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THREE-DIMENSIONAL ELASTICITY SOLUTION FOR
BENDING OF TRANSVERSELY ISOTROPIC

FUNCTIONALLY GRADED PLATES

B. Woodward, M. Kashtalyan
Centre for Micro- and Nanomechanics (CEMINACS),

School of Engineering, University of Aberdeen, AB24 3UE, Scotland, UK

ABSTRACT

This paper presents a three-dimensional elasticity solution for a simply supported,
transversely isotropic functionally graded plate subjected to transverse loading, with
Young’s moduli and the shear modulus varying exponentially through the thickness and
Poisson’s ratios being constant. The approach makes use of the recently developed
displacement functions for inhomogeneous transversely isotropic media. Dependence of
stress and displacement fields in the plate on the inhomogeneity ratio, geometry and
degree of anisotropy is examined and discussed. The developed three-dimensional
solution for transversely isotropic functionally graded plate is validated through
comparison with the available three-dimensional solutions for isotropic functionally

graded plates, as well as the classical and higher-order plate theories.
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analytical solution; Rectangular plate; Displacement potential functions
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1. Introduction

Functionally graded materials (FGMs) are a type of heterogeneous composite materials
exhibiting gradual variation in volume fraction of their constituents from one surface of

the material to the other, resulting in properties which vary continuously across the
material. These materials were initially developed in the 1980s for use in high
temperature applications by Japanese scientists, who showed that the FGMs provide heat
and corrosion resistance whilst retaining strength and toughness (Yamanouchi et al.,
1990; Koizumi, 1993).

Since then a large amount of research has been undertaken into their performance and
production (Suresh and Mortensen, 1998; Miyamoto et al., 1999) and as such their use
has become far more widespread, with current applications including dental implants,
heat exchanger tubes, engine components and to eliminate mismatch of thermal

properties in metal and ceramic bonding.

Theoretical modelling of functionally graded plates remains an active research area
(Birman and Bird, 2007), with the development of analytical elasticity solutions being of

particular importance.

Bian et al (2005) have developed a plate theory for a simply supported functionally
graded plate under cylindrical bending utilising shape functions to describe
inhomogeneity in the transverse direction. These results are then compared with those
found using first and third order shear deformation plate theories. The paper however

only covers a one-dimensional problem.

The response of a functionally graded plate to transverse uniform load was investigated
analytically by Zenkour (2006). Through use of generalised shear deformation theory a
stress analysis is presented for an isotropic functionally graded plate with power law
distribution in gradient. Comparisons are then made with an equivalent homogeneous

isotropic plate.



Shariat and Eslami (2007) performed buckling analysis of rectangular functionally graded
plates with linear through thickness variation of properties. Equilibrium equations are
derived using third order shear deformation theory and a buckling analysis is carried out

for a variety of mechanical and thermal load types.

Through use of displacement functions, Kashtalyan (2004) developed an exact three
dimensional elasticity solution for the bending of functionally graded plates. The material
was assumed to be isotropic with exponential variation of Young’s modulus through the
thickness. This solution was validated through comparison with results for isotropic
homogeneous plate and has become a benchmark solution used by other researchers
(Abrate, 2008; Zhong and Shang, 2008; Brischetto, 2009; Yunet et al., 2010).

A three-dimensional elasticity solution for exponentially graded rectangular plate of
variable thickness was developed by Xu and Zhou (2009), while axisymmetric bending
of functionally graded isotropic circular plates was investigated by Zheng and Zhong
(2009) and Wang et al (2010).

Compared to isotropic functionally graded plates, transversely isotropic plates with

gradient in elastic properties have received considerably less attention in the literature.

An exact three dimensional analysis for a simply supported functionally graded
piezoelectric plate with exponential variation of properties through the thickness was
presented by Zhong and Shang (2003). Using the state space approach, numerical results

were obtained for four different cases of sinusoidal loading.

A method of solution for stresses and displacements within a transversely isotropic
functionally graded circular plate, whose elastic constants are arbitrary functions of the
thickness coordinate, was described by Li et al. (2008).The loading considered was a

transverse uniform load and it was shown that the stresses and displacements through the



thickness of the plate could be controlled through selection and optimization of the five
engineering constants. This solution is however only valid for circular FGM plates under
one specific type of loading. The authors concluded that there is still significant research

required to model other types of axisymmetric loading.

Yun et al. (2010) provided an analytical solution for the axisymmetric bending of
transversely isotropic functionally graded circular plates subject to arbitrarily transverse
loads using the direct displacement method. Verification is then carried out through

comparison with a finite element model.

In this paper an approach utilising displacement functions for inhomogeneous
transversely isotropic media developed by Kashtalyan and Rushchitsky (2009) allows an
exact three dimensional elasticity solution for functionally graded transversely isotropic
rectangular plate to be developed. It is assumed that the material has constant Poisson’s

ratios and that Young’s and shear moduli vary exponentially through the thickness.

2. Problem formulation
The plate under consideration, with lengthwidth b and thickness, is shown relative

to the x,x,x, Cartesian coordinates in Figure 1.

The plate is assumed to be simply supported on the edges such that

x=0a: 0,=0 u,=u,;=0, (1a)
X,=0b: 0,,=0, u,=u,=0, (1b)
where g; are the components of the stress tensornarate the components of the

displacement vector.

