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Summary. An analytical and numerical study of the wobbling dynamics of friction disks is presented. Of particular interest 
is the excitation mechanism taking into account two contrarian effects both originating in dry friction: the circulatory terms 
describing the energy input due to the sliding contacts and the friction induced damping which stabilizes the system. Bal-
ance of these terms determines the instability domain in the parameter space. It is shown that there is a slip threshold so 
that, if the slip is under this limit, the system remains stable. If the slip is larger than this limit then the criterion of stability 
is determined by the relation between the friction coefficient and the internal damping. The limit cycle appearing in the 
unstable domain is also investigated. It is shown that the limit cycle can be described as a kind of a regular reverse preces-
sion of the wobbling disc. Its amplitude is limited by the geometric nonlinearity and partial contact loss. Analytic results are 
compared with numeric simulations. 

Keywords: Friction disc, wobbling, instability, limit cycle, contact loss 

1. Introduction 

Wobbling plates is a fascinating research object. Even the simplest case of a free disc still 
attracts attention of physicists and teachers [1, 2] and demonstrates an inspiring variety of 
effects in its dynamic behavior. Although friction discs are quite usual in technical applica-
tions, their dynamics didn’t attract much attention in the past. Dry and wet friction clutches 
in automotive transmissions [3, 4] can be mentioned here alongside with clutch actuation 
bearings [5].  Great attention was paid in the past to the various dynamic phenomena in the 
slider – disk contact [6 – 11]. The main applications here are the standard test rigs for meas-
urement of the friction coefficient [8], friction brakes [10] and magnetic disk drives [9]. Var-
ious instabilities usual in automotive drive trains can be split at least into two groups. Phe-
nomena related with the properties in the tribological contact (first of all with the effect of 
the sliding speed, temperature and contact pressure on the friction coefficient) belong to the 
first one. The second group contains effects depending mainly on the level of friction force 
and not on its gradient. The simplest one is the radial instability of friction discs described in 
[12 – 14]. The second one is the mode coupling which was investigated extensively in con-
nection with the break squeal problem [15 – 18]. The models [15] and [17] are quite general 
and mainly oriented on the principal effect of the non-symmetric stiffness matrix generated 
through friction forces. The models [16] and [18] are more specific and concentrated on spe-
cific properties of the brake, i.e. wobbling instability generated by the two sided point con-
tact between the pads and the disk. Gyroscopic terms and friction induced damping were also 
taken into account alongside with the non-symmetric stiffness for this particular case of the 
brake in [18]. 

Whereas so much attention was paid to the brake squeal, much less efforts were invested 
in the analysis of the instabilities in the clutches and the other friction discs. The main differ-
ence between brakes and friction discs is the fact that the friction contact in last ones is dis-
tributed completely symmetrically along a circle. Another difference is connected with the 
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rotation of both friction disc and the elastic pad. This principal effect that the friction insta-
bility in such a system can be caused through the mode coupling was discussed in [19]. The 
specific skew-symmetry of the stiffness matrix allows here to obtain very simple analytic 
expressions for the boundaries of the stability domain. It was later investigated in a more ac-
curate way in [20], where gyroscopic terms were taken into account. However in both publi-
cations [19, 20] an important effect of the friction forces which are not only the source of the 
circulatory terms destabilizing the disc but also generate the friction induced damping acting 
alongside with the structural damping as an additional source of stability was omitted. An-
other example of a quite artificial system generating a completely skew-symmetric stiffness 
matrix was investigated in [21]. The analysis was accomplished by the nonlinear stick-slip 
phenomena which enabled the authors to obtain the approximate predictions for the ampli-
tude of the limit cycle. However the friction induced damping couldn’t occur there due to the 
one-dimensional contact description.   

