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This paper presents a three-dimensional elasticity solution for a simply supported, transversely isotropic functionally graded plate subjected to transverse loading, with Young's moduli and the shear modulus varying exponentially through the thickness and Poisson's ratios being constant. The approach makes use of the recently developed displacement functions for inhomogeneous transversely isotropic media. Dependence of stress and displacement fields in the plate on the inhomogeneity ratio, geometry and degree of anisotropy is examined and discussed. The developed three-dimensional solution for transversely isotropic functionally graded plate is validated through comparison with the available three-dimensional solutions for isotropic functionally graded plates, as well as the classical and higher-order plate theories.

Introduction

Functionally graded materials (FGMs) are a type of heterogeneous composite materials exhibiting gradual variation in volume fraction of their constituents from one surface of the material to the other, resulting in properties which vary continuously across the material. These materials were initially developed in the 1980s for use in high temperature applications by Japanese scientists, who showed that the FGMs provide heat and corrosion resistance whilst retaining strength and toughness (Yamanouchi et al., 1990;[START_REF] Koizumi | The concept of FGM[END_REF].

Since then a large amount of research has been undertaken into their performance and production [START_REF] Suresh | Fundamentals of functionally graded materials[END_REF][START_REF] Miyamoto | Functionally Graded Materials: Design, Processing and Applications[END_REF] and as such their use has become far more widespread, with current applications including dental implants, heat exchanger tubes, engine components and to eliminate mismatch of thermal properties in metal and ceramic bonding.

Theoretical modelling of functionally graded plates remains an active research area [START_REF] Birman | Modelling and analysis of functionally graded materials and structures[END_REF], with the development of analytical elasticity solutions being of particular importance. [START_REF] Bian | Analytical solutions for single-and multi-span functionally graded plates in cylindrical bending[END_REF] have developed a plate theory for a simply supported functionally graded plate under cylindrical bending utilising shape functions to describe inhomogeneity in the transverse direction. These results are then compared with those found using first and third order shear deformation plate theories. The paper however only covers a one-dimensional problem.

The response of a functionally graded plate to transverse uniform load was investigated analytically by Zenkour (2006). Through use of generalised shear deformation theory a stress analysis is presented for an isotropic functionally graded plate with power law distribution in gradient. Comparisons are then made with an equivalent homogeneous isotropic plate.
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3 [START_REF] Shariat | Buckling of thick functionally graded plates under mechanical and thermal loads[END_REF] performed buckling analysis of rectangular functionally graded plates with linear through thickness variation of properties. Equilibrium equations are derived using third order shear deformation theory and a buckling analysis is carried out for a variety of mechanical and thermal load types.

Through use of displacement functions, [START_REF] Kashtalyan | Three-dimensional elasticity solution for bending of functionally graded rectangular plates[END_REF] developed an exact three dimensional elasticity solution for the bending of functionally graded plates. The material was assumed to be isotropic with exponential variation of Young's modulus through the thickness. This solution was validated through comparison with results for isotropic homogeneous plate and has become a benchmark solution used by other researchers [START_REF] Abrate | Functionally graded plates behave like homogeneous plates[END_REF]Zhong and Shang, 2008;[START_REF] Brischetto | Classical and mixed advanced models for sandwich plates embedding functionally graded cores[END_REF]Yunet et al., 2010).

A three-dimensional elasticity solution for exponentially graded rectangular plate of variable thickness was developed by [START_REF] Xu | Three-dimensional elasticity solutions of functionally graded rectangular plates with variable thickness[END_REF], while axisymmetric bending of functionally graded isotropic circular plates was investigated by Zheng and Zhong (2009) and [START_REF] Wang | Three-dimensional solutions of axisymmeric bending of functionally graded circular plates[END_REF].

Compared to isotropic functionally graded plates, transversely isotropic plates with gradient in elastic properties have received considerably less attention in the literature.

An exact three dimensional analysis for a simply supported functionally graded piezoelectric plate with exponential variation of properties through the thickness was presented by Zhong and Shang (2003). Using the state space approach, numerical results were obtained for four different cases of sinusoidal loading.

A method of solution for stresses and displacements within a transversely isotropic functionally graded circular plate, whose elastic constants are arbitrary functions of the thickness coordinate, was described by [START_REF] Li | Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load k r q[END_REF].The loading considered was a transverse uniform load and it was shown that the stresses and displacements through the 2010) provided an analytical solution for the axisymmetric bending of transversely isotropic functionally graded circular plates subject to arbitrarily transverse loads using the direct displacement method. Verification is then carried out through comparison with a finite element model.

In this paper an approach utilising displacement functions for inhomogeneous transversely isotropic media developed by [START_REF] Kashtalyan | Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media[END_REF] allows an exact three dimensional elasticity solution for functionally graded transversely isotropic rectangular plate to be developed. It is assumed that the material has constant Poisson's ratios and that Young's and shear moduli vary exponentially through the thickness.

