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The paper addresses the problem of suitable approximation of the interaction between phases in heterogeneous materials that exhibit both viscous and elastic properties. A novel approach is proposed in which linearized subproblems for an inhomogeneity-matrix system with viscous or elastic interaction rules are solved sequentially within one incremental step. It is demonstrated that in the case of a self-consistent averaging scheme, an additional accommodation subproblem, besides purely viscous and elastic subproblems, is to be solved in order to estimate the material response satisfactorily. By examples of an isotropic two-phase material it is shown that the proposed approach provides acceptable predictions in comparison with the existing models.

Introduction

Micromechanical modelling of the behaviour of heterogeneous materials under quasistatic loading employs the scale transition between the micro-scale behaviour of the material constituents and the macroscopic scale on which the averaged properties of the heterogeneous material are represented by a homogenized material model. Typical scaletransition schemes in the mean-field micromechanical models, like self-consistent models, are based on the solution to the auxiliary problem where a single inclusion is embedded in a homogeneous matrix of some different material (Hill, 1965b). Usually, advantage is taken of the [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] solution which provides analytic formulae for uniform strains and stresses within an ellipsoidal inclusion embedded in an infinite homogeneous matrix. In this way, the interactions between inclusions or grains in the aggregate are taken into account not directly but in an approximate overall manner dependent on how the matrix properties are defined. The crucial point is that in order to apply the Eshelby formulae, the matrix must obey a linear constitutive law with a single constant tensor of stiffness moduli or compliances.
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This is the case in particular if the matrix is assumed to be linear elastic (possibly anisotropic). Various averaging schemes which use the concept of an ellipsoidal inhomogeneity in a linearly elastic matrix are available, including extensions to anisotropy, composite or coated inclusions, differential and incremental schemes, etc., cf. [START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[END_REF][START_REF] Hashin | Theory of mechanical behaviour of heterogeneous media[END_REF][START_REF] Kneer | Uber die berechnung der Elastizitatsmoduln vielkristalliner Aggregate mit Textur[END_REF][START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Mclaughlin | A study of the differential scheme for composite materials[END_REF][START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder model[END_REF][START_REF] Willis | Variational and Related Methods for the Overall Properties of Composites[END_REF]Walpole, 1981;[START_REF] Weng | Self-consistent determination of time-dependent behavior of metals[END_REF][START_REF] Suquet | Homogenization Techniques for Composite Media[END_REF][START_REF] Herve | Modelling the effective behavior of non-linear matrix-inclusion composites[END_REF][START_REF] Cherkaoui | Micromechanical approach of the coated inclusion problem and applications to composite materials[END_REF][START_REF] Nemat-Nasser | Micromechanics: overall properties of heterogeneous materials[END_REF][START_REF] Broohm | Prediction of mechanical behaviour of inhomogeneous and anisotropic materials using an incremental scheme[END_REF]. If the actual material behaviour is nonlinear then the usual approach is to introduce some kind of linearization, e.g., by using tangent or secant stiffness moduli for the matrix representing an elastoplastic aggregate, with applications and extensions to elastoplastic polycrystals and composites (Hill, 1965a;[START_REF] Hutchinson | Elastic-plastic behavior of polycrystalline metals and composites[END_REF][START_REF] Berveiller | An extension of the self-consistent scheme to the plastically flowing polycrystals[END_REF][START_REF] Tandon | A theory of particle-reinforced plasticity[END_REF][START_REF] Lipinski | Elastoplasticite des metaux en grandes deformations: Comportement global et evolution de la structure interne[END_REF]. Other types of linearization are used to model rigidviscoplastic materials [START_REF] Hutchinson | Bounds and self-consistent estimates for creep of polycrystalline materials[END_REF][START_REF] Molinari | Self-consistent approach of the large deformation polycrystal visco-plasticity[END_REF][START_REF] Cailletaud | A micromechanical approach to inelastic behaviour of metals[END_REF][START_REF] Lebensohn | A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys[END_REF][START_REF] De Botton | Variational estimates for the creep behavior of polycrystals[END_REF][START_REF] Ponte Castañeda | Exact second-order estimates for the effective mechanical properties of nonlinear composite materials[END_REF][START_REF] Kiryk | A self-consistent model of rate dependent plasticity of polycrystals[END_REF][START_REF] Masson | An affine formulation for the prediction of the effective properties of non-linear composites and polycrystals[END_REF][START_REF] Bornert | Second-order estimates for the effective behaviour of viscoplastic polycrystalline materials[END_REF].

The linearization becomes more difficult if both elastic and viscous properties of the matrix are to be simultaneously taken into account. For linear viscoelasticity the problem can be solved in an elegant way, at least formally, by using the Stieltjes convolutions and Laplace-type transform [START_REF] Hashin | The inelastic inclusion problem[END_REF][START_REF] A N U S C R I P T A C C E P T E D Accepted Manuscript Christensen | Viscoelastic properties of heterogeneous media[END_REF][START_REF] Laws | Self-consistent estimates for viscoelastic creep compliance of composite materials[END_REF][START_REF] Suquet | Homogenization Techniques for Composite Media[END_REF], although the inverse transform may be difficult and numerically timeconsuming in a general anisotropic case. Extensions of that formalism to cases when elasticity is accompanied by non-linear viscous properties, as in elastic-viscoplastic materials, lead to rather complex formulations [START_REF] Rougier | Self-consistent modelling of elastic-viscoplastic polycrystals[END_REF][START_REF] Masson | Self-consistent estimates of the rate-dependent elasto-plastic behaviour of polycrystalline materials[END_REF][START_REF] Pierard | An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites[END_REF]. As all mean-field approaches to the mechanics of composites and polycrystals are approximate, even for strictly linear problems, it is reasonable to look for simpler linearization schemes.

Therefore, approximate linearization schemes for elasto-viscoplasticity, cf. [START_REF] Kouddane | Self-consistent modelling of heterogeneous viscoelastic and elastoviscoplastic materials[END_REF][START_REF] Paquin | Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials[END_REF][START_REF] Sabar | A new class of micro-macro models for elastic-viscoplastic heterogeneous materials[END_REF][START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF][START_REF] Lahellec | On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles[END_REF][START_REF] Mercier | Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes[END_REF][START_REF] Doghri | Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method[END_REF], are of interest. The common task is to approximate the interaction between the matrix material and inhomogeneities without applying the Laplace (or Carson) transform, inversion of which can be cumbersome in a general case. Differences between some of the existing approaches of that type will be illustrated in next chapters. Our aim is to develop a related but conceptually different approach.

The main idea of this paper, not found in the literature, is to abandon the attempts to incorporate both elastic and viscous properties of the matrix in a single computational step of an incremental scale-transition scheme. Rather, we propose to use elastic and viscous properties sequentially within one incremental step. Accordingly, not a single linear matrix-inhomogeneity problem but two or more different subproblems of that type, with different matrix-inhomogeneity interaction rules, are to be solved separately. The results are combined together to simulate the actual, simultaneously viscous and elastic response of the system to the applied external strain history. It is not evident that such an approach can work well even for linearly viscoelastic isotropic materials, therefore this question is examined in the present paper in more detail. Step-by-step sequential linearization of a strongly nonlinear viscous/elastic (elasto-viscoplastic) material behaviour
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will be addressed in a separate paper, and only an illustrative example of moderate nonlinearity is presented below. The attention is restricted to the geometrically linear (small strain) theory. The predictions of the sequential linearization approach proposed here are compared with other approximations as well as with the exact results obtained by using the Laplace transform technique and the correspondence principle.