The wobbling instability of friction discs with the one side contact distributed along a cir-
cle is consequently investigated in the present paper. Based on the complete nonlinear equa-
tions of motion (section 2) we take into account all the terms appearing in the linear ap-
proximation (section 3): structural stiffness and damping, gyroscopic terms, the friction in-
duced circulatory matrix and the friction induced damping. The source of the friction in-
duced damping is explained in section 3.1 on a simple example of a mass on a sliding belt. 
The effects of different design parameters are analyzed in section 3.2. Closed analytic pre-
dictions for the boundaries of the stability domain are presented. Then the nonlinear effects 
are investigated in section 4. It is shown that the described instability leads to the classic 
transcritical bifurcation. The amplitude of the limit cycle can be easily predicted, if one takes 
the geometric nonlinearity into account. However this prediction is valid only for extremely 
small amplitudes of the limit cycle, i.e. in the vicinity of the bifurcation point. The further 
development of the nonlinear dynamics of the system is accompanied by the partial loss of 
contact between the friction disc and the rotating master disc. The corresponding limit cycle 
(both without and with contact loss) can be described as a kind of regular precession directed 
against the main sliding. All analytic results are compared with the numeric simulations of 
the nonlinear system which were performed with the simulation software DynaReg2D [14, 
22]. 
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2. Friction disc and its equations of motion 

Consider the system in Fig. 1 representing a rotating disc on an elastic pad. 
The disc rotates around its symmetry axis with a given constant velocity ϕ&  and can tilt to-

gether with the bar which has its fixed point in the ball joint. The length of the bar is h . The 
disc contacts with the friction ring of radius Rwhich is mounted on the elastic layer of a cer-
tain stiffness c . This compliance represents the properties of the friction material at the in-
terface between the clutch discs. Sometimes additional axial springs are used in the clutch 
disc design in order to assure the soft contact. In that case the stiffness distribution is not 
completely uniform in circumferential direction. However this non-symmetry could cause 
some additional excitation of a higher order which is not of the main interest in the present 
paper.  

The distance between the ball joint and the unloaded position of the friction ring is H . It 
means the difference ( )h H−  multiplied by the layer’s stiffness determines the preload of 
the system. ω  is the rotation speed of the friction ring around the fixed vertical axis which is 
also assumed to be constant. The coupling between the disc and the friction ring is described 
by Coulomb’s friction law with the friction coefficient µ  and the normal load determined by 
the layer’s stiffness and its deformation.  

In order to obtain the equations of motion we introduce two coordinate systems. The first 
one ( ), ,x y ze e e

r r r
 is fixed in the inertial space. The second one ( ), ,i j k

rr r
 is semi connected with 

the friction disc. It means these vectors tilt together with the body (friction disc) but don’t 
rotate with the velocity ϕ& . The relationship between these coordinate systems can be de-
scribed by the corresponding rotation matrix. 

 

cos sin

sin sin cos sin cos

cos sin sin cos cos

x

y

z

e i k

e i j k

e i j k

β β
α β α α β

α β α α β

= +

= + −

= − + +

rrr

rr rr

rr rr

 (1) 

The angular speed of the disc and the equations of motion can be obtained as follows: 

  ( )cos sinS xe j k i j kω α β ϕ α β β ϕ α β= + + = + + +
r rr r rr r & && & & & &  (2) 

 SL I ω= ⋅
rr r r

 (3) 

 L M=
r r&  (4) 

Here I J i i J j j Jk kα β= + +
r r rr r r r r

 is the inertia tensor of the disc with the rod. Equation (2) is 
based on the modeling assumption that any desired angular velocity component ϕ

r
&k  can be 

maintained by an external torque vector that is always parallel to k
r

. 
In order to calculate the external torque we assume that the contact takes place along the 

circle line: 

 cos sinAr R i R j hkψ ψ= + +
rr rr

 (5) 

