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Abstract

This study investigates thermodynamically consistent dissipative hardening
in gradient crystal plasticity in a large deformation context. A viscoplastic
model which accounts for constitutive dependence on the slip, the slip gradi-
ent as well as the slip rate gradient is presented. The model is an extension
of that due to Gurtin (Gurtin, M. E., J. Mech. Phys. Solids, 52 (2004)
2545–2568 and Gurtin, M. E., J. Mech. Phys. Solids, 56 (2008) 640–662)),
and is guided by the viscoplastic model and algorithm of Ekh et al. (Ekh,
M., Grymer, M., Runesson, K. and Svedberg, T., Int. J. Numer. Meths En-
gng, 72 (2007) 197–220) whose governing equations are equivalent to those of
Gurtin for the purely energetic case. In contrast to the Gurtin formulation
and in line with that due to Ekh et al., viscoplasticity in the present model
is accounted for through a Perzyna-type regularization. The resulting theory
includes three different types of hardening: standard isotropic hardening is
incorporated as well as energetic hardening driven by the slip gradient. In
addition, as a third type, dissipative hardening associated with plastic strain
rate gradients is included. Numerical results investigating the different hard-
ening cases are presented.

Keywords: gradient crystal plasticity, dissipative hardening, dual mixed
algorithm
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1. Introduction

Almost 150 years ago, Tresca [1] was the first to formulate a plasticity
theory in a series of papers. The classical theory of plasticity has since un-
dergone steady and significant development, resulting in an elegant set of
theories which have served as the basis for numerous theoretical and compu-
tational studies (see for example [2, 3]).

It has been recognized for some time that the conventional theories of
plasticity are not capable of modeling size effects at the mesoscale such as
grain size-dependent hardening in polycrystals or widths of localized shear
bands in materials undergoing strain-softening. The influence of the mi-
crostructure on the macroscopic material behavior is of particular interest in
metallic polycrystals, for example. These are used in automobile or aircraft
industries for example, where the optimization of the material properties (not
only with respect to the microstructure, of course) is very advanced.

In 1984 Aifantis [4] formulated an extended plasticity theory which has
been followed by extensive work on the development of models that account
for size effects. These generally have a non-local form, a popular example
of which are the strain gradient plasticity models. A non-exhaustive list
of theories for strain gradient crystal plasticity theories includes the works
of Acharya et al. [5], Bassani [6], Borg [7], Ekh et al. [8], Evers et al. [9],
Gurtin [10, 11], respectively Gurtin and Anand [12], Han et al. [13], Kuroda
and Tvergaard [14] and Ohno and Okumura [15], for example. Within the
context of general gradient plasticity even more publications can be found:
see for example the work by Gudmundson [16]. A large number of those are
purely energetic, see for example Bargmann et al. [17], Ekh et al. [8], Evers
et al. [9, 18], Gurtin [19] and Kuroda and Tvergaard [20], to name just a few.
However, the plastically deforming crystal exhibits energetic and dissipative
processes. This work is concerned with a gradient crystal plasticity theory
that includes energetic and dissipative gradient contributions.

There have been relatively few computational investigations of problems
involving strain gradient plasticity. Examples include the works [21, 22, 23,
24] which deal with the Aifantis model. With regard to gradient crystal plas-
ticity, Bittencourt et al. [25] have developed and applied an algorithm for the
energetic model of gradient plasticity presented in [19]. In this contribution
we rely on the dual mixed finite element algorithm proposed by Svedberg
and Runesson [26].

The goal of this work is to formulate and carry out a numerical implemen-
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tation of a model of single crystal gradient plasticity that includes dissipative
microstresses. The point of departure is the theory due to Gurtin [10, 11]. In
this theory microforces are introduced as work-related conjugate quantities
to slips and slip gradients; a principle of virtual power then leads to macro-
and microforce balance equations. Constitutive equations for plastic flow are
developed within a framework that is thermodynamically consistent.

The introduction of a dissipative material length scale is attached to the
dissipative microstress. Recently, several works suggesting that within the
context of higher-order strain gradient plasticity more than one internal ma-
terial length scale should be introduced, cf. e.g. Anand et al. [27], Bardella
and Giacomini [28], Fleck and Hutchinson [29], Gurtin [30], Lele and Anand
[31, 32], Niordson and Legarth [33]. In any case, at a second stage, the ma-
terial length scales are to be determined by experiments. As noted by Evans
and Hutchinson [34], for example, the definitions of these length scales are
dependent on the underlying theory. The order of magnitude for an ener-
getic length scale associated with the plastic strain gradient can be estimated
based on physical considerations (see e.g. [34, 35]) for some theories. Unfor-
tunately, no such estimate or relation has been presented for a dissipative
length scale associated with the plastic slip rate gradient.

Gurtin’s theory is one of viscoplasticity. There is a power-law dependence
on a generalized plastic strain rate, and no elastic region or yield surface
delineates a threshold for plastic flow. In the model developed and considered
in this work Gurtin’s theory is extended to include the existence of a yield
surface depending on the generalized stresses. Furthermore, viscoplasticity
is accounted for as a Perzyna-type regularization (see [3] for a summary
account) of the flow law. This approach borrows from the work of Ekh et
al. [8] who use a Perzyna regularization in the context of a theory that is
equivalent to the purely energetic version of Gurtin’s theory1.