Linear viscoelastic inhomogeneity problem

Formulation of the sequential approach

We begin with the formulation of the sequential approach to the classical problem of a linear viscoelastic inhomogeneity1 in a linear viscoelastic infinite matrix, both taken to be of the Maxwell type. Accordingly, a local strain-rate in phase r is decomposed into elastic and viscous parts as follows

εr = εe r + εv r , εe r = M e r • σr , εv r = M v r • σ r , (1) 
where σ r is a local stress, M e r and M v r are fixed, diagonally symmetric, positive definite tensors of elastic and viscous compliances, respectively, and a superimposed dot denotes time derivative. The respective stiffness moduli tensors L e r and L v r are defined by L e r = (M e r ) -1 and L v r = (M v r ) -1 , with the inverses taken with due account for the minor symmetries, i.e. L e r M e r = I = L v r M v r , where I is the symmetrized fourth-order identity tensor, cf. Appendix.

Let r = 0 stands for the (infinite) matrix and r = i for the (ellipsoidal) inhomogeneity. The external strain imposed on the matrix at infinity is denoted by ε 0 and is assumed to vary in a prescribed manner with respect to time t, ε 0 = ε 0 (t), while the associated stress in the matrix at infinity is denoted by σ 0 . For the linear purely elastic problem (M v r ≡ 0), we have the following equation for the differences between strain-rates and stress-rates in the inhomogeneity and in the matrix at infinity (see Appendix),

εe i -ε0 = -M e * • ( σi -σ0 ) if M v r ≡ 0 , (2) 
where M e * is the inverse of the Hill tensor (95) associated with the matrix moduli L e 0 . The classical solution to (2) is expressed in the form

εe i (t) = A e i • ε0 (t) , A e i = (I + P e (L e i -L e 0 )) -1 if M v r ≡ 0 , (3) 
where P e is the stress polarisation tensor for the linear elastic problem, defined by Eq. ( 96) for the elastic matrix moduli tensor L = L e 0 and for the shape of the ellipsoidal inhomogeneity expressed by a = a i .

On the other hand, for the linear purely viscous problem (M e r ≡ 0) the counterpart to Eq. ( 2) is εv

i -ε0 = -M v * • (σ i -σ 0 ) if M e r ≡ 0 , (4) 
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Here, P v is the stress polarisation tensor for the linear viscous problem, defined by Eq. ( 96) on substituting L = L v 0 and a = a i . The question we address now is how to determine εi , at least approximately, without employing the Laplace transform technique, if none of M e r and M v r vanishes. The key concept here is to consider sequentially two linear subproblems within one infinitesimal time step: Subproblem V in which the interaction between the inhomogeneity and matrix is assumed as purely viscous, Subproblem E in which the interaction between the inhomogeneity and matrix is purely elastic.

The inhomogeneity-matrix interaction is defined by the Hill tensor, cf. equation ( 94). Accordingly, the inhomogeneity-matrix interaction equations for Subproblems V and E, in analogy to Eqs. ( 4) and ( 2), are defined by

εV i -εV 0 = -M v * • (σ i -σ V 0 ) (6) and εE i -εE 0 = -M e * • ( σE i -σE 0 ) , (7) 
respectively. In the most general case, in the above equations only the interaction tensors M v * , M e * and local stress σ i is treated as known, and σ V 0 and all the rate-variables with a superscript V or E are unknowns.

The basic idea is illustrated in Fig. 1 in one-dimensional case. An infinitesimal increment in strain, dε r = εr dt, in each phase r is split conceptually into two parts corresponding to Subproblems V and E, respectively (Fig. 1a). Subproblem V is thought of as corresponding to a fixed (or sufficiently slowly varying) external stress so that elastic interactions between the inhomogeneity and matrix may be disregarded. In turn, Subproblem E corresponds to a sudden change in the stresses, e.g., at the end of an infinitesimal time interval (t, t + dt) in Subproblem V (Fig. 1b), so that viscous interactions between the inhomogeneity and matrix may be disregarded. To formulate elastic interactions in the rate form, all instantaneous changes in Subproblem E are referred to the time interval (t, t + dt) and interpreted as purely elastic rates.

The above decomposition is not complete. The second time derivative (acceleration) of a viscous strain in Subproblem V is nonzero in general, εv r = 0. The stress-rate related constitutively to εv r by Eq. (1) 3 reads L v r • εv r = σA r , say. To accommodate such a stress-rate, an extra elastic strain-rate εA r = M A r • σA r is required by Eq. (1) 2 . It is called the elastic accommodation strain-rate, to distinguish it from a purely elastic strainrate in Subproblem E. The case when accommodation rates σA r and εA r are nonzero is roughly indicated by dashed lines in Fig. 1; a more detailed explanation will be provided in Section 3. The problem is that the local accommodation rates are not known. There is a number of ways to complement equations ( 6) and ( 7) by further assumptions which lead to different variants of approximate models based on the sequential linearization. We impose the requirement that the solution should exhibit certain desired properties indicated at the end of this subsection, in particular, an exact solution should be recovered at least in the most classical, isotropic and incompressible case. It has been found that this requirement can be satisfied by disregarding the local elastic accommodation rates in the inhomogeneity, so that

εV i = εv i , εE i = εe i , σE i = σi . (8) 
It means that not only the interaction rules, but also the local strain-rates are separated as purely viscous and purely elastic in Subproblems V and E, respectively. Clearly, this is an approximation in general, to some extent compensated by the freedom in decomposing ε0 into εV 0 and εE 0 . Under the assumption (8), εV 0 has the meaning of an external strainrate (at infinity) intended to be compatible in Subproblem V with the viscous strain-rate εv i that results from a local uniform stress σ i in an ellipsoidal inhomogeneity. Local elastic accommodation rates are included in Section 3 where the sequential approach to a single inhomogeneity problem is extended to the sequential self-consistent scheme for a viscoelastic multi-phase composite.

Kinematic consistency between the imposed external strain-rate ε0 and those in Subproblems V and E considered jointly is obtained by enforcing the relationship

εV 0 + εE 0 = ε0 . (9) 
On substituting relationships (8) and ( 9) into ( 6) and ( 7), the basic equations for
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respectively. Two additional tensor equations are still required. In conjunction with Eqs. ( 6), ( 7), ( 8) and ( 9), two natural variants are 2 :

• Variant I:

σ V 0 = L v 0 • εV 0 , σE 0 = L e 0 • εE 0 . (12) 
• Variant II:

σ V 0 = σ 0 , σE 0 = σ0 . ( 13 
)
After straightforward rearrangements, Variants I and II of the sequential linearization approach to the viscoelastic inhomogeneity/matrix system reduce to the following sets of equations:

• Variant I: Subproblem V: εV 0 = (A v i ) -1 • εv i , (14) Subproblem 
E: εe i = A e i • ( ε0 -εV 0 ) . (15) 
• Variant II:

Subproblem V: εV 0 = εv i + M v * • (σ i -σ 0 ) , (16) Subproblem E: εe i = (I + M e * L e i ) -1 • ( ε0 -εV 0 + M e * • σ0 ) . (17) 
In each Variant, the essence of Subproblem V is to estimate the part εV 0 of external strainrate ε0 that is intended to correspond to εe i = 0 in the inhomogeneity in the current stress state, in accord with the assumption (8). In Subproblem E, the difference ( ε0 -εV 0 ) is used to determine the elastic strain-rate εe i and the corresponding stress-rate σi in the inhomogeneity. Recall that εv

i = M v i • σ i and σ0 = L e 0 • ( ε0 -M v 0 • σ 0 ) are known in the current stress state.
On summing up equations ( 10) and ( 11) and substituting assumptions (13) it is found that Variant II leads to the equation equivalent to that postulated by [START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF]. The present derivation is different as it is based on the novel sequential linearization method.

