introduce the truncated matrices

AB := (ai,j1|ai,j |≤B)i,j=1,...,N A′B := (a′i,j1|a′i,j |≤B)i,j=1,...,N .

These matrices are Wigner matrices with exploding moments with rescaled moments that
satisfy (5) (see [31, Section 1.2.1] or [10, Section 9]). Introduce the random probability

measure νk,N,B
z,z′ , defined as νk,N

z,z′ , except than A and A′ are replaced by AB and A′B, and
similarly the matrices Gk,B(z) and G′

k,B(z
′). By Lemma 2.4 of [10], we know that for any

ε > 0, there exist B(ε) > 0 and, for any B > B(ε), δ(ε) > 0 such that with probability at
least 1− e−δ(ε,B)N ,

rank(Ak − AB
k ) + rank(A′

k − A′
k
B
) ≤ ε(N − 1).

Moreover, we can adapt arguments of [10] (see also Equation (91) of [12] ) to get that with
probability at least 1− e−δ(ε,B)N , for any 1-Lipschitz function f on B(0, |ℑz|−1)2, we have

|νk,N
z,z′ (f)− νk,N,B

z,z′ (f)| ≤ 2(|ℑz|−1 + |ℑz′|−1 + 3|ℑz|−1 + 3|ℑz′|−1)ε.
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Hence it suffices to prove the weak convergence of E
[
νk,N
z,z′ ( · )

]
when A is a Wigner matrix

with exploding moments. Since these measures are uniformly compactly supported, it is
sufficient to prove the convergence in moments.

We consider a polynomial P = xn1
1 x1

m1xn2
2 x2

m2 and remark that

E
[
νk,N
z,z′ (P )

]
= E

[
1

N − 1

N−1∑

j=1

(
Gk(z)jj

)n1
(
Gk(z̄)jj

)m1
(
G′

k(z
′)jj
)n2
(
G′

k(z̄
′)jj
)m2

]

= E

[
1

N − 1
Tr
[

Gk(z)
◦n1 ◦Gk(z̄)

◦m1 ◦G′
k(z

′)◦n2 ◦G′
k(z̄

′)◦m2

]]

,

where ◦ denotes the Hadamard (entry-wise) product of matrices and

M◦n := M ◦ · · · ◦M
︸ ︷︷ ︸

n

.

We set ℓ1 = n1 +m1 and ℓ2 = n2 +m2. Let (Yi, Y
′
j )i=1,...,ℓ1,j=1,...,ℓ2 be a family of random

variables such that for any pi, qj ≥ 0,

E

[ ℓ1∏

i=1

Y pi
i

ℓ2∏

j=1

Y ′
j
qj
]

(59)

= E

[
1

N − 1
Tr
[

Ap1
k ◦ · · · ◦ Apℓ1

k ◦ A′
k
q1 ◦ · · · ◦ A′

k
qℓ2

]]

.

Such a family exists by Proposition 6.8. By [31, Proposition 3.10], the couple of random
matrices (A,A′) satisfies the so-called convergence in distribution of traffics, which implies
the convergence in moments of (Yi, Y

′
j )i,j. For reader’s convenience, we give the limiting

value of (59), even if we do not use it later. It is obtained by applying the rule of the
so-called traffic freeness in [31].

E

[ ℓ1∏

i=1

Y pi
i

ℓ2∏

j=1

Y ′
j
qj
]

−→
N→∞

∑

π∈P(VT )

τ 0[T π]α(T π),(60)

where

1. we have considered T the graph whose edges are labelled by indeterminates a and
a′, obtained by

• considering the disjoint union of the graphs with vertices 1, . . . , pi and edges
{1, 2}, . . . , {pi − 1, pi}, {pi, 1} labelled a, i = 1, . . . , ℓ1,

• considering the disjoint union of the graphs with vertices 1, . . . , qj and edges
{1, 2}, . . . , {qj − 1, qj}, {qj, 1} labelled a′, j = 1, . . . , ℓ2,

• identifying the vertex 1 of each of these graphs (we get a connected graph,
bouquet of cycles),

2. we have denoted by VT is the set of vertices of T , P(VT ) is the set of partitions of
VT and T π denotes the graph obtained by identifying the vertices of T that belong
to a same block of π,
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3. the quantity τ 0[T π] is as in Proposition 2.1,
4. we have set

α(T π) =
∑

Vπ=V1⊔V2

1{the edges linking adjacent vertices
of V2 have the same label

}u|V1|(1− u)|V2|,

where the sum is over all partitions of the set Vπ of vertices of T π and |Ei| is the
number of edges between adjacent vertices of Vi, i = 1, 2.

Formula (60) could also be derived by the same techniques than those developed in
Section 2. The random variables Yi and Y ′

j are distributed according to the limiting
eigenvalues distribution of A. Moreover, following the proof of [38, Proposition 10], the
exponential power series of this measure has a positive radius of convergence. So, by
a generalization of [11, Theorem 30.1] to the multi-dimensional case, we get that the
distribution of (Yi, Y

′
j ) is characterized by its moments. Then, we get that (Yi, Y

′
j ) converges

weakly to a family of random variables (yi, y
′
j). We set fz(y) = (z − y)−1. We then obtain

the convergence

E
[
νk,N
z,z′ (P )

]
= E

[ n1∏

i=1

fz(Yi)

n2∏

j=1

fz′(Y
′
j )

]

−→
N→∞

E

[ n1∏

i=1

fz(yi)

n2∏

j=1

fz′(y
′
j)

]

Hence E
[
νk,N
z,z′ ( · )

]
converges weakly. �

This convergence could also be proven without Proposition 6.8 but with appropriate
bounds on the growth of moments, which however we found less elegant.

We have the following Corollary.

Corollary 3.3. (1) For z ∈ C\R, t so that ℑzt ≥ 0,

ρNz (t) :=
1

N − 1

N−1∑

i=1

Φ(tGk(z)ii) −→
N→∞

ρz(t) :=

∫

Φ(tx)ν0
z,z′(dx, dx

′) a.s.

(2) For z, z′ ∈ C\R, t so that ℑz/t ≥ 0, ℑz′/t′ ≥ 0, and k/N going to u,

ρN,k
z,z′ (t, t

′) :=
1

N − 1

N−1∑

i=1

Φ(tGk(z)ii + t′G′
k(z

′)ii)

converges almost surely towards

ρuz,z′(t, t
′) =

∫

Φ(tx + t′x′)νu
z,z′(dx, dx

′) .(61)

(3) The functions ρN,k are analytic on Λ = {t/ℑz > 0, t′/ℑz′ > 0} and uniformly
bounded on compact subsets of Λ̄. They have a non positive real part. Their limits
are also analytic on Λ and have a non positive real part.
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(4) For all z ∈ C+,

lim
N→∞

1

N
Tr((z −A)−1) = i

∫ ∞

0

eitz+ρz(t)dt a.s.

