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THREE-DIMENSIONAL ELASTICITY SOLUTION FOR 

BENDING OF TRANSVERSELY ISOTROPIC 

FUNCTIONALLY GRADED PLATES  

 

B. Woodward, M. Kashtalyan* 

Centre for Micro- and Nanomechanics (CEMINACS),  

School of Engineering, University of Aberdeen, AB24 3UE, Scotland, UK  

 

ABSTRACT 

This paper presents a three-dimensional elasticity solution for a simply supported, 

transversely isotropic functionally graded plate subjected to transverse loading, with 

Young’s moduli and the shear modulus varying exponentially through the thickness and 

Poisson’s ratios being constant. The approach makes use of the recently developed 

displacement functions for inhomogeneous transversely isotropic media. Dependence of 

stress and displacement fields in the plate on the inhomogeneity ratio, geometry and 

degree of anisotropy is examined and discussed. The developed three-dimensional 

solution for transversely isotropic functionally graded plate is validated through 

comparison with the available three-dimensional solutions for isotropic functionally 

graded plates, as well as the classical and higher-order plate theories. 

Keywords: Functionally graded material; Transversely isotropic; Three-dimensional 

analytical solution; Rectangular plate; Displacement potential functions 

* Corresponding author, e-mail: m.kashtalyan@abdn.ac.uk, tel/fax: +44(0)1224 272519 
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1. Introduction 

Functionally graded materials (FGMs) are a type of heterogeneous composite materials 

exhibiting gradual variation in volume fraction of their constituents from one surface of 

the material to the other, resulting in properties which vary continuously across the 

material. These materials were initially developed in the 1980s for use in high 

temperature applications by Japanese scientists, who showed that the FGMs provide heat 

and corrosion resistance whilst retaining strength and toughness (Yamanouchi et al., 

1990; Koizumi, 1993). 

 

Since then a large amount of research has been undertaken into their performance and 

production (Suresh and Mortensen, 1998; Miyamoto et al., 1999) and as such their use 

has become far more widespread, with current applications including dental implants, 

heat exchanger tubes, engine components and to eliminate mismatch of thermal 

properties in metal and ceramic bonding.  

 

Theoretical modelling of functionally graded plates remains an active research area 

(Birman and Bird, 2007), with the development of analytical elasticity solutions being of 

particular importance.  

 

Bian et al (2005) have developed a plate theory for a simply supported functionally 

graded plate under cylindrical bending utilising shape functions to describe 

inhomogeneity in the transverse direction. These results are then compared with those 

found using first and third order shear deformation plate theories. The paper however 

only covers a one-dimensional problem. 

 

The response of a functionally graded plate to transverse uniform load was investigated 

analytically by Zenkour (2006). Through use of generalised shear deformation theory a 

stress analysis is presented for an isotropic functionally graded plate with power law 

distribution in gradient. Comparisons are then made with an equivalent homogeneous 

isotropic plate. 
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Shariat and Eslami (2007) performed buckling analysis of rectangular functionally graded 

plates with linear through thickness variation of properties. Equilibrium equations are 

derived using third order shear deformation theory and a buckling analysis is carried out 

for a variety of mechanical and thermal load types. 

 

Through use of displacement functions, Kashtalyan (2004) developed an exact three 

dimensional elasticity solution for the bending of functionally graded plates. The material 

was assumed to be isotropic with exponential variation of Young’s modulus through the 

thickness. This solution was validated through comparison with results for isotropic 

homogeneous plate and has become a benchmark solution used by other researchers 

(Abrate, 2008; Zhong and Shang, 2008; Brischetto, 2009; Yunet et al., 2010). 

 

A three-dimensional elasticity solution for exponentially graded rectangular plate of 

variable thickness was developed by Xu and Zhou (2009), while axisymmetric bending 

of functionally graded isotropic circular plates was investigated by Zheng and Zhong 

(2009) and Wang et al (2010). 

 

Compared to isotropic functionally graded plates, transversely isotropic plates with 

gradient in elastic properties have received considerably less attention in the literature. 

 

An exact three dimensional analysis for a simply supported functionally graded 

piezoelectric plate with exponential variation of properties through the thickness was 

presented by Zhong and Shang (2003). Using the state space approach, numerical results 

were obtained for four different cases of sinusoidal loading. 

 

A method of solution for stresses and displacements within a transversely isotropic 

functionally graded circular plate, whose elastic constants are arbitrary functions of the 

thickness coordinate, was described by Li et al. (2008).The loading considered was a 

transverse uniform load and it was shown that the stresses and displacements through the 
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thickness of the plate could be controlled through selection and optimization of the five 

engineering constants. This solution is however only valid for circular FGM plates under 

one specific type of loading. The authors concluded that there is still significant research 

required to model other types of axisymmetric loading. 

 

Yun et al. (2010) provided an analytical solution for the axisymmetric bending of 

transversely isotropic functionally graded circular plates subject to arbitrarily transverse 

loads using the direct displacement method. Verification is then carried out through 

comparison with a finite element model.  

 

In this paper an approach utilising displacement functions for inhomogeneous 

transversely isotropic media developed by Kashtalyan and Rushchitsky (2009) allows an 

exact three dimensional elasticity solution for functionally graded transversely isotropic 

rectangular plate to be developed. It is assumed that the material has constant Poisson’s 

ratios and that Young’s and shear moduli vary exponentially through the thickness.  

 

2. Problem formulation 

The plate under consideration, with length a , width b  and thickness h , is shown relative 

to the 321 xxx  Cartesian coordinates in Figure 1. 

 

The plate is assumed to be simply supported on the edges such that 

,0,0:,0 32111 ==== uuax σ        (1a) 

,0,0:,0 31222 ==== uubx σ        (1b) 

where ijσ are the components of the stress tensor and iu  are the components of the 

displacement vector. 

 

The loading is applied transversely and provides the final six boundary conditions. Since 

it is applied at the upper surface, hx =3 , it can be written that 

0),,( 23132133 === σσσ xxQ        (2a) 
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b

nx

a

mx
qxxQ mn

21
21 sinsin),(

ππ−=        (2b) 

where mnq  is the amplitude of the loading. The bottom surface, 03 =x  is load-free, i.e.   