The present work is guided further by that of Ekh et al. in that the
finite element approximation is of dual-mixed type, in which an independent
variable is introduced for the slip gradients. In addition to the modification

1Gurtin’s microforce balance is also applied by Kuroda and Tvergaard [14], but they
only study energetic microforces. Ohno and Okumura [15] incorporated their theory
into Gurtin’s microforce balance theory studying only energetic contributions. Moreover,
Ertürk et al. [36] investigated in detail how the model of Evers et al. [9] can be recast within
Gurtin’s microforce formulation. The microforce is derived via the physical definition of
the Evers-type back stress which plays the main role in their formulation [9].
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of Gurtin’s original model as described earlier, a further novel feature of
the present work lies in the manner in which the dissipative microstress is
incorporated into the algorithm. Here, it is treated as an additional variable,
together with a corresponding additional flow equation.

The approach taken is that of first formulating the rate-independent the-
ory. This allows for the introduction of the yield function as well as an
associative flow law, which play a central role and lead to a constitutive
equation for a dissipative microstress ξdisα . In a subsequent step the formu-
lation is generalized to viscoplasticity in the spirit of the ideas of Ekh et al.
[8], that is, via a Perzyna-type regularization. The approach smoothly unites
and extends the ideas of Gurtin and co-workers [30, 11, 32] and Ekh et al.
[8], and is essentially a large-deformation counterpart of the rate-independent
theory presented and analyzed by Reddy [37].

The rest of this work is structured as follows. Section 2 is devoted to
a presentation of the basic kinematics. This is followed in Section 3 by
a brief reiteration of the microforce balance equations as set out in [10].
Still following the approach in the last-mentioned work, the free energy and
dissipation inequality are introduced in Section 4. The defect part of the free
energy depends on the slip gradient ∇γα, and this leads to the definition of
energetic and dissipative microstresses, and a reduced dissipation inequality
which forms the basis of the associative flow theory.

The extension to viscoplasticity is presented in Section 5 and the set
of equations to be solved is formulated. The theory is implemented into a
two-dimensional finite element code as described in Section 6. This is done
within the context of a dual-mixed finite element method, similar to that
proposed by Ekh et al. [8]. In addition to the displacement u, the plastic
slip gradient ∇γα is modeled as an additional independent field. The fully
coupled problem then comprises the global finite element equations for the
displacement and slip gradients together with local equations for the slips and
dissipative microstresses. Finally, some numerical examples are discussed in
Section 7.

2. Kinematics

A solid body B is considered to be a collection of material points. Let
X denote the position of a material point in the undeformed and stress-free
configuration B0, the region occupied by the body B at an initial time t0.
Its boundary is denoted by ∂B0. The body B deforms under the action of
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body forces in its domain and surface tractions and prescribed displacements
on complementary parts of its boundary. All fields on B0 are assumed to
be continuous and at least once continuously differentiable with respect to
position and, in the case of time-dependent problems, also with respect to
time t. Moreover, in this work B0 is assumed not to contain singular surfaces.
This assumption is justified because the modeling of material instabilities in
materials with microstructure and possessing internal length scales in this
work results in diffuse rather than sharp interfaces between homogeneous
regions in B0.

The motion of the reference configuration B0 is described by the vector-
valued function

ϕ : B0 × R+ → Bt with ϕ(X, t) := ϕt(X) = x, (1)

where x denotes the position of the material point X in the deformed (spa-
tial) configuration Bt at time t. As usual, the motion ϕt is assumed to be
one-to-one, continuously differentiable, and with a continuous inverse. That
is, ϕt is required to be a diffeomorphism.

The deformation gradient F is defined by

F : T B0 → T Bt with F := ∇ϕt(X) (2)

where T B0 and T Bt are respectively the tangent spaces at X and x, and ∇
denotes the gradient operator with respect to X.

In large-strain plasticity it is assumed that the deformation gradient may
be decomposed multiplicatively into an elastic part F e and a plastic part F p,
that is,

F = F e · F p. (3)

The plastic part F p describes the deformation from the tangent space T B0 to
the intermediate tangent space T B̄ associated with the intermediate config-
uration. The plastic part of the deformation gradient arises due to inelastic
slip along the preferred crystal planes, while the elastic contribution F e ac-
counts for reversible lattice distortion and rotation.

The Green–Lagrange strain E is defined by

E :=
1

2
[F t · F − I] (4)

and the corresponding strain quantity associated with F e is defined by

Ee :=
1

2
[[F e]t · F e − Ī]. (5)
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In crystal plasticity slip takes place on specified planes and in directions
that are specified with respect to the intermediate configuration. The slip
direction and unit normal to the plane corresponding to the slip system α
are denoted respectively by sα and nα while γα represents the corresponding
scalar-valued plastic slip field. For convenience the current formulation is
restricted to quasi-static, isothermal processes.

Following Rice [38], the evolution of plastic deformation is described by
a kinematic relation in which the plastic velocity gradient tensor Lp is given
by

Lp = Ḟ
p
· [F p]−1 =

∑

α

γ̇α[sα ⊗ nα]. (6)

Here and henceforth summation is over all slip systems. The criterion for
plastic slip on a plane depends inter alia on the magnitude of the resolved
shear stress or Schmid stress τα, which is given by

τα = sα ·M · nα, (7)

with M being the Mandel stress

M = F e ·
∂Ψe

∂F e . (8)

3. Force balances

The macroscopic problem is governed by the balance of momentum, here
stated in its quasi-static form

DivP + b = 0, (9)

with P and b denoting respectively the first Piola–Kirchhoff stress tensor
and the body force. Along with the momentum balance (9) goes the traction
condition

t(N ) := P ·N , (10)

where t denotes the macroscopic traction vector and N is the macroscopic
outward unit normal vector on a surface in the material configuration.