The loading is applied transversely and provides the final six boundary conditions. Since

it is applied at the upper surface, = h, it can be written that

O35 =Q(X,%,), 013=0,,=0 (2a)



Q & X, )=—0. sin%sin% (2b)

whereq,,, is the amplitude of the loading. The bottom surfages is ldad-free, i.e.

O33=0,3=0,,=0 (2c)

The material of the plate material is an inhomogeneous transversely isotropic with the

X;-axis as an axis of material symmetry. Hence the following constitutive equations can

be written

O ,7C.&,+C £,,+C £ (3a)
O ,7C,§,+C£,,+C £ (3b)
O 257C.§,+7C £+ Cofas (3¢)
0,3 = 2C 1€, (3d)
0,3 =2C, 5, (3e)
0,, = 2., = (€= CLh)EL, (3)

where g; are the components of the strain tensor@pd,, ¢ 5, C;;, C, are five

independent elastic coefficients, which in the general case depenganx,.

Let E,vandG = ) denote the Young's modulus, Poisson’s ratio and shear

_E
2A1+v
modulus in the plane of isotropy (i.e. any plane normal toxthaxis), andE’, v' and

G’ the Young’s modulus, Poisson’s ratio and shear modulus in any plane normal to the

plane of isotropy.

It is assumed that:

(i) Poisson’s ratioy, V' are constant, i.e.
v =const, V' =const (4a)
(i) Young’s moduli E and E' and the shear moduls', have the same functional

dependence on the co-ordinatg i.e.



E(x;) = E;m(x,), E, = const (4b)
E'(x,)=E,m(x,),  E,=const (4c)
G'(x,)=Gim(x,), G, =const (4d)
wherem= m(x3) henceforth termed the inhomogeneity function, is a sufficiently smooth
function of the transverse co-ordinatg It follows that the elastic coefficients
C,,C,,C5,Cy3,C,, also have the same functional dependence on thgveese co-

ordinatex,. Hence:

ll(X3) Cll ( ) (Sa)
ClZ(XS) = szm(x3) (5b)
C13(X3) = cf3m(x3) (5¢)
C33(X3) = Cgsm(xs) (5d)
C.ul(X;) = ciaml(x,) (5€)
where
. 1-WPEE)
T ) Ve B )
o v-WPEE)
= o s ) T ) 9
0o _ v (1_ V)
" e 2) PP EE) o
o _ 1-v? , .
T 2) VP E ) &)
Cos =Gy (5))

In the absence of body forces, the equilibrium equations for inhomogeneous transversely
isotropic plate are

00y, , 00, 00y _ -0 (6a)
ox,  0X, 0%,




22 + 6023 - 0 (6b)
ox,  0X, 0X

00y, 00y 005
ox,  0x, 0%,

=0 (6C)

Using strain — displacement relations

- du,
& :1 ﬂ+_1 (7)
2{0x; 0x

and the constitutive equations (3), the equilibrium equations (6) can be re-written in terms

of displacements (Kashtalyan and Rushchitsky, 2009) as

de oc,,(0u, 0u
C,,—C U, +2—+2—"4 114+ -3 1=0 8a
( - 12)A3g ! axi aXS (axi’: axlj ( )
oe 60 du, Ou
U, +2— 44 2 + 3 =0 8b
( 1 12)A3g 2 6X2 6X3 (axs axzj ( )
6013 ul ou, | , 0C;; 0u, _
u, + +2 [+-3823 - 8¢
where
1 ou
e=—(cy, ) 1+ ( ) 2+(C +Cpp)—> (8d)
2 12 11 12 44 6X3
&= (Curt 6) L 4, + 0 ) O U +[ ——C“‘Cﬂjﬂ (8¢)
3 44 Cl3 axlaxg C13 OX 0X3 C33 2 aZXS
, 02 _ 1 92
Ay =47, +9 _32’ Ayg =4, +EG_X32 (8f,9)
2 2 0o
) :6_2 +a_2 , g= Ly = i _ = g° = const (8h,i)
axl 0X2 Ci1—Cp C11_012

Constantg® represents the ratio between the shear moduli in a plane of isotropy and a

plane normal to it. For isotropic materials it is equal to unity, for transversely isotropic
materials it can be used to characterise the degree of anisotropy exhibited by the material.



It was shown by Kashtalyan and Rushchitsky (2009) that the displacement vector can be

represented in terms of two displacement functibm@sd¥ as

2
u1=a¢ _L Co 5 G 9 }aw (9a)

axz 1C33 ™ C123 CiCs3~ C123 0X32 axl
oPp c c 9% |ow
u2=_6_-[ BN, -8 Z}a (9b)
Xy C1L€33Cp3 C1C337Cp3 axs X5
c c 2
u3:_iAza_Lp+i{ 2, - 2 az}” (9¢)
Cas 0X3 0X3 Ci1C33~C3 Ci1L33—Cy3 0X3

From equations (9a-c), strain — displacement relations (7) and constitutive equations (3),
components of the stress tensor can be expressed in terms of fudctiod¥
(derivation is outlined in appendix A)