0231333 === σσσ          (2c) 

 

The material of the plate material is an inhomogeneous transversely isotropic with the 

3x -axis as an axis of material symmetry. Hence the following constitutive equations can 

be written 

33132212111111 εεεσ ccc ++=         (3a) 

33132211111222 εεεσ ccc ++=         (3b) 

33332213111333 εεεσ ccc ++=         (3c) 

234423 2 εσ c=           (3d) 

134413 2 εσ c=           (3e) 

( ) 121211126612 2 εεσ ccc −==         (3f) 

where ijε  are the components of the strain tensor and 11c , 12c , 13c , 33c , 44c are five 

independent elastic coefficients, which in the general case depend on 321 ,, xxx .  

 

Let ,E ν and ( )ν+
=

12

E
G  denote the Young’s modulus, Poisson’s ratio and shear 

modulus in the plane of isotropy (i.e. any plane normal to the 3x -axis), and ,E′ ν ′  and 

G′  the Young’s modulus, Poisson’s ratio and shear modulus in any plane normal to the 

plane of isotropy. 

 

It is assumed that: 

(i) Poisson’s ratios νν ′, are constant, i.e. 

,const=ν const=′ν          (4a) 

(ii) Young’s moduli E  and E′  and the shear modulus G′ , have the same functional 

dependence on the co-ordinate 3x , i.e. 
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( ) ( ) constExmExE == 0303 ,        (4b) 

( ) ( ) constExmExE =′′=′ 0303 ,        (4c) 

( ) ( ) constGxmGxG =′′=′ 0303 ,        (4d) 

where ( ),3xmm =  henceforth termed the inhomogeneity function, is a sufficiently smooth 

function of the transverse co-ordinate 3x . It follows that the elastic coefficients 

11c , 12c , 13c , 33c , 44c  also have the same functional dependence on the transverse co-

ordinate 3x . Hence: 

( ) ( )3
0
11311 xmcxc =          (5a) 

( ) ( )3
0
12312 xmcxc =          (5b) 

( ) ( )3
0
13313 xmcxc =          (5c) 

( ) ( )3
0
33333 xmcxc =          (5d) 

( ) ( )3
0
44344 xmcxc =          (5e) 

where 

( ) ( )
( ) ( ) ( ) 0

00
22

00
2

0
11

211

1
E

EE

EE
c

′′++−
′′−=

ννν
ν

       (5f) 

( ) ( )
( ) ( ) ( ) 0

00
22

00
2

0
12

211
E

EE

EE
c

′′++−
′′−=

ννν
νν

       (5g) 

( )
( ) ( ) ( ) 0

00
22

0
13

211

1
E

EE
c

′′++−
−′

=
ννν
νν

       (5h) 

( ) ( ) ( ) 0

00
22

2
0
33

211

1
E

EE
c ′

′′++−
−=

ννν
ν

       (5i) 

0
0
44 Gc ′=           (5j) 

 

In the absence of body forces, the equilibrium equations for inhomogeneous transversely 

isotropic plate are 

0
3

13

2

12

1

11 =
∂

∂
+

∂
∂

+
∂

∂
xxx

σσσ
        (6a) 
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0
3

23

2

22

1

12 =
∂

∂
+

∂
∂

+
∂

∂
xxx

σσσ
        (6b) 

0
3

33

2

23

1

13 =
∂

∂
+

∂
∂

+
∂

∂
xxx

σσσ
        (6c) 

Using strain – displacement relations  















∂
∂

+
∂
∂

=
i

j

j

i
ij x

u

x

u

2

1ε          (7) 

and the constitutive equations (3), the equilibrium equations (6) can be re-written in terms 

of displacements (Kashtalyan and Rushchitsky, 2009) as  

022)(
1

3

3

1

3

44

1
131211 =









∂
∂

+
∂
∂

∂
∂+

∂
∂+∆−

x

u

x

u

x

c

x

e
ucc g       (8a) 

022)(
2

3

3

2

3

44

2
231211 =









∂
∂

+
∂
∂

∂
∂

+
∂
∂+∆−

x

u

x

u

x

c

x

e
ucc g      (8b) 

0
3

3

3

33

2

2

1

1

3

13
33/344 =

∂
∂

∂
∂+









∂
∂+

∂
∂

∂
∂+′+∆

x

u

x

c

x

u

x

u

x

c
euc g      (8c) 

where 

3

3
1344

2

2
1211

1

1
1211 )()(

2

1
)(

2

1

x

u
cc

x

u
cc

x

u
cce

∂
∂

++
∂
∂

++
∂
∂

+=     (8d) 

3
2

3
2

1211
33

32

2
2

1344
31

1
2

13443 2
)()(

x

ucc
c

xx

u
cc

xx

u
cce

∂
∂







 −−+
∂∂

∂++
∂∂

∂+=′    (8e) 

2
3

2

23 x
g o

g ∂
∂+∆=∆ , 

2
3

2

2/3

1

xg og ∂
∂+∆=∆       (8f,g) 

2
2

2

2
1

2

2 xx ∂
∂+

∂
∂=∆ ,  constg

cc

c

cc

c
g o

oo

o

==
−

=
−

=
1211

44

1211

44 22
   (8h,i) 

Constant og represents the ratio between the shear moduli in a plane of isotropy and a 

plane normal to it. For isotropic materials it is equal to unity, for transversely isotropic 

materials it can be used to characterise the degree of anisotropy exhibited by the material. 
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It was shown by Kashtalyan and Rushchitsky (2009) that the displacement vector can be 

represented in terms of two displacement functions Φ and Ψ as 

1
2
3

2

2
133311

33
22

133311

13

2
1 xxccc

c

ccc

c

x
u

∂
Ψ∂










∂
∂

−
−∆

−
−

∂
Φ∂=      (9a) 

2
2
3

2

2
133311

33
22

133311

13

1
2 xxccc

c

ccc

c

x
u

∂
Ψ∂










∂
∂

−
−∆

−
−

∂
Φ∂−=     (9b) 