2 Variant III specified by relations M v 0 • σ V 0 + M e 0 • σE 0 = ε0 and εV 0 = εv 0 (then εE 0 = εe 0 which follows from ( 9) and ( 1)) has also been tested. This variant, in the special case of a spherical inhomogeneity and matrix being both of an isotropic and incompressible linearly viscoelastic material, leads to an exact solution based on the Laplace transform. However, for compressible materials, the results for Variant III are in a less satisfactory agreement with the exact solution, see Subsection 2.5.
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It is worth noting that in Variant II, after straightforward transformations with the use of Eqs. ( 6)-( 9) and ( 13), we have the following relationship

εV 0 -εv 0 = (M v i + M v * ) • (σ i -B v i • σ 0 ) , (18) 
where

B v i = (M v i + M v * ) -1 (M v 0 + M v * ) (19) 
is the stress concentration tensor, cf. Eq. ( 100), determined for viscous compliances.

The above variants (including Variant III -see the preceding footnote 2) exhibit the following desired properties:

• for the initial stage of the deformation process (t = 0 and σ 0 = σ i = 0) the problem defined by Eqs ( 6)-( 7) reduces to the purely elastic problem (3),

• for the limit stage of the proportional deformation process (t → ∞ and σ0 = σi = 0) the problem defined by Eqs ( 6)-( 7) reduces to the purely viscous problem (5),

• in the special case of the spherical inhomogeneity and matrix being both of isotropic and incompressible linear viscoelastic materials, the solution of Eqs ( 6)-( 7) coincides with an exact solution obtained by using the Laplace transform by [START_REF] Hashin | The inelastic inclusion problem[END_REF], see Subsection 2.5.

Extension to the Mori-Tanaka scheme for multiphase composites

The above sequential linearization approach is immediately applicable to multiphase composites in conjunction with the averaging scheme of Mori-Tanaka type [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF], widely used in the analysis of linear two-phase composite materials. It suffices to define the meaning of strain ε 0 and stress σ 0 in the above formulae as the corresponding average values in the matrix, and impose the conditions

ε = N i=0 c i ε i , σ = N i=0 c i σ i , N i=0 c i = 1, ( 20 
)
where the quantities with a bar, ε and σ, are the overall variables for the composite, N is the number of different phases r occupying ellipsoidal inhomogeneities, average values in the matrix are denoted by index 0, and c i denote respective volume fractions in the representative volume element (RVE). The sequential linearization method formulated above, employed within the Mori-Tanaka scheme, results in the following two interaction equations for subproblems Vi and Ei, εv

i -εVi 0 = -M v * • (σ i -σ Vi 0 ), ( 21 
) εe i -εEi 0 = -M e * • ( σi -σEi 0 ) , (22) 
with the additional assumption for every variant:

εVi 0 + εEi 0 = ε0 , ( 23 
)
where ε0 is the average strain-rate in the matrix. As in Section (2.1) above, we have different variants dependent on further specifications, in particular,
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• Variant II:

σ Vi 0 = σ 0 , σEi 0 = σ0 . ( 25 
)
Jointly with the constitutive laws (1), the equations above are sufficient to determine the elastic strain-rate in each inhomogeneity in terms of the average strain-rate ε0 in the matrix, in full analogy to Eqs. ( 14)-( 17). The final step is to relate ε0 to the overall strain-rate ε for the composite by using the rate form of Eq. ( 20) 1 , viz.

c 0 ε0 = ε - N i=1 c i ( εv i + εe i ). ( 26 
)
The specific versions of Eq. ( 26) for the above two variants are:

• Variant I: ε0 = c 0 I + N i=1 c i A e i -1 • ε - N i=1 c i ( εv i -A e i • εVi 0 ) , (27) 
• Variant II:

ε0 = c 0 I + N i=1 c i A e i -1 • ε - N i=1 c i εv i -(I + M e * L e i ) -1 • ( εVi 0 + M e * L e 0 • εv 0 ) , (28) 
where in the last equation the following identity has been used:

A e i = (I + M e * L e i ) -1 (I + M e * L e 0 ).
If ε is prescribed then the above equations constitute the full set of equations of the sequential linearization approach to a linear viscoelastic multi-phase composite in conjunction with the Mori-Tanaka averaging scheme.

Comparison of different approximation schemes

The above two variants of the sequential approach to a viscoelastic inhomogeneity problem are now compared with the Kröner-Weng [START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[END_REF][START_REF] Weng | Self-consistent determination of time-dependent behavior of metals[END_REF] and [START_REF] Paquin | Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials[END_REF] approaches. For this purpose we use the relationship between a stress-rate in an ellipsoidal inhomogeneity and a remote stress-rate.

In the case of the Kröner-Weng model the interaction is purely elastic, that is

εi -ε0 = -M e * • ( σi -σ0 ). ( 29 
)
On substituting the constitutive relationships (1) and rearranging, we obtain the following

relationship σi = B e i • σ0 -(M e i + M e * ) -1 • ( εv i -εv 0 ) , (30) 
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where

B e i = (M e i + M e * ) -1 (M e 0 + M e * ) (31) 
is the stress concentration tensor determined for elastic compliances.

The [START_REF] Paquin | Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials[END_REF] approach has been formulated within the self-consistent averaging scheme for heterogeneous materials. The solution for the inhomogeneity problem can be extracted in the limit case when

c i → 0, A e 0 → I, A v 0 → I. ( 32 
)
In this case the micro-macro relationship derived by [START_REF] Paquin | Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials[END_REF] reduces to

εe i = εi -εv i = A e i • ε0 + (S e -S v ) • δ εv i -(A v i ) -1 • εv i , (33) 
where S e and S v is the Eshelby tensor for the purely elastic and purely viscous matrix, respectively, δ εv i = εv i -A v i • εv 0 , and εv 0 is the remote viscous strain-rate. The respective expression for the stress-rate in the inhomogeneity, in terms of the remote stress-rate, is

σi = B e i • σ0 -(M e i + M e * ) -1 H PQ i • ((A v i ) -1 • εv i -εv 0 ), (34) 
where

H PQ i = (I + M e * L e 0 )(I -(S e -S v )A v i ). (35) 
Note that, similarly to the examined variants of sequential linearization, for the initial and final stages of a proportional deformation process, the rate-solutions for the purely elastic and purely viscous problem, respectively, are recovered. On the contrary, for the final stage of a proportional deformation process for the Kröner-Weng model, a purely viscous solution of the Eshelby problem is not recovered, as one finds εv i = εv 0 instead. In case of Variants I and II of the sequential linearization approach, the expression for the stress-rate in the inhomogeneity takes the form