Proof. Let us first notice that ρNz (t) = ρN,k
z,z′ (t, 0) for all k so we only need to focus on

ρN,k
z,z′ (t, t

′). The point wise convergence of the function ρN,k is a direct consequence of the

continuity of Φ (recall we assumed that Φ extends continuously to the real line), of the
boundedness of tGk(z)ii+t′G′

k(z
′)ii (by t/ℑz+t′/ℑz′) and Lemma 3.2. To show analyticity,

note that for all j ∈ {1, . . . , N}, G(z)jj is an analytic function on C+, taking its values
in C− (and vice versa) almost surely by (83). Hence, on Λ, tGk(z)ii + t′G′

k(z
′)ii is an

analytic function with values in C−. Therefore, as Φ is analytic on C−, ρN,k is an analytic
function on Λ almost surely. Moreover, as Φ extends continuously to the real line, it is
uniformly bounded on compact subsets of C− and hence ρN,k is uniformly bounded on
compact subsets of Λ. This implies by Montel’s theorem that the limit ρu of ρN,k is also
analytic. Finally, ρN,k as non positive real part as the image of C− by Φ. Indeed, as
ℜ(−iλ|a11|2) ≤ 0, we have

(62) |φN(λ)| = |E(e−iλ|a11|2)| ≤ 1 ⇒ ℜΦ(λ) = lim
N→∞

N log |φN(λ)| ≤ 0.

For the last point, first note that by Lemma 6.3, it is enough to prove the result for
E[N−1 TrG(z)] instead of N−1TrG(z). Second, by exchangeability, E[N−1 TrG(z)] =
E[G(z)11]. Remind that ak is the k-th column of A (or A′) where the k-th entry has been
removed. Using Schur complement formula and getting rid of the off diagonal terms (by
arguments similar to those of Section 3.2), we have for any z ∈ C+

E[G(z)11] = E

[ 1

z −∑N−1
j=1 |a1(j)|2G1(z)jj + εN

]

= E

[ 1

z −∑N−1
j=1 a1(j)2G1(z)jj

]

+ o(1).

Remember that we have for λ ∈ C\R,

(63)
1

λ
= −i

∫ sgnλ ∞

0

eitλdt,

and that φN(λ) = E
[
exp(−iλ|a11|2)

]
, which gives

E[G(z)11] = i

∫ ∞

0

E[eiλ(z−
∑N−1

j=1 a1(j)2G1(z)jj)]dλ+ o(1)

= i

∫ ∞

0

eiλzE
[ N−1∏

j=1

φN(λG1(z)jj)
]

dλ+ o(1).
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We used the exponential decay to switch the integral and the expectation. This also allows
to truncate the integral: for any M ≥ 0,

∫ ∞

0

eiλzE
[ N−1∏

j=1

φN(λG1(z)jj)
]

dλ =

∫ M

0

eiλzE
[ N−1∏

j=1

φN(λG1(z)jj)
]

dλ+ ǫm,M,z,N ,

where ǫM,z,N goes to zero as M tends to infinity, uniformly on N and on the randomness.
Remember that by assumption (8), we have

N
(
φN(λ)− 1

)
−→
N→∞

Φ(λ), ∀λ ∈ C−(64)

where the convergence is uniform on compact subsets of C−. Hence, since for |ℑz| ≥ δ > 0,
|t| ≤ M , tGk(z)jj belongs to the compact set {λ ∈ C− ; |λ| ≤ M/δ}, we have

N−1∏

j=1

φN(tGk(z)jj) = exp
( 1

N

N−1∑

j=1

Φ(tGk(z)jj)
)

+ ε
(1)
t,z,N = exp(ρNz (t)) + ε

(1)
t,z,N

where ε
(1)
t,z,N converges almost surely to zero as N goes to infinity. By the above,

exp
( 1

N

N−1∑

j=1

Φ(tGk(z)jj)
)

= exp
(
ρz(t)

)
+ ε

(2)
t,z,N ,

where ε
(2)
t,z,N converges to zero almost surely. Hence, we deduce the almost sure convergence

eitz
N−1∏

j=1

φN(tGk(z)jj) −→
N→∞

eitz+ρz(t).(65)

As ρNz has non positive real part, we can conclude by dominated convergence theorem and
by getting rid of the truncation of the integral. �

3.4. Computation and convergence of Eak
fk and Eak

f ′
k.

Lemma 3.4. Almost surely, we have the convergence

(66) Eak
fk −→

N→∞
L(z) := −

∫ sgnz ∞

0

1

t
∂ze

itz+ρz(t)dt .

where sgnz := sgn(ℑz) and ρz(t) is defined in Corollary 3.3.

Proof. Remind that for any z ∈ C\R,

fk =
1 +

∑

j ak(j)
2(Gk(z)

2)jj

z −∑j ak(j)2Gk(z)jj
:=

∂zλN(z)

λN(z)
.



26 FLORENT BENAYCH-GEORGES, ALICE GUIONNET, CAMILLE MALE

Hence, by (63), since by (83) the sign of the imaginary part of λN (z) is sgnz, the random
variable fk can be written

fk = −i

∫ sgnz ∞

0

∂zλN(z)e
itλN (z)dt.(67)

= −i

∫ sgnz ∞

sgnz m

∂zλN(z)e
itλN (z)dt− i

∫ sgnz m

0

∂zλN(z)e
itλN (z)dt

:= f̃k,m + ηm(z),

where m > 0 and ηm(z) =
∂zλN (z)
λN (z)

(
1− ei sgnz mλN (z)

)
. We next show that for all ε > 0 there

exists m0 small enough so that for all m < m0, all N large enough

(68) Eak
[|ηm(z)|] ≤ ε

By (85) and since the sign of the imaginary part of λN (z) is sgnz, one has |ηm(z)| ≤ 4|ℑz|−1.
More precisely, for any K > 0, we find

|ηm(z)| ≤
4

ℑz (mK|ℑz|−1 + 1∑ ak(j)2≥K) .

In the exploding moment case, we note that

P

(∑

ak(j)
2 ≥ K

)

≤ 1

K
E[Nak(1)

2] ≤ C

K

whereas in the Lévy matrices case, since
∑

ak(j)
2 converges weakly towards a α/2 stable

law, we know that for N large enough

P

(∑

ak(j)
2 ≥ K

)

≤ C

Kα/2
.

Choosing K = 1/
√
m or K = m− 2

2+α we conclude that there exists a γ > 0 and a finite
constant C which only depends on ℑz > 0 so that for N large enough

(69) Eak
[|ηm(z)|] ≤ Cmγ .