Ψ








∂
∂

−
−∆

−∂
∂+

∂
Ψ∂∆−=

2
3

2

2
133311

33
22

133311

13

33
2

44
3

1

xccc

c

ccc

c

xxc
u    (9c) 

From equations (9a-c), strain – displacement relations (7) and constitutive equations (3), 

components of the stress tensor can be expressed in terms of functions Φ and Ψ 

(derivation is outlined in appendix A) 

( )
21

2

12112
3

2
1

4

2
2

2

2
3

2

2
133311

2
133312

22
133311

13121311
11 xx

cc
xxxxccc

ccc

ccc

cccc

∂∂
Φ∂−+Ψ









∂∂
∂+

∂
∂










∂
∂

−
−+∆

−
−=σ  (9d) 

( )
21

2

12112
3

2
2

4

2
1

2

2
3

2

2
133311

2
133312

22
133311

13121311
22 xx

cc
xxxxccc

ccc

ccc

cccc

∂∂
Φ∂−−Ψ









∂∂
∂+

∂
∂










∂
∂

−
−+∆

−
−=σ  (9e) 

Ψ∆∆= 2233σ           (9f) 

Φ








∂
∂−

∂
∂−−

∂∂
Ψ∂










∂
∂−∆

−
−=

2
2

2

2
1

2
1211

21

2

2
3

2

332132
133311

1112
12 2 xx

cc

xxx
cc

ccc

ccσ    (9g) 

32

2

44
31

2

213 xx
c

xx ∂∂
Φ∂+

∂∂
Ψ∂∆−=σ        (9h) 

31

2

44
32

2

223 xx
c

xx ∂∂
Φ∂−

∂∂
Ψ∂∆−=σ         (9i) 

 

Functions Φ and Ψ satisfy the following differential equations (Kashtalyan and 

Rushchitsky 2009) 

( ) ( ) 0
3

3
3

0
23 =









∂
Φ∂

∂
∂+Φ∆

x
xm

x
gxm        (10a) 
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( ) ( )

( ) ( )

( )[ ] 0

1

23
1

3

2

20
13

0
33

0
11

0
13

2
3

2

3
1

3

2

20
13

0
33

0
11

0
33

3
23

1

3
0
44

3

20
13

0
33

0
112

3

2

2
0
1322

0
11

=






Ψ∆
∂
∂

−
−
















∂
Ψ∂

∂
∂

−
+








∂
Ψ∂∆

∂
∂×

−+
∂

Ψ∂∆−Ψ∆∆

−

−−

xm
xccc

c

x
xm

xccc

c

x
xm

xc

xmccc
x

cc

   (10b) 

subject to boundary conditions (1) and (2). 

 

3. Separation of variable 

Solution of equations (10) starts with separating variables in the displacement functions 

in the form 

( ) ( ) ( )321321 ,,, xxxxxx ΦΦ=Φ
)

)
)

        (11a) 

( ) ( ) ( )321321 ,,, xxxxxx ΨΨ=Ψ
)

)
)

       (11b) 

Substitution of these expressions into equations (10a) and (10b) allows the following four 

differential equations to be derived 

02
2 =Φ+Φ∆ Φ

)
)

)
)

k          (12a) 

02
2 =Ψ+Ψ∆ Ψ

)
)

)
)

k          (12b) 

( )
( ) 0

0

2

33

3
2
3

2

=Φ







−

′
+ Φ

)

g

k

dx

d

xm

xm

dx

d
       (12c) 

( ) ( ) ( ) ( )[ ]

( ) ( ) 04

0
33

0
11

2
3

2
2

0
33

0
13

3
3

1

3
3

2

0
44

0
33

0
13

0
33

0
11

3
1

2
3

2

3
2

0
33

0
13

2
3

2

3
1

3

2

3

2

=Ψ+Ψ+






 Ψ−
−

Ψ+






 Ψ

ΨΨ
−

Ψ

−
Ψ

−

)

))

)

)

k
c

c

dx

d
k

c

c

dx

d
xm

dx

d
xmk

cc

ccc

xm
dx

d
xmk

c

c

dx

d
xm

dx

d
xm

  (12d) 

 

For a simply supported plate subjected to sinusoidal loading, with the boundary 

conditions described by equations (1) and (2), functions ( )21, xxΦ=Φ
)
)

)
)

 and 

( )21, xxΨ=Ψ
)
)

)
)

 can be chosen as 
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( )
b

xn

a

xm
xx 21

21 coscos,
ππ=Φ

)
)

       (13a) 

( )
b

xn

a

xm
xx 21

21 sinsin,
ππ=Ψ

)
)

       (13b) 

Then the boundary conditions on the edges of the plate are satisfied exactly. 

 

Selecting the inhomogeneity function such that it is an exponential one,  

( )
h

x
xm 3

3 exp
α=          (14) 

and non-dimensionalising reduce equations (12c) and (12d) to the following second- and 

fourth-order differential equations with constant coefficients 

0
0

22

3
2
3

2
2 =Φ−Φ+Φ Φ

)

))

g

hk

dx

d
h

dx

d
h α        (15a) 

( )
02

22

0
33

20
13

220
11

22

3
0
44

0
33

20
13

0
33

0
11

0
33

0
1332

2
3

2
22

0
44

0
33

20
13

0
33

0
11

0
33

0
1322

3
3

3
3

4
3

4
4

=Ψ
+

+Ψ










 −
−−

Ψ


























 −
−++Ψ−Ψ

ΨΨ
Ψ

Ψ

)

)

)))

c

chkchk

dx

d

cc

ccc

c

c
hk

dx

d
hk

cc

ccc

c

c
h

dx

d
h

dx

d
h

α
α

αα

  (15b) 

where  



















+






== ΨΦ

22
222

b

n

a

m
kk π        (15c) 

It is worth mentioning that the exponential variation of material properties with 

transverse co-ordinate has been used by a number of researchers investigating 

functionally graded materials, in particular Jin and Batra (1996), Gu and Asaro (1997), 

Sankar (2001), Anderson (2003), Kashtalyan and Menshykova (2007, 2009a,b), and 

Woodward and Kashtalyan (2010). 