Here ψ  is an angle along the contact circle. The torque is generated by two different 
sources. Firstly it is the reaction force of the elastic layer under the friction ring. Secondly it 
is the friction force between the disc and the ring. We assume here that the rotation speeds 
ω  and ϕ&  are significantly different and thus there is permanent slip in the contact. In order 
to calculate the elastic force we assume that it depends only on the vertical deformation of 
the layer (along the vector ze

r
) and is directed along the body frame axis k

r
. (The friction 

ring is assumed rigid.) Then the force generated by a certain element of the elastic layer is 
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( )

( cos cos sin sin cos cos sin )

e A z

d
dF c r e H k

2
c

H h R R k d
2

ψ
π

α β ψ α ψ α β ψ
π

= − ⋅ −

= − − +

rr r r

r
 (6) 

In order to calculate the friction force we need the velocity of each point along the contact 
line. The velocity of the point A of the disc which is determined by the vector Ar

r
 is 

 ( sin ) ( cos ) ( sin cos )A S AV r h R i R h j R R kω β ϕ ψ ϕ ψ α α ψ β ψ= × = − + − + −
rr r rr r & && & & &  (7) 

The velocity of the corresponding point of the friction ring on the elastic pad is 

 
_ ( sin sin cos cos )

( cos cos cos cos sin ) ( cos sin sin cos sin )

A ring z AdV e r h R i

R h j R R k

ω ω α ψ α β

ω ψ α β α β ω ψ α ψ α β

= × = −

+ + − +

r rr r

rr  (8) 

Then the friction force of the same element can be calculated as follows (here and further 
we assume the Coulomb friction with constant friction coefficient): 

 r
R e

r

V
dF dF

V

τ

τ
µ= −

r
r r

r  (9) 

Here rVτ
r

 is the tangential component of the relative velocity between the disc and the ring: 

 _ ; ( )r A A ring r r rV V V V V V k kτ= − = − ⋅
r rr r r r r r

 (10) 

Having the forces we can calculate the elementary torque: 

 ( )A e RdM r dF dF= × +
r r rr

 (11) 

The full torque can be obtained if we integrate the elementary torque along the contact 
line: 

 
2

0

M dM
π

= ∫
r r

 (12) 

Note that completely closed contact between the discs is assumed here. This assumption 
will be modified in section 4 in order to obtain the limit cycle with only partial contact.  

Relationships(3), (4) and (12) give us finally the required equations of motion. 

3. Linearized equations and instability of the sliding disc 

Assuming the angles α  and β  to be small we can linearize the equations of motion which 
obtain the typical structure: 

 ( ) ( ) 0
α α α
β β β
     

+ + + =     
     

&& &

&& &
J D G K + N  (13) 

Here J is the matrix of inertia, D is the symmetric damping matrix, G is the skew-
symmetric gyroscopic matrix, K is the symmetric stiffness matrix and N is the skew-
symmetric circulatory matrix. The explicit form of these matrixes can be found in (14) where 
we suppose that the disc is perfectly symmetric and also introduce b as a measure for the 
structural damping: 
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2

2
2

1 0 1 0 0 1( )
; ;

0 1 0 1 1 02

1 0 0 11 ( )
; 1 sgn( )

0 1 1 02 2 ( - )

ch h H
J b J

R

ch R h h H
cR

R

α
µ ϕ

ω ϕ

µ ω ω ϕ
ω ϕ

      −= = + =        −−      

     −= = − − −    −     

&
&

&
&

J D G

K N

 (14) 

These matrices determine the stability of the stationary solution for the friction disc. Due 
to the modeling assumptions the circulatory matrix is the source of instability. It is propor-
tional to the friction force, which can be easily seen in (14) because this matrix is multiplied 
by the friction coefficientµ . The physical explanation of this basic effect can be found for 
example in [15]. However it is not the only matrix proportional to the friction. In the damp-
ing matrix D we also find such terms. Even more, these terms increase with decreasing slip. 
These terms describe the friction induced damping. They influence significantly the stability 
of the friction disc and were unfortunately overlooked in previous publications [15, 16].   

