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In this paper a new modified couple stress model is developed for the Saint-Venant torsion problem of micro-bars of arbitrary cross section. The proposed model is derived from a modified couple stress theory and has only one material length scale parameter.

Using a variational procedure the governing differential equation and the associated boundary conditions are derived in terms of the warping function. This is a fourth order partial differential equation representing the analog of a Kirchhoff plate having the shape of the cross section and subjected to a uniform tensile membrane force with mixed Neumann boundary conditions. Since the fundamental solution of the equation is known, the problem could be solved using the direct Boundary Element Method (BEM). In this investigation, however, the Analog Equation Method (AEM) solution is applied and the results are cross checked using the Method of Fundamental Solutions (MFS). Several micro-bars of various cross-sections are analyzed to illustrate the applicability of the developed model and to reveal the differences between the current model and an existing one which, however, contains two additional constants related to the microstructure. Moreover, useful conclusions are drawn from the micron-scale torsional response of micro-bars, giving thus a better insight in the gradient elasticity approach of the deformable bodies.

Introduction

In recent years a need has been raised in engineering practice to predict accurately the response of micron-scale structures, which can be either the components of (such as foams, human bone, etc.) which show size-dependent mechanical behaviour at different length scales (see e.g. [START_REF] Lakes | Size effects and micromechanics of a porous solid[END_REF]. The behavior of such structures has been proven experimentally to be size dependent in metals (see e.g. Fleck et al., 1994;[START_REF] Poole | Micro-hardness of annealed and workhardened copper polycrystals[END_REF] and in polymers [START_REF] Lam | Indentation model and strain gradient plasticity law for glassy polymers[END_REF][START_REF] Lam | Indentation model and strain gradient plasticity law for glassy polymers[END_REF]. Thus, the utilization of strain gradient (higher order) theories containing internal material length scale parameters is inevitable. The couple stress theory is a special case of these higherorder theories in which the effects of the dilatation gradient and the deviatoric stretch gradient are assumed to be negligible. An analytic presentation of the afore-mentioned theories can be found in [START_REF] Vardoulakis | Bifurcation Analysis in Geomechanics[END_REF]Exadaktylos and Vardoulakis, 2001;[START_REF] Tsepoura | Static and dynamic analysis of gradient elastic bars in tension[END_REF][START_REF] Lubarda | The effects of couple stresses on dislocation strain energy[END_REF]. Although, the strain gradient theories encounter the physical problem in its generality, they contain additional constantsbesides the Lamé constants -which must be determined through meticulous experiments at small length scales (see e.g. [START_REF] Lakes | Experimental methods for study of cosserat elastic solids and other generalized elastic continua[END_REF].

The work that has been done on the solution of the Saint-Venant torsion problem of elastic micro-bars -employing couple stress theories -is limited only to the work of [START_REF] Tong | Size effects of hair-sized structures-Torsion[END_REF]. In their work the simplified couple stress model of [START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF] with three additional material length scale parameters is applied to the torsion problem.

Since the dilatational strain gradients vanish identically, the particular model leads to the formulation of the torsional equation in terms of the warping function which contains only two material length scale parameters. Two formulations in terms of pseudo warping function and stress function are presented. However, the employed analytical solutions are restricted only to simple geometric shapes. That is, closed-form solutions for circular and thin-walled cross-section are presented while a series solution for rectangular microbars is also introduced. Moreover, the two additional constants, in this simplified couple stress model, are difficult to determine [START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF].

Therefore, gradient elastic models of only one additional material constant are desirable.