_|| C1f13~ CLs C12033_C123 0° j 0° a* } 0%
0, = A, + — | +—— [W+(c,-C,)——  (9d)
. K C1933_0123 ? C1P33_C123 0X§ 6X22 0)(120X§ oo 0X,0X,

_ _ 2 32 2 4 2
a_zzz{(clpls C12013A + C1fss Cl3a_ja + 0 }P—(Cll—clz)a—q) (9e)

C1?33_(:123 ’ CiLs3~ C123 0X§ 6)(12 0X§0X§ 0%,0X,
O, =0A,W (9f)
- GGy 0% ) o*w Cu=Gy 9* _ o’
0,=—=—|CN,~Cy— - ——— P 9
v C1P33_0123( SR ax;jaxiaxz 2 axlz axz2 9)
0°w 9°®
O==0, ——+Cpy——— 9h
13 2 ax,0%, 44 X0, (9h)
0°y 0°d -
Oyp=—"0,——-Cj,—— 9i
23 2 OX,0, 44 X0, (90)
Functionsd and¥ satisfy the following differential equations (Kaalyan and
Rushchitsky 2009)
m(x,)A,® + g° i[m(xs)ai)} =0 (10a)
0X, 0X,



0 0 0’y (0 0 OZ)m
CllAZAZqJ_CISAZ W"‘ C11C35 —Ci3 (Xs)

3
0 2 2
X ioi{m‘l(xg) R a_w]kiza_{m—l(xs)a_lf} (10b)
C:I(.)lc??3 - Cfs 8X3 6X3
0

bl <o

0 ~0 02
C11C33 =Cy5 3

subject to boundary conditions (1) and (2).

3. Separation of variable

Solution of equations (10) starts with separating variables in the displacement functions

in the form
q)(xll X2 Xs) = $(X1! Xz)(b(xs) (11a)
W(Xl,XZ,XS) = LTJ(Xl’ Xz)q')(xs) (11b)

Substitution of these expressions into equations (10a) and (10b) allows the following four
differential equations to be derived

£,P+K2D =0 (122)

AW +K2P =0 (12b)
d® , mx) d ks |

- — -2 1P=0 12

[dx: ") a0 429

(12d)

For a simply supported plate subjected to sinusoidal loading, with the boundary

conditions described by equations (1) and (2), functibrs®(x,, x,) and

W =Y(x,, x,) can be chosen as



®(x, x,)=cos ™% cos”M%e (13a)
a b
lTJ(xl,x2)=sin nr;xl smnrl;)(2 (13Db)

Then the boundary conditions on the edges of the plate are satisfied exactly.

Selecting the inhomogeneity function such that it is an exponential one,

m(x, ) = exp% (14)

and non-dimensionalising reduce equations (12c) and (12d) to the following second- and

fourth-order differential equations with constant coefficients

2 2
R (15a)
dx3 dx, g
i a A
h4%—2ah:3 d L3IJ h2 a2+ ZL%—M quth dZ:IJ
s o Cas C33Cas dx;
2 (15b)
Cas C33Cus dx, Cas

where

k2 =k = n{(mj +(ﬂj } (15c)
a b

It is worth mentioning that the exponential variation of material properties with
transverse co-ordinate has been used by a number of researchers investigating
functionally graded materials, in particular Jin and Batra (1996), Gu and Asaro (1997),
Sankar (2001), Anderson (2003), Kashtalyan and Menshykova (2007, 2009a,b), and

Woodward and Kashtalyan (2010).

The solutions to equations (15a) and (15b) will vary depending on the values of the

elastic constants and parametkgsandk,, . Their solution is detailed in appendix B.

10



If the discriminant of the characteristic equation corresponding to equation (15b) is

negative then

@ =h*exg 28 ALcosh)l—cos/u—+A2c:oshA—sm'ux3
2h h h h h

(16a)
+A sinh& costs + A, sinhA—X3$|n KX
h h h h
whered andy are
0 0 0? 0 0
:E —C_t3+lc_21_l Ci3 K2 h2+20'2+4(20’2h kz Cis a’zhzkic—tl
4 Ciz 2Cy 2 C33044 C33 Cas
115 (16b)
0? 0 2
@kt~ gkt 921 g
C33C44 33 4
and
0 0 0? 0 0
IU:E C_](-;%_%C_J(_Jl % Ci3 qu,hz—20’2+4(20’2h2kjc—23+0’2h2kic—31
4 Cs3 Caa C33(:44 Cas Cas
; (16c)

N

02 0
ok~ a2 +iaJ

33 44 33

If the discriminant of the characteristic equation corresponding to equation (15b) is

positive, functiond can be found following a procedure similar to that outlined in

Appendix B.

The solution of second order equation (15a) yields

=" exf -2 B4 4 o sin 2

CD_CL ex;{ >h j{AScosr( H jh%smr( H ﬂ (17a)

where

,B:\/a—2+qu,h2 Cfl_ocfz (17b)
4 Caa

11



In equations (16) — (17 (=1...,6) are six arbitrary constants that can be found from

the boundary conditions on top and bottom surfaces of the plate, given by equations (2a)
and (2b).