σi = B e i • σ0 -(M e i + M e * ) -1 H K • ((A v i ) -1 • εv i -εv 0 ), (36) 
where 3

H I = I + M e * L e 0 and H II = I + M v * L v 0 . (37) 
Consider an incompressible isotropic (elastic and viscous) matrix for which the elastic bulk modulus K 0 is infinite and

M e/v 0 = 1 h eD/v 0 I D , I D = I -I P , I P = 1 3 1 ⊗ 1 (38)
3 For Variant III tensor H K reads

H III = (M e * L e 0 )(M v * L v 0 ) -1 (I + M v * L v 0 )
, which for an elastically compressible isotropic material with M v r = 1/h v r I D and a spherical inhomogeneity can be represented by a single scalar β III ,

β I ≤ β III = 5 + 15η(ν) 3 + 4η(ν) ≤ 15 7
with η(ν) specified in Eq. ( 43).
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with h eD 0 = 2µ 0 , h v 0 = 2η 0 , where µ 0 and η 0 are the elastic shear modulus and the viscosity of the matrix, respectively; 1 is the second-order identity tensor. In this case we have

S e = S v , M e * L e 0 = M v * L v 0 . (39) 
Then, all the three variants of the sequential linearization approach and the Paquin et al. model provide the same concentration relationship as the exact solution obtained by [START_REF] Hashin | The inelastic inclusion problem[END_REF] with use of the Laplace transform and the correspondence principle. This fact was already demonstrated in [START_REF] Mercier | Validation of an interaction law for the Eshelby inclusion problem in elasto-viscoplasticity[END_REF] for the [START_REF] Paquin | Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials[END_REF] and [START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF] approaches, the latter being equivalent to the present Variant II of the sequential linearization approach. This particular exact solution is not recovered using the model developed by [START_REF] Sabar | A new class of micro-macro models for elastic-viscoplastic heterogeneous materials[END_REF], which is therefore not analyzed in this work in more detail.

In the case of isotropic elastically compressible materials (viscous incompressibility is still assumed, M v r = 1/h v r I D ), for which

M e r = 1 h eP r I P + 1 h eD r I D , h eP r = 3K r , (40) 
and a spherical inhomogeneity, the fourth order tensor H in the concentration relationship can be replaced by a single scalar,

σi = B e • σ0 -β K (M e i + M e * ) -1 • ((A v ) -1 • εv i -εv 0 ), (41) 
where the coefficient β K is specified as follows

β K =      5+10η(ν) 3+4η(ν) if K = I 5 3 if K = II(M) 5+10η(ν)γv 3+4η(ν) if K = PQ (42)
and (for a non-negative Poisson ratio ν, 0 ≤ η ≤ 1)

η(ν) = 1 -2ν 1 + ν , γ v = 2 + ξ v 3 + ξ v , ξ v = h v i h v 0 , γ v ∈ 2 3 , 1 . (43) 
The following relation between the coefficients is obtained:

β II ≤ β PQ ≤ β I ≤ 10 7 . ( 44 
)
If 

h v i h v 0 → 0 
h v i /h v 0 = 10, UV (Uniform Viscous properties) -h v i /h v 0 = 1, SI (Soft Inclusion) -h v i /h v 0 = 0.1.

An exact solution in the Laplace transform space

As shown by [START_REF] Hashin | The inelastic inclusion problem[END_REF] for isotropic materials and by [START_REF] Laws | Self-consistent estimates for viscoelastic creep compliance of composite materials[END_REF] in a general anisotropic case, the problem of an ellipsoidal viscoelastic inhomogeneity embedded in a viscoelastic matrix, both described by the Maxwell-type constitutive law (1), can be solved by using the Laplace transform technique and the correspondence principle. Taking the Laplace transform of equations (1) for the inhomogeneity (r = i) and for the matrix at infinity (r = 0), and assuming the initial conditions ε r | t=0 = 0, σ r | t=0 = 0, we obtain sε r (s) = (sM e r + M v r ) • σr (s), (45) denoting f (s) ≡ ∞ 0 e -st f (t) dt, with s as a complex variable. We will specify the solution for isotropic materials which are elastically compressible and viscously incompressible, of elastic compliance tensors specified by Eq. ( 40) and viscous compliance tensors as in Eq. ( 38), and a spherical inhomogeneity. Decompose the strain and stress into hydrostatic and deviatoric parts, denoted by upper indices P and D, respectively. On taking the Laplace transform of equations (1) decomposed in this way, we obtain σP

r (s) = h Pe r ĥP r (s) εP r (s), σD r (s) = sh v r 1 + s h v r h De r ĥD r (s) εD r (s). ( 46 
)
Using the correspondence principle and the Eshelby solution for a spherical inclusion, we

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT obtain, cf. Hashin (1969), 4 εP i (s) = ÂP i (s)ε P 0 (s) , ÂP i (s) = h Pe 0 + 2 ĥD 0 (s) h Pe i + 2 ĥD 0 (s) (47) 
and

εD i (s) = ÂD i (s)ε D 0 (s) , ÂD i (s) = ĥD 0 (s) + ĥD * (s) ĥD i (s) + ĥD * (s) , (48) 
where ĥD * (s) = ĥD 0 (s)

3h Pe 0 + 4 ĥD 0 (s) 2(h Pe 0 + 3 ĥD 0 (s)) . ( 49 
)
Consider the external strain programme specified as follows

ε 0 (t) = ε P 0 (t)1 + ε D 0 (t)N D , N D = const, tr N D = 0, ( 50 
)
where ε P 0 (t), ε D 0 (t) are given scalar functions of time. Thus ε0 (s) = εP

0 (s)1 + εD 0 (s)N D . (51) 
From Eqs. ( 47)-( 48) it follows that

εP i (s) = εP i (s)1 = ÂP i (s)ε P 0 (s)1 → εP i (s) = ÂP i (s)ε P 0 (s), ( 52 
) εD i (s) = εD i (s)N D = ÂD i (s)ε D 0 (s)N D → εD i (s) = ÂD i (s)ε D 0 (s). (53) 
Similarly, an 'exact' solution can be derived for the averaged response of a two-phase composite within the Mori-Tanaka-type averaging scheme. Then, the Laplace transform of an external strain in Eqs (47)-( 48) is replaced by the Laplace transform of the corresponding average strain in the matrix. Moreover, the Laplace transform of Eq. (20

) 1 is used, in the form ε(s) = c i εi (s) + (1 -c i )ε 0 (s), (54) 
where ε(s) is prescribed by an equation analogous to Eq. ( 51). After manipulations outlined above for the spherical inhomogeneity problem, in the case of isotropic materials and compressible elasticity, one finds

εP/D 0 (s) = εP/D (s) 1 -c i (1 - ÂP/D i (s)) , εP/D i (s) = ÂP/D i (s)ε P/D (s) 1 -c i (1 - ÂP/D i (s)) . ( 55 
)
4 In the case of the corresponding elastic solution there is

A i = α P I P + α D I D = h Pe 0 + 2h De 0 h Pe i + 2h De 0 I P + h De 0 + h De * h De i + h De * I D ,
where

h De * = h De 0 3h Pe 0 + 4h De 0 2(h Pe 0 + 3h De 0 )
.