Similar problems have been addressed for micropolar elastic cylinders in the published book by [START_REF] Iesan | Classical and generalized models of elastic rods[END_REF] and in the exhaustive literature cited therein. In particular, [START_REF] Iesan | Saint-Venant's problem in micropolar elasticity[END_REF][START_REF] Iesan | Generalized twist for the torsion of micropolar cylinders[END_REF][START_REF] Iesan | Generalized torsion of elastic cylinders with microstructure[END_REF] formulated a method for the solution of Saint Venant problems in micropolar beam with arbitrary cross section. Detailed solution of the torsion problem for an isotropic micropolar beam with circular cross section can also be found in the papers of [START_REF] Reddy | Saint-Venant's problem for a micropolar elastic circular cylinder[END_REF] and [START_REF] Gauthier | A quest for micropolar elastic constants[END_REF]. Yang et al. modifying the classical couple stress theory (e.g. [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF][START_REF] Koiter | Couple stresses in the theory of elasticity, I and II[END_REF] proposed a modified couple stress model in which only one material length parameter is needed to capture the size effect. This simplified couple stress theory is based on an additional equilibrium relation which forces the couple stress tensor to be symmetric. So far it has been developed for the static bending [START_REF] Park | Bernoulli-Euler beam model based on a modified couple stress theory[END_REF] and free vibration [START_REF] Kong | The size-dependent natural frequency of Bernoulli-Euler micro-beams[END_REF] problems of a Bernoulli-Euler beam, for the static bending and free vibration problems of a Timoshenko beam [START_REF] Ma | A microstructure-dependent Timoshenko beam model based on a modified couple stress theory[END_REF] and for the solution of a simple shear problem [START_REF] Park | Variational formulation of a modified couple stress theory and its application to a simple shear problem[END_REF] after the derivation of the boundary conditions and the governing differential equation of the theory in terms of the displacement. Moreover, the static bending problem of Kirchhoff isotropic plates was studied by [START_REF] Tsiatas | A new Kirchhoff plate model based on a modified couple stress theory[END_REF] and of orthotropic plates by [START_REF] Tsiatas | A microstructure-dependent orthotropic plate model based on a modified couple stress theory[END_REF].

The governing equilibrium equation and the pertinent boundary conditions in terms of the warping function are derived using the minimum potential energy principle. The resulting boundary value problem of the micro-bar is described by a fourth order partial differential equation, which represents the analogue of a Kirchhoff plate under uniform tensile membrane force with mixed Neumann type boundary conditions. Since the fundamental solution of the equation is known, the problem could be solved using the direct BEM for plates by establishing the integral representation via the Betti's reciprocal theorem. Nevertheless, the problem is solved more efficiently using the AEM with the simple fundamental solution of the biharmonic operator and the results are cross checked using the MFS. The employed numerical method is capable to handle micro-bars with complex geometries. Numerical results are obtained and useful conclusions are drawn regarding the use of either couple stress model as well as the size effect on the torsional response of micro-bars, giving thus a better insight in the gradient elasticity approach of the deformable bodies.

Problem formulation

Derivation of the governing equations

In the modified couple stress theory presented by Yang et al. (2002), the strain energy density is a function of both strain tensor and the symmetric part of the curvature tensor which are conjugated with the stress tensor and the deviatoric part of the couple stress tensor. Thus, for a deformable body the strain energy density is given as
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where the strain tensor ε , the symmetric part of the curvature tensor χ , the stress tensor σ and the deviatoric part of the couple stress tensor m are defined as ( )

1 2 = ∇ + ∇ ε u u ,
( )

1 2 = ∇ + ∇ χ θ θ , (2a,b) ( ) tr 2 λ µ = + σ ε I ε , 2 2 l µ = m χ (2c,d)
with u being the displacement vector, θ is the rotation vector defined as (Yang et al., 2002) 1

2 curl = θ u (3)
λ , µ are the Lamé constants and l is a material length scale parameter. Note that the deviatoric part of the couple stress tensor m defined in eq (2d) is symmetric due to the symmetry of χ given in eq (2b).

Thus, using eqs (2) the strain energy density (1) takes the form

( ) ( ) 2 2 1 2 tr : : W l λ µ = + + ε ε ε χ χ (4) 
From the above relation it is readily proven that not only the strain energy density is positive definite but also is a quadratic function of both ε and χ (Grentzelou and Georgiadis, 2005).

Consider now an elastic bar of length L with arbitrary cross-section occupying the two-dimensional domain Ω of arbitrary shape in the , x y plane bounded by the curve Γ which may be piecewise smooth, i.e. it may have a finite number of corners. The cross-section is constant along the length of the bar and is twisted by moments t M applied at its ends. According to Saint-Venant's torsion theory (e.g. Wagner and Gruttmann, 2001;[START_REF] Katsikadelis | Boundary Elements: Theory and Applications[END_REF], the deformation of the bar consists of (a)

rotations of the cross-sections about an axis passing through the twist center of the bar and (b) warping of the cross-sections, which is the same for all sections. Choosing the origin of the coordinate system at the twist center of an end section, the rotation at a distance z is z ϑ , where ϑ is a constant expressing the rotation of a cross-section per unit length. Assuming that this rotation is small, the displacement components of an arbitrary point are (e.g. Wagner and Gruttmann, 2001;[START_REF] Katsikadelis | Boundary Elements: Theory and Applications[END_REF])
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where ( , )

x y φ is the warping function. Taking into account eqs (5) and eq (3) the displacement and rotation vectors of the micro-bar become, respectively,