In the following we shall therefore neglect the term ηm(z). By (83) and (84) we have the
following bound: for any t 6= 0 and any z ∈ C \ R such that |ℑz| ≥ δ > 0,

∣
∣
∣

N−1∑

j=1

ak(j)
2(Gk(z)

2)jje
−it

∑

ak(j)
2Gk(z)jj

∣
∣
∣ ≤ 1

δ
sup
x≥0

xe−tx =
e−1

tδ
(70)

so that for M large enough and |ℑz| ≥ δ > 0,

Eak
f̃k,m = −i

∫ sgnz M

sgnz m

Eak

[
∂zλN(z)e

itλN (z)
]
dt + εm,M,z,N

where εm,M,z,N is arbitrary small as M is large, uniformly on N and on the randomness.
Moreover, by (70) one has

Eak

[
∂zλN(z)e

itλN (z)
]
=

1

it
∂z
(
Eak

[
eitλN (z)

])
(71)
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Recall that φN(λ) = E
[
exp(−iλ|a11|2)

]
, so we have

(72) Eak

[
eitλN (z)

]
= Eak

[

eitz−it
∑

j ak(j)
2Gk(z)jj)

]

= eitz
N−1∏

j=1

φN(tGk(z)jj).

Remind that in (65) we have shown in the proof of the last item of Corollary 3.3 the
almost sure convergence

eitz
N−1∏

j=1

φN(tGk(z)jj) −→
N→∞

eitz+ρz(t).(73)

As in the proof of Corollary 3.3, since the left hand side is analytic and uniformly bounded,
we deduce by Montel’s theorem that its convergence entails the convergence of its deriva-
tives. We then get by (72), for all t, z so that t/ℑz > 0, the almost sure convergence

∂z

(

Eak

[

eitz−it
∑

j ak(j)
2Gk(z)jj )

])

−→
N→∞

∂z

(

eitz+ρz(t)
)

.

We then obtain by dominated convergence (remember the integrant is uniformly bounded
by (71) and estimate (70)),

Eak
f̃k,m = −

∫ sgnz M

sgnz m

1

t
∂ze

itz+ρz(t)dt + ε̃m,M,z,N ,

where ε̃m,M,z,N converges to zero almost surely as N goes to infinity.

By (71) and estimate (70), we have the estimate

∣
∣
∣
1

t
∂ze

itz+ρz(t)
∣
∣
∣ ≤

(

1 +
e−1

tℑz
)

e−tℑz

so we can let M going to infinity to obtain the almost sure convergence

Eak
f̃m,k −→

N→∞
−
∫ sgnz ∞

sgnz m

1

t
∂ze

itz+ρz(t)dt.

In the Lévy case, one has ρz(t) = t
α
2 ρz(1), and in the exploding moments case,

∣
∣ 1
t
∂ze

itz+ρz(t)
∣
∣ ≤

1 + C2

ℑz2
, so that the integral converges at zero and we obtain

Eak
fk −→

N→∞
−
∫ sgnz ∞

0

1

t
∂ze

itz+ρz(t)dt

as expected. �

Of course, this convergence is uniform in k since the law of Gk(z) does not depend on k
and an analogous formula is true for Eak

f ′
k, replacing z by z′.



28 FLORENT BENAYCH-GEORGES, ALICE GUIONNET, CAMILLE MALE

3.5. Computation of Eak
(fk × f ′′

k ).

Lemma 3.5. Almost surely, we have the convergence

(74) Eak
fkf

′′
k −→

N→∞
Ψu(z, z′) :=

∫ sgnz ∞

0

∫ sgnz′ ∞

0

1

tt′
∂2
z,z′e

itz+it′z′+ρu
z,z′

(t,t′)
dtdt′,

where ρuz,z′ is defined in Corollary 3.3.

Proof. We shall start again by using Formula (67) for fk, and its analogue for

f ′′
k =

1 +
∑

j ak(j)
2(G′

k(z
′)2)jj

z −∑j ak(j)2G′
k(z

′)jj
:=

∂zλ
′
N(z

′)

λ′
N(z

′)
,

where G′
k(z

′) be defined as Gk(z), replacing z by z′ and the matrix A by the matrix A′

defined by (53), which gives

f ′′
k = −i

∫ sgnz′ ∞

0

∂zλ
′
N(z

′)eit
′λ′

N (z′)dt′(75)

= −i

∫ sgn′z ∞

sgn′
z m

∂zλ
′
N(z

′)eit
′λ′

N (z′)dt′ − i

∫ sgnz m

0

∂zλ
′
N(z

′)eit
′λ′

N (z′)dt′

(76)

The upper bound (70) allows us to bound the first term uniformly by logm−1 and to
truncate the integrals for sgnz t, sgnz′ t

′ ≤ M . Therefore, up to a small error εM,m,z,z′,N

uniform for M large, m small and provided |ℑz|, |ℑz′| ≥ δ > 0, we have

Eak
f̃k × f̃ ′′

k = −
∫ sgnz M

sgnz m

∫ sgnz′ M

sgn′z m

Eak
∂zλN(z)∂zλ

′
N(z

′)eitλN (z)+it′λ′
N (z′)dtdt′ + εM,m,z,z′,N(77)

As in the previous case, the upper bound (70) allows us

Eak

[

∂zλN(z)∂zλ
′
N(z

′)eitλN (z)+it′λ′
N (z′)

]

= − 1

tt′
∂2
z,z′

(

Eak

[

eitλN (z)+it′λ′
N (z′)

])

(78)

Remember that φN(λ) = E
[
exp(−iλ|a11|2)

]
, so we have

Eak

[

eitλN (z)+it′λ′
N (z′)

]

= eitz+it′z′
N−1∏

j=1

φN

(
tGk(z)jj + t′G′

k(z
′)jj
)
.(79)

By assumption (8) and Corollary 3.3, we have the following almost sure convergence as N
goes to infinity and k

N
goes to u in (0, 1)

eitz+it′z′
N−1∏

j=1

φN

(
tGk(z)jj + t′G′

k(z
′)jj
)
−→
N→∞

e
itz+it′z′+ρu

z,z′
(t,t′)

.

Almost surely, for any t, t′, the map (z, z′) 7→ eitz+it′z′
∏N−1

j=1 φN

(
tGk(z)jj + t′G′

k(z
′)jj
)
is

analytic on Csgn t ×Csgn t′ and bounded by one. Hence, with the same arguments as in the
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previous section, we get almost surely and for any t, t′ so that t/ℑz and t′/ℑz′ are positive,
the uniform convergence for the second derivatives on compact subsets. The truncations
of the integrals can be suppressed as in the previous section, we obtain the almost sure
convergence

Eak
fk × f ′′

k −→
N→∞

∫ sgnz ∞

0

∫ sgnz′ ∞

0

1

tt′
∂2
z,z′e

itz+it′z′+ρu
z,z′

(t,t′)
dtdt′.

�

Hence we have proved the convergences (55) and (56). This completes the proof of
Theorem 1.3.

4. Fixed point characterizations

In this section, we provide characterizations of the functions ρz and ρuz,z′ involved in the
covariance of the limiting process of Theorem 1.3 as fixed points of certain functions. Lévy
matrices and Wigner matrices with exploding moments are considered in a unified way.