Problem formulation

The plate under consideration, with length a , width b and thickness h , is shown relative to the

3 2 1 x x x
Cartesian coordinates in Figure 1.

The plate is assumed to be simply supported on the edges such that , 0 , 0 : , 0

3 2 11 1 = = = = u u a x σ (1a) , 0 , 0 : , 0 3 1 22 2 = = = = u u b x σ (1b)
where ij σ are the components of the stress tensor and i u are the components of the displacement vector.

The loading is applied transversely and provides the final six boundary conditions. Since it is applied at the upper surface, h x = 3 , it can be written that 0 ), , (

23 13 2 1 33 = = = σ σ σ x x Q (2a) b nx a mx q x x Q mn 2 1 2 1 sin sin ) , ( π π - = (2b)
where mn q is the amplitude of the loading. The bottom surface, 0 3 = x is load-free, i.e.

0 23 13 33 = = = σ σ σ (2c)
The material of the plate material is an inhomogeneous transversely isotropic with the 3 x -axis as an axis of material symmetry. Hence the following constitutive equations can be written 

ε ε ε σ c c c + + = (3c) 23 44 23 2 ε σ c = (3d) 13 44 13 2 ε σ c = (3e) ( ) 12 12 11 12 66 12 2 ε ε σ c c c - = = (3f)
where ij ε are the components of the strain tensor and 11 c , 12 c , 13 c , 33 c , 44 c are five independent elastic coefficients, which in the general case depend on

3 2 1 , , x x x .
Let , E ν and

( ) ν + = 1 2 E G
denote the Young's modulus, Poisson's ratio and shear modulus in the plane of isotropy (i.e. any plane normal to the 3 x -axis), and , E′ ν ′ and G′ the Young's modulus, Poisson's ratio and shear modulus in any plane normal to the plane of isotropy.

It is assumed that:

(i) Poisson's ratios ν ν ′ , are constant, i.e. , const = ν const = ′ ν (4a)
(ii) Young's moduli E and E′ and the shear modulus G′ , have the same functional dependence on the co-ordinate 3

x , i.e. ( ) ( )

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 6 ( ) ( ) const E x m E x E = = 0 3 0 3 , (4b) ( ) ( ) const E x m E x E = ′ ′ = ′ 0 3 0 3 , (4c) ( ) ( ) const G x m G x G = ′ ′ = ′ 0 3 0 3 , ( 4d 
3 0 11 3 11 x m c x c = (5a) ( ) ( ) 3 0 12 3 12 x m c x c = (5b) ( ) ( ) 3 0 13 3 13 x m c x c = (5c) ( ) ( ) 3 0 33 3 33 x m c x c = (5d) ( ) ( ) 3 0 44 3 44 x m c x c = (5e) 
where

( ) ( ) ( ) ( ) ( ) 0 0 0 2 2 0 0 2 0 11 2 1 1 1 E E E E E c ′ ′ + + - ′ ′ - = ν ν ν ν (5f) ( ) ( ) ( ) ( ) ( ) 0 0 0 2 2 0 0 2 0 12 2 1 1 E E E E E c ′ ′ + + - ′ ′ - = ν ν ν ν ν (5g) ( ) ( ) ( ) ( ) 0 0 0 2 2 0 13 2 1 1 1 E E E c ′ ′ + + - - ′ = ν ν ν ν ν (5h) ( ) ( ) ( ) 0 0 0 2 2 2 0 33 2 1 1 1 E E E c ′ ′ ′ + + - - = ν ν ν ν (5i) 0 0 44 G c ′ = (5j)
In the absence of body forces, the equilibrium equations for inhomogeneous transversely isotropic plate are

0 3 13 2 12 1 11 = ∂ ∂ + ∂ ∂ + ∂ ∂ x x x σ σ σ (6a) M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 7 0 3 23 2 22 1 12 = ∂ ∂ + ∂ ∂ + ∂ ∂ x x x σ σ σ (6b) 0 3 33 2 23 1 13 = ∂ ∂ + ∂ ∂ + ∂ ∂ x x x σ σ σ (6c) Using strain -displacement relations         ∂ ∂ + ∂ ∂ = i j j i ij x u x u 2 1 ε (7)
and the constitutive equations (3), the equilibrium equations ( 6) can be re-written in terms of displacements [START_REF] Kashtalyan | Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media[END_REF] as

0 2 2 ) ( 1 3 3 1 3 44 1 1 3 12 11 =         ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∆ - x u x u x c x e u c c g (8a) 0 2 2 ) ( 2 3 3 2 3 44 2 2 3 12 11 =         ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ + ∆ - x u x u x c x e u c c g (8b) 0 3 3 3 33 2 2 1 1 3 13 3 3 / 3 44 = ∂ ∂ ∂ ∂ +         ∂ ∂ + ∂ ∂ ∂ ∂ + ′ + ∆ x u x c x u x u x c e u c g (8c)
where