 

The solutions to equations (15a) and (15b) will vary depending on the values of the 

elastic constants and parameters Φk  and Ψk . Their solution is detailed in appendix B. 
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If the discriminant of the characteristic equation corresponding to equation (15b) is 

negative then 



++



 +






=Ψ

h

x

h

x
A

h

x

h

x
A

h

x

h

x
A

h

x

h

x
A

h

x
h

33
4

33
3

33
2

33
1

34

sinsinhcossinh

sincoshcoscosh
2

exp

µλµλ

µλµλα)

   (16a) 

whereλ andµ are  

(

2

1

2

1

4

0
33

0
1344

0
44

0
33

0
13222

0
44

0
11222

0
33

0
13222222

0
44

0
33

0
13

0
44

0
11

0
33

0
13

4

1
4

242
2

1

2

1
8

4

1

2

2















++−

+++




















−+−=

ΨΨ

ΨΨΨ

αα

αααλ

c

c
kh

cc

c
kh

c

c
kh

c

c
khhk

cc

c

c

c

c

c

 (16b) 

and 

(

2

1

2

1

4

0
33

0
1344

0
44

0
33

0
13222

0
44

0
11222

0
33

0
13222222

0
44

0
33

0
13

0
44

0
11

0
33

0
13

4

1
4

242
2

1

2

1
8

4

1

2

2















++−

++−




















+−=

ΨΨ

ΨΨΨ

αα

αααµ

c

c
kh

cc

c
kh

c

c
kh

c

c
khhk

cc

c

c

c

c

c

 (16c) 

If the discriminant of the characteristic equation corresponding to equation (15b) is 

positive, function Ψ
)

 can be found following a procedure similar to that outlined in 

Appendix B. 

 

The solution of second order equation (15a) yields 
















+














−=Φ
h

x
A

h

x
A

h

x

c

h 3
6

3
5

3
0
44

2

sinhcosh
2

exp
ββα)

     (17a) 

where 

0
44

0
12

0
1122

2

4 c

cc
hk

−+= Φ
αβ         (17b) 
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In equations (16) – (17), )6,,1( K=iAi  are six arbitrary constants that can be found from 

the boundary conditions on top and bottom surfaces of the plate, given by equations (2a) 

and (2b). 

 

Substitution of functions Φ
)
)

 and Ψ
)
)

, equations (13a, b), and functions Φ
)

andΨ
)

, 

equations (16, 17), into equations (11a, b) and then into equations (9), gives the following 

expressions for stresses and displacements in a simply supported transversely isotropic 

functionally graded plate under sinusoidal loading with exponential dependence of the 

elastic constants on the thickness co-ordinate 

∑
=

=
6

1

21
3,11 sincos)(

j
jj b

xn

a

xm
xUAu

ππ
      (18a) 

∑
=

=
6

1

21
3,22 cossin)(

j
jj b

xn

a

xm
xUAu

ππ
      (18b) 

∑
=

=
6

1

21
3,33 sinsin)(

j
jj b

xn

a

xm
xUAu

ππ
      (18c) 

∑
=

=
6

1

21
3,1111 sinsin)(

j
jj b

xn

a

xm
xPA

ππσ       (18d) 

∑
=

=
6

1

21
3,2222 sinsin)(

j
jj b

xn

a

xm
xPA

ππσ       (18e) 

∑
=

=
6

1

21
3,3333 sinsin)(

j
jj b

xn

a

xm
xPA

ππσ       (18f) 

∑
=

=
6

1

21
3,1212 coscos)(

j
jj b

xn

a

xm
xPA

ππσ       (18g) 

∑
=

=
6

1

21
3,1313 sincos)(

j
jj b

xn

a

xm
xPA

ππσ       (18h) 

∑
=

=
6

1

21
3,2323 cossin)(

j
jj b

xn

a

xm
xPA

ππσ       (18i) 

Functions jiU ,  and jrtP ,  are specified in Appendix C. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13 

4. Validation 

The developed three-dimensional solution for transversely isotropic functionally graded 

plate is validated through comparison with the available three-dimensional solutions for 

isotropic functionally graded plates, as well as the classical and higher order plate 

theories. 

 

Since isotropy is a particular case of transverse isotropy, the proposed solution for the 

transversely isotropic plate can be used to obtain the solution for the isotropic plate if the 

elastic coefficients are adjusted as follows 

( )
( )( )νν

ν
211

1
3311 −+

−== E
cc  , ( )( )νν

ν
2111312 −+

== E
cc , Gc =44 , ( )ν+

=
12

E
G   (19a) 

with  

ν=
−
−

=
−

−
2
133311

2
133312

2
133311

13121311

ccc

ccc

ccc

cccc
, Gcc 21211 =−       (19b) 

Upon substitution of (19a) and (19b), the expressions representing displacements and 

stresses in the transversely isotropic functionally graded plate, equations (9) and (18), 

fully coincide with the corresponding expressions for displacements and stresses for 

isotropic graded plate obtained by Kashtalyan (2004). Table 1 shows numerical results 

for the normalised displacements 
hq

uc
u i

i
11

0
44=  and stresses 11/ qijij σσ =  obtained through 

use of equations (18) and (19) of the present paper. It can be seen that they are within 

0.001% of those obtained by Kashtalyan (2004). 

 

Table 2 shows normalised mid-plane displacements 
hq

uG
u i

i
11

2=  at the centre of a square 

)( ba =  isotropic graded plate with exponential variation of the shear modulus through 

the thickness based on the present 3-D solution and a thin plate theory of Chi and Chung 

(2006). The shear modulus varies from 1G , the value at the bottom surface of the plate, to 

2G , the value at the top surface. The plate is simply supported on its edges and loaded by 

transverse loading )/sin()/sin(),( 211121 bxaxqxxQ ππ−=  at the top surface. The results 
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are given for 10/ 12 =GG  and the thickness-to-length ratio that varies from 001.0/ =ah  

(very thin plate) to 2.0/ =ah  (moderately thick plate). The thin plate theory appears to 

be in good agreement with the present solution for 1.0/ ≤ah  as expected. 

 

Table 3 shows normalised displacements 
hq

uG
u i

i
11

2=  in a very thin square isotropic graded 

plate with 01.0// == bhah  for a range of shear modulus ratios 12 /GG . Good agreement 

between the present 3-D solution and thin plate theory predictions is observed for all 

considered values of 12 /GG . 