4.1. Fixed point characterization of ρz(·): proof of Theorem 1.5. We now prove
the fixed point equation for the non random function involved in the Lemma 3.4, given for
z ∈ C+ and λ > 0 by,

ρz(λ) = lim
N→∞

ρNz (λ) = lim
N→∞

1

N

N∑

j=1

Φ(λGk(z)jj),

where we have proved that this convergence holds almost surely in Corollary 3.3. Note
however that under the assumptions of Theorem 1.5, the arguments below provide another
proof of this convergence, see next section for details.

We denote in short A for Ak, G for Gk and a for ak in the following, and we do not
detail the steps of the proof, which are very similar to those in [10] and Corollary 3.3, but
outline them. Since we have already seen that ρ is analytic in Corollary 3.3 we need only
to prove the fixed point equation. Let A1 be the N − 2×N − 2 principal submatrix of A
obtained removing the first row and the first column of A, and let G1(z) := (z − A1)

−1.
Let a1 be the first column of A where the first entry has been removed. So using first
the concentration lemma 6.4, then exchangeability of the G(z)jj ’s, then Schur complement
formula (see [1, Lem. 2.4.6]), and then the fact that we can get rid of the off diagonal
terms by the same argument as in the proof of Lemma 3.1 since Φ is continuous on C−,
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we have for all z ∈ C+

E[ρNz (λ)] = E[Φ(λG(z)11)]

= E
[
Φ(

λ

z − a11 − a∗
1G1(z)a1

)
]
+ o(1)

= E

[

Φ
( λ

z −∑N−1
j=1 a1(j)2G1(z)jj

)]

+ o(1).

Then we use Hypothesis made at (18) to get

E[ρNz (λ)] =

∫ ∞

0

g(y)E[ei
y
λ
(z−

∑

j a1(j)2G1(z)jj)]dy + o(1)

=

∫ ∞

0

g(y)ei
y
λ
z
E

[ N−1∏

j=1

φN(
y

λ
G1(z)jj)

]

dy + o(1).

Using the definition of Φ and the fact that we assumed that it is bounded on every compact
subset (since ρN has non positive real part we can cut the integral to keep y bounded up
to a small error, as in the previous sections), we have

E[ρNz (λ)] =

∫ ∞

0

g(y)ei
y
λ
z
E

[

e
1
N

∑

j Φ( y
λ
G1(z)jj)

]

dy + o(1)

=

∫ ∞

0

g(y)ei
y
λ
z
E

[

eρ
N−1
z ( y

λ
)
]

dy + o(1)

= λ

∫ ∞

0

g(λy)eiyzE
[

eρ
N−1
z (y)

]

dy + o(1).

Now, since ℜ(ρN−1) ≤ 0 and g satisfies (19), we may use Corollary 3.3 to take the large
N limit and we get (20) by dominated convergence theorem (by Lemma 6.2, ρN−1

z can be
replaced by ρNz in the above formula).

Let us now prove uniqueness of the solutions to this equation. Suppose that there are
two solutions ρz(λ), ρ̃z(λ). For z fixed, let us define ∆(λ) := |ρz(λ)− ρ̃z(λ)|. Then for all
λ, we have, by the hypothesis made on g in Hypothesis made at (18),

∆(λ) ≤ λ

∫ ∞

0

|g(λy)|e−yℑz∆(y)dy

≤ K

(

λγ+1

∫ 1
λ

0

yγe−yℑz∆(y)dy + λκ+1

∫ ∞

1
λ

yκe−yℑz∆(y)dy

)

≤ K

(

λγ+1

∫ ∞

0

yγe−yℑz∆(y)dy + λκ+1

∫ ∞

0

yκe−yℑz∆(y)dy

)
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It follows that I1 :=

∫ ∞

0

λγe−λℑz∆(λ)dλ and I2 :=

∫ ∞

0

λκe−λℑz∆(λ)dλ satisfy

I1 ≤ K

(

I1

∫ ∞

0

λ2γ+1e−λℑzdλ + I2

∫ ∞

0

λγ+κ+1e−λℑzdλ

)

,

I2 ≤ K

(

I1

∫ ∞

0

λγ+κ+1e−λℑzdλ+ I2

∫ ∞

0

λ2κ+1e−λℑzdλ

)

.

For ℑz large enough, the integrals above are strictly less that 1
2K

), so for ℑz large enough,
I1 = I2 = 0. It follows that for any fixed λ, ρz(λ) and ρ̃z(λ) are analytic functions of z
which coincide for ℑz large enough, hence are equal.

4.2. Fixed point characterization of ρz,z′(·, ·): proof of Theorem 1.6. We now find a
fixed point system of equations for the non random function of Corollary 3.3. For λℑz ≥ 0
and λ′ℑz′ ≥ 0, we set

ρN,k,1
z,z′ (λ, λ′) =

1

k − 1

k−1∑

j=1

Φ(λGk(z)jj + λ′G′
k(z

′)jj)

ρN,k,2
z,z′,k(λ, λ

′) =
1

N − k − 1

N−1∑

j=k

Φ(λGk(z)jj + λ′G′
k(z

′)jj),

where we recall that Gk and G′
k are as in (17). To simplify the notations below, as in the

previous section, we denote (G,G′) instead of (Gk, G
′
k), even thought their distribution

depends on k.

In the sequel we fix, as in Section 3.3, a number u ∈ (0, 1) and will give limits in
the regime where N → ∞, k → ∞ and k/N −→ u. We shall then prove that, under

the hypotheses of Theorem 1.6 that we assume throughout this section, (ρN,k,1
z,z′ , ρN,k,2

z,z′ )
converges almost surely and that its limit satisfies a fixed point system of equations which
has a unique analytic solution with non positive real part. The convergence could be
shown with minor modifications of Lemma 3.2, but we do not need this since we work with
stronger assumptions. Using the concentration lemma 6.4 (note that Φ is not Lipschitz
but can be approximated by Lipschitz functions uniformly on compacts), it is sufficient
to prove the fixed point equation for the expectation of these parameters. Moreover, by
exchangeability of the k first entries and N − k last entries

E
[
ρN,1
z,z′,k(t, s)

]
= E

[
Φ(tG(z)11 + sG′(z′)11)

]
+ o(1),

E
[
ρN,1
z,z′,k(t, s)

]
= E

[
Φ(tG(z)NN + sG′(z′)NN)

]
+ o(1).