At the microlevel, the approach due to Gurtin (see for example [10, 11])
is followed: specifically, a scalar microforce πα and vector microstress ξα
work-conjugate to slip-rate γ̇α and slip-rate gradient ∇γ̇α respectively are
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introduced, together with a surface microtraction χα conjugate to γ̇α. The
microscopic virtual power relation leads to the microscopic force balance

Div ξα + τα − πα = 0, (11)

The microforce balance (11) has to hold for every slip system α. The micro-
and the macrolevel are coupled via the Schmid stress τα, i.e. Eq. (7). In the
case of a purely elastic deformation Eq. (11) reduces to the relation πα = τα.

In analogy to Eq. (10), a microscopic traction condition is defined on the
crystal boundaries by

χα(N ) := ξα ·N , (12)

with χα denoting the microscopic traction.
Boundary conditions need to specified to accompany the microforce bal-

ance equation. There exist two very commonly used kinds: the micro-hard
boundary condition

γα = 0 on ∂B0H (13)

and the micro-free condition

ξα ·N = 0 on ∂B0F (14)

where ∂B0F and ∂B0H are complementary parts of the boundary ∂B0. The
micro-hard boundary conditions assume that the plastic slip vanishes on the
boundary, i.e. dislocations are not able to penetrate the grain boundaries.
On the other hand, micro-free conditions assume stress-free boundaries, i.e.
that the micro-stress ξα vanishes there. For a third (more advanced but more
complex) option which takes into account the degree of mismatch between
the slip systems of neighboring grains, the reader is referred to [39].

4. The free energy

We assume the existence of a free energy Ψ per unit reference volume
which depends on the elastic deformation and the slip gradients ∇γα. The
free energy is assumed to be decomposed additively into elastic and defect
contributions; that is,

Ψ = Ψe(Ee) + Ψd({∇γα}) (15)
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where each of the components is quadratic in its arguments. In particular
the elastic part Ψe has the standard St. Venant form

Ψe(Ee) =
λ

2
[trEe]2 + µtr

(

[Ee]2
)

, (16)

with λ and µ being the Lamé parameters, while the defect term is given by

Ψd({∇γα}) =
1

2

∑

α

l2α∇γα ·Hg
α · ∇γα , (17)

where Hg
α = Hg

αsα ⊗ sα is a tensor of defect moduli and ℓα is a material
parameter corresponding to a length scale, in both cases specified for each
slip system.

The free energy imbalance is used to guide the construction of a set of
constitutive relations for elastic behavior and plastic flow. It takes the form

Ψ̇− [F · P ] : Ė
e
−
∑

α

[παγ̇α + ξα · ∇γ̇α] ≤ 0 (18)

(cf. the arguments by Gurtin [10]). Substitution of Eqs. (15) and (16) in this
inequality leads, after the usual arguments, to the elastic law

F · P = F ·
∂Ψe

∂F
= λtrEe + 2µEe (19)

and the reduced dissipation inequality
∑

α

[παγ̇α + (ξα − ξenα ) · ∇γ̇α] ≥ 0 (20)

where

ξenα :=
∂Ψd

∂∇γα
= l2αH

g
α · ∇γα (21)

is the energetic component of the internal microstress. The microstress ξ

may be decomposed additively into energetic and dissipative components ξen

and ξdis , so that

ξdisα := ξα − ξenα (22)

(see for example Gurtin [11] in the context of single crystal plasticity or
Anand et al. [27] and Lele and Anand [31, 32] in the context of isotropic
materials).
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Using this definition, the reduced dissipation inequality (20) becomes

∑

α

[

παγ̇α + ξdisα · ∇γ̇α
]

≥ 0 . (23)

Elastic region and yield function.

We begin the formulation of the flow law within a rate-independent con-
text, and later generalize to the case of viscoplasticity (see [37] for a corre-
sponding development in the context of small strains).

Guided by the reduced dissipation inequality, i.e. Eq. (23), we define the
generalized stress

Sα =

(

πα

l−1
d(α)ξ

dis
α

)

(24)

where ld(α) is a dissipative length scale2 which may vary for each slip system,
and the elastic region on the α th slip plane by

Φ(Sα) = |Sα| − [Yα + κα] ≤ 0 . (25)

Here Yα is the initial yield stress on the αth slip plane and κα the hardening
stress. Furthermore,

|Sα| =
[

|πα|
2 + l−2

d(α)|ξ
dis
α |2

]1/2

. (26)

Assuming a normality law we have

γ̇α = λ̇α
∂Φα

∂πα

= λ̇α
πα

|Sα|
,

∇γ̇α = λ̇α
∂Φα

∂ξdisα

= λ̇α

l−2
d(α)ξ

dis
α

|Sα|
,

(27)

where λ̇α ≥ 0 is a scalar multiplier, together with the complementarity con-
ditions

Φα ≤ 0 , λ̇α ≥ 0 , λ̇αΦα = 0 . (28)