 

Table 4 shows normalised mid-plane displacement 
11

4
3

3
0

3

10
qa

uhE
u =  at the centre of the 

isotropic graded plate predicted by the 3-D elasticity solution developed in this paper and 

two plate theories: the higher-order shear deformation plate theory (HPT) and the 

trigonometric shear deformation plate theory (TPT) developed by Zenkour (2007). The 

plate is loaded by transverse loading )/sin()/sin(),( 211121 bxaxqxxQ ππ−=  at the top 

surface and simply supported on its edges. Young’s modulus varies exponentially 

through the thickness from 0E  at the bottom surface to kE exp0  at the top surface, while 

Poisson’s ratio is 3.0=ν . The results are given for square )1/( =ba  and rectangular 

)6/1/( =ba  plates with length-to-thickness ratios 2/ =ha  and 4/ =ha  (very thick 

plates), and a range of values of k . There appears to be good agreement between the 

present solution and TPT, with predictions based on HPT being less accurate. 

 

 

4. Results and discussion 

In this section, the results of parametric study into the three-dimensional elastic 

deformation of transversely isotropic graded plates are presented.  

 

The effect of varying the inhomogeneity ratio α  is explored first. Figures 2-6 show 

through thickness variation of the normalised stresses 11/ qijij σσ =  and normalised 
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displacements 
hq

uc
u i

i
11

0
44= , for three different inhomogeneity ratios ( 3,3.2,0=α ), 

corresponding to homogenous plate, plate with moderate inhomogeneity and plate with 

high inhomogeneity. The effect of this variation in inhomogeneity ratio was compared for 

two functionally graded plates: the first being thick plate )3( == hbha  and the second 

thin plate )10( == hbha . 

 

The properties of the material are taken to be those of Beryl rock (Eskandari and Shodja, 

2010). Its properties are defined in Table 5. As an example, a plot of the variation in 

constant 11c  through the thickness of the plate is given in Figure 2. 

 

When considering the transverse normal stress 33σ  (Fig. 3A, B) it is seen that as the 

inhomogeneity ratio is increased at any point within the plate this stress component 

decreases for both thick and thin plates. Study of through thickness variation of 

transverse shear stress 13σ  (Fig 4A, B) shows that as the inhomogeneity ratio is 

increased, the magnitude of this stress component increases, reaching a peak in the upper 

half of the plate. It can be seen once more that thick and thin plates behave in the same 

manner. The plots of normalised in-plane normal stress 11σ  (Fig. 5A, B) and normalised 

in-plane shear stress 12σ  (Fig. 6A, B) show that increasing the inhomogeneity ratio in 

both thick and thin plates causes increases in this stress component in the centre and 

upper sections of the plate, whilst causing a slight decrease in stress for the lower section 

of the plate. 

 

Analysis of through thickness in-plane displacement 1u  (Fig. 7A, B) shows that as 

inhomogeneity ratio increases, the additional stiffness this provides causes the magnitude 

of this displacement for both thick and thin plates to decreases.  This plot is highly non-

linear, emphasizing the need for 3D stress analysis. A similar result is seen for the 
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transverse displacement 3u  (Fig.8A, B) with a decrease in this component for both plate 

geometries.  

 

In order to further study the behaviour of transversely isotropic functionally graded 

plates, the effect of varying the degree of anisotropy of the material will now be 

considered, again using Beryl rock, which has properties as defined in Table 5. For this 

material the ratio of shear moduli in the plane of isotropy and the plane normal to it is 

0.75. In order for a comparison to be made, constant 0
44c  will be varied (being set to 0.5, 2 

and 10 GPa), giving three degrees of anisotropy: high anisotropy ,038.00 =g  medium 

anisotropy 15.00 =g  and low anisotropy 75.00 =g . The inhomogeneity ratio is now fixed 

as 3.2=α . Figures 9-14 show through thickness variation of the normalised stresses 

11/ qijij σσ =  and normalised displacements 
hq

uc
u i

i
11

0
44= , for these three degrees of 

anisotropy. The effect of this variation is compared for the two plates used previously: 

thick plate )3( == hbha and thin plate )10( == hbha . 

 

For the cases of medium and high anisotropy, the out-of-plane normal stress 33σ  (Fig. 

9A, B), rises more sharply in the upper section of the thick plate, whilst having much less 

of an effect on the thin plates. Through thickness variation of the transverse shear stress 

13σ  (Fig. 10A, B), shows an increase in the stress magnitude towards the upper surface of 

the plate, when considering more anisotropic plates. However in the thick plate, this 

stress component rises to a far more pronounced peak in the upper section of the core, 

whilst staying almost symmetrical for the thin plate (Fig. 10B).  Plots of normalised in-

plane normal stress 11σ  (Fig. 11A, B) and normalised in-plane shear stress 12σ  (Fig. 12A, 

B) show for both thin and thick plates that when considering plates with higher 

anisotropy, the stresses in the upper half of the plate are greater, while anisotropy has far 

less effect on the stresses in the lower half of the plate.  
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Through-thickness variations of the in-plane 1u  (Fig. 13A, B) and out-of-plane 3u  (Fig. 

14A, B) displacements show that as plate anisotropy is increased, displacements through 

the plate increase for both thick and thin plates. The plots of normalised in-plane 

displacement (Fig. 13A, B) are highly non-linear, once again emphasizing the importance 

of 3-D stress analysis for applications involving functionally graded materials.  

 

 

5. Concluding remarks 

In this paper, a three-dimensional elasticity solution for a simply supported transversely 

isotropic functionally graded plate subject to transverse loading has been presented. 

Young’s moduli and the shear modulus of the material are assumed to vary exponentially 

through the thickness of the plate, whilst Poisson’s ratios are assumed to remain constant. 

The solution makes use of displacement functions for inhomogeneous transversely 

isotropic media (Kashtalyan and Rushchitsky, 2009) and is validated through comparison 

with results for an isotropic functionally graded plate (Kashtalyan, 2004) as well as 

several plate theories. 