These functions are analytic in z, z′ ∈ C+, smooth and bounded in s, t on compact subsets
and hence tight by Arzela-Ascoli. We let ρu,sz,z′, s = 1, 2 be a limit point. We assume for
simplicity that both z and z′ have positive imaginary parts (in the general case, one only

has to replace
∫ +∞
s=0

∫ +∞
t=0

below by
∫ sgn(ℑz)∞
s=0

∫ sgn(ℑz′)∞
t=0

). Under Hypothesis made at (24),
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we can write by Schur complement formula and getting rid of the off diagonal terms (note
that all integrals are finite as they contain exponentially decreasing terms)

E
[
ρN,k,1
z,z′ (t, s)

]
=

∫ ∞

0

∫ ∞

0

ei
v
t
z+i v

′

s
z′
E[e−i v

t

∑

ℓ a1(ℓ)2G1(z)ℓℓ−i v
′

s

∑

ℓ a
′
1(ℓ)

2G′
1(z)ℓℓ ]dτ(v, v′)

+

∫

ei
v
tE[e−i v

t

∑

ℓ a1(ℓ)2G1(z)ℓℓ ]dµ(v) +

∫

ei
v
tE[e−i v

s

∑

ℓ a1(ℓ)2Gk(z
′)ℓℓ ]dµ(v) + o(1)

=

∫ ∞

0

∫ ∞

0

ei
v
t
z+i v

′

s
z′e

uEρN,k,1

z,z′
( v
t
, v

′

s
)+(1−u)EρN,k,2

z,z′
( v
t
, v

′

s
)
dτ(v, v′)

+

∫ ∞

0

ei
v
t eρz(

v
t
)dµ(v) +

∫ ∞

0

ei
v
s eρz′ (

v
s
)dµ(v) + o(1)

and

E
[
ρN,k,2
z,z′ (t, s)

]
=

∫ ∞

0

∫ ∞

0

ei
v
t
z+i v

′

s
z′
E[e−i v

t

∑

ℓ aN (ℓ)2GN (z)ℓℓ−i v
′

s

∑

ℓ a
′
N (ℓ)2G′

N (z)ℓℓ ]dτ(v, v′)

+

∫

ei
v
tE[e−i v

t

∑

ℓ aN (ℓ)2GN (z)ℓℓ ]dµ(v) +

∫

ei
v
tE[e−i v

s

∑

ℓ aN (ℓ)2Gk(z
′)ℓℓ ]dµ(v) + o(1)

=

∫ ∞

0

∫ ∞

0

ei
v
t
z+i v

′

s
z′e

uEρN,k,1

z,z′
( v
t
, v

′

s
)+(1−u)ρz(

v
t
)+(1−u)ρz′ (

v′

s
)
dτ(v, v′)

+

∫ ∞

0

ei
v
t eρz(

v
t
)dµ(v) +

∫ ∞

0

ei
v
s eρz′ (

v
s
)dµ(v) + o(1)

where we used that a1(ℓ) = a′
1(ℓ) for all ℓ whereas aN (ℓ) = a′

N (ℓ) for ℓ ≤ k and are
independent otherwise, that ρNz converges towards ρz, and that

1

k − 2

k−2∑

j=1

Φ(λG1(z)jj + λ′G′
1(z

′)jj) ∼ ρN,k,1
z,z′

1

N − k − 2

N−2∑

j=k

Φ(λGN(z)jj + λ′G′
N(z

′)jj) ∼ ρN,k,2
z,z′ ,

by Lemma 6.2 (by continuity of Φ, it can be approximated by Lipschitz functions). Hence

we find that the limit points ρu,1z,z′, ρ
u,2
z,z′ of ρ

N,k,1
z,z′ , ρN,k,2

z,z′ satisfy (25). Moreover,

ρN,k
z,z′ = uρN,k,1

z,z′ + (1− u)ρN,k,2
z,z′ + o(1)

gives

ρuz,z′ = uρu,1z,z′ + (1− u)ρu,2z,z′ .

Let ρ and ρ̃ be solutions of Equation (25) with non positive real parts (note here that
ρz(u) is given and µ is so that the above integrals are finite; hence the last two terms in
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both equations play the role of a finite given function).

∆(t, s) := |ρu,1z,z′(t, s)− ρ̃u,2z,z′(t, s)|+ |ρu,1z,z′(t, s)− ρ̃u,2z,z′(t, s)|

≤ 2

∫ ∞

0

∫ ∞

0

e−ℑzvt−1−ℑz′v′s−1 d|τ |(v, v′)
dvdv′

∆(
v

t
,
v′

s
)dvdv′

≤ 2ts

∫ ∞

0

∫ ∞

0

e−ℑzv−ℑz′v′K
(
(vt)γ1vt∈]0,1] + (vt)κ1vt∈]1,∞[

)

×
(
(v′s)γ

′1v′ s∈]0,1] + (v′s)κ
′1v′ s∈]1,∞[

)
∆(v, v′)dvdv′

≤ 2Kts
(
tγsγ

′

I∆(γ, γ
′) + tγsκ

′

I∆(γ, κ
′) + tκsγ

′

I∆(κ, γ
′) + tκsκ

′

I∆(κ, κ
′)
)
,

where for (α, α′) ∈ {γ, κ} × {γ′, κ′}, we have set

I∆(α, α
′) :=

∫ ∞

0

∫ ∞

0

e−ℑzv−ℑz′v′∆(v, v′)vαv′
α′

dvdv′.

We put I(α, α′) = I1(α, α
′) where 1 denote the constant function equal to one. We get

after integrating both sides

I∆(α, α
′) ≤ K

(
I(α+ γ + 1, α′ + γ′ + 1)I∆(γ, γ

′) + I(α + γ + 1, α′ + κ′ + 1)I∆(γ, γ̃
′) +

I(α+ κ + 1, α′ + γ′ + 1)I∆(γ̃, γ
′) + I(α+ κ+ 1, α′ + γ̃′ + 1)I∆(γ̃, γ̃

′)
)
.

We consider ℑz,ℑz′ large enough so that I(α+β+1, α′+β ′+1) < 1
4K

for any (α, α′), (β, β ′) ∈
{γ, γ̃}×{γ′, γ̃′} to conclude that ∆(t, s) vanishes then and therefore that ρu,sz,z′ = ρ̃u,sz,z′ for ℑz
and ℑz′ big enough, s = 1 or 2. By analyticity, we conclude that the system of equations
(25) has a unique analytic solution with non positive real part. The functions ρN,k,1 and
ρN,k,2 are tight and they limits points are characterized by fixed point equations, so they
actually converge.

5. Proof of Corollary 1.4

By linearity and the fact that A is stable under complex conjugation, it is enough to
consider a single function f ∈ A. By Cauchy formula and Hypothesis (11) on f , we have
for all x ∈ R,

f(x) =
1

2iπ

∫

Γ

f(z)

z − x
dz

where Γ = R ± iǫ. Let fL(x) = 1
2iπ

∫

Γ∩{|ℜz|≥L}
f(z)
z−x

dz and observe that for L big enough,

the polynomial decay of f at infinity gives

‖fL‖TV ≤ 1

2π

∫

|x|≥L

x−γdx

∫
dy

|y − x|2 + ǫ2
≤ C(L−γ + L1−γ) .

Therefore, Lemma 6.3 shows that ZN(fL) goes to zero in probability as N goes to infinity
and then L goes to infinity: for any η > 0,

lim
L→∞

lim sup
N→∞

P(|ZN(fL)| > η) = 0.
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Fix L, δ > 0 and consider xk = −L+ kδ for k ∈ [0, R], with R = ⌊2Lδ−1⌋. Let

f̃L(x) =
1

2iπ

∫

z=y±iǫ
|y|≤L

f(z)

z − x
dz, f̃ δ

L(x) =
1

2iπ

∑

s=±1

R∑

k=0

∫ xk+1

xk

f(y+isǫ)dy×(xk+isǫ−x)−1 .

