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A new microstructure-dependent Saint-Venant torsion model 
based on a modified couple stress theory 

G.C. Tsiatas1, J.T. Katsikadelis 

Institute of Structural Analysis, School of Civil Engineering, National Technical 
University of Athens, Zografou Campus, GR-15773 Athens, Greece. 

Dedicated to the memory of Professor Ioannis Vardoulakis. 

Abstract 

In this paper a new modified couple stress model is developed for the Saint-Venant 

torsion problem of micro-bars of arbitrary cross section. The proposed model is derived 

from a modified couple stress theory and has only one material length scale parameter. 

Using a variational procedure the governing differential equation and the associated 

boundary conditions are derived in terms of the warping function. This is a fourth order 

partial differential equation representing the analog of a Kirchhoff plate having the 

shape of the cross section and subjected to a uniform tensile membrane force with 

mixed Neumann boundary conditions. Since the fundamental solution of the equation is 

known, the problem could be solved using the direct Boundary Element Method 

(BEM). In this investigation, however, the Analog Equation Method (AEM) solution is 

applied and the results are cross checked using the Method of Fundamental Solutions 

(MFS). Several micro-bars of various cross-sections are analyzed to illustrate the 

applicability of the developed model and to reveal the differences between the current 

model and an existing one which, however, contains two additional constants related to 

the microstructure. Moreover, useful conclusions are drawn from the micron-scale 

torsional response of micro-bars, giving thus a better insight in the gradient elasticity 

approach of the deformable bodies. 

Keywords: Torsion; Microstructure; Couple stress theory; Strain gradient elasticity; 

Analog equation method; Method of fundamental solutions  

1. Introduction 

In recent years a need has been raised in engineering practice to predict accurately the 

response of micron-scale structures, which can be either the components of 
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microelectromechanical systems (MEMS) or various other micro-featured materials 

(such as foams, human bone, etc.) which show size-dependent mechanical behaviour at 

different length scales (see e.g. Lakes, 1983). The behavior of such structures has been 

proven experimentally to be size dependent in metals (see e.g. Fleck et al., 1994; Poole 

et al., 1996) and in polymers (Lam and Chong, 1999; Chong and Lam, 1999). Thus, the 

utilization of strain gradient (higher order) theories containing internal material length 

scale parameters is inevitable. The couple stress theory is a special case of these higher-

order theories in which the effects of the dilatation gradient and the deviatoric stretch 

gradient are assumed to be negligible. An analytic presentation of the afore-mentioned 

theories can be found in (Vardoulakis and Sulem, 1995; Exadaktylos and Vardoulakis, 

2001; Tsepoura et al., 2002; Lubarda, 2003). Although, the strain gradient theories 

encounter the physical problem in its generality, they contain additional constants – 

besides the Lamé constants – which must be determined through meticulous 

experiments at small length scales (see e.g. Lakes, 1995). 

The work that has been done on the solution of the Saint-Venant torsion problem of 

elastic micro-bars - employing couple stress theories - is limited only to the work of 

Tong et al. (2004). In their work the simplified couple stress model of Lam et al. (2003) 

with three additional material length scale parameters is applied to the torsion problem. 

Since the dilatational strain gradients vanish identically, the particular model leads to 

the formulation of the torsional equation in terms of the warping function which 

contains only two material length scale parameters. Two formulations in terms of 

pseudo warping function and stress function are presented. However, the employed 

analytical solutions are restricted only to simple geometric shapes. That is, closed-form 

solutions for circular and thin-walled cross-section are presented while a series solution 

for rectangular microbars is also introduced. Moreover, the two additional constants, in 

this simplified couple stress model, are difficult to determine (Lam et al, 2003). 

Therefore, gradient elastic models of only one additional material constant are desirable.  

Similar problems have been addressed for micropolar elastic cylinders in the 

published book by Iesan (2008) and in the exhaustive literature cited therein. In 

particular, Iesan (1982, 1986, 2007) formulated a method for the solution of Saint 

Venant problems in micropolar beam with arbitrary cross section. Detailed solution of 

the torsion problem for an isotropic micropolar beam with circular cross section can 

also be found in the papers of Reddy and Venkatasubramanian (1976) and Gauthier and 

Jahsman (1975). 
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In this work the simplified couple stress theory of Yang et al. (2002) is developed 

for the solution of the Saint-Venant torsion problem of micro-bars with arbitrary shape. 