1 2 3 ( , ) zy zx x y ϑ ϑ ϑφ = - + + u e e e , (6a) ( ) ( 
)
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Substituting eqs (5) into eqs (2a,b) the nonzero components of the strain and curvature tensor are written as ( )
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, 1

y xy χ ϑ φ = - + , (8a,b) z χ ϑ = , ( ) 1 4 
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respectively. Moreover, the nonzero components of the stress (2c) and couple stress (2d) tensors, after the appropriate replacement of the Lamé constants by the modulus of elasticity E and the Poisson's ratio ν , take the following form ( )
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where

( ) / 2 1 G E ν =
+ is the shear modulus.

In the absence of body force and body couple and taking into account that the cylindrical surface of the micro-bar is traction and surface couple free, the first variation of the total potential energy takes the form [START_REF] Tsiatas | A new Kirchhoff plate model based on a modified couple stress theory[END_REF] ( )

1 2 : : V dV δ δ δ Π = + ∫ σ ε m χ (11)
and using eqs ( 7)-( 10) yields ( ) 
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6 which, after the transformation of the domain integral using twice the divergence theorem of Gauss, becomes ( ) ( ) 
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The first line integral in eq (13) represents a line force term along the boundary (the respective shearing force term in the plate bending theory e.g. [START_REF] Katsikadelis | New boundary equation solution to the plate problem[END_REF]. The last integral in the same equation represents also a line force term and must be converted in order to be inserted into the first line integral. Noting that , , 

Γ Γ Γ Γ = -   = -   ∫ ∫ ∫ ∑ ∫ (15) 
where n k m     is the jump of discontinuity of the twisting moment at the k -th corner.

Thus, eq (13) becomes ( ) ( ) 
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By applying the principle of total minimum potential energy, i.e., 0 δΠ = for the stable equilibrium and the fundamental lemma of the calculus of variation (e.g. [START_REF] Reddy | Theory and Analysis of Elastic Plates[END_REF] the governing equilibrium differential equation of the micro-bar is obtained as 

( ) 1 
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at the k -th corner.

Eqs ( 17) and (18a,b) can be also verified by substituting eqs ( 7)-( 10) into the general equilibrium equations ( )
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produced by [START_REF] Park | Variational formulation of a modified couple stress theory and its application to a simple shear problem[END_REF], together with the boundary conditions ( ) ( )
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on Γ , of a three-dimensional deformable body for the modified couple stress theory of 
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Along the boundary Γ of the surface is also present a line force with components
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in the x and y direction, respectively.

We can readily prove that the stress resultants of the tractions (23) and line forces (24) vanish. Namely,
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The moment resultant on the cross-section is going to be ( ) ( )
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which, after the substitution of eqs ( 23), ( 24) takes the form ( )
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we arrive at

t t M G I ϑ = (29) 
The torsional constant t I does not depend only on the shape of the cross-section, as it happens in the classical Saint-Venant theory, but it depends also on the microstructure of the micro-bar.

The domain integral in eq (28) can be converted into a boundary line integral [START_REF] Katsikadelis | Boundary Elements: Theory and Applications[END_REF]. Thus, eq (28) finally becomes ( ) ( )
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The plate analogue

The equation of a plate with bending stiffness D subjected to a uniform tensile membrane force N in absence of external load, is written as

4 2 0 D w N w ∇ -∇ = in Ω (31) 
Further, we consider the natural boundary conditions , ( )

n n x y Nw V w yn xn + = - , ( ) 
0 n M w = (32a,b)
on Γ , where n V and n M are differential operators defined as ( )
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which represent the effective shear force and bending moment, respectively, on the boundary.

It is apparent that eqs ( 21) and ( 22) can be obtained from eqs (31) and (32) for 31) and ( 32) give the membrane analogue for the classical Saint-Venant problem. It should be mentioned that the deflection surface is not uniquely determined, since the boundary conditions permit a rigid body motion. This, however, does not influence the deformation of the crosssection [START_REF] Katsikadelis | Boundary Elements: Theory and Applications[END_REF].

w φ = , 1 N = ,

The modified couple stress torsion model of Tong et al.