Relations ( 47) and ( 48) can be compared with Eqs (6.34)-(6.37) in [START_REF] Hashin | The inelastic inclusion problem[END_REF] using In the special case of homogeneous elastic properties, exact solutions for an isotropic linear viscoelastic two-phase material have recently been obtained [START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF] by the finite expansion of relaxation functions into the Prony series, without the need of inversion of the Laplace transform.

h P = 3K, h D = 2µ, ν = h P -h D 2h P + h D . M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT

Comparison of results for a tension-compression cycle

Quantitative predictions of the approximate schemes from Section 2.3 are now compared with the exact solution outlined above for a tension-compression cycle under the constraint of constant overall volume (not necessarily in individual phases). This is done for the inhomogeneity problem; results for the Mori-Tanaka scheme for a two-phase composite would be analogous. As already mentioned, in the case of fully incompressible (both for elastic and viscous deformations) isotropic materials of the inhomogeneity and matrix, an exact solution is obtained. Specifically, the solution obtained with the use of the three variants of the sequential approach, as well as of the Paquin et al. model, for an incompressible spherical inhomogeneity problem coincides with the corresponding exact solution obtained with use of the Laplace transform. Therefore, the analysis is performed below for elastically compressible materials. A low value of the Poisson ratio is assumed, equal for the matrix and inhomogeneity, since the difference between approximate schemes is then more pronounced, cf. Fig. 3. Different elastic and viscous properties of the matrix and spherical inhomogeneity (inclusion) have been examined, namely

• a hard elastic inclusion in a viscoelastic matrix,

• a hard/soft viscoelastic inclusion in a viscoelastic matrix,

• a void in viscoelastic matrix.

A hard and soft inclusion means that its elastic and viscous moduli are, correspondingly, higher or lower than respective moduli of the matrix. Isotropic material properties of the matrix are specified by

ν 0/i = 0.05 , E 0 = 200 MPa , h v 0 = 2 3 MPa × s. ( 56 
)
The examined cases of inclusion properties are collected in Table 1. As a particular case of Eq. ( 50), the remote strain history ε 0 (t) is assumed as follows

ε 0 (t) = (ε 1 (t) -ε 2 (t))N D , where        ε 1 (t) = 0 if t < 0 ε 1 (t) = t if t ≥ 0 ε 2 (t) = 0 if t < T ε 2 (t) = 2(t -T ) if t ≥ T (57) M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT with N D = 1 2 (3e 1 ⊗ e 1 -1) , [N Dij ] =   1 0 0 0 -1/2 0 0 0 -1/2   , (58) 
e 1 being the tension-compression direction. The corresponding strain-rate history is ε0 (t) = εD 0 (t)N D , where

   εD 0 (t) = 0 if t < 0 εD 0 (t) = 1 if 0 ≤ t < T εD 0 (t) = -1 if t ≥ T. [1/s]. ( 59 
)
The Laplace transform of the strain programme (57) is ε0 (s) = ε0 (s)N D , with

ε0 (s) = ε1 (s) -ε2 (s) = 1 s 2 (1 -2 exp(-sT )) . ( 60 
)
Analytical inversion of the Laplace transform has been performed with the help of Mathematica package [START_REF] Wolfram | The Mathematica Book[END_REF].

Conclusions from the analysis are the following (see Fig. 3 and Fig. 4):

• For hard inclusions, the approximate schemes give results close to each other, with Variant II (Molinari model) being the softest. As the contrast in viscous properties increases (the asymptotic case is the hard elastic inclusion), the exact solution is less stiff in the transient regime than the approximate solutions, therefore Variant II provides the best prediction among the approximate schemes examined. As expected for hard inclusions, predictions of the Paquin model are close to Variant I predictions.

• For soft inclusions, the exact solution predicts a 'peak' of stress in the transient regime which is not observed for Variant I and III of the sequential model and can be predicted (although usually less intensive than those in the exact solution) by Variant II and the Paquin model. As expected for soft inclusions, predictions of the Paquin model are close to Variant II predictions.

• Void has been modelled as an inhomogeneity with E i = 0 and h v i /h v m → 0 (a finite value due to numerical reasons), so that σ i (t) = 0 as a natural condition for the void. In the case of Variant I, the evolution of the strain-rate in a void coincides with that for the problem of a void in a purely elastic matrix and as such does not agree with an exact solution. Variant II and Paquin et al. model provide good predictions. Similarly to an exact solution, the solution obtained with the use of Variant II is not sensitive to the value of h v i /h v m ratio, provided σ i (t) = 0 is enforced, and in the limit of the proportional straining the purely viscous solution is recovered. This is not the case for the Paquin et al. model for which results depend on h v i /h v m ratio. In particular, if one assumes E i → 0 and h v i /h v m → ∞, predictions of this model tend to the purely elastic solution of the problem for a void and disagree with an exact solution obtained under these conditions.

• The predictions of the Kröner-Weng model (K) are depicted only in Fig. 4. Except of a hard elastic inclusion, for the regimes for which the strain-rate of the matrix On the basis of the performed analysis, Variant II of the sequential method has been selected for further developments as it provides the best predictions in comparison to the 
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3. Self-consistent averaging scheme

Formulation of the sequential approach

Consider now a heterogeneous material composed of N constituents, of volume fractions c i , which obey the constitutive relation (1) with elastic compliances M e i and viscous compliances M v i , i = 1, . . . , N. The overall strain-rate and stress-rate are now defined by

ε = ε i , σ = σ i , ψ i ≡ N i=1 c i ψ i , N i=1 c i = 1 , (61) 
where ε i , σ i are themselves averages over individual phases.

In the self-consistent treatment of a multi-phase composite investigated below, fluctuations within each phase are disregarded. The change with respect to the single inhomogeneity problem and the Mori-Tanaka scheme addressed above is that the matrix properties are no longer those of any specific phase and are to be replaced by effective properties of the homogenized composite. Denote by Me and Mv the fourth-order tensors of effective elastic and viscous compliances of the homogenized composite and by Le and Lv their inverses, determined for the purely elastic and purely viscous problem, respectively. The latter are determined implicitly from the well-known equations

Le = L e i A e i , A e i = (I + P e (L e i -Le )) -1 , (62) Lv = L v i A v i , A v i = (I + P v (L v i -Lv )) -1 , (63) 
where the concentration tensors A e i and A v i for phase i, in comparison with Eqs (3) and ( 5) for a single ellipsoidal inhomogeneity embedded in the matrix of prescribed properties, depend now on the overall properties of the homogenized composite rather than of a given matrix. The remote stress σ 0 and strain ε 0 at infinity in the inhomogeneity-matrix interaction equation, cf. ( 94), are equal to the respective overall quantities, σ 0 = σ and ε 0 = ε . In the case of ellipsoidal inhomogeneities of the same shape and orientations, the concentration tensors fulfill the identity A e/v i = I. It is known that the approximations involved in the above equations themselves may not always be realistic, for instance, for a high contrast between phase properties [START_REF] Christensen | Mechanics of Composite Materials[END_REF] or in the presence of high anisotropy [START_REF] Kowalczyk-Gajewska | Bounds and self-consistent estimates of overall properties for random polycrystals described by linear constitutive laws[END_REF]. Our aim here is, however, not to discuss validity of the self-consistent scheme as such for a linear problem, rather, to examine a more difficult viscous/elastic problem in the case when the self-consistent scheme is appropriate for each linear subproblem separately.