Substitution of functionsb and ¥ , equations (13a, b), and functioiand®

equations (16, 17), into equations (11a, b) and then into equations (9), gives the following
expressions for stresses and displacements in a simply supported transversely isotropic
functionally graded plate under sinusoidal loading with exponential dependence of the

elastic constants on the thickness co-ordinate

u = Z AU, & )coq”'m’<1 ”TJXZ (18a)
6
=3 AU, 06)sin T cos M (18b)
= ' a b
6
=3 AU, ()sin T in e (18c)
= ' a
6
0, =Y AP, & )sin sin ”Tk‘)xz (18d)
j=1
Oz Z AP, )Smn-mx1 ”T)Xz (18e)
73 Z APy b )sin ™ sin T2 (18)
6 m 7MX
Oy, = Z AP, (X, )cos a 0Ss b 2 (189)
=1
Z APy 6 Jeos™ 2 sin T (18h)
6
Ty =Y APy (%)sin aX1 cosmtlx2 (18i)
=1

FunctionsU, . and P

., are specified in Appendix C.

12



4. Validation

The developed three-dimensional solution for transversely isotropic functionally graded
plate is validated through comparison with the available three-dimensional solutions for
isotropic functionally graded plates, as well as the classical and higher order plate
theories.

Since isotropy is a particular case of transverse isotropy, the proposed solution for the
transversely isotropic plate can be used to obtain the solution for the isotropic plate if the

elastic coefficients are adjusted as follows

El1-v) Ev E
= = 7 = = —_ = = 1
R (T () IR (P () M (o) )
with

_ _ 2
C1L137Clis _ Colss 0123 = c,—C,=2G (19b)

C,Cas—Ch  Cy;Ca—Ch
Upon substitution of (19a) and (19b), the expressions representing displacements and
stresses in the transversely isotropic functionally graded plate, equations (9) and (18),
fully coincide with the corresponding expressions for displacements and stresses for

isotropic graded plate obtained by Kashtalyan (2004). Table 1 shows numerical results

0
for the normalised displacemen‘l;s:QLl:]i and stressesg;, = g, / ¢, obtained through
1

use of equations (18) and (19) of the present paper. It can be seen that they are within
0.001% of those obtained by Kashtalyan (2004).

Table 2 shows normalised mid-plane displacemﬁint-s% at the centre of a square
1

(a=h) isotropic graded plate with exponential variation of the shear modulus through
the thickness based on the present 3-D solution and a thin plate theory of Chi and Chung

(2006). The shear modulus varies fr@n, the value at the bottom surface of the plate, to
G,, the value at the top surface. The plate is simply supported on its edges and loaded by

transverse loadin@® &, X, )= —q,, sin(x, /a)sin(7x, /b) at the top surface. The results

13



are given forG, /G, =10 and the thickness-to-length ratio that varies fiorla = 0001
(very thin plate) toh /a = 0.2 (moderately thick plate). The thin plate theory appears to

be in good agreement with the present solutiorhféa < 0.1 as expected.

Table 3 shows normalised displacemeints % in a very thin square isotropic graded
1

plate withh /a =h /b = 001 for a range of shear modulus rat@s/G,. Good agreement
between the present 3-D solution and thin plate theory predictions is observed for all

considered values d5,/G, .

Table 4 shows normalised mid-plane displacernTgtq-t—l();"(:3u3 at the centre of the

1
isotropic graded plate predicted by the 3-D elasticity solution developed in this paper and
two plate theories: the higher-order shear deformation plate theory (HPT) and the
trigonometric shear deformation plate theory (TPT) developed by Zenkour (2007). The
plate is loaded by transverse loadiQdx, x, )= —q,, Sin¢x, /a)sin(7x,/b) at the top
surface and simply supported on its edges. Young’s modulus varies exponentially

through the thickness frork, at the bottom surface tB,expk at the top surface, while
Poisson’s ratio isy = 0.3. The results are given for squaie/b =1) and rectangular
(@/b=1/6) plates with length-to-thickness ratiash =2 anda/h =4 (very thick

plates), and a range of valueskaf There appears to be good agreement between the

present solution and TPT, with predictions based on HPT being less accurate.

4. Results and discussion
In this section, the results of parametric study the three-dimensional elastic

deformation of transversely isotropic graded plates are presented.

The effect of varying the inhomogeneity ratiois explored first. Figures 2-6 show

through thickness variation of the normalised stresses o, /g, and normalised

14



0
displacementgi = C““l:]‘ , for three different inhomogeneity ratiog € 0, 2.3 3),
1

corresponding to homogenous plate, plate with moderate inhomogeneity and plate with
high inhomogeneity. The effect of this variation in inhomogeneity ratio was compared for

two functionally graded plates: the first being thick plégh =b/h =3) and the second
thin plate(a/h=b/h=10).

The properties of the material are taken to be those of Beryl rock (Eskandari and Shodja,

2010). Its properties are defined in Table 5. As an example, a plot of the variation in

constantc,, through the thickness of the plate is given in Figure 2.

When considering the transverse normal steegs(Fig. 3A, B) it is seen that as the
inhomogeneity ratio is increased at any point within the plate this stress component
decreases for both thick and thin plates. Study of through thickness variation of

transverse shear stregs, (Fig 4A, B) shows that as the inhomogeneity ratio is

increased, the magnitude of this stress component increases, reaching a peak in the upper
half of the plate. It can be seen once more that thick and thin plates behave in the same
manner. The plots of normalised in-plane normal stiesgFig. 5A, B) and normalised
in-plane shear stress,, (Fig. 6A, B) show that increasing the inhomogeneity ratio in

both thick and thin plates causes increases in this stress component in the centre and
upper sections of the plate, whilst causing a slight decrease in stress for the lower section
of the plate.