 

A study of plate inhomogeneity was carried out for two plate geometries and it was seen 

that as the degree of inhomogeneity was increased that there are increases in most stress 

components in the upper half of the plate whilst a decrease was often seen in the plate 

centre. This was particularly the case for transverse shear stress, where under high 

degrees of inhomogeneity, stress concentrations can occur. Similarly when the degree of 

anisotropy was varied it could be seen that the greater the anisotropy of the plate, the 

higher the stresses in the upper half of the plate. Again under high anisotropy 

concentrations of transverse shear stress were found in the upper half of the plate. Many 

of the plots produced were highly non-linear through the thickness, showing the 

importance of 3-D stress analysis. It is thought that this solution can be used as 

benchmark for further work in the field of functionally graded transversely isotropic 

media. 
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Appendix A 

Substituting strain displacement relations (7) into constitutive equation (3c) 

3

3
33

2

2
13

1

1
1333 x

u
c

x

u
c

x

u
c

∂
∂+

∂
∂+

∂
∂=σ        (A1) 

Now differentiating (9a) with respect to1x and (9b) with respect to2x gives 

2
1

2

2
3

2

332132
13331121

2

1

1 1
xx

cc
cccxxx

u

∂
Ψ∂










∂
∂−∆

−
−

∂∂
Φ∂=

∂
∂

     (A2) 

2
2

2

2
3

2

332132
13331121

2

2

2 1
xx

cc
cccxxx

u

∂
Ψ∂










∂
∂−∆

−
−

∂∂
Φ∂−=

∂
∂

     (A3) 

Again referring to (Kashtalyan and Rushchitsky, 2009), the following relations were 

written 

Ψ∆∆=∆+ 222133,333 Fcuc          (A4) 

( ) 








∂
Ψ∂+−∆Ψ

−
−=

2
3

2

3313132
133311

1

x
ccc

ccc
F      (A5) 

where F is a displacement function ( )321 ,, xxxFF =  and ∆  is the Laplacian operator. 

Rearranging (A4) 

Fcuc 213223,333 ∆−Ψ∆∆=         (A6) 

Now substituting (A5) into (A6) 

( )









∂
Ψ∂

−
+−∆Ψ

−
∆+Ψ∆∆=

2
3

2

2
133311

3313
2
133311

13
213223,333 xccc

cc

ccc

c
cuc     (A7) 

Substituting 
2
3

2

2 x∂
∂−∆=∆  and rearranging 

( ) Ψ








∂
∂−∆









∂
∂+−∆

−
= 2

3

2

2
3

2

1311112
133311

3,3

1
xx

ccc
ccc

u      (A8) 

Now substituting (A2), (A3) and (A8) into (A1) yields 
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( ) Ψ








∂
∂−∆









∂
∂+−∆

−
+

∂
Ψ∂










∂
∂−∆

−
−

∂∂
Φ∂−

∂
Ψ∂










∂
∂−∆

−
−

∂∂
Φ∂=

2
3

2

2
3

2

1311112
133311

33

2
2

2

2
3

2

332132
133311

13

21

2

13

2
1

2

2
3

2

332132
133311

13

21

2

1333

xx
ccc

ccc

c

xx
cc

ccc

c

xx
c

xx
cc

ccc

c

xx
cσ

     (A9) 

After simplification 

Ψ








∂
∂−∆









∂
∂−∆=

2
3

2

2
3

2

33 xx
σ         (A10) 

or 

Ψ∆∆= 2233σ           (A11) 

Derivation of other stress components, equations (9d, e, g-i), is carried out in a similar 

manner. 
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Appendix B  

From Polyanin and Zaitsev (2003), a fourth order equation with constant coefficients has 

general solution 

( ) ( ) ( ) ( )344333322311 expexpexpexp xCxCxCxC λλλλ +++=Ψ
)

   (B1) 

Begin by substituting ( )3exp xλ=Ψ
)

 and its derivatives into equation (15b) and 

simplifying, thus giving the following characteristic equation 

( )
02

22

0
33

20
13

220
11

22

0
44

0
33

20
13

0
33

0
11

0
33

0
1332

222

0
44

0
33

20
13

0
33

0
11

0
33

0
13223344

=
+

+












 −
−−



























 −
−++−

ΨΨ
Ψ

Ψ

c

chkchk

cc

ccc

c

c
hk

hk
cc

ccc

c

c
hhh

α
λα

λαλαλ

   (B2) 

Comparing (B2) with 

0234 =++++ ExDxCxBxA ,       (B3) 

dividing by A and applying the change of variable
A

B
yx

4
−=  gives   

0
416256

3

28
1

8
3

23

2

4

4

23

3
2

2

2
4

=







+−+−+









+−+








+−+

A

E

A

BD

A

CB

A

B

y
A

D

A

BC

A

B
y

A

C

A

B
y

      (B4) 

Thus we have a depressed quadratic expression (i.e. no cubed term), which can be re-

written as  

024 =+++ φκθ yyy          (B5) 

where 

A

C

A

B +−=
2

2

8

3θ          (B6) 

A

D

A

BC

A

B +−=
23

3

28

1κ          (B7) 

and 

A

E

A

BD

A

CB

A

B +−+−=
23

2

4

4

416256

3φ        (B8) 
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Comparing equations (B2) and (B5) it can be seen that 

4hA =            (B9) 

32 hB α−=           (B10) 



























 −
−+= Ψ

22

0
44

0
33

20
13

0
33

0
11

0
33

0
1322 2 hk

cc

ccc

c

c
hC α       (B11) 













 −
−−= Ψ 0

44
0
33

20
13

0
33

0
11

0
33

0
1332 2

cc

ccc

c

c
hkD α        (B12) 

and 

( )
0
33

20
13

220
11

22

c

chkchk
E

α+
= ΨΨ         (B13) 

Substituting equations (B9-B12) into (B7) shows that 

0=κ            (B14) 

Substituting equations (B9-B11) into (B6)  