2Material length scales which are connected to strain rate gradients can also be found
in the contributions of e.g. Aifantis [4], Bardella and Giacomini [28], Fleck and Hutchinson
[29], Lele and Anand [31, 32], Niordson and Legarth [33], Voyiadjis and Deliktas [40].
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At flow, when Φα = 0, we have |Sα| = Yα + κα and

[

(γ̇α)
2 + l2d(α)|∇γ̇α|

2
]1/2

= λ̇α := dα (29)

where dα is the effective flow rate associated with the αth slip surface. It is
thus convenient to define a generalized strain measure

Γα =

(

γα
ld(α)∇γα

)

(30)

so that
|Γ̇α| = dα . (31)

In the case of plastic flow equations (27) may be inverted to give

πα =
|Sα|

dα
γ̇α ,

ξdisα =
|Sα|

dα
l2d(α)∇γ̇α .

(32)

For convenience linear isotropic hardening is assumed, so that

κα := H l
αkα (33)

where kα is the equivalent plastic strain on the αth slip system, defined by

k̇α := λ̇α = dα (34)

and H l
α is the local hardening modulus, i.e. a positive material constant.

This definition is a natural extension of the approach by Ekh et al. [8],
where k̇α = γ̇α was used. Furthermore, it leads to a consistent model in this
contribution.

The approach of Ekh et al. [8] differs from that of Gurtin and co-authors
and thus from what is described above. Ekh et al. [8] derive a microstress,
here denoted by κEkhα, via the second law of thermodynamics. The mi-
crostress is defined through the free energy Ψ which in addition to the gradi-
ent contribution stated in Eq. (17) depends quadratically on the plastic slip
{γα}. Moreover, it is split up additively into local and gradient hardening
contributions in the form

κEkhα := κα,l + κα,g

:=
∂Ψ

∂γα
−Div

(

∂Ψ

∂∇γα

)

in B0, grain, α = 1, 2, ..., nslip (35)
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where B0, grain denotes the material domain associated with a grain. As stated
in Bargmann et al. [41], the gradient contribution of the microstress can be
identified with the divergence of the energetic microforce of Gurtin: that is,
κα,g corresponds to Div ξenα . Both play the role of an energetic backstress.
Moreover, in case of pure energetic hardening, the hardening stresses stated
in Eqs. (33) and (35) are equivalent.

Isotropic hardening, while dissipative in nature, can be equivalently char-
acterized by a non-recoverable defect energy, as shown by Gurtin and Reddy
[42]. The defect energy Ψd may then be defined as a function of the equivalent
plastic strain kα by

Ψd({kα}) =
1

2

∑

α

H l
αk

2
α . (36)

The thermodynamic force conjugate to the equivalent plastic strain kα is
given by gα := −κα, so that

gα =
∂Ψd

∂kα
= −H l

αkα . (37)

With this definition, by following the steps leading to Eq. (23) it is seen that
the reduced dissipation inequality becomes

∑

α

[

παγ̇α + ξdisα · ∇γ̇α + gαk̇α

]

≥ 0 . (38)

This suggests the definition of the yield function Φ as a function of the
generalized stress Sα and gα; that is, Eq. (25) becomes

Φ = Φ(Sα, gα) = |Sα| − [Yα − gα] ≤ 0 .

It then follows from the associative flow rule that

Γ̇α = λ̇α
Sα

|Sα|
,

k̇α = λ̇α
∂Φ

∂gα
= λ̇α ,

(39)

the second equation reproducing relation (34).
The formulation presented here is a rate-independent one that is based

on the Gurtin-type approach. Some key distinctions are worth noting:
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(i) The notion of an elastic region, yield function and normality law are
explicitly introduced in the present formulation. These in turn are de-
fined on the basis of the structure of the reduced dissipation inequality.

(ii) Local hardening is captured via the hardening law in a conventional
way, while non-local effects appear through the inclusion of the mi-
crostress in the microforce balance and through the defect term in the
free energy.

Both approaches necessitate the existence of microscopic boundary condi-
tions.

5. A viscoplastic model with dissipative microstress

In this section the constitutive equations for plastic flow are generalized to
the case of viscoplasticity. In the works of Gurtin, Anand and coworkers (see
for example [10, 11, 12, 31, 32]), viscoplastic regularization entails extensions
of Eq. (32) which take the form

π ∝ SR(dα)γ̇α
ξdis ∝ SR(dα)∇γ̇α

(40)

where R(dα) = [dα/d0]
q, d0 is a reference generalized strain rate, and q is

a positive real exponent. Furthermore S denotes the positive-valued flow
resistance. This is also the approach taken by other authors such as Evers
et al. [9]. It follows that in these approaches the dissipative microstress ξdis

is defined via Eq. (40)2. However, the approach by these authors does not
allow for elastic behavior, for the case in which the generalized stress lies in
the elastic region.

The approach to viscoplastic regularization taken in this work differs from
that just described. Here the goal is to extend the approach of Ekh et al.
[8] by introducing a regularization of Perzyna type: in the case of a solely
energetic microstress, as in [8], which can be obtained by setting ld(α) = 0 in
the set of equations in the previous section, the flow law

γ̇α = λ̇α sgn πα (41)

becomes

γ̇α =
1

t⋆,α
〈Φα〉

m sgn πα (42)

12
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or equivalently

λ̇α =
1

t⋆,α
〈Φα〉

m , (43)

where

〈x〉 :=
1

2
[x+ |x|]

and where t⋆ is a relaxation time and m the rate sensitivity parameter. More-
over, the restriction on the sign of the yield function Φα, i.e. Eq. (28)1, does
not hold any longer, of course. In other words, the yield function Φα can be
positive, negative or zero.