Analysis of through thickness in-plane displacemgniFig. 7A, B) shows that as

inhomogeneity ratio increases, the additional stiffness this provides causes the magnitude
of this displacement for both thick and thin plates to decreases. This plot is highly non-

linear, emphasizing the need for 3D stress analysis. A similar result is seen for the

15



transverse displacemeny (Fig.8A, B) with a decrease in this component for both plate

geometries.

In order to further study the behaviour of transversely isotropic functionally graded
plates, the effect of varying the degree of anisotropy of the material will now be
considered, again using Beryl rock, which has properties as defined in Table 5. For this

material the ratio of shear moduli in the plane of isotropy and the plane normal to it is

0.75. In order for a comparison to be made, constynwill be varied (being set to 0.5, 2
and 10 GPa), giving three degrees of anisotropy: high anisogdpy0038 medium

anisotropyg® = 0.15and low anisotropy®’ = 075The inhomogeneity ratio is now fixed

asa = 2.3. Figures 9-14 show through thickness variation of the normalised stresses

o =0, /g, and normalised displacemerEQ;QLL:;, for these three degrees of
1

anisotropy. The effect of this variation is compared for the two plates used previously:
thick plateg(a/h =b/h =3) and thin plate(a/h =b/h =10).

For the cases of medium and high anisotropy, the out-of-plane normalcsyg$sg.

9A, B), rises more sharply in the upper section of the thick plate, whilst having much less
of an effect on the thin plates. Through thickness variation of the transverse shear stress
0,, (Fig. 10A, B), shows an increase in the stress magnitude towards the upper surface of
the plate, when considering more anisotropic plates. However in the thick plate, this
stress component rises to a far more pronounced peak in the upper section of the core,
whilst staying almost symmetrical for the thin plate (Fig. 10B). Plots of normalised in-
plane normal stresg,, (Fig. 11A, B) and normalised in-plane shear st@ss(Fig. 12A,

B) show for both thin and thick plates that when considering plates with higher

anisotropy, the stresses in the upper half of the plate are greater, while anisotropy has far

less effect on the stresses in the lower half of the plate.

16



Through-thickness variations of the in-plame(Fig. 13A, B) and out-of-plang, (Fig.

14A, B) displacements show that as plate anisotropy is increased, displacements through
the plate increase for both thick and thin plates. The plots of normalised in-plane
displacement (Fig. 13A, B) are highly non-linear, once again emphasizing the importance

of 3-D stress analysis for applications involving functionally graded materials.

5. Concluding remarks

In this paper, a three-dimensional elasticity solution for a simply supported transversely
isotropic functionally graded plate subject to transverse loading has been presented.
Young’'s moduli and the shear modulus of the material are assumed to vary exponentially
through the thickness of the plate, whilst Poisson’s ratios are assumed to remain constant.
The solution makes use of displacement functions for inhomogeneous transversely
isotropic media (Kashtalyan and Rushchitsky, 2009) and is validated through comparison
with results for an isotropic functionally graded plate (Kashtalyan, 2004) as well as

several plate theories.

A study of plate inhomogeneity was carried out for two plate geometries and it was seen
that as the degree of inhomogeneity was increased that there are increases in most stress
components in the upper half of the plate whilst a decrease was often seen in the plate
centre. This was particularly the case for transverse shear stress, where under high
degrees of inhomogeneity, stress concentrations can occur. Similarly when the degree of
anisotropy was varied it could be seen that the greater the anisotropy of the plate, the
higher the stresses in the upper half of the plate. Again under high anisotropy
concentrations of transverse shear stress were found in the upper half of the plate. Many
of the plots produced were highly non-linear through the thickness, showing the
importance of 3-D stress analysis. It is thought that this solution can be used as
benchmark for further work in the field of functionally graded transversely isotropic

media.
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Appendix A

Substituting strain displacement relations (7) into constitutive equation (3c)
ou, ou, ou,
O3 =Ca—=+C,—2+C,— Al
33 C.LS 6)(1 C13 6X2 C33 6X3 ( )

Now differentiating (9a) with respect xpand (9b) with respect tg gives

du, _ %0 1 92 Jorw

— = - c —Cpn— | —5 A2
axl axpxz C1933_CJ.23|: 1@2 s 0)(5} axlz ( )
u, 90 1 92 Jorw

— = — - C - —_— | A3
axz axpxz C1P33_C123[ lAZ & ax§:| ax§ (A3)

Again referring to (Kashtalyan and Rushchitsky, 2009), the following relations were
written

C3y3,3+ClSA2F =A2A2LIJ (A4)
1 0’y
F=e— = | AW —(CptCy)—r A5
— [cm o) } (15)

where F is a displacement functiers F(xl,x2,><3) and A is the Laplacian operator.
Rearranging (A4)

Coly ;=00 W-cAF (A6)
Now substituting (A5) into (A6)