The concept of sequential linearization described in Section 2 is adapted below to the self-consistent averaging scheme. The basic Subproblems V and E are now formulated for each constituent separately and hence consist of Subproblems Vi and Ei, i = 1, . . . , N, respectively. To reduce the number of possible variants, Variant II of the sequential approach from Section 2 is selected as the best from those considered. However, an accommodation Subproblem A, of the origin indicated in Section 2.1, is now also included. Accordingly, we use the following local decompositions

εi = εv i + εA i + εE i , σi = σA i + σE i (64) M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT
along with analogous decompositions of the overall response

ε0 = εV 0 + εA 0 + εE 0 , σ0 = σA 0 + σE 0 . (65) 
In Subproblem Vi we find an external strain-rate at infinity, εVi 0 , intended to be compatible with the viscous strain-rate εv i that results from a local uniform stress σ i in an ellipsoidal inhomogeneity of constituent i. As in Variant II in Section 2, this is done by assuming purely viscous interaction between the inhomogeneity and the homogenized matrix, now of moduli Lv under remote stress σ 0 . Note that those external strain-rates εVi 0 depend on the phase index i and differ from each other in general (and also from overall quantities independent of i). They are determined for different phases i from the equation analogous to (10), viz.

εv i -εVi 0 = -Mv * • (σ i -σ 0 ) , (66) 
where the Hill tensor inverse Mv * is associated with the viscous effective moduli tensor Lv for the homogenized composite. Upon multiplying Eq. ( 66) by c i and summing up, we obtain εv i = εVi 0 on account of σ 0 = σ i . On the other hand, the homogenized matrix of effective viscous compliance tensor Mv undergoes viscous flow with the strain-rate εv 0 = Mv • σ 0 at infinity, while volume averaging for the purely viscous subproblem gives the overall viscous strain-rate εv i . The difference between εv 0 and εv i is to be accommodated elastically. The respective internal elastic accommodation rates in phases are distinguished by a superscript A and obey the elastic constitutive relationships σA i = L e i • εA i . It is possible to retain consistency with Eq. ( 66) when the accommodation strain-rates are included in Subproblem Vi. For this purpose, each external elastic accommodation strain-rate εAi 0 is taken to coincide with its internal counterpart εA i for phase i, so that they cancel each other when incorporated into Eq. (66), viz.

εAi 0 = εA i and ( εv i + εA i ) -( εVi 0 + εAi 0 ) = -Mv * • (σ i -σ 0 ) . (67) 
Suppose for a moment that the introduced accommodation strain-rates and stressrates are known. The purely elastic Subproblem Ei is specified as follows

εE i -εEi 0 = -Me * • ( σE i -σE 0 ) , (68) 
where the Hill tensor inverse Me * is associated with the elastic effective moduli tensor Le for the homogenized composite. The quantities with a superscript E, involved in Eqs. ( 64) and ( 65), represent the differences between total elastic and accommodation terms,

εE i = εe i -εA i , σE i = σi -σA i , σE 0 = σ0 -σA 0 , (69) 
In analogy to the kinematic consistency condition (9), for each i we assume that 

εEi 0 = ε0 -εAi 0 -εVi 0 . (70) 
One can verify that, if σA i are known, the set of equations ( 66)-( 71) implies the following equation that relates the local and global responses of the heterogeneous medium:

εi -ε0 = -Mv * • (σ i -σ 0 ) -Me * • ( σi -σ0 ) -Me * • ( σA i -σA 0 ) . (73) 
It remains, therefore, to estimate the local accommodation stress-rates. There are different possible ways to approximate these quantities.

The simplest way is to neglect the influence of accommodation rates entirely by assuming that σA i = σA 0 .

Then, Eq. ( 73) reduces to that postulated in [START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF] for the self-consistent model for elastic-viscoplastic materials, cf. also [START_REF] Mercier | Validation of an interaction law for the Eshelby inclusion problem in elasto-viscoplasticity[END_REF][START_REF] Mercier | Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes[END_REF].

A more consequent (although still simplified) way is to define the overall elastic accommodation strain-rate and the respective overall accommodation stress-rate as follows

εA 0 = εv 0 -εv i = εv 0 -εVi , σA 0 = Le • εA 0 . (75) 
Local accommodation stress-rates can be related to an overall accommodation stress-rate through the viscous concentration tensors

B v i , σA i = B v i • σA 0 , (76) 
which is consistent with treating the accommodation stress-rates as constitutively related to viscous strain accelerations in the calculation step based on interactions of viscous type, cf. the remark in Section 2.1. Note that Eq. ( 72) is then satisfied if B v i = I, which is an identity for ellipsoidal inclusions of equal orientations and aspect ratios. An alternative way, apparently less consequent, is to use elastic concentration tensors instead,

σA i = B e i • σA 0 ⇐⇒ εA i = A e i • εA 0 . (77) 
As an outcome, we obtain three variants of Subproblem A of elastic accommodation in the sequential self-consistent scheme for linearly viscoelastic heterogeneous materials:

• Variant 1 based on Eq. ( 74),

• Variant 2 based on Eqs ( 75) and ( 76),

• Variant 3 based on Eqs (75) and (77).

After straightforward substitutions, the proposed sequential self-consistent scheme for linear viscoelastic heterogeneous materials is summarized in Table 2.

From Eq. ( 75) for Variants 2 and 3 we obtain (i) Subproblem V: Determine the external viscous strain-rate εVi 0 intended to correspond to εe i = 0 in the i-th phase in the current stress state, from the equation

εA 0 = M v 0 • σ 0 -M v i • σ i . ( 82 
εv i -εVi 0 = -Mv * • (σ i -σ 0 ) with εv i = M v i • σ i . (78) 
(ii) Subproblem A: Determine the overall elastic accommodation rates of strain and stress from the equations

εA 0 = Mv • σ 0 -εv i , σA 0 = Le • εA 0 (79) 
and define the related internal accommodation rates for each phase by

σA i = B i • σA 0 , εA i = M e i • σA i (80) using B i = I, B i = B v i or B i = B e i in
Variant 1, 2 or 3, respectively.

(iii) Subproblem E: Determine the elastic strain-rate εe i and the corresponding stressrate σi in the i-th phase, from the equations

εe i -ε0 + εVi 0 = -Me * • ( σi -σA i -σ0 + σA 0 ) , σi = L e i • εe i , σ0 = σi . (81) 
(iv) Select a time step, update σ i and σ 0 , and continue.
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results obtained with the use of the proposed variants (V1,V2,V3) of the self-consistent model employing the sequential linearization method are compared to the exact5 solution (R) of [START_REF] Rougier | Representation spectrale en viscoèlasticité linéaire de matériaux hétérogènes[END_REF] found with the use of Laplace transform, and to the predictions of the [START_REF] Paquin | Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials[END_REF] model (PQ). In the latter case the concentration relation for the average strain-rate in phase i is of quite a complicated form.

The conclusions from the analysis are the following.