Note that for each L and ǫ > 0 there exists a finite constant K(L, ǫ) so that

‖f̃L − f̃ δ
L‖TV ≤ K(L, ǫ)δ .

Hence, Lemma 6.3 implies that ZN(f̃L) − ZN(f̃
δ
L) goes to zero in probability as N goes

to infinity and δ goes to zero for any given L, ǫ > 0. Finally, by Theorem 1.3, ZN(f̃
δ
L)

converges in law towards a centered Gaussian variable with covariance

1

4π2

∑

s=±1

R∑

k=0

∑

s′=±1

R∑

k′=0

∫ xk+1

xk

f(y + isǫ)dy

∫ xk′+1

xk′

f(y + is′ǫ)dyC(xk + iǫ, xk′ + iǫ)

The above covariance converges as δ goes to zero by smoothness of the functions C towards

1

4π2

∫

|x|≤L

∫

|x′|≤L

dxdx′f(x+ i± ǫ)f(x′ + i± ǫ)C(x+ i± ǫ, x′ + i± ǫ) .

Therefore, writing

ZN(f) = ZN(fL) + [ZN(f̃L)− ZN(f̃
δ
L)] + ZN(f̃

δ
L)

and fixing L large enough and then δ small enough so that the first two terms are small
with high probability, we conclude that ZN(f) is close to ZN(f̃

δ
L) and therefore converges in

law towards the announced centered Gaussian variable. The generalization to the closure
of A for the total variation norm is a direct consequence of Lemma 6.3.

6. Appendix

6.1. Concentration of random matrices with independent rows and linear alge-

bra lemmas. This section is mostly a reminder of results from [12] and [13].

The total variation norm of f : R → R is

‖f‖TV := sup
∑

k∈Z
|f(xk+1)− f(xk)|,

where the supremum runs over all sequences (xk)k∈Z such that xk+1 ≥ xk for any k ∈ Z.
If f = 1(−∞,s] for some real s then ‖f‖TV = 1, while if f has a derivative in L1(R), we get

‖f‖TV =

∫

|f ′(t)| dt.

The next lemma is an easy consequence of Cauchy-Weyl interlacing Theorem. It is an
ingredient of the proof of Lemma 6.3.
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Lemma 6.1 (Interlacing of eigenvalues). Let A be an n × n hermitian matrix and B a
principal minor of A. Then for any f : R → C such that ‖f‖TV ≤ 1 and lim|x|→∞ f(x) = 0,

∣
∣
∣
∣
∣

n∑

i=1

f(λi(A))−
n−1∑

i=1

f(λi(B))

∣
∣
∣
∣
∣
≤ 1.

Lemma 6.2. Let A1, A2 be n× n random Hermitian matrices and Ã1, Ã2 be n− 1× n− 1
matrices obtained from A1 and A2 respectively by removing the ℓ-th row and column, for
some ℓ ∈ {1, . . . , n}. Let z, z′ ∈ C, t, t′ ∈ R so that ℑzt > 0 and ℑz′t′ > 0 and set G =

(z−A1)
−1, G′ = (z′−A2)

−1 and G̃ = (z− Ã1)
−1, G̃′ = (z′− Ã2)

−1. Then, for any function
f on Bz,z′,t,t′ := {g ∈ C− ; |g| ≤ C(z, z′, t, t′)} with C(z, z′, t, t′) = t(ℑz)−1 + t′(ℑz′)−1, we
have

(80)

∣
∣
∣
∣
∣

1

n

n∑

k=1

f(tGkk + t′G′
kk)−

1

n

n−1∑

k=1

f(tG̃kk + t′G̃′(kk))

∣
∣
∣
∣
∣
≤ C(z, z′, t, t′)

n
‖f‖Lip +

‖f‖∞
n

,

where ‖f‖Lip := supx 6=y
|f(y)−f(x)|

|y−x| and ‖f‖∞ := supx |f(x)|, both supremums running over

the elements of Bz,z′,t,t′.

Proof. The proof is similar to [12, (91)]. We denote by Ā1, Ā2 the n × n matrices whose
entries are the same as A1, A2 except for the ℓth rows and column which have zero entries.
We denote Ḡ, Ḡ′ the corresponding Stieltjes transform. Then, G̃, G̃′ equal Ḡ, Ḡ′ except
at the ℓth column and row (where it is equal to z−11i=j=k). Therefore, noting M̄ =

tḠ(z) + t′Ḡ′(z′) and M̃ = tG̃(z) + t′G̃′(z), we conclude that
∣
∣
∣
∣
∣

1

n

n∑

k=1

f(M̃kk)−
1

n

n−1∑

k=1

f(M̄kk)

∣
∣
∣
∣
∣
≤ ‖f‖∞

n
.

Moreover, let M = tG(z)+t′G′(z′) and note thatA1−Ā1 and A2−Ā2 have rank one so that
M−M̄ has rank one. On the other hand it is bounded uniformly by C(z, z′, t, t′) = t

ℑz
+ t′

ℑz′
.

Hence, we can write M − M̄ = cuu∗ with a unit vector u and c bounded by C(z, z′, t, t′).
Therefore, since f is Lipschitz,

∣
∣
∣
∣
∣

1

n

n∑

k=1

f(Mkk)−
1

n

n−1∑

k=1

f(M̄kk)

∣
∣
∣
∣
∣

≤ ‖f‖Lip
1

n

n∑

k=1

|Mkk − M̄kk|

≤ ‖f‖Lip
1

n

n∑

k=1

C(z, z′, t, t′)〈ek, u〉2

=
C(z, z′, t, t′)‖f‖Lip

n
.

(80) follows.

�
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Lemma 6.3 (Concentration for spectral measures [14]). Let A be an n× n random Her-
mitian matrix. Let us assume that the vectors (Ai)1≤i≤n, where Ai := (Aij)1≤j≤i ∈ Ci, are
independent. Then for any f : R → C such that ‖f‖TV ≤ 1 and E|

∫
f dµA| < ∞, and

every t ≥ 0,

P

(∫

f dµA − E

∫

f dµA ≥ t

)

≤ exp

(

−nt2

2

)

.

Lemma 6.4 (Concentration for the diagonal of the resolvent [12]). Let A be an n × n
random Hermitian matrix and consider its resolvent matrix G(z) = (A − z)−1, z ∈ C+.
Let us assume that the vectors (Ai)1≤i≤n, where Ai := (Aij)1≤j≤i ∈ Ci, are independent.
Then for any f : C− → R such that ‖f‖Lip ≤ 1, and every t ≥ 0,

P

(∣
∣
∣
∣
∣

1

n

n∑

k=1

f(G(z)kk)− E
1

n

n∑

k=1

f(G(z)kk)

∣
∣
∣
∣
∣
≥ t

)

≤ 2 exp

(

−nℑ(z)2t2
8

)

.