3 3 13 44 2 2 12 11 1 1 12 11 ) ( ) ( 2 1 ) ( 2 1 x u c c x u c c x u c c e ∂ ∂ + + ∂ ∂ + + ∂ ∂ + = (8d) 3 2 3 2 12 11 33 3 2 2 2 13 44 3 1 1 2 13 44 3 2 ) ( ) ( x u c c c x x u c c x x u c c e ∂ ∂       - - + ∂ ∂ ∂ + + ∂ ∂ ∂ + = ′ (8e) 2 3 2 2 3 x g o g ∂ ∂ + ∆ = ∆ , 2 3 2 2 / 3 1 x g o g ∂ ∂ + ∆ = ∆ (8f,g) 2 2 2 2 1 2 2 x x ∂ ∂ + ∂ ∂ = ∆ , const g c c c c c c g o o o o = = - = - = 12 11 44 12 11 44 2 2 (8h,i)
Constant o g represents the ratio between the shear moduli in a plane of isotropy and a plane normal to it. For isotropic materials it is equal to unity, for transversely isotropic materials it can be used to characterise the degree of anisotropy exhibited by the material.
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It was shown by [START_REF] Kashtalyan | Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media[END_REF] From equations (9a-c), strain -displacement relations (7) and constitutive equations (3), components of the stress tensor can be expressed in terms of functions Φ and 

x x c c c c c c c c x u ∂ Ψ ∂       ∂ ∂ - - ∆ - - ∂ Φ ∂ = (9a) 2 2 3 2 2 13 33 11 33 2 2 13 33 11 13 1 2 x x c c c c c c c c x u ∂ Ψ ∂       ∂ ∂ - - ∆ - - ∂ Φ ∂ - = (9b) Ψ       ∂ ∂ - - ∆ - ∂ ∂ + ∂ Ψ ∂ ∆ - =
Ψ (derivation is outlined in appendix A) ( ) 2 
x x c c x x x x c c c c c c c c c c c c c ∂ ∂ Φ ∂ - + Ψ       ∂ ∂ ∂ + ∂ ∂         ∂ ∂ - - + ∆ - - = σ (9d) ( ) 2 
x x c c x x x x c c c c c c c c c c c c c ∂ ∂ Φ ∂ - - Ψ       ∂ ∂ ∂ + ∂ ∂         ∂ ∂ - - + ∆ - - = σ (9e) Ψ ∆ ∆ = 2 2 33 σ (9f) Φ         ∂ ∂ - ∂ ∂ - - ∂ ∂ Ψ ∂         ∂ ∂ - ∆ - - =
x x c x x ∂ ∂ Φ ∂ + ∂ ∂ Ψ ∂ ∆ - = σ (9h) 3 1 2 44 3 2 2 2 23 x x c x x ∂ ∂ Φ ∂ - ∂ ∂ Ψ ∂ ∆ - = σ (9i)
Functions Φ and Ψ satisfy the following differential equations [START_REF] Kashtalyan | Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media[END_REF] ( ) ( ) 

0 3 3 3 0 2 3 =       ∂ Φ ∂ ∂ ∂ + Φ ∆ x x m x g x m (10a) M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT ( ) ( ) ( ) ( ) ( ) [ ] 0 
=      Ψ ∆ ∂ ∂ - -            ∂ Ψ ∂ ∂ ∂ - +       ∂ Ψ ∂ ∆ ∂ ∂ × - + ∂ Ψ ∂ ∆ - Ψ ∆ ∆ - - - x m x c c c c x x m x c c c c x x m x c x m c c c x c c (10b)
subject to boundary conditions ( 1) and (2).

Separation of variable

Solution of equations ( 10) starts with separating variables in the displacement functions in the form

(

) ( ) ( )

3 2 1 3 2 1 , , , x x x x x x Φ Φ = Φ ) ) ) (11a) ( ) ( ) ( ) 3 2 1 3 2 1 , , , x x x x x x Ψ Ψ = Ψ ) ) ) (11b) 
Substitution of these expressions into equations ( 10a) and (10b) allows the following four differential equations to be derived

0 2 2 = Φ + Φ ∆ Φ ) ) ) ) k (12a) 0 2 2 = Ψ + Ψ ∆ Ψ ) ) ) ) k (12b) ( ) ( ) 0 0 2 3 3 3 2 3 2 = Φ       - ′ + Φ ) g k dx d x m x m dx d (12c) ( ) ( ) ( ) ( ) [ ] ( ) ( ) 0 4 0 33 0 11 2 3 2 2 0 33 0 13 3 3 1 3 3 2 0 44 0 33 0 13 0 33 0 11 3 1 2 3 2 3 2 0 33 0 13 2 3 2 3 1 3 2 3 2 = Ψ + Ψ +       Ψ - - Ψ +       Ψ Ψ Ψ - Ψ - Ψ - ) ) ) ) ) k c c dx d k c c dx d x m dx d x m k c c c c c x m dx d x m k c c dx d x m dx d x m (12d)
For a simply supported plate subjected to sinusoidal loading, with the boundary conditions described by equations ( 1) and (2), functions ( )

2 1 , x x Φ = Φ ) )
)

) and

( )

2 1 , x x Ψ = Ψ ) ) ) )
can be chosen as
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Then the boundary conditions on the edges of the plate are satisfied exactly.