3.1. A simple example explaining the appearance of the friction induced damping 

In order to reach a better understanding of the friction induced damping let us consider 
(following to [23]) a simple example of a point mass on a moving belt. However we assume 
that the mass can move only along the x axis perpendicular to the direction of the belt’s mo-
tion (cf. Fig. 2).  

The equation of motion for this mass is quite simple: 

 
2 2

x
mx cx N

x V
µ+ = − ⋅

+

&
&&

&

 (15) 

Assuming x V<<&  we can linearize the friction force on the right hand side and obtain the 
equation containing the friction induced damping: 

 0
x

mx N cx
V

µ+ + =
&

&&  (16) 

This damping term is quite similar to that in (14) and the belt’s velocity plays here the 
same role like the slip ω ϕ− &  in the equations for the friction disc. 

Let us now return to the stability conditions for the friction disc. 

3.2. Stability conditions for the undamped system 

Assuming 0b =  we introduce the following dimensionless time and parameters: 

 

( ) ( )

( )
; ; ; ;

; ; sgn( )

2
2

2

h h H cR h J c
c I k

R 2 R J J

k
I p q s

k

kt k

α α

ω µε µ
ω ϕ

ϕ ε ω ϕ ε
ω

τ •

− = = = = =
−

= = − − =

′= → =

%
% %

&

&
&  (17) 

Then we can rewrite the equations (13), (14) as follows: 

 
q p s 0

p q s 0

α µα β α µ β
β α µβ µ α β

′′ ′ ′+ + + − =
′′ ′ ′− + + + =

% %

% %
 (18) 
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Now we can calculate the characteristic equation: 

 det ( ) ( ) .
2

2 2 2

2

q 1 p s
q 1 p s 0

p s q 1

λ λ µ λ µ λ λ µ λ µ
λ µ λ λ µ
+ + −

= + + + − =
− + + +

% %
% %

% %
 (19) 

Applying Hurwitz’ criterion we get the stability conditions: 

 2 2

q ps

q qps s 0

>

− − >
 (20) 

Further simplifications are possible if we notice that both p and q are positive. This is ob-
viously the case if the disc and the ring rotate in the same direction. It is usual in almost all 
sensible applications. Parameter s however can be both positive and negative. We shall dis-
tinguish between these two cases. 
 The solution to (20) is: 

 
2

2

1 4
1 1 for 0

2

1 4
1 1 for 0

2

q ps s
p

q ps s
p

 
> + + >  

 

 
> − + − <  

 

 (21) 

Returning back to the original parameters the inequalities (21) can be rewritten as follows: 

 

( )
( )

2 2

2 2
2 2

2 2 2 2

2

1 1
2 2

1 1 1 1

cR cR

cR J cR J
J J

J J

h h H

R h h H

α α

δϕ ω ϕ δϕ
ϕ ϕ

ϕ ϕ

δ

   
   
   

− < − < +   
      + − + +            
      

−
=

− −

& & &

& &
& &

 (22) 

 
It is easy to notice that these inequalities determine the threshold of instability with respect 

to the slip( )ω ϕ− & . The stability conditions (22) are automatically fulfilled if the slip is suffi-
ciently small and the shape of the threshold depends strongly on the absolute velocity ϕ& . It 
is also different for the top and the bottom boundaries (the right hand side and the left hand 
side of the inequalities (22)). 

Figure 3 illustrates this behavior and shows the stability boundaries calculated for the fol-
lowing parameter values: 

  

 
. ; , ; . ; / ; .

. ; ; ; ,

4 2

2 2
0 0

R 0 12 m h 0 15 m h H 0 002 m c 3 10 N m J 0 04 kg m

J 0 02 kg m J J mh m 1kg 0 2α α α µ
= = − = = ⋅ = ⋅

= ⋅ = + = =
 (23) 

Numeric simulations of the nonlinear equations (3) - (12) were performed with the simula-
tion software DynaReg2D [14, 22]. The stability boundaries were determined numerically by 
observing the time trajectories over a long period of time. In this particular situation it is not 
difficult to find the stability boundary because it separates the asymptotically stable and un-
stable areas. Note that it is not possible to compare analytic and numeric predictions for 
near-zero slip, because sticking occurs in numeric simulations whereas the permanent slip is 
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assumed in the analytic model.  
There are several peculiarities which have to be mentioned here. Firstly, the domain of 

small slip between the solid lines is stable. The area of large slip (both positive and negative) 
corresponds to the instability of the steady state vertical position of the friction disc.  