• As it can be seen in Figs 5a and6, in the case of non-uniform elastic and viscous properties and equal volume fractions of the phases (c 1 = 0.5), Variant 2 gives a response similar to that for the Paquin model and clearly softer than that for Variant 1 (equivalent to the [START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF] model). The former two responses are also closer to, although softer than, the exact solution provided by [START_REF] Rougier | Representation spectrale en viscoèlasticité linéaire de matériaux hétérogènes[END_REF]. Variant 3 is also satisfactory in this case, although the predicted response is stiffer than in the case of the exact solution.

• Very good agreement of Variant 2 with the exact macroscopic solution, in comparison with the remaining variants of the sequential model, is observed for the case of uniform elastic properties (Fig. 7). When the viscous properties are uniform then all three variants collapse into one (thus coincide with the Molinari (2002) model) and provide good predictions. The Paquin model is also successful in both cases.

• When the volume fraction of one phase is noticeably smaller than that of a second phase then the differences between the macroscopic predictions for the examined models are less visible, cf. Fig. 5a-d. If the volume fraction of one phase tends to zero then the problem examined here tends to that of a single inhomogeneity embedded in an infinite matrix, and therefore the predicted responses converge to the exact solution.

The uniform elasticity case is worth being analyzed in more detail. It can be seen that in this case the predictions of Variant 1 and 3 are not satisfactory in comparison with the exact solution. This supports the viewpoint that the reduction of the overall stress level within the accommodation step should be related to viscous non-uniformity, as assumed in Variant 2 of the model. It has been checked that, for the case considered, the accommodation strain-rate defined by Eq. ( 75) has an opposite direction than the imposed total strain-rate, and within a half of cycle its magnitude increases from zero to some maximum value and then decreases again towards zero in the purely viscous limit. The viscous redistribution of the corresponding accommodation stress-rate between the phases, cf. Eq. ( 76) and Fig. 8b andd, causes the higher (lower) reduction of the stress level in the stiffer (softer) phase, respectively, than in the case of the remaining variants. It leads to the acceleration of the viscous flow in the softer phase and to a softer overall response of the composite. The evolution of accommodation terms in Variants 2 and 3 in the case of non-uniform viscous and elastic properties is presented in Fig. 8a andc.

On the basis of the analysis performed, Variant 2 of the proposed model is recommended for further use. Variant 1 (equivalent to the [START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF] 
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relative simplicity, is also worth considering, especially in the case of a small contrast in viscous properties of the phases. It is worth emphasizing that the softening of the macroscopic response in the transient regime, observed for the recommended Variant 2 in comparison with Variant 1 and making the predictions of the former variant closer to the exact solution, has been achieved here without introducing any additional tuning parameters. The latter technique has been used in [START_REF] Mercier | Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes[END_REF] in order to improve the [START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF] 

Extension to non-linear viscosity

The next step is to extend the model to the case of non-linear viscosity,

εv i = f(σ i ). ( 87 
)
That extension is not straightforward. In Subproblem V of the sequential approach, a purely viscous problem is solved by using the Eshelby method. When the constitutive law describing viscous behaviour becomes non-linear, some method of linearization of the constitutive law has to be employed. As it has been mentioned in the introduction, different linearization schemes developed for the rigid-viscoplastic materials can be found in the literature. Three schemes most widely discussed in the literature were proposed by [START_REF] Hutchinson | Bounds and self-consistent estimates for creep of polycrystalline materials[END_REF], [START_REF] Molinari | Self-consistent approach of the large deformation polycrystal visco-plasticity[END_REF] and [START_REF] Masson | An affine formulation for the prediction of the effective properties of non-linear composites and polycrystals[END_REF]. We use here the [START_REF] Masson | An affine formulation for the prediction of the effective properties of non-linear composites and polycrystals[END_REF] proposal which seems to provide the most accurate predictions [START_REF] Lebensohn | On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations[END_REF]). In the selected linearization scheme the viscous tangent compliance tensor of a homogenized matrix is determined. Consequently, Subproblem V takes the form εv

i -εVi 0 = -MvTG * • (σ i -σ 0 ) , (88) 
where

εv i = M vTG i • σ i + εres i , M vTG i = ∂f(σ i ) ∂σ i , εres i = f(σ i ) -M vTG i • σ i (89) and MvTG = M vTG i B vTG i , B vTG i = (M vTG i + MvTG * ) -1 ( MvTG + MvTG * ) . (90) 
Additionally, following the tangent linearization scheme, it is assumed that

εres = εres i • B vTG i . (91) 
The Hill tensor inverse MvTG * depends on MvTG and the shape of an inhomogeneity according to the formulae (95) and (96) in the Appendix.

Presence of viscous non-linearity requires also reconsideration of Subproblem A. In the case of Variant 1 we use the formula (74) as previously. Variant 2 requires a definition of the overall accommodation strain-rate and respective accommodation stress-rate. Following the reasoning employed previously, we define

σA 0 = Le • ( MvTG • σ 0 + εres -εv i ) , σA i = B vTG i • σA 0 . ( 92 
)
Numerical tests for moderate non-linearity6 of the viscosity law have been performed, that is, for a power-type relationship (87) with an exponent equal to 1.5. The results for a two-phase material in uniaxial tension obtained by using two variants of the sequential selfconsistent (SC) scheme are shown in Fig. 9. To enable comparison to other approaches,
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the constitutive law has been taken the same as that used by [START_REF] Pierard | Micromechanics of particlereinforced elasto-viscoplastic composites: Finite element simulations versus affine homogenization[END_REF] and [START_REF] Mercier | Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes[END_REF]; details can be found in these references. A spherical shape of inhomogeneities has been assumed. It can be seen in the Figures that the difference between Variant 2 and Variant 1 (the latter equivalent to the Molinari model) is hardly visible. The reason for that lies in a relatively small contrast in viscous properties of the phases. As already shown in [START_REF] Mercier | Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes[END_REF], in the examined case the Mori-Tanaka (MT) averaging scheme applied jointly with the Molinari model (here Variant II of the sequential method) is in the excellent agreement with FEM results reported in [START_REF] Pierard | Micromechanics of particlereinforced elasto-viscoplastic composites: Finite element simulations versus affine homogenization[END_REF] as concerns the average response of the composite, while the selfconsistent scheme slightly overestimates the stress level. In turn, the local stress in the stronger phase is somewhat better predicted by the self-consistent model, especially at the advanced stage of the process. [START_REF] Pierard | Micromechanics of particlereinforced elasto-viscoplastic composites: Finite element simulations versus affine homogenization[END_REF] for a viscously non-linear two-phase composite in uniaxial tension, c i = 0.3: a) stress-strain curve for the composite at axial strain-rate ε = 10 -3 1/s (top curves) and ε = 10 -4 1/s (bottom curves), b) stress-strain curve in phases for ε = 10 -3 1/s (top curves -inhomogeneity, bottom curves -matrix).

Conclusions

In this paper, a new approach has been proposed to predict the behaviour of viscous/elastic heterogeneous materials. Instead of incorporating both elastic and viscous properties of the constituents in a single computational step, we propose to use elastic and viscous properties within an applied averaging scheme sequentially. The goal is to obtain an efficient homogenization scheme that is able to generate results comparable to the approaches that require much higher computational effort.