Selecting the inhomogeneity function such that it is an exponential one, ( )

h x x m 3 3 exp α = ( 14 
)
and non-dimensionalising reduce equations ( 12c) and (12d) to the following second-and fourth-order differential equations with constant coefficients 

0 0 2 2 3 2 3 2 2 = Φ - Φ + Φ Φ ) ) ) g h k dx d h dx d h α (15a) ( ) 0 
= Ψ + + Ψ         - - - Ψ                 - - + + Ψ - Ψ Ψ Ψ Ψ Ψ ) ) ) ) ) c c h k c h k dx d c c c c c c c h k dx d h k c c c c c c c h dx d h dx d h α α α α (15b)
where

              +       = = Ψ Φ 2 2 2 2 2 b n a m k k π (15c)
It is worth mentioning that the exponential variation of material properties with transverse co-ordinate has been used by a number of researchers investigating functionally graded materials, in particular Jin and Batra (1996), [START_REF] Gu | Cracks in functionally graded materials[END_REF], [START_REF] Sankar | An elasticity solution for functionally graded beams[END_REF], [START_REF] Anderson | A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere[END_REF], [START_REF] Kashtalyan | Three-dimensional elasticity solution for bending of functionally graded rectangular plates[END_REF]Menshykova (2007, 2009a,b), and [START_REF] Woodward | Bending response of sandwich panels with graded core: 3D elasticity analysis[END_REF].

The solutions to equations (15a) and (15b) will vary depending on the values of the elastic constants and parameters Φ k and Ψ k . Their solution is detailed in appendix B.

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT

If the discriminant of the characteristic equation corresponding to equation ( 15b) is negative then

   + +    +       = Ψ h x h x A h x h x A h x h x A h x h x A h x h 3 3 4 3 3 3 3 3 2 3 3 1 3 4 sin sinh cos sinh sin cosh cos cosh 2 exp µ λ µ λ µ λ µ λ α ) (16a)
where λ and µ are The solution of second order equation (15a) yields

2 4 2 2 1 2 1 8 4 1 2 2          + + - + + +             - + - = Ψ Ψ Ψ Ψ Ψ α α α α α λ c c k h c c c k h c c k h c c k h h k c c c c c c c (16b)
4 2 2 1 2 1 8 4 1 2 2          + + - + + -             + - = Ψ Ψ Ψ Ψ Ψ α α α α α µ c c k h c c c k h c c k h c c k h h k c c
            +             - = Φ h x A h x A h x c h 3 6 3 5 3 0 44 2 sinh cosh 2 exp β β α ) ( 17a 
)
where 0 44
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In equations ( 16) -( 17

), ) 6 , , 1 ( K = i A i
are six arbitrary constants that can be found from the boundary conditions on top and bottom surfaces of the plate, given by equations ( 2a) and (2b).

Substitution of functions Φ

) ) and Ψ

) )

, equations (13a, b), and functions Φ ) and Ψ

) , equations (16,17), into equations (11a, b) and then into equations ( 9), gives the following expressions for stresses and displacements in a simply supported transversely isotropic functionally graded plate under sinusoidal loading with exponential dependence of the elastic constants on the thickness co-ordinate 

∑ = = 6 1 2 1 3 , 1 1 sin cos ) ( j j j b x n a x m x U A u π π (18a) ∑ = = 6 1 2 1 3 , 2 2 cos sin ) ( j j j b x n a x m x U A u π π (18b) ∑ = = 6 1 2 1 3 , 3 3 sin sin ) ( j j j b x n a x m x U A u π π (18c) ∑ = = 6 1 2 1 3 , 11 11 sin sin ) ( j j j b x n a x m x P A π π σ (18d) ∑ = = 6 1 2 1 3 , 22 22 sin sin ) ( j j j b x n a x m x P A π π σ (18e) ∑ = = 6 1 2 1 3 , 33 33 sin sin ) ( j j j b x n a x m x P A π π σ (18f) ∑ = = 6 1 2 1 3 , 12 12 cos cos ) ( j j j b x n a x m x P A π π σ (18g) ∑ = = 6 1 2 1 3 , 13 13 sin cos ) ( j j j b x n a x m x P A π π σ (18h) ∑ = = 6 1 2 1 3 , 23 23 cos sin ) ( j j j b x n a x m x P A π π σ (18i)

Validation

The developed three-dimensional solution for transversely isotropic functionally graded plate is validated through comparison with the available three-dimensional solutions for isotropic functionally graded plates, as well as the classical and higher order plate theories.