Secondly, the stability domain for the undamped system doesn’t depend on the friction co-
efficient. The reason for this strange feature is the fact that the stability conditions are deter-
mined through the balance between the friction induced circulatory terms and also friction 
induced damping. These terms both are proportional to the friction coefficient. Although the 
stability conditions (22) are independent from the friction coefficient, the limit case 

0µ = must be excluded from the analysis. It corresponds to the conservative system. Thus 
the eigenvalues are purely imaginary and no decision on the stability of the system can be 
made based on the linear approximation. 

Thirdly, the geometry of the stability domain depends strongly on the absolute value of the 
rotation speed ϕ& . Thus these domains for 10 rad/sϕ =&  and for 100 rad/sϕ =&  are quite dif-
ferent. 

All these results were overlooked both in [19] and [20], because the stability without any 
structural damping is possible only due to friction induced damping. 

3.3. Stability conditions for the system with structural damping 

The performed analysis can be easily generalized for the system in presence of structural 
damping. Using the signs (17) and introducing additionally b b J kα=%  we can rewrite the 
equations (13), (14) as follows: 

 
( )

( )

q b p s 0

p q b s 0

α µ α β α µ β
β α µ β µ α β

′′ ′ ′+ + + + − =
′′ ′ ′− + + + + =

%% %

%% %
 (24) 

Applying the Hurwitz’ criterion to the characteristic equation we obtain the stability con-
ditions: 

 

( )

( ) ( )( )( ) ( )
( )( )

2 22

2 2 0

2 q ps b 0

q b 2 q b p b q p s b q p s

b q 1 s

µ

µ µ µ µ µ µ

µ µ >

− + >

+ + + + + − − + − −

+ +

%%

% % % %% % % % % %

% % %

 (25) 

Let us analyze these inequalities. Consider firstly the case (20), i.e. the undamped system 
is stable. Then (25) can be transformed to the following form: 

 ( ) ( )2 2 2 2b b 2q ps q qps s 0µ µ+ − + − − >% % % %  (26) 

This inequality is always fulfilled under the above formulated assumptions. Thus damping 
can not destabilize the disc.  

Now let us investigate the case when the undamped system is unstable, i.e. 

 2 2q qps s 0− − <  (27) 

In that case the inequality (26) can be solved with respect to the friction coefficient: 
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2 2 2

2 2 2

4
1 1 for 0

2

4
1 1 for 0

2

b ps
q s

s qps q p

b ps
q s

s qps q p

µ

µ

  
< − − + >    + −   

  
< − + + <    + −   

%
%

%
%

 (28) 

These relationships show that for each level of friction coefficient there is a certain critical 
damping. If the damping is below the critical level, the system remains unstable. The disc 
gets stable if the damping exceeds this level. The last statement can be also inverted. It 
means for each level of structural damping there is a certain critical friction coefficient. The 
disc gets unstable if the friction is above this threshold and the slip is sufficiently large. Fig-
ure 4 illustrates this fact. It shows the linear dependency between the critical friction and the 
structural damping. One can also see that the critical friction depends on the sign of the slip. 
The threshold for the positive slip (the friction ring is faster than the disc) is significantly 
lower than that for the negative slip (the friction which in that case is necessary for instabil-
ity is higher). The analytic results corresponding to the relationships (28) correlate quite well 
with the results of the direct numeric simulations of the full nonlinear system. 