_ Ca (Cis+Cso) 62‘4’}
ny—AAlP+cmA{ AW - (A7)
e i ’ C1§33_C123 C11033_0123 a)(32

2
Substitutingl, = A —% and rearranging
X3

U=t A-(c,+ )a—2 A-9 | (A8)
> C1P33_C123 = e axsf ax§

Now substituting (A2), (A3) and (A8) into (Al) yields
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oooe, IO o [ 00w
» =03 6X16X2 C1P33_0123 S 6X32 axlz
°P C 9° |o°w

- - —C— |2 A9

s axlaxz C1P33_C123 {Clﬁz & ax’f aXz2 ( )

_ G |cA- a_z A_a_qu
. Clza[cu (i +cu) o }( o

After simplification

Oy = (A - :—XZZJ(A - :—);jw (A10)

or

Ty =D AW (A11)
Derivation of other stress components, equations (9d, e, g-i), is carried out in a similar
manner.
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Appendix B

From Polyanin and Zaitsev (2003), a fourth order equation with constant coefficients has

general solution
W = C, exp(A,x;) + C, expA,x,) + C, exdA.x;) + C, exdA,x;) (B1)
Begin by substituting’ = exp(Ax,) and its derivatives into equation (15b) and

simplifying, thus giving the following characteristic equation

2
h4/14 —20h3/13+h{0’2 +{20_J(.)3_C](.ch??3_01?3 Jklﬁhz}/iz

Cs;  CsiCas
2 (82)
_aqu; he 20_53 _ Cflc% _chs 2+ quth (ClolquJth + Closaz) =0
C33 C3SC44 C33
Comparing (B2) with
Ax*+Bx*+Cx*+Dx+E=0, (B3)
dividing by A and applying the change of variabley—4—i gives
y4 + _§B_2+E y2 + EB_3_B_C+2 y
8A” A 8A° 2A* A
(B4)

3 B* CB” BD E)_
+| - —+ - +—|=0
256A" 16A° 4A* A

Thus we have a depressed quadratic expression (i.e. no cubed term), which can be re-

written as
y'+0y*+ky+p=0 (B5)
where
3B C
=+ — B6
8A2 A (86)
1B®* BC D
K=——-— +— B7
8A* 2A* A (B7)
and
4 2
o=- 3 B +CB _BD +E (B9)

25€ A* 16A° 4A% A
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Comparing equations (B2) and (B5) it can be seen that

A=h*

B = —2ah®
0 0 ~0 02
C C,.C,s —C
— k2| 2 13 _ “11%33 ~ “13 212
C=h?|g?+| 28 -8 213 |2y
Cas C33Cas

0

e %l -’
D:—akjh3 913 _ 11v33 ~ M3

0 0 A0
C33 C33044

and
kih?(cikh? +cha?)

0
C33

E =

Substituting equations (B9-B12) into (B7) shows that
k=0
Substituting equations (B9-B11) into (B6)

a? Closkti _ Cflki + Cfsz k\i

6=- +2
2 0 0 0 .0
2h Ca3 Cas C33Cyy

and substituting equations (B9-B13) into (B8) yields
_a' 1 a’clks L1 a’cpke 1 a’c’ k2 N coks
16h* 2 h’c), 4 h®c, 4 h’cdcl, ¢

@

Therefore equation (B5) reduces to the following bi-quadratic
y*+6y’ +9=0

Making the change of variabte= y*, (B17) can be rewritten as
22 +60z+p=0

Now considering the discriminant of (B18)

25

(B9)
(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)



Disc =8 -4¢

2,02 04 02,4 004 024

__Aatclky | onky , 4G Kb, Clciky |, Cl Ky (B19)
- h2c0 0 02 0c? 020
Cas Cas Cas C33Cas Cas Cus

02,4 0.02,,4 02,4
+011 kLu _2011013 kw + Cis kw

0?2 0 .02 0202
Csa C33Cyy C33 Cyy

Depending on the values of the constarftsc’,,c,,c,,a andk,, this discriminant can

be either positive of negative.

If the discriminant is negative, the equation (B18) has two complex conjugate roots.

Using the quadratic formula, the roots of (B18) can be written as

; _n2?
. _g+|4¢70

2 =-C+ (B20)
and

: 2
z'=—§——l 4"; i (B21)

Thus the required solutions to (B17) are

o=z, y, =z, y, =+/z" andy, = /2" (B22)

To calculate these square roots, the following equation is employed

(42, W2 (a2 4 2 _
aibi—J a+b +a+i\/ ayb -a (B23)

2 2
with
_ 2

a=-2 andb= 44”2 4 (B24)
so that

Jz= % £ 8 (825)
where

2 2
1= va +2b +a (B26)
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and

(o2 L2 _
=2t -a +2b a (B27)

Substituting (B15, B16) into (B24) and this into (B26, B27) gives

1 c 1c¢% 1 c% e, O
A :Z —%4.5% E O1 - k h2 +2a,2+4(2a2h k2 a2h2ki%
033 44 C33C44 33 C44
1 (B28)
a?hikz S5y gnt k“iﬁa 2
C33C44 C33 4

and

1) (% 1¢% 1 c% cO O
'uzz LO?’_E% E 13 k h? — 22 +4(20,2h k2 13 a’zhzk\i%
Ca3 Cas C33044 33 Cua

: (B29)