Since isotropy is a particular case of transverse isotropy, the proposed solution for the transversely isotropic plate can be used to obtain the solution for the isotropic plate if the elastic coefficients are adjusted as follows 

( ) ( )( ) ν ν ν 2 1 1 1 33 11 - + - = = E c c , ( )( ) ν ν ν 2 1 1 13 12 - + = = E c c , G c = 44 , ( ) ν + = 1 2 E G (19a) with ν = - - = - - 2 13
c c c c c c c c c c c c c , G c c 2 = - (19b) 
Upon substitution of (19a) and (19b), the expressions representing displacements and stresses in the transversely isotropic functionally graded plate, equations ( 9) and ( 18), fully coincide with the corresponding expressions for displacements and stresses for isotropic graded plate obtained by [START_REF] Kashtalyan | Three-dimensional elasticity solution for bending of functionally graded rectangular plates[END_REF]. Table 1 shows numerical results

for the normalised displacements h q u c u 18) and ( 19) of the present paper. It can be seen that they are within 0.001% of those obtained by [START_REF] Kashtalyan | Three-dimensional elasticity solution for bending of functionally graded rectangular plates[END_REF].

Table 2 shows normalised mid-plane displacements

h q u G u i i 11 2 =
at the centre of a square ) ( b a = isotropic graded plate with exponential variation of the shear modulus through the thickness based on the present 3-D solution and a thin plate theory of [START_REF] Chi | Mechanical behaviour of functionally graded material plates under transverse load -Part I: Analysis[END_REF]. The shear modulus varies from 1 G , the value at the bottom surface of the plate, to 2 G , the value at the top surface. The plate is simply supported on its edges and loaded by transverse loading

) / sin( ) / sin( ) , ( 2 1 11 2 1 b x a x q x x Q π π - =
at the top surface. The results 

M

Results and discussion

In this section, the results of parametric study into the three-dimensional elastic deformation of transversely isotropic graded plates are presented.

The effect of varying the inhomogeneity ratio α is explored first. The properties of the material are taken to be those of Beryl rock [START_REF] Eskandari | Green's functions of an exponentially graded transversely isotropic half-space[END_REF]. Its properties are defined in Table 5. As an example, a plot of the variation in constant 11 c through the thickness of the plate is given in Figure 2.

When considering the transverse normal stress 33 σ (Fig. 3A,B) it is seen that as the inhomogeneity ratio is increased at any point within the plate this stress component Analysis of through thickness in-plane displacement 1 u (Fig. 7A,B) shows that as inhomogeneity ratio increases, the additional stiffness this provides causes the magnitude of this displacement for both thick and thin plates to decreases. This plot is highly nonlinear, emphasizing the need for 3D stress analysis. A similar result is seen for the
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transverse displacement 3 u (Fig. 8A,B) with a decrease in this component for both plate geometries.

In order to further study the behaviour of transversely isotropic functionally graded plates, the effect of varying the degree of anisotropy of the material will now be considered, again using Beryl rock, which has properties as defined in Table 5. For this material the ratio of shear moduli in the plane of isotropy and the plane normal to it is 0.75. In order for a comparison to be made, constant 0 44 c will be varied (being set to 0.5, 2 and 10 GPa), giving three degrees of anisotropy: high anisotropy , 038 . For the cases of medium and high anisotropy, the out-of-plane normal stress 33 σ (Fig. 9A,B), rises more sharply in the upper section of the thick plate, whilst having much less of an effect on the thin plates. Through thickness variation of the transverse shear stress 13 σ (Fig. 10A,B), shows an increase in the stress magnitude towards the upper surface of the plate, when considering more anisotropic plates. However in the thick plate, this stress component rises to a far more pronounced peak in the upper section of the core, whilst staying almost symmetrical for the thin plate (Fig. 10B). Plots of normalised inplane normal stress 11 σ (Fig. 11A,B) and normalised in-plane shear stress 12 σ (Fig. 12A,B) show for both thin and thick plates that when considering plates with higher anisotropy, the stresses in the upper half of the plate are greater, while anisotropy has far less effect on the stresses in the lower half of the plate.
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Through-thickness variations of the in-plane 1 u (Fig. 13A,B) and out-of-plane 3 u (Fig. 14A,B) displacements show that as plate anisotropy is increased, displacements through the plate increase for both thick and thin plates. The plots of normalised in-plane displacement (Fig. 13A,B) are highly non-linear, once again emphasizing the importance of 3-D stress analysis for applications involving functionally graded materials.

Concluding remarks

In this paper, a three-dimensional elasticity solution for a simply supported transversely isotropic functionally graded plate subject to transverse loading has been presented.

Young's moduli and the shear modulus of the material are assumed to vary exponentially through the thickness of the plate, whilst Poisson's ratios are assumed to remain constant.

The solution makes use of displacement functions for inhomogeneous transversely isotropic media [START_REF] Kashtalyan | Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media[END_REF] and is validated through comparison with results for an isotropic functionally graded plate [START_REF] Kashtalyan | Three-dimensional elasticity solution for bending of functionally graded rectangular plates[END_REF] as well as several plate theories.