Yang et al. modifying the classical couple stress theory (e.g. Mindlin, 1964; Koiter, 

1964) proposed a modified couple stress model in which only one material length 

parameter is needed to capture the size effect. This simplified couple stress theory is 

based on an additional equilibrium relation which forces the couple stress tensor to be 

symmetric. So far it has been developed for the static bending (Park and Gao, 2006) and 

free vibration (Kong et al., 2008) problems of a Bernoulli-Euler beam, for the static 

bending and free vibration problems of a Timoshenko beam (Ma et al., 2008) and for 

the solution of a simple shear problem (Park and Gao, 2008) after the derivation of the 

boundary conditions and the governing differential equation of the theory in terms of 

the displacement. Moreover, the static bending problem of Kirchhoff isotropic plates 

was studied by Tsiatas (2009) and of orthotropic plates by Tsiatas and Yiotis (2010).  

The governing equilibrium equation and the pertinent boundary conditions in terms 

of the warping function are derived using the minimum potential energy principle. The 

resulting boundary value problem of the micro-bar is described by a fourth order partial 

differential equation, which represents the analogue of a Kirchhoff plate under uniform 

tensile membrane force with mixed Neumann type boundary conditions. Since the 

fundamental solution of the equation is known, the problem could be solved using the 

direct BEM for plates by establishing the integral representation via the Betti’s 

reciprocal theorem. Nevertheless, the problem is solved more efficiently using the AEM 

with the simple fundamental solution of the biharmonic operator and the results are 

cross checked using the MFS. The employed numerical method is capable to handle 

micro-bars with complex geometries. Numerical results are obtained and useful 

conclusions are drawn regarding the use of either couple stress model as well as the size 

effect on the torsional response of micro-bars, giving thus a better insight in the gradient 

elasticity approach of the deformable bodies. 

2. Problem formulation 

2.1 Derivation of the governing equations 

In the modified couple stress theory presented by Yang et al. (2002), the strain energy 

density is a function of both strain tensor and the symmetric part of the curvature tensor 

which are conjugated with the stress tensor and the deviatoric part of the couple stress 

tensor. Thus, for a deformable body the strain energy density is given as 
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 ( )1
2 : :W = +σ ε m χ  (1) 

where the strain tensor ε , the symmetric part of the curvature tensor χ , the stress tensor 

σ  and the deviatoric part of the couple stress tensor m  are defined as 

 ( )1
2= ∇ + ∇ε u u ,  ( )1

2= ∇ + ∇χ θ θ ,    (2a,b) 

 ( )tr 2λ µ= +σ ε I ε ,   22 lµ=m χ  (2c,d) 

with u  being the displacement vector, θ  is the rotation vector defined as (Yang et al., 

2002) 

 1
2 curl=θ u  (3) 

λ , µ  are the Lamé constants and l  is a material length scale parameter. Note that the 

deviatoric part of the couple stress tensor m  defined in eq (2d) is symmetric due to the 

symmetry of χ  given in eq (2b). 

Thus, using eqs (2) the strain energy density (1) takes the form 

 ( ) ( )2 21
2 tr : :W lλ µ= + +ε ε ε χ χ  (4) 

From the above relation it is readily proven that not only the strain energy density is 

positive definite but also is a quadratic function of both ε  and χ  (Grentzelou and 

Georgiadis, 2005). 