First, the model has been evaluated for the classical problem of an ellipsoidal inhomogeneity embedded in an infinite matrix. Predictions of the outlined variants of the M A N U S C R I P T
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proposed method have been compared with other models available in the literature, and with the exact analytical solution obtained with use of the Laplace transform and the correspondence principle, in the case of isotropic materials that are viscously and elastically linear and elastically compressible. On the basis of this analysis, the best variant of the sequential decomposition of elastic and viscous responses has been selected for further application into the averaging schemes for heterogeneous materials. It has been found that the variant selected for the inhomogeneity problem is equivalent for that particular problem to the [START_REF] Molinari | Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials[END_REF] model. The coincidence is not automatically extended to the self-consistent treatment of a composite.

The sequential linearization concept can be combined with various averaging schemes. The extension to the Mori-Tanaka averaging scheme for a composite is immediate. The major problem in this paper has been to adapt the sequential linearization approach to the self-consistent averaging scheme for composite materials. In this case, the sequential approach consists of solving three subproblems. It has been demonstrated that an additional accommodation step, besides the viscous and elastic subproblems, is needed in order to estimate the material response satisfactorily. By examples of an isotropic twophase material we have shown that the proposed method provides acceptable predictions in comparison to the existing models. 

Figure 1 :

 1 Figure 1: Illustration of the concept of sequential linearization.

Figure 2 :

 2 Figure 2: Comparison of coefficients β in the concentration relationship for different variants of the sequential linearization and Paquin et al. (PQ) approaches for isotropic elastically compressible materials and a spherical inhomogeneity; HI (Hard Inclusion) -h v i /h v 0 = 10, UV (Uniform Viscous properties) -h v i /h v 0 = 1, SI (Soft Inclusion) -h v i /h v 0 = 0.1.

Figure 3 :

 3 Figure 3: Comparison of the stress-strain loops predicted by different approaches within a spherical inhomogeneity embedded in an infinite matrix subjected to the tension-compression cycle: a) Hard Inclusion, b) Soft Inclusion.

Figure 4 :

 4 Figure 4: Comparison of strain-rate evolution predicted by different approaches within a spherical inhomogeneity embedded in an infinite matrix subjected to the tension-compression cycle: a) Hard Inclusion, b) Soft Inclusion, c) Void.

  It can easily be shown that the requirements εi = ε0 ,

Figure 5 :Figure 6 :Figure 8 :

 568 Figure 5: Averaged stress-strain response calculated by different variants of the self-consistent approach for a two-phase material of non-uniform elastic and viscous properties: a) c 1 = 0.5, b) c 1 = 0.1, c) c 1 = 0.25, d) c 1 = 0.75.

Figure 9 :

 9 Figure9: Comparison of the response predicted by the sequential SC and MT models with FEM results taken from[START_REF] Pierard | Micromechanics of particlereinforced elasto-viscoplastic composites: Finite element simulations versus affine homogenization[END_REF] for a viscously non-linear two-phase composite in uniaxial tension, c i = 0.3: a) stress-strain curve for the composite at axial strain-rate ε = 10 -3 1/s (top curves) and ε = 10 -4 1/s (bottom curves), b) stress-strain curve in phases for ε = 10 -3 1/s (top curves -inhomogeneity, bottom curves -matrix).

Table 1 :

 1 Analysed examples of a spherical inhomogeneity

	Case	E i /E 0 h v i /h v m
	Hard Elastic Inclusion	10	∞
	Hard Inclusion	3	10
	Soft Inclusion	1/3	1/10
	Void	0	∼ 0

Table 2 :

 2 The sequential self-consistent scheme for linear viscoelastic materials

Following Eshelby (1957), we employ the term "inhomogeneity" in contrast to the term "inclusion" used to indicate an incompatible eigenstrain without perturbation of compliances.

Of course, exact only within the approximations inherent to the self-consistent scheme itself.

The accommodation step in Variant 2 requires further re-consideration in the case of highly non-linear problems. Preliminary calculations have indicated that formula (92) at high non-linearity can introduce too strong reduction of the total instantaneous tangent modulus which can lead to overall softening of the homogenized material. This problem requires further study.
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M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT

• when viscous properties are uniform then εA 0 = 0 and both Variants 2 and 3 reduce to Variant 1,

• when elastic properties are uniform then σA i = σA 0 and Variant 3 reduces to Variant 1,

• in the limit when volume fraction of one phase tends to 1, predictions of all three Variants 1, 2 and 3 tend to those of Variant II for an inhomogeneity embedded in an infinite matrix analysed in the preceding Section.

In general, the three variants provide different predictions. They are compared below by an illustrative example.

Comparison of results

The model is tested for a two-phase incompressible material (data are the same as in [START_REF] Paquin | Integral formulation and self-consistent modelling of elastoviscoplastic behavior of heterogeneous materials[END_REF] and [START_REF] Mercier | Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes[END_REF]) subjected to a tension-compression cycle under the constraint of constant overall volume. The overall strain-rate is prescribed in the form

where N D is specified by Eq. ( 58). Both phases are isotropic with compliances of phases specified by Eq. ( 38) with h eD i = h e i being a doubled elastic shear modulus and h v i a doubled viscosity modulus; a spherical shape of inhomogeneities is assumed. In the first example, the following values of these material parameters are examined:

for volume fractions of phase 1 equal to c 1 = 0.1, 0.25, 0.5, 0.75. Note that phase 1 as above is less stiff than phase 2 with respect to the elastic and viscous compliances. Other cases have also been examined, namely, uniform viscosity with the material parameters

and uniform elasticity with

In both cases c 1 = 0.5 is assumed. In Fig. 5 the calculated overall stress-strain curves are presented for non-uniform viscous and elastic properties and different volume fractions of phase 1. It has been found that differences between the predictions of the analyzed models are best visible in the case of equal volume fractions of phases, therefore in Fig. 6 the evolution of local stresses in phases is shown only for this case. Fig. 7 includes overall stress-strain curves for the cases of uniform elasticity and uniform viscosity. For equal volume fractions of the phases, the 

Appendix

Some well-known formulae for the micro-macro transition in a heterogeneous material are summarized for convenience. Assume an affine (linear with eigenstrains ε res ) relationship between strain and stress tensors,

where L and M ≡ L -1 are given fourth-order stiffness and compliance tensors, respectively, while I is the symmetrized fourth-order identity tensor,

(For a viscous material, strain is to be replaced by strain-rate.) The analytical (Eshelby) solution for an ellipsoidal inclusion embedded in an infinite medium (matrix) of constitutive relations analogous to (93), with uniform stiffness moduli L 0 and uniform residual strain ε res 0 , provides the following fundamental relationship between the stress σ 0 and strain ε 0 at infinity and their local counterparts,

where L * is called the Hill tensor (Hill, 1965b). This fourth-order tensor is calculated as follows

and the polarisation tensor P is specified by the shape of ellipsoidal inhomogeneity and the matrix properties, namely [START_REF] Willis | Variational and Related Methods for the Overall Properties of Composites[END_REF])

where a is the second-order tensor of principal values a, b, c equal to the ellipsoid semi-axes (for a spherical inhomogeneity a = b = c and a = aI), and the integration is over the surface of the unit sphere |ν| = 1. The Eshelby tensor S reads

on using the inverses M 0 = L -1 0 , M * = L -1 * . On substituting the constitutive equations for the inhomogeneity and matrix into Eq. ( 94), the following relationships are derived:

where A and B are the strain and stress concentration tensors, respectively, specified as follows:
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