A study of plate inhomogeneity was carried out for two plate geometries and it was seen that as the degree of inhomogeneity was increased that there are increases in most stress components in the upper half of the plate whilst a decrease was often seen in the plate centre. This was particularly the case for transverse shear stress, where under high degrees of inhomogeneity, stress concentrations can occur. Similarly when the degree of anisotropy was varied it could be seen that the greater the anisotropy of the plate, the x and (9b) with respect to 2 x gives

2 1 2 2 3 2 33 2 13 2 13 33 11 2 1 2 1 1 1 x x c c c c c x x x u ∂ Ψ ∂       ∂ ∂ - ∆ - - ∂ ∂ Φ ∂ = ∂ ∂ (A2) 2 2 2 2 3 2 33 2 13 2 13 33 11 2 1 2 2 2 1 x x c c c c c x x x u ∂ Ψ ∂       ∂ ∂ - ∆ - - ∂ ∂ Φ ∂ - = ∂ ∂ (A3)
Again referring to [START_REF] Kashtalyan | Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media[END_REF], the following relations were written

Ψ ∆ ∆ = ∆ + 2 2 2 13 3 , 3 33 F c u c (A4) ( )       ∂ Ψ ∂ + - ∆Ψ - - = 2 3 2 33 13 13 2 13 33 11 1 x c c c c c c F (A5)
where F is a displacement function ( )

3 2 1 , , x x x F F =
and ∆ is the Laplacian operator.

Rearranging (A4)

F c u c 2 13 2 2 3 , 3 33 ∆ - Ψ ∆ ∆ = (A6)
Now substituting (A5) into (A6) ( )

( )       ∂ Ψ ∂ - + - ∆Ψ - ∆ + Ψ ∆ ∆ =
Ψ         ∂ ∂ - ∆       ∂ ∂ + - ∆ - = 2 3 2 2 3 2 13 11 11 2 13 33 11 3 , 3 1 x x c c c c c c u (A8)
Now substituting (A2), (A3) and (A8) into (A1) yields 

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT ( ) Ψ         ∂ ∂ - ∆       ∂ ∂ + - ∆ - + ∂ Ψ ∂       ∂ ∂ - ∆ - - ∂ ∂ Φ ∂ - ∂ Ψ ∂       ∂ ∂ - ∆ - - ∂ ∂ Φ ∂ =
Ψ         ∂ ∂ - ∆         ∂ ∂ - ∆ = 2 3 2 2 3 2 33 x x σ (A10) or Ψ ∆ ∆ = 2 2 33 σ (A11)
Derivation of other stress components, equations (9d, e, g-i), is carried out in a similar manner.

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT

Appendix B

From [START_REF] Polyanin | Handbook of Exact Solutions for Ordinary Differential Equations[END_REF], a fourth order equation with constant coefficients has general solution ( ) ( ) ( ) ( )

3 4 4 3 3 3 3 2 2 3 1 1 exp exp exp exp x C x C x C x C λ λ λ λ + + + = Ψ ) (B1)
Begin by substituting ( )

3 exp x λ = Ψ )
and its derivatives into equation (15b) and simplifying, thus giving the following characteristic equation 

= + +         - - -                 - - + + - Ψ Ψ Ψ Ψ c c h k c h k c c c c c c c h k h k c c c c c c c h h h α λ α λ α λ α λ (B2) Comparing (B2) with 0 2 3 4 = + + + + E x D x C x B x A , ( B3 
=         + - + - +         + - +         + - + A E A BD A CB A B y A D A BC A B y A C A B y (B4)
Thus we have a depressed quadratic expression (i.e. no cubed term), which can be rewritten as

0 2 4 = + + + φ κ θ y y y (B5)
where

A C A B + - = 2 2 8 3 θ (B6) A D A BC A B + - = 2 3 3 2 8 1 κ (B7) and A E A BD A CB A B + - + - = 2 3 2 4 4 4 16 256 3 φ (B8) M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 25
Comparing equations (B2) and (B5) it can be seen that If the discriminant is negative, the equation (B18) has two complex conjugate roots.

4 h A = (B9) 3 2 h B α - = (B10)                 - - + = Ψ 2 2 0 44 0 33 2 0 13 0 33 0 11 0 33 0 13 2 2 2 h k c c c c c c c h C α (B11)         - - - = Ψ 0 
Using the quadratic formula, the roots of (B18) can be written as

2 4 2 2 θ φ θ - + - = + i z (B20) and 2 4 2 2 θ φ θ - - - = - i z (B21)
Thus the required solutions to (B17) are

+ + = z y 1 , + - = z y 2 , - + = z y 3 and - - = z y 4 (B22)
To calculate these square roots, the following equation is employed

2 2 2 2 2 2 a b a i a b a bi a - + ± + + = ± (B23) with 2 θ - = a and 2 4 2 θ φ - = b (B24) so that h i h z µ λ ± = (B25)
where

2 2 2 a b a + + = λ (B26) M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT and 2 2 2 a b a - + = µ (B27)
Substituting (B15, B16) into (B24) and this into (B26, B27) gives 