In the work of [START_REF] Tong | Size effects of hair-sized structures-Torsion[END_REF], the couple stress model of [START_REF] Lam | Experiments and theory in strain gradient elasticity[END_REF] -with three additional material length scale parameters-is applied to the Saint-Venant torsion problem. Since the dilatational strain gradients vanish identically, the torsion model contains only two material length scale parameters, namely 1 l and 2 l . The governing equation of the micro-bar in terms of the warping function is

2 2 4 2 1 2 8 0 15 4 l l φ φ   + ∇ -∇ =       in Ω (34)
and the boundary conditions are ( )
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on Γ . The boundary tractions on the end cross-sections are ( )
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while the moment resultant on the cross-section takes the form ( )
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Note that setting 1 0 l → and 2 l l = in the above equations yield eqs ( 21)-( 23) and ( 27) of the proposed model.
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11 Equations ( 34) and ( 35) can be also obtained from eqs (31) and ( 32)
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The numerical solution

Using the Betti's reciprocal theorem for the plate equation, in the absence of external load, we obtain the integral representation of the solution as (Katsikadelis and Babouskos,

n n n n k k k v w w P vV w wV v M w M v ds n n v T w w T v ∂ ∂ ∂ ∂ Γ   = - - +     - - ∫ ∑ 2009) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
where :{ , } P x y ∈ Ω and v is the fundamental solution of eq (31), i.e. a singular particular solution of the following equation ( )

4 2 2 v v P Q µ δ ∇ -∇ = - (40) 
given as ( )

0 2 1 ln 2 v K r r µ πµ = -     (41) 
with 0 K being the zero-order modified Bessel function of the second kind and 2 / N D µ = . is a differential operator defined as ( )

2 1 T D n t ν ∂ = -∂ ∂ (42) 
which represents the twisting moment nt M along the boundary and

( ) k
T w its jump of discontinuity at the k -th corner.

Obviously, the boundary integral equations will result for P p → ∈ Γ . Thus, the warping function can be established by developing the direct BEM.
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However, in order to avoid rather complicated computations of singular integrals, the problem is solved using the AEM [START_REF] Tsiatas | A microstructure-dependent orthotropic plate model based on a modified couple stress theory[END_REF] of the biharmonic equation. The results are cross checked using the MFS as it was applied for plates [START_REF] Tsiatas | A new Kirchhoff plate model based on a modified couple stress theory[END_REF].

Numerical Examples

On the base of the procedure described in previous section a FORTRAN program has been written for establishing the torsional response of the micro-bars. In the MFS the source points are placed equally on a virtual boundary -outside the domain -at a distance 20% greater than that of the actual one.

Square micro-bar

For reasons of comparisons a square micro-bar ( / 1 a b = ) was first investigated employing both couple stress models. In Fig. 1 indicate that the torsional constant of the bar increases nonlinearly with the increase of 2 l in both models. Moreover, in Fig. 2 is depicted the warping surface for the case 1 2 0.3 l l = = . ) were chosen such as the area of the cross-section was kept fixed 1 A ab = = . In Table 1 results for the torsional constant are presented for both models and aspect ratios. In Fig. 3 is also depicted the normalized torsional constant / c t t I I versus the material length scale parameter 2 l . From this figure we can observe that, unlike the case for the square micro-bar, the torsional constant estimated by the proposed one-parameter model is always smaller as the material length scale parameter increases. Moreover, from the same figure can be pointed out that, beyond the value of 2 0.3 l = the normalized torsional constant do not depend on the dimensional aspect ratio in both models.

Rectangular micro-bars

Circular and elliptical micro-bars

In order to investigate the micron-scale torsional response on curved cross-sections a circular and an elliptical micro-bar have been analyzed ( 100 N =

). In Fig. 4 the normalized torsional constant / c t t I I versus the material length scale parameter 2 l is

shown for an elliptical cross-section with semi axes 1 a = , 1.2 b = and a circular crosssection of radius 1 r a b = = = . For the circular cross-section the results from both models are identically the same while for the elliptical one the difference between the two models is very small. Moreover, the contours of the warping surface for the proposed model ( 2 0.4 l = ) are depicted in Fig. 5.

Conclusions
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