Consider now an elastic bar of length L  with arbitrary cross-section occupying the 

two-dimensional domain Ω  of arbitrary shape in the ,x y  plane bounded by the curve 

Γ  which may be piecewise smooth, i.e. it may have a finite number of corners. The 

cross-section is constant along the length of the bar and is twisted by moments tM  

applied at its ends. According to Saint-Venant’s torsion theory (e.g. Wagner and 

Gruttmann, 2001; Katsikadelis, 2002), the deformation of the bar consists of (a) 

rotations of the cross-sections about an axis passing through the twist center of the bar 

and (b) warping of the cross-sections, which is the same for all sections. Choosing the 

origin of the coordinate system at the twist center of an end section, the rotation at a 

distance z  is zϑ , where ϑ  is a constant expressing the rotation of a cross-section per 

unit length. Assuming that this rotation is small, the displacement components of an 

arbitrary point are (e.g. Wagner and Gruttmann, 2001; Katsikadelis, 2002) 
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 u zyϑ= − ,   v zxϑ= ,   ( , )w x yϑφ=  (5a,b,c) 

where ( , )x yφ  is the warping function. Taking into account eqs (5) and eq (3) the 

displacement and rotation vectors of the micro-bar become, respectively, 

 1 2 3( , )zy zx x yϑ ϑ ϑφ= − + +u e e e , (6a) 

 ( ) ( )1 1
1 2 32 2, ,y xx y zϑ φ ϑ φ ϑ= − − + +θ e e e  (6b) 

Substituting eqs (5) into eqs (2a,b) the nonzero components of the strain and 

curvature tensor are written as 

 ( ),xz x yγ ϑ φ= − ,   ( ),xz y xγ ϑ φ= +  (7a,b) 

 ( )1
2 , 1x xyχ ϑ φ= − ,   ( )1

2 , 1y xyχ ϑ φ= − + ,    (8a,b) 

 zχ ϑ= ,   ( )1
4 , ,xy yy xxχ ϑ φ φ= −  (8c,d) 

respectively. Moreover, the nonzero components of the stress (2c) and couple stress (2d) 

tensors, after the appropriate replacement of the Lamé constants by the modulus of 

elasticity E  and the Poisson’s ratio ν , take the following form 

 ( ),xz xG yτ ϑ φ= − ,   ( ),yz yG xτ ϑ φ= + , (9a,b) 

 ( )2 , 1x xym l Gϑ φ= − ,   ( )2 , 1y xym l Gϑ φ= − + ,  (10a,b) 

 22zm l Gϑ= ,   ( )21
, ,

2xy yy xxm l Gϑ φ φ= −  (10c,d) 

where ( )/ 2 1G E ν= +  is the shear modulus. 

In the absence of body force and body couple and taking into account that the 

cylindrical surface of the micro-bar is traction and surface couple free, the first variation 

of the total potential energy takes the form (Tsiatas, 2009) 

 ( )1
2 : :

V
dVδ δ δΠ = +∫ σ ε m χ  (11) 

and using eqs (7)-(10) yields 

 ( )1 1 1
2 2 2, , , , ,xz x yz y xy xx xy yy x y xym m m m dδ ϑ τ δφ τ δφ δφ δφ δφ

Ω
 Π = + − + + − Ω ∫  

  (12) 
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which, after the transformation of the domain integral using twice the divergence 

theorem of Gauss, becomes 

 

( )
( )

1
2

1
2

1 1
2 2

, , , , , ,

, , , ,

, ,

xz x yz y xy xx xy yy y xy x xy

xz x yz y xy x x xy y y y y x x x y

n n n

m m m m d

n n m n m n m n m n ds

m ds m dsν ν

δ ϑ τ τ δφ

ϑ τ τ δφ

ϑ δφ ϑ δφ

Ω

Γ

Γ Γ

 Π = − + + − + − Ω 

 + + + − + − 

− +

∫

∫

∫ ∫

 (13) 

where 

 2 2 2n x x y y xy x ym m n m n m n n= + +  (14a) 

 ( ) ( )2 2
n xy x y y x x ym m n n m m n nν = − + −  (14b) 

are the stress resultants; ( ),x yn nn  and ( ),y xn n−t  are the unit (outward) vector normal 

to the boundary and the unit tangent to the boundary, respectively, (cosxn a= , 

sinyn a=  with ,a x= n� ). 