In the present approach the elastic region is defined by Φα < 0 and the
plastic by Φα ≥ 0. The objective in this work is to extend this approach
to the case of dissipative microstresses in a manner that is amenable to
computational implementation.

Thus the viscoplastic flow law is defined by

Γ̇α =
1

t⋆,α
〈Φα〉

m Sα

|Sα|
. (44)

From Eqs. (31) and (44) it follows that

|Γ̇α| = dα =
1

t⋆,α
〈Φα〉

m . (45)

In the case of flow, that is, when Φα > 0, equation (45) is equivalent to

|Sα| = (t⋆,αdα)
1/m + Yα + κα, (46)

where local hardening enters via the last term on the right-hand side. Thus
from Eqs. (44) and (45) it follows that

Γ̇α =

[

dα
(t⋆,αdα)1/m + Yα + κα

]

Sα (47)

or, in component form,

γ̇α =

[

dα
(t⋆,αdα)1/m + Yα + κα

]

πα , (48)

∇γ̇α =

[

dα
(t⋆,αdα)1/m + Yα + κα

l−2
d(α)

]

ξdisα . (49)
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The next step is to eliminate the dissipative microstress ξdisα from these equa-
tions.

Substitution in Eq. (48) for the internal microforce πα using the microforce
balance equation (11) leads to the non-local flow rule

γ̇α =
dα

(t⋆,αdα)1/m + Yα + κα

[

τα +Div ξenα +Div ξdisα

]

. (50)

An explicit expression for the dissipative microstress3 ξdisα is obtained by
inverting (49), which gives

ξdisα =
(t⋆,αdα)

1/m + Yα + κα

dα
l2d(α)∇γ̇α, (51)

showing the dependence of the dissipative microstress ξdisα on the plastic slip
rate gradient ∇γ̇α. This dependence is highly non-linear because dα depends
on the slip rate gradient ∇γ̇α as well. A similar expression for dissipative
hardening, being linear in the plastic slip rate gradient ∇γ̇α has been derived
by Anand et al. [27], Fredriksson and Gudmundson [43] and Lele and Anand
[31, 32] for isotropic materials and in the contribution of Gurtin [11] for single
crystal plasticity (see also Remark below).

Finally, the use of Eq. (51) and the expression (21) for the energetic
microstress ξenα in Eq. (50) leads to an expression for the plastic slip rate
that is entirely in terms of ∇γα, dα, and the hardening variable κα, l. It is
worth noting that in this contribution the regularization is introduced from
the start via the evolution equation (44). Then, in turn, the relation between
the dissipative microstress ξdisα and the slip rate gradient ∇γ̇α is a derived
result (see Eq. (51)) and not a definition.

In the case of purely energetic microstress, that is, for ld(α) = 0, the
evolution equation (44) reduces to the flow law

γ̇α =
1

t⋆,α
〈Φα〉

m , (52)

which is the expression used in Ekh et al. [8]. For the dissipative case, for
which ld(α) 6= 0, the generalization captured in Eqs. (44)-(51) essentially
follows from the dissipation inequality in the form (23).

3Since the scalar dα is not constant, this gives rise to an additional complexity in terms
of the divergence term Div ξdisα .
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6. Finite element algorithm

The finite element algorithm used for our computations is similar to the
dual mixed framework4 of Ekh et al. [8]. As in that work, the governing
equations are discretized using the Bubnov–Galerkin finite element method
in space. The problem is also discretized in time with time derivatives ap-
proximated by an Euler backward difference. In addition to the two governing
equations (9) and (50) a dual variable gα defined by

gα := ∇γα. (53)

is introduced in each slip system. This definition differs from that in the
algorithm proposed by Ekh et al. [8] who define and use the scalar directional
gradient gα := ∇γα ·sα. In line with Ekh et al. [8], the balance of momentum
(9) and the gradient equation (53) are solved globally and monolithically with
a Newton–Raphson scheme to account for the non-linearities. The second
order partial differential equation (50), that is, the flow rule, is solved locally
in each element. Due to the non-linearities, Newton–Raphson iterations are
required here as well.

The macro-domain B0 represents a polycrystal assembly consisting of
a collection of grains. The domain of such a grain is denoted by B0,grain

and its boundary by ∂B0,grain. The task is then to find the displacement u

and slips γα in each grain which satisfy the governing equations inside each
grain together with the boundary conditions on the grain boundaries and the
boundary of the macro-domain B0.

The model is implemented in a two-dimensional code and plane strain is
assumed throughout. Microhard boundary conditions are assumed so that

γα = 0 on ∂B0,grain, (54)

see also end of Section 3. Our choice is motivated by the statement in e.g.
Gurtin and Needleman [45]: “When the theory is generalized to allow each
of the microstress ξα to have a dissipative contribution on the slip-gradient
rates, then the hard slip conditions are appropriate.”.