2 4 2 2 1 2 1 8 4 1 2 2          + + - + + +             - + - = Ψ Ψ Ψ Ψ Ψ α α α α α λ c c k h c c c k h c c k h c c k h h k c c
1 8 4 1 2 2          + + - + + -             + - = Ψ Ψ Ψ Ψ Ψ α α α α α µ c c k h c c c k h c c k h c c k h h k c c c c c c c (B29) Making the substitution A B y x 4 - =
, the roots of equation (B3) are found to be

h h i h A B h i h x 2 4 α µ λ µ λ + ± ± = - ± ± = (B30)
Substituting the roots (B30) into general solution (B1), taking common factors and substituting trigonometric identities allows the solution of (15b) to be written

   + +    +       = Ψ h x h x A h x h x A h x h x A h x h x A h x h x 3 3 4 3 3 3 3 3 2 3 3 1 3 4 3 sin sinh cos sinh sin cosh cos cosh 2 exp ) ( µ λ µ λ µ λ µ λ α ) (B31) If discriminant (B19) is positive, function Ψ )
is sought in a similar fashion. 2 0 13 0 33 

0 11 3 , 1 x f dx d h c x f h k c h x a mh c c c h q x U j j mn j α π       +       - - - = Ψ ) ( ) ( exp ) ( 3 2 3 2 2 0 33 3 2 2 0 13 3 2 0 13 0 33 0 11 3 , 2 x f dx d h c x f h k c h x b nh c c c h q x U j j mn j α π ; 4 , , 1 , ) ( ) ( ) ( ) ( ) ( exp ) (
K =             + - - +             - -       - - - = Ψ j x f c x f dx d c c c c c c h h k x f dx d x f dx d h c h x c c c h q x U j j j j mn j α α α ) ( ) ( 3 0 44 3 , 1 x f b h n c h q x U j mn j π - = , ) ( ) ( 3 0 44 3 , 2 x f a h m c h q x U j mn j π = , ; 6 , 5 , 0 ) ( 3 , 3 = = j x U j ) ( ) ( 3 4 4 3 , 33 x f h k q x P j mn j Ψ = , ) ( ) ( 3 3 3 2 3 , 13 x f dx d a h m h k q x P j mn j       = Ψ π ) ( ) ( 3 3 3 2 3 , 23 x f dx d b h n h k q x P j mn j       = Ψ π           -       - - -           - - = Ψ ) ( ) ( ) ( ) (
x f dx d a h m h x f dx d b h n h c c c c c c x f b h n h k c c c c c c c q x P j j j mn j π π π           -       - - -           - - = Ψ ) ( ) ( ) ( ) (
x f dx d b h n h x f dx d a h m h c c c c c c x f a h m h k c c c c c c c q x P j j j mn j π π π       +             - - = Ψ ) ( ) ( ) (
= x P j , ) ( exp ) ( 3 3 3 3 , 13 x f dx d h x b h n q x P j mn j             - = α π ) ( exp ) ( 3 3 3 3 , 23 x f dx d h x a h m q x P j mn j             = α π ( ) ) ( exp 
- - + ×                   - = α π π ( ) ) ( exp 
+ + - - ×                   - = α π π ) ( exp 2 ) ( 3 3 2 2 0 44 0 12 0 11 3 , 12 x f h x b h n a h m c c c q x P j mn j                     -       - = α π π 6 , 5 = j .
In the expressions above, functions

) 6 , , 1 ( ) ( 3 K = j x f j are h x h x h x x f 3 3 3 3 1 cos cosh 2 exp ) ( µ λ α       = , h x h x h x x f 3 3 3 3 2 cos sinh 2 exp ) ( µ λ α       = h x h x h x x f 3 3 3 3 3 sin cosh 2 exp ) ( µ λ α       = , h x h x h x x f 3 3 3 3 4 sin sinh 2 exp ) ( µ λ α       = ; h x h x x f 3 3 3 5 cosh 2 exp ) ( β α       - = ; h x h x x f 3 3 3 6 sinh 2 exp ) ( β α       - = .
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  plate could be controlled through selection and optimization of the five engineering constants. This solution is however only valid for circular FGM plates under one specific type of loading. The authors concluded that there is still significant research required to model other types of axisymmetric loading.Yun et al. (

  and

  the discriminant of the characteristic equation corresponding to equation (15b) is positive, function Ψ ) can be found following a procedure similar to that outlined in Appendix B.

Functions

  

  of the isotropic graded plate predicted by the 3-D elasticity solution developed in this paper and two plate theories: the higher-order shear deformation plate theory (HPT) and the trigonometric shear deformation plate theory (TPT) developed by Zenkour (2007and a range of values of k . There appears to be good agreement between the present solution and TPT, with predictions based on HPT being less accurate.