The first line integral in eq (13) represents a line force term along the boundary (the 

respective shearing force term in the plate bending theory e.g. Katsikadelis and 

Armenakas, 1989). The last integral in the same equation represents also a line force 

term and must be converted in order to be inserted into the first line integral. Noting that 

, ,t sφ φ=  the integration by parts along the boundary Γ  of the aforementioned integral 

gives 

 
( ), , ,

,

n s n s n s

n n sk
k

m ds m ds m ds

m m ds

δφ δφ δφ

δφ δφ
Γ Γ Γ

Γ

= −

 = − 

∫ ∫ ∫

∑ ∫
 (15) 

where n k
m 
   is the jump of discontinuity of the twisting moment at the k -th corner. 

Thus, eq (13) becomes 

 

( )
( )

1
2

1 1
2 2

1 1
2 2

, , , , , ,

, , , , ,

,

xz x yz y xy xx xy yy y xy x xy

xz x yz y xy x x xy y y y y x x x y n s

nt n n k
k

m m m m d

n n m n m n m n m n m ds

m ds m

δ ϑ τ τ δφ

ϑ τ τ δφ

ϑ δφ ϑ δφ

Ω

Γ

Γ

 Π = − + + − + − Ω 

 + + + − + − − 

 − +  

∫

∫

∑∫

 

  (16) 
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By applying the principle of total minimum potential energy, i.e., 0δΠ =  for the 

stable equilibrium and the fundamental lemma of the calculus of variation (e.g. Reddy, 

1999) the governing equilibrium differential equation of the micro-bar is obtained as 

 ( )1
2, , , , , , 0xz x yz y xy xx xy yy y xy x xym m m mτ τ+ + − + − =    in Ω  (17) 

together with the boundary conditions 

 ( )1 1
2 2, , , , , 0xz x yz y xy x x xy y y y y x x x y n sn n m n m n m n m n mτ τ+ + − + − − =  (18a) 

 0ntm =  (18b) 

on Γ  and  

 0n k
k

m  = ∑  (18c) 

at the k -th corner. 

Eqs (17) and (18a,b) can be also verified by substituting eqs (7)-(10) into the general 

equilibrium equations 

 ( )1
2div curl div+ + + =σ m c b 0    in Ω  (19) 

produced by Park and Gao (2008), together with the boundary conditions 

 ( ) ( )1 1
2 2div :+ × − ∇ ⊗ + = − ×∇ ⋅  σn n m m n n c T n S n%%  (20a) 

 ( ) ( ):− ⊗ = − ⋅mn m n n n S S n n% %  (20b) 

on Γ , of a three-dimensional deformable body for the modified couple stress theory of 

Yang et al. (2002), in the absence of body force, body couple, traction and surface 

couple. In eqs (20) and in whichever follows, the tilde over a symbol represents 

prescribed quantity. 

Substituting eqs (9)-(10) into eq (17)-(18) yields the governing equation of the 

micro-bar in terms of the warping function 

 
2

4 2 0
4

l φ φ∇ − ∇ =    in Ω  (21) 

and the boundary conditions 
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 ( )
2

2, , 2 , ,
4n n nt s x y
l

yn xnφ φ φ − ∇ + = −  ,   , , 0tt nnφ φ− =  (22a,b) 

on Γ .  

On the end cross-sections 0z =  and z L= , it is 0x yn n= =  and 1zn = . Thus, the 

nonzero boundary conditions (20) are 

 ( )
2

21
2 , , , ,

4x xz xy x y y x x
l

T m m G yτ ϑ φ φ
 

= − + = − + ∇  
 

 (23a) 

 ( )
2

21
2 , , , ,

4y yz x x xy y y y
l

T m m G xτ ϑ φ φ
 

= + + = + + ∇  
 

 (23b) 

Along the boundary Γ  of the surface is also present a line force with components 

 ( ) ( )
2

2 21
2 , ,

2x y y x x xy y xy x yy x
l

g n m m n m G l n n nϑ φ φ φ
 

= − + = − − − ∇ 
 

 (24a) 

 ( ) ( )
2

2 21
2 , ,

2y x y x y xy x xy y xx y
l

g n m m n m G l n n nϑ φ φ φ
 

= − − = − − − ∇ 
 

 (24b) 

in the x  and y  direction, respectively. 