1
02 0 2
2h2k2 13 +4h4k4_+%a J

C33(':44 C33

Making the substitutiornx = y—4—i, the roots of equation (B3) are found to be

_A,..u B
x=+Z+iE-—=

*/‘1 h 4A (B30)
=l 4l 9

h™ h 2h

Substituting the roots (B30) into general solution (B1), taking common factors and
substituting trigopnometric identities allows the solution of (15b) to be written

W(x,)= h“exp( j{Alcosh/‘—)%co 'UX3+A2cosh/1—X38|nﬂX3
< h h (B31)

+%sin)I cos—+A43|n r):ssm'uxs}

If discriminant (B19) is positive, functiol is sought in a similar fashion.
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Appendix C

FunctlonsU and P

rt,j

involved in Egs. (19)

—__ qmnh 7mh —ax 01,2LKW2 0 2 d2

Uy, (%) = o, _Cfsz a eXF{ h 3){013kwh f;(%g) +C55h dx? }
_ gdn,h  7mh -ax d?

U 2,j (Xa) - 011033 o 2 p eXF{ h > j{c&kéhz fj (X3) + C??shz d_X32 fj (Xe)}

___ Guh —ax 0| _p3 d’ d?
U3,j(x3)_ Cfl §3—Cf32 eXF{ h 3){(:33[ h dngj(xs) a—-; X3 (Xs)

+k hZ[h(Cﬂ%S : >—f 0 )+ ackT, (xs)}] =14

Cus C44
N 7inh h h
Uy 00) = - BB 06), Uy 06) = R (),
44 b C44
U3]j &, )=0 j=56
mh) d
331 (Xs) qn‘nk h4f (Xs) 131 (Xs) qmnk hs(Tj@ fj(x3)
ymh) d

231 (X3) ank h3[ b j X3 fi(xs)

h
Py (%) = q{Mk hZ(”“ j f, (%)

Crs
0 2 42 2
_C.LZC33 C’.L3 [ﬂnhj d > fJ( 3) hZ(ﬂmhj d — fl(X3)
chch-cy L b ) dx a ) dx

h

Py, (x3)=qm[%k h (”m j f, (%)
1 3_C13 a
_ GGy 013 ﬂmhj d® h (mhj d?
cless — ¢y’ (a ac 1T dz'(xg)
- h h
P2 (%) = O, OClt Clzoz[”m j[ﬂs jhz{clasz (X3)+C33 (Xs)] j=1..4;
1C33 ~ Ci3 a

28



__ mh ax, ) d
Pus; (%) =0, Paj (%) = qrm( 5 jexr{—h j—d)%f
7mh ax; ) d
P (%) = qm[ I jexp[ ’ j—dxs f (%)

(x,) = qmn 1 [mhj(mhjex{ax3)x
ll] 44 C11033 C1032 b a h

(szcfaz + Cll C33 - C11‘:'13 - CJ(.)ZCJ(.)lCC(-})B)fj (Xa)

- 1 rmh ) 7imh ax
Pras ) = 02( b j( ]exr{ hij
C44 C11 33 —Cy3 a

(_ C10201032 - 011 C33 + Cllcfisz + CfZCflcé)S)fj (Xs)

_hcfl_CfZ rmh 2_ mhY’ axs
RN ) H RS ”ex'{ oo

In the expressions above, functiohs(x,) (j =1...,6) are

fl(x3):exp{a jcosh)l—x%o 'UX3
2h h h

axy,) .  AX UXy
f —e S | sin—=cos
2 (%) XF{ N I h h

ax AX, . UX
f =exg — | cosh—=2sin==2,
s (%) Xl{ N h | h

f4(X3)=ex;{a;r(l3 sinh/]h sln’ur)l(3

fo ()= ex;{ jcosh’g—
2h h

_ 25
f6(x3)—exp( on jsmh "
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Tables

Table 1. Normalised displacements and stresses in a square simply supported isotropic
graded plate witta h=3, a =23

Kashtalyan (2004) Present solution Difference
il:? (0% ,0.5,,05h) -4.29778 -4.30352 0.001333
1
% (0% ,0m,05h) 0.653339 0.652648 0.001059
% (0.,,0.,0.5h) -0.43007 -0.42974 0.000774
1
% (0.,05,0.5h) -0.64606 -0.64618 0.000188
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Gy, (0% ,05,05h)

0,0
isotropic graded plate under sinusoidal loading with the shear modulus varying
exponentially fromG, at the bottom surface 16, at the top surfaceq, /G, =10).