Inequalities (28) show that the addiction of the system to instability can be described 
through the ratio bµ %%  for the critical values. This is illustrated in Figure 5.  

Consider the synchronization between the disc and the ring. In the simplest case it would 
mean that the rotation speed of the disc remains constant and the slip decreases continuously 
towards zero. We assume here that the slip decreases quasi-statically and thus the equations 
of motion and the obtained stability conditions still hold. Then we can start in the stable do-
main (solid arrow in Fig. 5) with a large slip. Then we will cross the threshold and come into 
the unstable area (dashed line). The disc starts to wobble. If we continue to reduce the slip 
then close to synchronization we will cross the border line for the second time and the sys-
tem will calm down due to the demonstrated stability for sufficiently small slip (22), (26). 

However this screenplay can occur only if the instability wouldn’t destroy the system. 
Thus the nonlinear analysis is necessary in order to estimate the system’s behavior in the un-
stable domain.  

Figure 6 shows the main design parameters which can influence the stability of the disc. 
The first one is the distance between the ball joint and the friction surface (the length of the 
rod). The longer rod destabilizes the disc. The second one is the stiffness of the elastic layer. 
Higher stiffness destabilizes the disc. 

4. Limit cycle of the wobbling disc due to geometric nonlinearity. 

In order to investigate the limit cycle appearing as soon as the friction disc gets unstable 
and starts to wobble it’s necessary to return back to the nonlinear equations. Firstly, we con-
sider equations (1) - (12) taking the first nonlinear terms of the corresponding Taylor’s ex-
pansions with respect to the tilting angles ,α β  into account. These can be easily analyzed if 
one converts from the “Cartesian” angles ,α β  to the “polar” angles as follows: 

 cos , sinα ρ ϑ β ρ ϑ= =  (29) 

The equations of motion governing α  and β  differ from (13) due to the nonlinearity in 
the external torques (the inertial terms don’t change in this approximation): 
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J b J M

J b J M

α α

α β

α α ϕβ
β β ϕα

+ + =

+ − =

&&& & &

&& & & &
 (30) 

Here Mα and M β are the components of the full torque vector in (4) calculated along the 
contact line as shown in (12).  

Applying (29) we convert to the new equations governing ρ  andϑ : 

 
( )
( )

2 cos sin

2 sin cos

J b J M M M

J b J M M M

α ρ α β

α ϑ α β

ρ ρϑ ρ ϕρϑ ϑ ϑ

ρϑ ρϑ ρϑ ϕρ ϑ ϑ

− + + = = +

+ + − = = − +

& &&& & &

&& & && & &

 (31) 

Stationary solutions of these equations can be obtained by setting  

 0, 0, 0, 0Uρ ρ ϑ ϑ= = = = ≠&& && &&  (32) 

The last assumption corresponds to the stationary precession of the friction disc. 
The equations determining the stationary solution is: 

 2 ;st st st st st stJ U J U M b U Mα ρ ϑρ ϕρ ρ− + = =&  (33) 

These equations can be easily solved numerically. There are three sets of stationary solu-
tions. The first one is 0ρ =  (and U – undetermined) which corresponds to the investigated 
equilibrium of the friction disc without tilting. The second and the third one correspond to 
the regular precession of the tilted disc. However one of these solutions remains unstable, 
whereas the second one gets stable at the stability boundary of the non-tilted disc. This be-
havior is illustrated in Fig. 7. Note that there are always two solutions for ρ  (positive and 
negative) describing the same motion. Thus only the positive branch is displayed in the Fig-
ure. 

Thus we have to deal with the usual transcritical bifurcation for the tilting angle of the 
friction disc. One can easily find out that the stationary precession’s speed stU corresponding 
to the stable limit cycle is always directed against the slip (cf. the qualitative explanation in 
[19]. 