We can readily prove that the stress resultants of the tractions (23) and line forces 

(24) vanish. Namely,  

 0x xT d g ds
Ω Γ

Ω + =∫ ∫ , (25a) 

 0y yT d g ds
Ω Γ

Ω + =∫ ∫  (25b) 

The moment resultant on the cross-section is going to be 

 ( ) ( )t y x y xM xT yT d xg yg ds
Ω Γ

= − Ω + −∫ ∫  (26) 

which, after the substitution of eqs (23), (24) takes the form 

 ( )2 2 2, , 3t y xM G x y x y d l Gϑ φ φ ϑ
Ω

= + + − Ω +∫  (27) 

Setting 
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 ( )2 2 2, , 3t y xI x y x y d lφ φ
Ω

= + + − Ω +∫  (28) 

we arrive at 

 t tM G Iϑ=  (29) 

The torsional constant tI  does not depend only on the shape of the cross-section, as it 

happens in the classical Saint-Venant theory, but it depends also on the microstructure 

of the micro-bar.  

The domain integral in eq (28) can be converted into a boundary line integral 

(Katsikadelis, 2002). Thus, eq (28) finally becomes  

 ( ) ( )2 2 23t x yI xy y n yx x n ds lφ φ
Γ

 = − + + +
 ∫  (30) 

2.2 The plate analogue 

The equation of a plate with bending stiffness D  subjected to a uniform tensile 

membrane force N  in absence of external load, is written as 

 4 2 0D w N w∇ − ∇ =    in Ω  (31) 

Further, we consider the natural boundary conditions 

 , ( )n n x yNw V w yn xn+ = − ,   ( ) 0nM w =  (32a,b) 

on Γ , where nV  and nM  are differential operators defined as  

 ( )
2

2 1nV D
n s n t

ν
  ∂ ∂ ∂= − ∇ − −   ∂ ∂ ∂ ∂   

,    (33a) 

 ( )
2

2
2

1nM D
t

ν
 ∂= − ∇ + − 

∂ 
 (33b) 

which represent the effective shear force and bending moment, respectively, on the 

boundary. 

It is apparent that eqs (21) and (22) can be obtained from eqs (31) and (32) for 

w φ= , 1N = , 2 / 4D l=  and 1ν = − . Thus, in this case the warping function represents 

the deflection of a plate subjected to a uniform tensile membrane force 1N =  with 

bending stiffness 2 / 4D l=  and Poisson’s ratio 1ν = −  in the absence of external load. 
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Note that, for 0D =  it is 0n nV M= =  and eqs (31) and (32) give the membrane 

analogue for the classical Saint-Venant problem. It should be mentioned that the 

deflection surface is not uniquely determined, since the boundary conditions permit a 

rigid body motion. This, however, does not influence the deformation of the cross-

section (Katsikadelis, 2002). 

2.3 The modified couple stress torsion model of Tong et al.  

In the work of Tong et al. (2004), the couple stress model of Lam et al. (2003) -with 

three additional material length scale parameters- is applied to the Saint-Venant torsion 

problem. Since the dilatational strain gradients vanish identically, the torsion model 

contains only two material length scale parameters, namely 1l  and 2l . The governing 

equation of the micro-bar in terms of the warping function is 

 
2 2

4 21 28
0

15 4

l l φ φ
 

+ ∇ − ∇ =  
 

   in Ω  (34) 

and the boundary conditions are 

 ( )
2 2 2 2

21 2 1 28 2
, , , ,

15 4 3 2n n nt s x y
l l l l

yn xnφ φ φ
   

− + ∇ − + = −      
   

,  (35a) 

 
2 2 2 2

21 2 1 28 2
, 0

15 4 3 2 tt
l l l lφ φ

   
+ ∇ − + =      

   
 (35b) 

on Γ . The boundary tractions on the end cross-sections are  

 ( )
2 2

21 21
2

16
, , , ,

15 4x xz xy x y y x x
l l

T m m G yτ ϑ φ φ
  

= − + = − − − ∇   
   

 (36a) 

 ( )
2 2

21 21
2

16
, , , ,

15 4y yz x x xy y y y
l l

T m m G xτ ϑ φ φ
  

= + + = + − − ∇   
   

 (36b) 

while the moment resultant on the cross-section takes the form 

 ( )2 2 2
2, , 3t y xM G x y x y d l Gϑ φ φ ϑ

Ω

= + + − Ω +∫  (37) 