0
44

0
33

220
13

0
44

20
11

0
33

20
13

2

2

2
2 cc

kc

c

kc

c

kc

h
ΨΨΨ +−+−= αθ       (B15) 

and substituting equations (B9-B13) into (B8) yields 

0
33

40
11

0
44

0
33

2

220
13

2

0
44

2

20
11

2

0
33

2

20
13

2

4

4

4

1

4

1

2

1

16 c

kc

cch

kc

ch

kc

ch

kc

h
ΨΨΨΨ +−++=

ααααφ     (B16) 

Therefore equation (B5) reduces to the following bi-quadratic 

024 =++ φθ yy          (B17) 

Making the change of variable 2yz = , (B17) can be rewritten as 

02 =++ φθ zz          (B18) 

Now considering the discriminant of (B18) 
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20
44

20
33

420
13

20
44

0
33

420
13

0
11

20
44

420
11

0
44

20
33

420
13

0
44

0
33

40
13

0
11

20
33

420
13

0
33

40
11

0
33

2

20
13

2

2

2

4444
4

4

cc

kc

cc

kcc

c

kc

cc

kc

cc

kcc

c

kc

c

kc

ch

kc

Disc

ΨΨΨ

ΨΨΨΨΨ

+−+

+−+−−=

−=

α

φθ

    (B19) 

Depending on the values of the constants 0
44

0
33

0
13

0
11 ,,, cccc ,α  and Ψk this discriminant can 

be either positive of negative. 

 

If the discriminant is negative, the equation (B18) has two complex conjugate roots. 

Using the quadratic formula, the roots of (B18) can be written as 

2

4

2

2θφθ −
+−=+ i

z         (B20) 

and 

2

4

2

2θφθ −
−−=− i

z         (B21) 

Thus the required solutions to (B17) are 

++= zy1 , +−= zy2 , −+= zy3 and −−= zy4     (B22) 

To calculate these square roots, the following equation is employed  

22

2222 aba
i

aba
bia

−+±++=±       (B23) 

 

with 

2

θ−=a  and 
2

4 2θφ −
=b         (B24) 

so that  

h
i

h
z

µλ ±=           (B25) 

where 

2

22 aba ++=λ           (B26) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 27 

and 

2

22 aba −+=µ           (B27) 

Substituting (B15, B16) into (B24) and this into (B26, B27) gives 

(

2

1

2

1

4

0
33

0
1344

0
44

0
33

0
13222

0
44

0
11222

0
33

0
13222222

0
44

0
33

0
13

0
44

0
11

0
33

0
13

4

1
4

242
2

1

2

1
8

4

1

2

2















++−

+++




















−+−=

ΨΨ

ΨΨΨ

αα

αααλ

c

c
kh

cc

c
kh

c

c
kh

c

c
khhk

cc

c

c

c

c

c

 (B28) 

and 

(

2

1

2

1

4

0
33

0
1344

0
44

0
33

0
13222

0
44

0
11222

0
33

0
13222222

0
44

0
33

0
13

0
44

0
11

0
33

0
13

4

1
4

242
2

1

2

1
8

4

1

2

2















++−

++−




















+−=

ΨΨ

ΨΨΨ

αα

αααµ

c

c
kh

cc

c
kh

c

c
kh

c

c
khhk

cc

c

c

c

c

c

 (B29) 

Making the substitution 
A

B
yx

4
−= , the roots of equation (B3) are found to be 

hh
i

h

A

B

h
i

h
x

2

4
αµλ

µλ

+±±=

−±±=
         (B30) 

Substituting the roots (B30) into general solution (B1), taking common factors and 

substituting trigonometric identities allows the solution of (15b) to be written 



++



 +






=Ψ

h

x

h

x
A

h

x

h

x
A

h

x

h

x
A

h

x

h

x
A

h

x
hx

33
4

33
3

33
2

33
1

34
3

sinsinhcossinh

sincoshcoscosh
2

exp)(

µλµλ

µλµλα)

   (B31) 

If discriminant (B19) is positive, function Ψ
)

 is sought in a similar fashion. 
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Appendix C 

Functions jiU ,  and jrtP , involved in Eqs. (19) 
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0)( 3,33 =xP j ,  )(exp)( 3
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In the expressions above, functions )6,,1()( 3 K=jxf j  are 

h

x

h

x

h

x
xf 333

31 coscosh
2

exp)(
µλα








= , 

h

x

h

x

h

x
xf 333

32 cossinh
2

exp)(
µλα








=  

h

x

h

x

h

x
xf 333

33 sincosh
2

exp)(
µλα








= , 

h

x

h

x

h

x
xf 333

34 sinsinh
2

exp)(
µλα








= ; 

h

x

h

x
xf 33

35 cosh
2

exp)(
βα








−= ; 

h

x

h

x
xf 33

36 sinh
2

exp)(
βα








−= . 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 30 

Tables 

 

Table 1. Normalised displacements and stresses in a square simply supported isotropic 
graded plate with 3.2,3/ == αha  
 
 Kashtalyan (2004)  Present solution Difference, % 

)5.0,5.0,5.0(
11

3
0
44 haa

hq

uc
 -4.29778 -4.30352 0.001333 

)5.0,5.0,5.0(
11

11 haa
q

σ
 0.653339 0.652648 0.001059 

)5.0.,0.,0(
11

12 h
q

σ
 -0.43007 -0.42974 0.000774 

)5.0,5.0.,0(
11

13 ha
q

σ
 -0.64606 -0.64618 0.000188 
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Table 2. Normalised displacement 
hq

haauG

11

32 )5.0,5.0,5.0(
 in a square simply supported 

isotropic graded plate under sinusoidal loading with the shear modulus varying 
exponentially from 1G  at the bottom surface to 2G  at the top surface ( 10/ 12 =GG ). 
 

 
ah /  
 

Present 3-D solution 
 

Thin plate theory 
(Chi and Chung, 2006) 

Difference (%) 
 

0.001 3.52725E+11 3.52724E+11 0.000491 
0.01 35289681.36 35272367.69 0.049062 
0.02 2208851.489 2204522.98 0.195962 
0.04 138864.9234 137782.6863 0.779345 
0.06 27697.41125 27216.33309 1.736907 
0.08 8882.100634 8611.417892 3.047508 
0.1 3700.547069 3527.236769 4.68337 
0.15 773.9162053 696.7381272 9.972408 
0.2 264.0397906 220.452298 16.50793 

 
 
 
 
 

Table 3. Normalised displacement 
hq

haauG

11

32 )5.0,5.0,5.0(
 in a square simply supported 

isotropic graded plate under sinusoidal loading with the shear modulus varying 
exponentially from 1G  at the bottom surface to 2G  at the top surface ( 100/ =ha ). 
 