However the described bifurcation doesn’t exhaust the complexity of the system’s dynam-
ics. The first significant change occurs as soon as the amplitude exceeds the critical level and 
a part of the disc looses contact to the elastic layer. From now on we will assume that the 
friction ring is not rigid in the normal direction. It means the ring consists of infinitesimal 
pads (elastic layer which doesn’t transmit normal deformations in tangential direction). Thus 
the contact between the friction disc and the ring takes place only where the normal springs 
are loaded. Mathematically this condition can be expressed in terms of the normal force 
which has to be positive. In such a constellation the equation (12) must be modified. The in-
tegration of the forces must be done along the part of the circle with positive normal forces: 

 
2

1

M dM
ψ

ψ

= ∫
r r

 (34) 

 The integration limits 1ψ  and 2ψ  are determined as the solutions of the equation for the 
normal force: 

 ( cos cos sin sin cos cos sin )e

c
dF k H h R R d 0

2
α β ψ α ψ α β ψ

π
⋅ = − − + =
rr

 (35) 

The further analysis can be performed in MAPLE if we apply Taylor’s series with respect 
to angles α  and β . However comparison between analytic and numeric predictions shows 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

10 

that it is necessary to take at least three terms into account in order to achieve an acceptable 
accuracy (Fig. 8). 

The corresponding formulas are so large that their application doesn’t give any significant 
advantage compared with direct numeric simulations. Thus the following results are based 
on the numeric integration. However the qualitative result can be formulated: The amplitude 
of the wobbling friction disc is limited due to the partial contact loss between the disc and 
the layer. The corresponding limit cycle can be described as a direct continuation of the ob-
tained limit cycle with permanent contact. The direction of the precession is opposed to the 
slip. The described mechanism is completely different to that described in [14]. The non-
linearity limiting the amplitude has nothing to do with the stick-slip effects, but is directly 
connected with the partial contact loss. 

Figure 9 (a) shows the amplitude of the limit cycle as a function of the slip for different 
rod’s lengths. All the simulations were performed with the same parameter values as in (23). 
It’s easy to see that the amplitude of the limit cycle increases with the increasing slip. How-
ever the line for 0,2h =  is interrupted at a high slip. The reason is that the limit cycle in that 
domain also gets unstable. This secondary bifurcation is nothing unexpected for such a non-
linear system. It is possible to determine the boundary of the stable limit cycle domain in the 
parameter space. Figure 9 (b) shows this boundary in the plane “slip over the rod’s length” 
for different angular speeds of the ring. One can notice that the necessary slip decreases with 
the increasing rod’s length. Increasing the absolute rotation speed of the system one in-
creases also the slip which is necessary to destabilize the limit cycle.  

Figure 10 shows the development of the instability for consequently increasing values of 
the slip in the unstable domain. One can see the increasing complexity of the dynamics until 
something similar to chaotic motion is achieved for the very large slip.  

However, these results can be hardly significant (but not impossible) in applications due to 
extremely large slip. The large slip can occur for example in an automotive clutch with man-
ual transmission due to miss-shift, i.e. if the driver would accidentally engage the reverse 
gear in a forward driving vehicle.  

5. Conclusions 

Dynamics of the friction disc is investigated in the article. It is shown that any friction disc 
tends to wobbling instability. The threshold of the instability is determined by the relation-
ship between the friction induced circulatory terms and damping. The last one contains a 
structural and a friction induced compounds. The slip between the friction disc and the elas-
tic pad was identified as the principal governing parameter. Without any structural damping 
there is an instability threshold determined through the sufficiently small slip. If the slip is 
large, then the system can be always stabilized through the appropriately chosen damping. 
On the other hand, for any given structural damping the system can get unstable if the slip is 
not too small and the friction coefficient is sufficiently large. The main design parameters 
which influence the stability of the friction disc are determined. It is the distance between the 
ball joint and the friction surface alongside with the slip, the friction coefficient and the stiff-
ness of the underlying elastic layer. Analytic expressions are obtained for the boundaries of 
the stability domain in the parameter space. These criteria are confirmed through numeric 
simulations of the complete non-linear system. 