Note that setting 1 0l →  and 2l l=  in the above equations yield eqs (21)-(23) and 

(27) of the proposed model. 
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Equations (34) and (35) can be also obtained from eqs (31) and (32) for w φ= , 

1N =  and  

 
2 2
1 28

15 4

l l
D = + , (38a) 

 
2 2 2 2
1 2 1 22 8

1  /
3 2 15 4

l l l lν
   

= − + +      
   

 (38b) 

3. The numerical solution 

Using the Betti’s reciprocal theorem for the plate equation, in the absence of external 

load, we obtain the integral representation of the solution as (Katsikadelis and 

Babouskos, 2009) 

 
( ) ( ) ( ) ( )

( ) ( )( )
( ) n n n n

k k
k

v w
w P vV w wV v M w M v ds

n n

v T w w T v

∂ ∂
∂ ∂Γ

 = − − +  

− −

∫

∑ � � � �
� � � �

 (39) 

where :{ , }P x y ∈Ω  and v  is the fundamental solution of eq (31), i.e. a singular 

particular solution of the following equation 

 ( )4 2 2v v P Qµ δ∇ − ∇ = −  (40) 

given as 

 ( )02

1
ln

2
v K r rµ

πµ
= −    (41) 

with 0K  being the zero-order modified Bessel function of the second kind and 

2 /N Dµ = . T  is a differential operator defined as 

 ( )
2

1T D
n t

ν ∂= −
∂ ∂

 (42) 

which represents the twisting moment ntM  along the boundary and ( )
k

T w� �
� �  its jump 

of discontinuity at the k -th corner. 

Obviously, the boundary integral equations will result for P p→ ∈Γ . Thus, the 

warping function can be established by developing the direct BEM. 
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However, in order to avoid rather complicated computations of singular integrals, 

the problem is solved using the AEM (Tsiatas and Yiotis, 2010) discretization which 

employs the simple fundamental solution 

 21
ln

8
v r r

Dπ
=  (43) 

of the biharmonic equation. The results are cross checked using the MFS as it was 

applied for plates (Tsiatas, 2009). 

4. Numerical Examples 

On the base of the procedure described in previous section a FORTRAN program has 

been written for establishing the torsional response of the micro-bars. In the MFS the 

source points are placed equally on a virtual boundary – outside the domain – at a 

distance 20% greater than that of the actual one. 

4.1 Square micro-bar 

For reasons of comparisons a square micro-bar (/ 1a b = ) was first investigated 

employing both couple stress models. In Fig. 1 is depicted the normalized torsional 

constant / c
t tI I  ( c

tI  is the torsional constant of the classical Saint Venant theory) versus 

the material length scale parameter 2l . The results from the AEM and MFS solution 

employing the Tong et al. model (1 2l l= ) are found to be in excellent agreement with 

that obtained from their analytical solution. We can also observe that the torsional 

constant estimated by the proposed one-parameter model (1 0l → , 2l l= ) is smaller as 

the material length scale parameter increases to the value of 2 0.3l = , while, for greater 

values the difference between the two models becomes negligible. The presented results 

indicate that the torsional constant of the bar increases nonlinearly with the increase of 

2l  in both models. Moreover, in Fig. 2 is depicted the warping surface for the case 

1 2 0.3l l= = . 

4.2 Rectangular micro-bars 

Afterwards, two micro-bars with rectangular cross-sections of width a  and height 

b  have been analyzed ( 100N = ) in order to examine the influence of the micro-bar 

shape on the torsional constant. The rectangular dimensions (/ 0.894 /1.118 0.8a b = =  
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and / 1.095 / 0.913 1.2a b = = ) were chosen such as the area of the cross-section was 

kept fixed 1A ab= = . In Table 1 results for the torsional constant are presented for both 

models and aspect ratios. In Fig. 3 is also depicted the normalized torsional constant 

/ c
t tI I  versus the material length scale parameter 2l . From this figure we can observe 

that, unlike the case for the square micro-bar, the torsional constant estimated by the 

proposed one-parameter model is always smaller as the material length scale parameter 

increases. Moreover, from the same figure can be pointed out that, beyond the value of 

2 0.3l =  the normalized torsional constant do not depend on the dimensional aspect ratio 

in both models. 