Table 2. Normalised displacem in a square simply supported

h/a Present 3-D solution Thin plate theory Difference (%)
(Chi and Chung, 2006)

0.001 3.52725E+11 3.52724E+11 0.000491
0.01 35289681.36 35272367.69 0.049062
0.02 2208851.489 2204522.98 0.195962
0.04 138864.9234 137782.6863 0.779345
0.06 27697.41125 27216.33309 1.736907
0.08 8882.100634 8611.417892 3.047508
0.1 3700.547069 3527.236769 4.68337
0.15 773.9162053 696.7381272 9.972408
0.2 264.0397906 220.452298 16.50793

Table 3. Normalised displaceme%i2u3 (0"'1’ rC]).Ea,OBh)
1

isotropic graded plate under sinusoidal loading with the shear modulus varying
exponentially fromG, at the bottom surface 16, at the top surfacea(/h =100).

in a square simply supported

G,/G, | Present 3-D solutior] Thin plate theory Difference (%)
(Chi and Chung, 2006)
1.5 1983989.7 1982974.631 0.051161
2 3062381.7 3060801.301 0.051607
3 5657499.8 5654572.722 0.051737
4 8755021.8 8750513.815 0.051491
5 12290237 12283954.61 0.051118
10 35289681 35272367.69 0.049062
20 101163976 101117511.8 0.045929
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3
Table 4. Normalised displacemer‘.]‘tth Ys Sz 0% 0.5n)
1

the Young’s modulus varying exponentially frof) at the bottom surface tg, expk at the top surface.

in a simply supported isotropic graded plate under sinusoidal loading with

a/b | Theory| k=01 | Difference| k = 0.3 | Difference| k = 05 | Difference| k = 0.7 | Difference| k =1. | Difference| k =15 | Difference

(%) (%) (%) (%) (%) (%)
a/h=2
1 TPT | 05731 | 0.0255 | 0.5181 | -0.6557 | 0.4679 | -1.3744 | 0.4222 | -2.1303 | 0.3612| -3.3318 | 0.2771 | -5.5080
HPT | 0.5859 | -2.2040 | 0.5296 | -2.8881 | 0.4781 | -3.5974 | 0.4313 | -4.3342 | 0.3687| -5.4890 | 0.2825 | -7.5411
Present 0.5732 0.5147 0.4615 0.4134 0.3495 0.2627

1/6 TPT 1.6294 | -0.0011 1.4731 -0.4983 1.3307 -0.9812 1.2010 -1.4515 | 1.0282| -2.1321 | 0.7906 -3.2221
HPT 1.5478 5.0082 1.3996 4.5127 1.2649 4.0069 1.1425 3.4918 | 0.9796| 2.7022 0.7556 1.3426

Present 1.6294 1.4658 1.3177 1.1838 1.0068 0.7659
a/h=4
1 TPT | 0.3475 | 0.1066 | 0.3142 | -0.1595 | 0.2839 | -0.3692 | 0.2563 | -0.5218 | 0.2196| -0.6520 | 0.1692 | -0.6599
HPT | 0.3111 | 10.5648 | 0.2815 | 10.2743 | 0.2546 9.9795 0.2303 | 9.6908 | 0.1980| 9.2523 | 0.1538 | 8.5305
Present 0.3479 0.3137 0.2828 0.2550 0.2182 0.1681

1/6 TPT 1.1668 0.1999 1.0551 0.0927 0.9535 0.0699 0.8611 0.1272 | 0.7382| 0.3498 0.5697 1.0175
HPT 1.0065 | 13.9125 | 0.9109 | 13.7490 | 0.8245 13.5871 | 0.7464 | 13.4274 | 0.6431| 13.1940 | 0.5018 12.8167
Present| 1.1691 1.0561 0.9541 0.8622 0.7408 0.5755
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Table 5. Properties of Beryl rock

c’, (GPa)

c’, (GPa)

¢ (GPa)

cs, (GPa)

cl, (GPa)

41.3

14.7

10.1

36.2

10.0

0.75
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Figure captions

Fig.1: Schematic of the plate showing its geometry and applied loading.

Fig. 2: Through thickness variation of constapntfor different values ot .

Fig. 3: Through-thickness variation of the normalised out of plane normal &igss
(0.5,05D, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of
imhomogenity ¢ = 0, 2.3 3).

Fig. 4: Through-thickness variation of the normalised transverse shearatyess
(0,05, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of
imhomogenity ¢ = 0, 2.3 3).

Fig. 5: Through-thickness variation of the normalised in-plane normal girgss
(0.5,05D, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of
imhomogenity ¢ = 0, 2.3 3).

Fig. 6: Through-thickness variation of the normalised in-plane shear &iteg$, 0, x;)

in: (A) thick FG plate; (B) thin FG plate for a range of degrees of imhomogenity
(a=0,233).

Fig. 7: Through-thickness variation of the normalised in-plane displacement
(0,050, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of
imhomogenity ¢ = 0, 2.3 3).

Fig. 8: Through-thickness variation of the normalised transverse displacament
(05,05, x,) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of
imhomogenity ¢ = 0, 2.3 3).

Fig. 9: Through-thickness variation of the normalised out of plane normal &tjess
(05,08, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of
anisotropy @° = 0038015075).
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Fig. 10: Through-thickness variation of the normalised transverse shearcgtress
(0,050, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of anisotropy
(g° = 00380150.75).

Fig. 11: Through-thickness variation of the normalised in-plane normal styess
(05,058, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of

anisotropy @° = 0038015075).

Fig. 12: Through-thickness variation of the normalised in-plane shear &iress
(0,0, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of anisotropy

(g° = 0038015075).

Fig. 13: Through-thickness variation of the normalised in-plane displacement
(0,05, x;) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of anisotropy

(g° = 0038015075).

Fig. 14: Through-thickness variation of the normalised transverse displacement
(05,05, x,) in: (A) thick FG plate; (B) thin FG plate for a range of degrees of
anisotropy @° = 0038015075).
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Figures
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