The introduction of the independent variable gα and the use of a mixed
approach has a significant benefit. By using a mixed approach it is possible

4Similar approaches which, as in this contribution, treat quantities of the gradient type
as primary variables include [9, 14, 44].
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to construct a two-stage algorithm in which in the first stage the displace-
ment and the mixed variable are obtained, while in the second stage the slip
increments can be solved for locally. Furthermore, the staggered approach is
possible using simple approximations of the variables, for example linear ap-
proximations for displacement and slip gradient gα, and piecewise-constant
approximations for the slips {γα} on triangular elements.

Generally, one can choose the set of finite element approximations such
that the displacement u and gradient gα are of the same degree and the slips
γα one order less.

There exist different model assumptions on “geometric constraints” which
infer restrictions on the displacement u. Relaxed Taylor assumptions are
applied: that is, the displacements are prescribed at the boundaries and not
inside the grains.

The algorithm is summarized in Box 1.
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Box 1: Algorithm for dual mixed finite element method

1. Assume given values for the nodal displacement vector u(k), the nodal
vector of the gradient gα := ∇γα, i.e. g(k), and (converged) values

∆γ(k) at time k.

2. “Grain boundary iteration loop”: Solve the quasi-static balance of mo-
mentum (resulting from Eq. (9)) for the nodal displacement vector

u
(k+1)
gb on the grain boundariesa.

a. “Inner grain iteration loop”: Given the nodal displacements u
(k+1)
gb

on the grain boundaries, solve the quasi-static balance of momen-
tum and the gradient equation gα−∇γα = 0 for the displacements
u(k+1) and the gradients g(k+1) in each grain via Newton-Raphson
iterations. The coupling is fully taken into account via a mono-
lithic iteration scheme.

• “Local iteration loop”: For given F (u(k+1)), g(k+1), solve the
flow rule (Eq. (50)) for ∆γ(k+1) in each element via Newton-
Raphson iterations.

• If convergence, then go to b.

b. If convergence, then go to 3.

3. If convergence, then set k = k + 1 and go to 1.

aSince the plastic slip is assumed to vanish on the grain boundaries, we only solve for
the mechanical displacements during this loop.

7. Numerical example

In this section the behavior of the proposed model is studied by means
of simple but effective numerical examples. The approach can be applied to
single crystals as well as polycrystals. In the following, we investigate the
hardening behavior of a specimen with side length L and comprising four
grains. The length L is varied during the simulations in order to illustrate
the grain size dependence of the hardening behavior of the crystal. The
deformation of the grain structure is controlled by linearly varying displace-
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ments at the boundaries to obtain macroscopic simple shear with a constant
loading rate ˙̄γ = 0.01 [1/s]. Plain strain is assumed. A total of 100 time
steps have been used. The finite element meshes of the grain structures used
in the numerical examples are generated by Voronoi polygonization and are
depicted in Figure 1. The meshes are refined near the grain boundaries. The
set of material parameters used in the examples are summarized in Table 1.

L

L

Figure 1: Left: Discretization and grain geometry used during simulations. The square
grain structure consists of four grains and the thick black lines represent the grain bound-
aries. The grains are discretized with 726 (upper left grain), 620 (upper right), 630 (lower
left), and 614 (lower right) elements, respectively. The mesh is refined near the grain
boundaries. The side length L of the grain structure is varied during simulations in order
to capture the size effects. A simple shear test as well as a tension test are performed.
Right: Schematic sketch of slip plane directions sα. Triple slip is assumed and slip plane
directions are randomly distributed. In this example, the first slip planes read: 24.573◦

(lower left grain), 94.573◦ (lower right grain), 160.9◦ (upper left grain) and 35.845◦ (upper
right grain). The second and the third slip plane vary by 30◦ respectively 60◦.

As a first step, the macroscopic stress-strain response depicted in Figure
2 is discussed. The curves are plotted for different values of the side length L.
On the left the stress-strain curve for the model with a non-zero dissipative
length scale (ld(α) 6= 0) is depicted. As the length L decreases, the material
response is stiffer in both cases, as expected. The size-dependence of the
stress-strain response is due the existence of the slip gradient ∇γα in the
defect energy density (Eq. (17)) and, as a consequence, its existence in the
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Parameter Symbol Value

Young’s modulus E 2 · 105 [MPa]
Poisson’s ratio ν 0.3
local hardening modulus H l

α 200 [MPa]
gradient hardening modulus Hg

α 2.5 · 104 [MPa]
internal length scale lα 1 [µm]
initial yield stress Yα 750 [MPa]
relaxation time t∗ 104 [s]
drag stress C0 1 [MPa]
rate sensitivity parameter m 1

Table 1: Material parameters used
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Figure 2: Simple shear test, four-grain structure.
Left: macroscopic stress-strain response (P̄12 vs. γ̄); including dissipative strengthening
(ld(α) = 10−3 µm)
Right: initial yield limit vs. grain size L. In case of a non-zero dissipative microforce
ξdis the grain size influences the yield strength. ⋆: Dissipative length scale (ld(α) = 0)
neglected. •: Dissipative length scale (ld(α) = 10−3 µm) included.

governing equations. Moreover, the proposed model is capable of modeling
a size-dependent yield stress if dissipative strengthening is included. The
distribution of effective strain as well as of the dislocation density ρGND,eff =
√

∑

α [∇γα · sα]
2 are plotted in Figs. 3 and 4 respectively.
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Figure 3: The effective strain Γeff :=
√

∑

α |Γα|2 is plotted for a simple shear test; ld(α) =
10−3 µm at γ̄ = 0.05. The solutions for grain-structure side lengths L = 20 µm (left) and
L = 50 µm (right) are shown. The difference in the distribution of the effective strain can
clearly be seen.
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Figure 4: The effective dislocation density ρGND,eff =
√

∑

α [∇γα · sα]
2
with unit

[

µm−2
]

is plotted for a simple shear test; ld(α) = 10−3 µm at γ̄ = 0.05. The solutions for grain-
structure side lengths L = 20 µm (left) and L = 50 µm (right) are shown. The pile-up of
dislocation densities at the grain boundaries is evident in the figures.