4.3 Circular and elliptical micro-bars 

In order to investigate the micron-scale torsional response on curved cross-sections 

a circular and an elliptical micro-bar have been analyzed (100N = ). In Fig. 4 the 

normalized torsional constant / c
t tI I  versus the material length scale parameter 2l  is 

shown for an elliptical cross-section with semi axes 1a = , 1.2b =  and a circular cross-

section of radius 1r a b= = = . For the circular cross-section the results from both 

models are identically the same while for the elliptical one the difference between the 

two models is very small. Moreover, the contours of the warping surface for the 

proposed model (2 0.4l = ) are depicted in Fig. 5. 

5. Conclusions 

In this paper the Saint-Venant torsion problem of micro-bars of arbitrary cross 

section was solved. The proposed model is derived from the modified couple stress 

theory of Yang et al. (2002) and has only one material length scale parameter. The 

governing equilibrium equation and the associated boundary conditions of the micro-bar 

are derived in terms of the warping function using the principle of minimum potential 

energy. The resulting boundary value problem is of the fourth order and it is solved 

using the Analog Equation Method (AEM), while the results are cross checked using 

the Method of Fundamental Solutions (MFS). The main conclusions that can be drawn 

from this investigation are summarized as: 

• Both Saint-Venant torsion models are described by a fourth order partial 

differential equation representing the analog of a Kirchhoff plate having the shape 
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of the cross section and subjected to a uniform tensile membrane force with mixed 

Neumann boundary conditions. 

• The present model is derived from the modified couple stress theory of Yang et al. 

and has only one material length scale parameter, which, indeed, is easier to 

determine as compared to Tong et al. model which contains two additional 

constants related to the microstructure of the material. 

• The obtained results from the AEM and MFS solution are found to be in excellent 

agreement as compared with that obtained from analytical solution. 

• In all examples the torsional constant of the micro-bar increases nonlinearly with 

the increase of the material length scale 2l  in both models. As well as, the 

torsional constant estimated by the proposed one-parameter model is always 

smaller compared to the Yang et al. model. 

• For the examined micro-bar with square cross-section, the torsional constant 

estimated by the proposed one-parameter model is smaller as the material length 

scale parameter increases to the value of 2 0.3l = , while, for greater values the 

difference between the two models becomes negligible. 

• For the examined micro-bars with rectangular cross-section, the normalized 

torsional constant beyond the value of 2 0.3l =  do not depend on the dimensional 

aspect ratio in both models. 

• The normalized torsional constant from both models is identically the same for 

micro-bars with circular cross-section while for those with elliptical one the 

difference between the two models is very small. 
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Table 1 

Torsional constant of the rectangular micro-bar 

 / 0.8a b =  / 1.2a b =  

2l  Tong et al.  
model 

Proposed 
model 

Tong et al.  
model 

Proposed 
model 

0.0 0.13724 0.13724 0.13838 0.13838 
0.1 0.16153 0.15017 0.20210 0.16420 
0.2 0.27064 0.24767 0.27822 0.25199 
0.3 0.42939 0.40577 0.43386 0.40986 
0.4 0.64353 0.62311 0.64604 0.62834 
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Figure 1: Normalized torsional constant versus the material length scale parameter of 

the square micro-bar. Tong et al. model: 1 2l l= ; Proposed model: 1 0l = , 2l l=  

 

 

 

Figure 2: Warping surface of the square micro-bar 
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Figure 3: Normalized torsional constant versus the material length scale parameter of 

the rectangular micro-bars. Tong et al. model: 1 2l l= ; Proposed model: 1 0l = , 2l l=  

 

 

 

Figure 4: Normalized torsional constant versus the material length scale parameter of 

the circular and elliptical micro-bars. Tong et al. model: 1 2l l= ; Proposed model: 1 0l = , 

2l l=  
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Figure 5: Contours of the warping surface of the elliptical micro-bar 