A limit cycle appears in the domain of wobbling instability. It occurs due to the geometric 
nonlinearity of the system. The amplitude of the limit cycle increases while the system pene-
trates deeper in the unstable domain. With increasing amplitudes the limit cycle leads to the 
partial contact loss between the friction disc and the underlying elastic layer. It is demon-
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strated that also this limit cycle can become unstable. The corresponding motions can be 
quite complex and even chaotic. 

The described model can be considered as the minimal one for the low frequency noise 
(between 250 and 450 Hz) of the friction discs in automotive clutches. This phenomenon 
usually called “eek-noise” is a general problem occurring both in manual and double clutch 
transmissions. The noise appears while shifting, especially during the clutch engagement. 
The noise can be easily heard by a driver and disappears as soon as the engine is synchro-
nized with the transmission and the clutch is sticking. It is quite difficult to measure the cor-
responding motion in a vehicle due to the permanent rotation of the clutch and its compo-
nents. However special measurements on the test rigs with standing clutch and rotating fric-
tion disc or vice versa have confirmed the dominating role of the wobbling for the noise gen-
eration. The main recommendation to reduce the tilting stiffness of the disc could be also 
confirmed form the practical point of view. Though the real system is much more complex 
than the considered one, many additional influences must be taken into account in applica-
tions. 

Further investigations should be connected with the influences of different types of struc-
tural damping. The influence of damping on the stability of circulatory-gyroscopic systems 
was investigated extensively in [24, 25]. Especially the destabilizing effect of the internal 
damping both in the elastic layer representing the friction material and in the ball joint could 
be important for applications. It would be also interesting to investigate dynamics of a disc 
with two sided frictional contact as well as the friction induced coupling between wobbling 
and torsional degrees of freedom. 
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Fig. 1. Rotating friction disc on the elastic pad and the corresponding coordinate systems 
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Fig. 10. Limit cycles obtained by numeric simulations: (a) – stable limit cycle with regular 
precession for the slip 70 /rad sω ϕ− =& , (b) – more complex limit cycle for 

75 /rad sω ϕ− =& , (c) – the next complexity level for 105 /rad sω ϕ− =& , (d) – seemingly 
chaotic behavior for 220 /rad sω ϕ− =&  
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Fig. 2. A mass on the moving belt 
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Fig. 3. Stability domain of the undamped system; solid line – stability boundary according to 
(21), circles/dots – stability boundary according to numeric simulations of the complete 
equations (3) – (12) 
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Fig. 4. Critical friction as a function of the structural damping for positive slip (solid line) and 
negative slip (dashed line); dots and triangles correspond to the numeric simulations of the 
nonlinear equations  
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Fig. 5. Alternation of stable and unstable domains while synchronizing the disc   
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Fig. 6. Friction/damping threshold as a function of the design parameters; (a) h=0,1 for quads, 
h=0,15 for dots, h=0,2 for triangles; (b) dotted line for c=15.000 N/m, dashed line for 
c=30.000 N/m, solid line for c=60.000 N/m 
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Fig. 7. Transcritical bifurcation in the disc’s dynamics; stable equilibrium – solid line with 
solid dots, unstable equilibrium – dotted line with circles, stable periodic solution – solid line, 
unstable branch of the same periodic solution – dashed line, unstable periodic solution – 
dotted black line. 
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Fig. 8. Convergence of the analytic approximation (dots) to the numeric results (solid line) 
 
 
 
 
 
 
 
 
 

0

0,2

0,4

0 1 2 3 4

approximation's order

a
m

p
lit

u
d

e 
of

 th
e

 li
m

it 
cy

cl
e



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Limit cycle and its stability domain; (a): h=0,1 for the line with circles, h=0,15 for the 
solid line with crosses, h=0,2 for the solid line; (b): 100 /rad sω =  for the solid line, 

200 /rad sω =  for the dashed line, 300 /rad sω =  for the dotted line 
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