The model captures purely elastic response in line with the elastic-viscoplastic
nature of the flow law. With an initial yield stress of Yα = 750 [MPa] the
stress-strain response is initially linear elastic. At approximately γ̄ = 0.01
plastic behavior in the polycrystal with hardening becomes apparent.

For a zero dissipative length scale (ld(α) = 0) and non-zero energetic length
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scale (lα 6= 0), size-dependent hardening is modeled. However, there is no
real size-dependence in the initial yield limit. This is not in agreement with
the experimental data which clearly show that the Hall–Petch effect ([46, 47])
goes along with a yield stress depending on the grain size. This drawback is
overcome by including effects related to the slip rate gradients into the theory
(and with it a non-zero dissipative material length scale). The computations
are characterized by a sensitivity of the convergence behavior on the element
level to the magnitude of ld(α), see also the comments in [41, 29, 31, 32].
This limits the dissipative material length scale to ld(α) = 10−3 µm in the
computations presented in this section.

Not surprisingly, there is a direct dependence of yield stress and dissipa-
tive length scale. This is not easily discernible in Figures 2 (left), 5 (left)
and 10 (left) and this effect is therefore presented in an alternative way in
Figures 2 (right), 5 (right) and 10 (right) where the effect of ld(α) is clear.

In addition, a computational tension test is performed with the four-
grain structure. The stress-strain response is shown in Figure 5. Here, the
von Mises stress σ̄ is defined by

σ̄ =
√

3
2
σd : σd with σd = σ − 1

3
trσI, (55)

where σ is the Cauchy stress and (like the Piola–Kirchhoff stress component
P̄12) is volume-averaged over the entire sample. Further, the effective gen-
eralized strain Γeff :=

√
∑

α |Γα|2 is illustrated in Figure 6 and the effective
dislocation density ρGND,eff in Figure 7. In accordance with the experimental
findings of Hall [46] and Petch [47], stiffer response in the hardening regime
can be seen for smaller grain size, see Figure 5. Moreover, the dislocation
density state of the GNDs as measured by the effective form ρGND,eff is larger
near the grain boundaries and negligible in the interior (cf. Figure 7 for the
simulation results and e.g. Kocks [48] for experimental data). The distri-
bution in general and the order of the value of the GND density measure
corresponds well with the tension test performed by [18]. The existence of
GNDs is usually assumed due to lattice orientation mismatch between neigh-
boring grains - as is the case in our polycrystalline grain structure.

The second example is that of a 25-grain structure, shown in Figure 8.
Again, random triple slip is assumed in each grain. The macroscopic stress-
strain response for simple shear test is shown in Figure 9 while Figure 10
illustrates the distribution of the generalized strain inside the grain structure
at γ̄ = 0.05 for side lengths L = 20µm and L = 50µm, and for the case
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Figure 5: Tension test, four-grain structure.
Left: macroscopic stress-strain response (σ̄ vs. γ̄), dissipative length scale (ld(α) =
10−3 µm) included.
Right: initial yield limit vs. grain size L. For a purely energetic theory the yield stress is
not size dependent, whereas for a non-zero dissipative microforce ξdis a dependence on the
specimen size L can clearly be seen. The smaller the size of the specimen, the larger the
yield stress. ⋆: Dissipative length scale (ld(α) = 0) neglected. •: Dissipative length scale
(ld(α) = 10−3 µm) included.
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Figure 6: Tension test; ld(α) = 10−3 µm. The effective generalized strain Γeff is shown for
grain-structure side lengths L = 20 µm (left) and L = 50 µm (right) at γ̄ = 0.05. The
difference in the distribution of the effective strain can clearly be seen.

of dissipative strengthening (ld(α) = 10−4 µm). In comparison to the 4-grain
example, the size-effect is more profound. The numerical simple shear test is
performed for the same material, i.e. the same material parameters. For large
specimen, the stress-strain response shows a behavior which is approximately
as stiff for the 25-grain structure as for the 4-grain example. The 25-grain
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Figure 7: Tension test; ld(α) = 10−3 µm. The effective dislocation density ρGND, eff with

unit
[

µm−2
]

is shown for grain-structure side lengths L = 20 µm (left) and L = 50 µm
(right) at γ̄ = 0.05. As the sample size decreases, the GND density increases.

polycrystal allows for a lot of grain interaction because of the larger amount of
grains. This leads to significantly larger influence of the size-effect. In other
words, a specimen of length L = 20 µm consisting of 25 grains responds
stiffer than a specimen of the same size consisting of 4 grains - in accordance
to the Hall–Petch effect.

It is assumed that the dislocation motion is blocked at the grain bound-
aries which is realized by assuming micro-hard boundary conditions. Thus,
the plastic slip γα vanishes there. The non-uniformity of the plastic de-
formation is due to the dislocation pile-up which results from the slip being
blocked at the grain boundaries. The boundary layer thickness increases, and
the deformation inhomogeneity becomes more pronounced, as the length L
decreases. The effective generalized strain is illustrated in Figure 10.