Let A′ be an n× n self-adjoint matrices so that A′
ij = Aij , i∧ j ≤ k and (A′

ij)j≥k+1,i≥k+1

is independent from (Aij)j≥k+1,i≥k+1 but with the same distribution. Let G(z) = (z −A)−1

and G′(z) = (z − A′)−1 and set for a Lipschitz function f on C
−
,

ρN,k,1
z,z′ (λ, λ′)[f ] : =

1

k

k∑

ℓ=1

f(λG(z)ℓℓ + λ′G(z′)ℓℓ)

ρN,k,2
z,z′ (λ, λ′)[f ] =

1

N − k

N∑

ℓ=k+1

f(λG(z)ℓℓ + λ′G(z′)ℓℓ)

Then, for λ/ℑz ≥ 0, λ′/ℑz′ ≥ 0, we have for all δ ≥ 0, s ∈ {0, 1},

P

(∣
∣
∣ρ

N,k,s+1
z,z′ (λ, λ′)[f ]− E[ρN,k,s+1

z,z′ (λ, λ′)[f ]
∣
∣
∣ ≥ δ

)

≤ 2e
− δ2((k−1)1−s+(N−k−1)s)

8‖f‖2
Lip

C(λ,λ′,t,t′)2

with

C(λ, λ′, t, t′) =
2t

ℑz +
2t′

ℑz′ .

Proof. The first point is proved as in [12, Lemma C.3]. We outline the proof of the second

point which is very similar to [12, Lemma C.3]. We concentrate on ρN,k,1
λ,λ′ , the other case

being similar. By Azuma-Hoefding inequality, it is sufficient to show that

Xp := E[ρN,k,1
z,z′ (λ, λ′)[f ]|Fp]− E[ρN,k,1

z,z′ (λ, λ′)[f ]|Fp−1]

is uniformly bounded by ‖f‖LipC(λ, λ′, t, t′)k−1. Here Fp is the sigma-algebra generated
with respect to the p first column (and row) vectors. Note that Xp can be written as the
conditional expectation of the difference of the parameter f evaluated at two sets A,A′

and Ã, Ã′ which differ only at the pth vector column (and row). Hence, we may follow the
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proof of Lemma 6.2 to conclude that

|Xp| ≤
‖f‖Lip

k

k∑

ℓ=1

|(M − M̃)ℓℓ| =
|c|‖f‖Lip

k

k∑

ℓ=1

< u, ek >
2≤ |c|‖f‖Lip

k
.

�

Let H = [hij ] be an N ×N Hermitian matrix and z ∈ C\R. Define G := (z −H)−1.

Lemma 6.5 (Difference of traces of a matrix and its major submatrices). Let Hk be the
submatrix of H obtained by removing its k-th row and its k-th column and set Gk :=
(z − Hk)

−1. Let also ak be the k-th column of H where the k-th entry has been removed.
Then

(81) Tr(G)− Tr(Gk) =
1 + a∗

kG
2
kak

z − hkk − a∗
kGkak

.

Moreover,

(82) |Tr(G)− Tr(Gk)| ≤ π|ℑz|−1.

Proof. For (81), see [4, Th. A.5]. For (82), see Lemma 6.1. �

Lemma 6.6. With the notation introduced above the previous lemma, for each 1 ≤ j ≤ N ,

(83) ℑz × ℑGjj < 0,

(84) |ℑz| × |(G2)jj| ≤ |ℑGjj| ≤ |ℑz|−1

and for any a = (a1, . . . , aN) ∈ CN ,

(85)

∣
∣
∣
∣
∣

1 +
∑

j |aj |2(G2)jj

z −∑j |aj |2Gjj

∣
∣
∣
∣
∣
≤ 2|ℑz|−1.

Proof. Set z = x+ iy, x, y ∈ R. Let λ1, . . . , λN be the eigenvalues of H , associated with the
orthonormalized collection of eigenvectors u1, . . . ,uN . Let also ej devote the jth vector of
the canonical basis. Then (83) and (84) follow directly from the following:

(86) |(G2)jj| = |
N∑

k=1

|〈ej,uk〉|2
(z − λk)2

| ≤
N∑

k=1

|〈ej,uk〉|2
(x− λk)2 + y2

ℑGjj = −
N∑

k=1

|〈ej,uk〉|2y
(x− λk)2 + y2

Let us now prove (85). By (83), we know that ℑz and −ℑGjj have the same sign, so

(87)

∣
∣
∣
∣
∣

1

z −∑j |aj|2Gjj

∣
∣
∣
∣
∣
≤ 1

|ℑ(z −∑j |aj|2Gjj)|
≤ |ℑz|−1.

Hence it remains only to prove that

(88)

∣
∣
∣
∣
∣

∑

j |aj |2(G2)jj

z −∑j |aj |2Gjj

∣
∣
∣
∣
∣
≤ |ℑz|−1,
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We have

(89)

∣
∣
∣
∣
∣

∑

j |aj |2(G2)jj

z −∑j |aj|2Gjj

∣
∣
∣
∣
∣
≤

∑

j |aj|2|(G2)jj|
|ℑ(z −∑j |aj|2Gjj)|

.

By the first part of (84), the numerator of the RHT of (89) is ≤ |ℑz|−1
∑

j |aj |2|ℑGjj|.
Moreover, as ℑz and −ℑGjj have the same sign, the denominator of the RHT of (89) is
equal to |ℑz|+∑j |aj |2|ℑGjj|. As a consequence,

∑

j |aj |2|(G2)jj|
|ℑ(z −∑j |aj |2Gjj)|

≤ |ℑz|−1

∑

j |aj |2|ℑGjj|
|ℑz|+∑j |aj |2|ℑGjj|

≤ |ℑz|−1

and (88) is proved. �

6.2. CLT for martingales. Let (Fk)k≥0 be a filtration such that F0 = {∅,Ω} and let
(Mk)k≥0 be a square-integrable complex-valued martingale starting at zero with respect to
this filtration. For k ≥ 1, we define the random variables

Yk := Mk −Mk−1 vk := E[|Yk|2 | Fk−1] τk := E[Y 2
k | Fk−1]

and we also define

v :=
∑

k≥1

vk τ :=
∑

k≥1

τk L(ε) :=
∑

k≥1

E[|Yk|21|Yk |≥ε].

Let everything depend on a parameter N , so that Fk = Fk(N), Yk = Yk(N), v =
v(N), τ = τ(N), L(ε) = L(ε,N), . . .

Then we have the following theorem. It is proved in the real case at [11, Th. 35.12].
The complex case can be deduced noticing that for z ∈ C, ℜ(z)2,ℑ(z)2 and ℜ(z)ℑ(z) are
linear combinations of z2, z2, |z|2.

Theorem 6.7. Suppose that for some constants v ≥ 0, τ ∈ C, we have the convergence in
probability

v(N) −→
N→∞

v τ(N) −→
N→∞

τ

and that for each ε > 0,

L(ε,N) −→
N→∞

0.