Figures

  plate, plate with moderate inhomogeneity and plate with high inhomogeneity. The effect of this variation in inhomogeneity ratio was compared for two functionally graded plates: the first being thick plate )

  decreases for both thick and thin plates. Study of through thickness variation of transverse shear stress 13 σ (Fig 4A, B) shows that as the inhomogeneity ratio is increased, the magnitude of this stress component increases, reaching a peak in the upper half of the plate. It can be seen once more that thick and thin plates behave in the same manner. The plots of normalised in-plane normal stress 11 σ (Fig.5A, B) and normalised in-plane shear stress 12 σ (Fig.6A, B) show that increasing the inhomogeneity ratio in both thick and thin plates causes increases in this stress component in the centre and upper sections of the plate, whilst causing a slight decrease in stress for the lower section of the plate.

  effect of this variation is compared for the two plates used previously:

  higher the stresses in the upper half of the plate. Again under high anisotropy concentrations of transverse shear stress were found in the upper half of the plate. Many of the plots produced were highly non-linear through the thickness, showing the importance of 3-D stress analysis. It is thought that this solution can be used as benchmark for further work in the field of functionally graded transversely isotropic media.
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 1 Figure captions

Fig. 2 :

 2 Fig. 2: Through thickness variation of constant 11 c for different values of α .

Fig. 3 :

 3 Fig. 3: Through-thickness variation of the normalised out of plane normal stress 33 σ

Fig. 4 :

 4 Fig. 4: Through-thickness variation of the normalised transverse shear stress 13 σ

Fig. 5 :

 5 Fig. 5: Through-thickness variation of the normalised in-plane normal stress 11 σ

Fig. 6 :

 6 Fig. 6: Through-thickness variation of the normalised in-plane shear stress 12 σ ) , 0 , 0 ( 3 x in: (A) thick FG plate; (B) thin FG plate for a range of degrees of imhomogenity ( 3 , 3 . 2 , 0 = α

Fig. 7 :

 7 Fig. 7: Through-thickness variation of the normalised in-plane displacement 1 u ) , 5 . 0 , 0 ( 3 x b in: (A) thick FG plate; (B) thin FG plate for a range of degrees of imhomogenity ( 3 , 3 . 2 , 0 = α

Fig. 8 :

 8 Fig. 8: Through-thickness variation of the normalised transverse displacement 3 u ) , 5 . 0 , 5 . 0 ( 3 x b a in: (A) thick FG plate; (B) thin FG plate for a range of degrees of imhomogenity ( 3 , 3 . 2 , 0 = α).

Fig. 9 :

 9 Fig. 9: Through-thickness variation of the normalised out of plane normal stress 33 σ

Fig. 11 :x

 11 Fig. 11: Through-thickness variation of the normalised in-plane normal stress 11 σ

Fig. 14 :

 14 Fig. 14: Through-thickness variation of the normalised transverse displacement 3 u ) , 5 . 0 , 5 . 0 ( 3 x b a in: (A) thick FG plate; (B) thin FG plate for a range of degrees of anisotropy ( 75 . 0 , 15 . 0 , 038 . 0 0 = g ).
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	shows normalised displacements	u i	=	h 11 q u G i 2	in a very thin square isotropic graded
	plate with	h	/	a	/ = b h	=	0	01 .	for a range of shear modulus ratios	1 2 / G G	. Good agreement
	between the present 3-D solution and thin plate theory predictions is observed for all
	considered values of	1 2 / G G	.		
	Table 4 shows normalised mid-plane displacement

Table 2

 2 

		. Normalised displacement	G 2	u 3	(	0	5 .	h 11 q a . 5 0 ,	a	,	. 0	h 5	)	in a square simply supported
	isotropic graded plate under sinusoidal loading with the shear modulus varying
	exponentially from 1 G at the bottom surface to 2 G at the top surface (	2 G	/ 1 G	=	10	).
	h /	a	Present 3-D solution				Thin plate theory	Difference (%)
					(Chi and Chung, 2006)
	0.001	3.52725E+11					3.52724E+11	0.000491
	0.01	35289681.36					35272367.69	0.049062
	0.02	2208851.489						2204522.98	0.195962
	0.04	138864.9234					137782.6863	0.779345
	0.06	27697.41125					27216.33309	1.736907
	0.08	8882.100634					8611.417892	3.047508
	0.1	3700.547069					3527.236769	4.68337
	0.15	773.9162053					696.7381272	9.972408
	0.2	264.0397906						220.452298	16.50793
	Table 3. Normalised displacement	G 2	u 3	(	0	5 .	h 11 q a . 5 0 ,	a	,	. 0	h 5	)	in a square simply supported
	isotropic graded plate under sinusoidal loading with the shear modulus varying
	exponentially from 1 G at the bottom surface to 2 G at the top surface (	a	/ = h	100	).
	1 2 / G G	Present 3-D solution				Thin plate theory	Difference (%)
					(Chi and Chung, 2006)
	1.5	1983989.7					1982974.631	0.051161
	2		3062381.7					3060801.301	0.051607
	3		5657499.8					5654572.722	0.051737
	4		8755021.8					8750513.815	0.051491
	5		12290237					12283954.61	0.051118
	10	35289681					35272367.69	0.049062
	20	101163976					101117511.8	0.045929
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