8. Discussion and concluding remarks

A strain gradient theory of plasticity incorporating dissipative microstresses
has been presented. The theory is viscoplastic and follows closely the model
due to Gurtin and co-authors [30, 11], but differs from these and other treat-
ments in that a viscoplastic regularization of Perzyna type is used. In par-
ticular provision is made for an elastic range followed by viscoplastic flow.
The link to the approach by Ekh et al. [8] is made clear. It is noted that the
energetic theory of Gurtin [11] and the theory due to Ekh et al. [8] (which
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Figure 8: Left: Discretization and grain geometry of the 25-grain-structure used during
simulations. A simple shear test is performed.
Right: Schematic sketch of slip plane directions sα. Triple slip is assumed and slip plane
directions are randomly distributed.
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Figure 9: 25 grain structure, simple shear. Macroscopic stress–strain response (P̄12 vs.
γ̄) showing the size dependence on the amount of hardening and the effect of dissipative
strengthening.
Right: initial yield limit vs. grain size L. In case of a non-zero dissipative microforce
ξdis the grain size influences the yield strength. ⋆: Dissipative length scale (ld(α) = 0)
neglected. •: Dissipative length scale (ld(α) = 10−4 µm) included.

is purely energetic) are equivalent. In contrast to most approaches, strain
gradients enter the model presented in this contribution via the free energy Ψ
and, additionally, via the dissipative microforce ξdisα . The dissipative harden-

24



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 10: Effective strain Γeff for ld(α) = 10−4 µm. The solutions for grain-structure side
lengths L = 20 µm (left) and L = 50 µm (right) are depicted for the 25-grain-polycrystal
at γ̄ = 0.05. Computations are carried out for monotonic loading with a maximum
macroscopic shear deformation γ̄max = 0.05.
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Figure 11: Effective dislocation density ρGND, eff (with unit
[

µm−2
]

) for ld(α) = 10−4 µm.
The solutions for grain-structure side lengths L = 20 µm (left) and L = 50 µm (right)
are depicted for the 25-grain-polycrystal at γ̄ = 0.05. Computations are carried out for
monotonic loading with a maximum macroscopic shear deformation γ̄max = 0.05.

ing associated with the term Divξdisα results in a size-dependent yield stress.
The energetic theory of Ekh et al. [8] has been extended by inclusion of the
vector dissipative microstress. This leads inter alia to a size-dependent yield
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stress.
Dissipative hardening in polycrystals has hardly been studied. While

there are some works in which it forms part of the theory, the physical in-
terpretation of the dissipative length scale has not been investigated in great
detail. To the best of the authors’ knowledge, the work by Lele and Anand
[31] is the only one containing numerical results for a model with a dissi-
pative length scale. Voyiadjis and Deliktas [40] investigate the size effect
due to the dissipative length scale for the example of a thin film on thick
substrates. Bardella and Giacomini [28] present closed-form solutions for a
small example by exploitation of a Γ-convergence technique. Further, they
prove that in their approach the absence of a dissipative length scale may
lead to non-unique solutions in the case of perfect plasticity.

Energetic material length scales have a direct physical link to the density
of geometrically necessary dislocations via the length of the Burgers vector.
However, the precise interpretation of this length scale across the wide range
of theories is not completely established. Unfortunately, the situation is
even less clear for the dissipative material length scale. Nevertheless, the
necessity of its introduction into continuum mechanics theories for extended
crystal plasticity is already acknowledged by many researchers.

The algorithm presented and implemented is an extension of that due
to Ekh et al. [8] in that it employs a dual-mixed approach. The algorithm
used here differs in a significant respect, however, in that provision has to be
made for the additional variable in the form of the dissipative microstress.
In the results presented here it is found that the energetic scheme (ld(α) = 0)
is more robust than the dissipative one (ld(α) 6= 0), in the sense that conver-
gence is only achieved for values of ld(α) up to a certain magnitude. Further,
it has been noted that the manner in which the local governing equation
(50) is used is a delicate matter: whereas the code runs smoothly if Eq. (50)
is multiplied throughout by the denominator, difficulties ensue if Eq. (50) is
implemented as written. Note that Lele and Anand [31] also report that their
model “possesses a mathematically attractive structure, our experience with
numerical experiments which use these constitutive equations is that they
are too tightly coupled”. Nevertheless, the model and simulations presented
in this work provide additional useful insights into the behavior of gradi-
ent theories which include both energetic and dissipative material lengths
scales. Further, the extension to dissipative effects is derived consistently via
thermodynamic considerations rather than proposing it in an ad hoc fashion.

Recent and current research on dissipative stresses and length scales in

26

Swantje
Hervorheben



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

extended crystal plasticity theories clearly points out the need to set up gra-
dient theories with more than one material length scale in order to improve
the mapping of strengthening and hardening mechanisms in (poly-)crystals.
The work presented in this paper contributes to this ongoing research direc-
tion, suggesting a way on how to incorporate dissipative microstress (and
with it a dissipative length scale) as an additional variable, together with
a corresponding additional flow equation. However, as also stated by the
aforementioned authors, more attention and work needs to be done in this
direction in order to be able to accurately describe the material behavior.
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