Then we have the convergence in distribution
∑

k≥1

Yk(N) −→
N→∞

Z,

where Z is a centered complex Gaussian variable such that E(|Z|2) = v and E(Z2) = τ .
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6.3. On the Hadamard product of Hermitian matrices.

Proposition 6.8. Let A1, . . . , Ap be N by N Hermitian random matrices whose entries
have all their moments. Then, there exists a family of random variables (a1, . . . , ap) whose
joint distribution is given by:

E[an1
1 . . . anp

p ] = E

[

1

N
Tr[An1

1 ◦ · · · ◦Anp
p ]

]

, ∀n1, . . . , np ≥ 0,

where ◦ denotes the Hadamard (entry-wise) product.

Proof. Step 1. We first assume that the matrices are deterministic and have distinct eigen-
values. By the spectral decomposition, for j = 1, . . . , p, we have Aj =

∑N
i=1 λj,iuj,iu

∗
j,i

where Λj = (λj,i)i=1,...,N is the family of eigenvalues of Aj arranged in increasing order, and
Uj = (uj,i)i=1,...,N is the family of associated eigenvectors. For any n1, . . . , np ≥ 0, one has

1

N
Tr[An1

1 ◦ · · · ◦ Anp
p ] =

1

N

N∑

k=1

(
An1

1

)
(k, k) . . .

(
Anp

p

)
(k, k)

=
1

N

N∑

k=1

( N∑

i1=1

λn1
1,i1

u1,i1u
∗
1,i1

)

(k, k) . . .

( N∑

ip=1

λ
np

p,ip
up,ipu

∗
p,ip

)

(k, k)

=
1

Np

N∑

i1,...,ip=1

λn1
1,i1

. . . λ
np

p,ip ×
(

Np−1

N∑

k=1

∣
∣u1,i1(k)

∣
∣2 . . .

∣
∣up,ip(k)

∣
∣2
)

.

For j = 1, . . . , p, we set dµΛj
= 1

N

∑N
i=1 δλj,i

the empirical eigenvalues distributions of Aj .

We denote FΛj
(t) = µΛj

(
(−∞, t]

)
the cumulative function of dµΛj

. Since the eigenvalues of

the matrices are distinct, one has FΛj
(λj,i) =

i
N

for any i = 1, . . . , N , j = 1, . . . , p. Hence,
we have

1

N
Tr[An1

1 ◦ · · · ◦ Anp
p ] =

∫

Rp

λn1
1 . . . λnp

p fN
(
(λj,Λj, Uj)j=1,...,p

)
dµΛ1(λ1) . . .dµΛp(λp),

where fN
(
(λj,Λj, Uj)j=1,...,p

)
=

(

Np−1
∑N

k=1

∏p
j=1

∣
∣uj,(NFΛj

(λj))(k)
∣
∣
2
)

. Hence, a family of

random variables (a1, . . . , ap) as in the proposition exists and its joint distribution has
density fN

(
(·,Λj, Uj)j=1,...,p

)
with respect to µΛ1 ⊗ · · · ⊗ µΛp.

Step 2. We now assume that (A1, . . . , Ap) are random and that their joint distribu-
tions have a density with respect to the Lesbegue measure on Hp

N , where HN is the
space of Hermitian matrices of size N . In particular, the matrices have almost surely
N distinct eigenvalues, see [18]. The spectral decompositions of the previous step are
measurable (see [18, Section 5.3]) and, with the above notations (Λj, Uj) for eigenval-
ues and eigenvectors of Aj , we can write the joint distribution of (A1, . . . , Ap) in the form
gN
(
(Λj, Uj)j=1,...,p

)
dµ∆N

(Λ1) . . .dµ∆N
(Λp)dµUN

(U1) . . .dµUN
(Up). The symbol µ∆N

denotes
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the Lebesgue measure on ∆N = {(x1, . . . , xN)|x1 < · · · < xN} and µUN
is the Haar measure

on the set UN of unitary matrices of size N . For any n1, . . . , np ≥ 0, one has

E

[
1

N
Tr[An1

1 ◦ · · · ◦ Anp
p ]

]

=

∫

∆p
N×Up

N

1

Np

N∑

i1,...,ip=1

λn1
1,i . . . λ

np

p,ifN
(
(λj,i,Λj, Uj)j=1,...,p

)

× gN
(
(Λj, Uj)j=1,...,p

)
dµ∆N

(Λ1) . . .dµ∆N
(Λp)dµUN

(U1) . . .dµUN
(Up)

=
1

Np

N∑

i1,...,ip=1

∫

∆p
N

λn1
1,i . . . λ

np

p,jhN

(
(λj,i,Λj)j=1,...,p

)
dµ∆N

(Λ1) . . .dµ∆N
(Λp),

where fN is as in the previous step and

hN

(
(λj,i,Λj)j=1,...,p

)

=

∫

Up
N

fN
(
(λj,i,Λj, Uj)j=1,...,p

)
gN
(
(Λj, Uj)j=1,...,p

)
dµUN

(U1), . . . , dµUN
(Up).

For any i1, . . . , ip = 1, . . . , N , we have
∫

∆p
N

λn1
1,i . . . λ

np

p,ihN

(
(λj,i,Λj)j=1,...,p

)
dµ∆N

(Λ1), . . . , dµ∆N
(Λp)

=

∫

Rp

λn1
1 . . . λnp

p h
(i1,...,ip)
N (λ1, . . . , λp)dλ1, . . . , dλp,

where h
(i1,...,ip)
N (λ1, . . . , λp) is obtained by integrating with respect to the variables λk1 , . . . , λkp

for k1 6= i1, . . . , kp 6= ip. We finally obtain

E

[
1

N
Tr[An1

1 ◦ · · · ◦ Anp
p ]

]

=

∫

Rp

λn1
1 , . . . , λnp

p h̄N (λ1, . . . , λp)dλ1, . . . , dλp,

where h̄N = 1
Np

∑

i1,...,ip
h
(i1,...,ip)
N . Hence, a family of random variables (a1, . . . , ap) as in the

proposition exists and its joint distribution has density h̄N with respect to the Lebesgue
measure on R

p.

Step 3. We now consider the general case. Let (X1, . . . , Xp) be a family of indepen-
dent random matrices, independent of (A1, . . . , Ap), distributed according to the standard
Gaussian measure on HN with respect to the inner product 〈A,B〉 = N Tr[AB]. By the
regularizing process of convolution on Hermitian space, for any ε > 0, the joint distribution
of (Aε

1, . . . , A
ε
p) = (A1 + εX1, . . . , Ap + εXp) has a density with respect to the Lebesgue

measure. By the previous step, there exists a family of random variables (aε1, . . . , a
ε
p) such

that E
[
(aε1)

n1 . . . (aεp)
np
]
= E

[
1
N
Tr
[
(Aε

1)
n1 ◦ · · · ◦ (Aε

p)
np
]]

for any n1, . . . , np ≥ 0. As ε
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goes to zero, (aε1, . . . , a
ε
p) converges in moments to a family of random variables as in the

proposition. �
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