 

12 /GG  
 

Present 3-D solution 
 

Thin plate theory  
(Chi and Chung, 2006) 

Difference (%) 
 

1.5 1983989.7 1982974.631 0.051161 
2 3062381.7 3060801.301 0.051607 
3 5657499.8 5654572.722 0.051737 
4 8755021.8 8750513.815 0.051491 
5 12290237 12283954.61 0.051118 
10 35289681 35272367.69 0.049062 
20 101163976 101117511.8 0.045929 
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Table 4. Normalised displacement 
11

4
3

3
0 )5.0,5.0,5.0(10

qa

hbauhE
 in a simply supported isotropic graded plate under sinusoidal loading with 

the Young’s modulus varying exponentially from 0E  at the bottom surface to kE exp0  at the top surface. 

 
 
ba /  

 
Theory 

 
1.0=k  

 
Difference 

(%)  
3.0=k  

 
Difference 

(%)  
5.0=k  

 
 Difference 

(%) 
7.0=k  

 
Difference 

(%)  
.1=k  

 
Difference 

(%)  
5.1=k  

 
 Difference 

(%) 
 

2/ =ha  
 

1 TPT 0.5731 0.0255 0.5181 -0.6557 0.4679 -1.3744 0.4222 -2.1303 0.3612 -3.3318 0.2771 -5.5080 
 HPT 0.5859 -2.2040 0.5296 -2.8881 0.4781 -3.5974 0.4313 -4.3342 0.3687 -5.4890 0.2825 -7.5411 
 Present 0.5732   0.5147   0.4615   0.4134   0.3495   0.2627   

 1/6 TPT 1.6294 -0.0011 1.4731 -0.4983 1.3307 -0.9812 1.2010 -1.4515 1.0282 -2.1321 0.7906 -3.2221 
  HPT 1.5478 5.0082 1.3996 4.5127 1.2649 4.0069 1.1425 3.4918 0.9796 2.7022 0.7556 1.3426 
  Present 1.6294   1.4658   1.3177   1.1838   1.0068   0.7659   

 
4/ =ha  

 
1 TPT 0.3475 0.1066 0.3142 -0.1595 0.2839 -0.3692 0.2563 -0.5218 0.2196 -0.6520 0.1692 -0.6599 
  HPT 0.3111 10.5648 0.2815 10.2743 0.2546 9.9795 0.2303 9.6908 0.1980 9.2523 0.1538 8.5305 
  Present 0.3479   0.3137   0.2828   0.2550   0.2182   0.1681   

1/6  TPT 1.1668 0.1999 1.0551 0.0927 0.9535 0.0699 0.8611 0.1272 0.7382 0.3498 0.5697 1.0175 
  HPT 1.0065 13.9125 0.9109 13.7490 0.8245 13.5871 0.7464 13.4274 0.6431 13.1940 0.5018 12.8167 
  Present 1.1691   1.0561   0.9541   0.8622   0.7408   0.5755   
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Table 5. Properties of Beryl rock  

 

0
11c  (GPa) 0

12c  (GPa) 0
13c  (GPa) 0

33c  (GPa) 0
44c  (GPa) 0g  

41.3 14.7 10.1 36.2 10.0 0.75 
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Figure captions 

Fig.1: Schematic of the plate showing its geometry and applied loading. 

 

Fig. 2: Through thickness variation of constant 11c  for different values of α . 

 

Fig. 3: Through-thickness variation of the normalised out of plane normal stress 33σ  

),5.0,5.0( 3xba  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

imhomogenity ( 3,3.2,0=α ). 

 

Fig. 4: Through-thickness variation of the normalised transverse shear stress 13σ  

),5.0,0( 3xb  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

imhomogenity ( 3,3.2,0=α ). 

 

Fig. 5: Through-thickness variation of the normalised in-plane normal stress 11σ  

),5.0,5.0( 3xba  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

imhomogenity ( 3,3.2,0=α ). 

 

Fig. 6: Through-thickness variation of the normalised in-plane shear stress 12σ  ),0,0( 3x  

in: (A) thick FG plate; (B) thin FG plate for a range of degrees of imhomogenity 
( 3,3.2,0=α ). 

 

Fig. 7: Through-thickness variation of the normalised in-plane displacement 1u  

),5.0,0( 3xb  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

imhomogenity ( 3,3.2,0=α ). 

 

Fig. 8: Through-thickness variation of the normalised transverse displacement 3u  

),5.0,5.0( 3xba  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

imhomogenity ( 3,3.2,0=α ). 

 

Fig. 9: Through-thickness variation of the normalised out of plane normal stress 33σ  

),5.0,5.0( 3xba  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

anisotropy ( 75.0,15.0,038.00 =g ). 
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Fig. 10: Through-thickness variation of the normalised transverse shear stress 13σ  

),5.0,0( 3xb  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of anisotropy 

( 75.0,15.0,038.00 =g ). 

 

Fig. 11: Through-thickness variation of the normalised in-plane normal stress 11σ  

),5.0,5.0( 3xba  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

anisotropy ( 75.0,15.0,038.00 =g ). 

 

Fig. 12: Through-thickness variation of the normalised in-plane shear stress 12σ  

),0,0( 3x  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of anisotropy 

( 75.0,15.0,038.00 =g ). 

 

Fig. 13: Through-thickness variation of the normalised in-plane displacement 1u  

),5.0,0( 3xb  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of anisotropy 

( 75.0,15.0,038.00 =g ). 

 

Fig. 14: Through-thickness variation of the normalised transverse displacement 3u  

),5.0,5.0( 3xba  in: (A) thick FG plate; (B) thin FG plate for a range of degrees of 

anisotropy ( 75.0,15.0,038.00 =g ). 
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Figures 

 

 

 

Fig. 1: 
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Fig. 4:  
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Fig. 5:  
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