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Sequential linearization method for viscous/elastic heterogeneous

materials

K. Kowalczyk-Gajewska, H. Petryk∗

Institute of Fundamental Technological Research PAS, Pawińskiego 5B, 02 106 Warsaw, Poland

Abstract

The paper addresses the problem of suitable approximation of the interaction between
phases in heterogeneous materials that exhibit both viscous and elastic properties. A novel
approach is proposed in which linearized subproblems for an inhomogeneity-matrix system
with viscous or elastic interaction rules are solved sequentially within one incremental step.
It is demonstrated that in the case of a self-consistent averaging scheme, an additional
accommodation subproblem, besides purely viscous and elastic subproblems, is to be
solved in order to estimate the material response satisfactorily. By examples of an isotropic
two-phase material it is shown that the proposed approach provides acceptable predictions
in comparison with the existing models.

Keywords: micromechanics, viscoelasticity, viscoplasticity, homogenization,
self-consistent scheme

1. Introduction

Micromechanical modelling of the behaviour of heterogeneous materials under quasi-
static loading employs the scale transition between the micro-scale behaviour of the ma-
terial constituents and the macroscopic scale on which the averaged properties of the
heterogeneous material are represented by a homogenized material model. Typical scale-
transition schemes in the mean-field micromechanical models, like self-consistent models,
are based on the solution to the auxiliary problem where a single inclusion is embedded
in a homogeneous matrix of some different material (Hill, 1965b). Usually, advantage is
taken of the Eshelby (1957) solution which provides analytic formulae for uniform strains
and stresses within an ellipsoidal inclusion embedded in an infinite homogeneous matrix.
In this way, the interactions between inclusions or grains in the aggregate are taken into
account not directly but in an approximate overall manner dependent on how the matrix
properties are defined. The crucial point is that in order to apply the Eshelby formulae,
the matrix must obey a linear constitutive law with a single constant tensor of stiffness
moduli or compliances.
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This is the case in particular if the matrix is assumed to be linear elastic (possibly
anisotropic). Various averaging schemes which use the concept of an ellipsoidal inho-
mogeneity in a linearly elastic matrix are available, including extensions to anisotropy,
composite or coated inclusions, differential and incremental schemes, etc., cf. (Kröner,
1958; Hashin, 1964; Kneer, 1965; Mori and Tanaka, 1973; McLaughlin, 1977; Christensen
and Lo, 1979; Willis, 1981; Walpole, 1981; Weng, 1981; Suquet, 1985; Herve and Zaoui,
1990; Cherkaoui et al., 1994; Nemat-Nasser and Hori, 1999; Broohm et al., 2000). If the
actual material behaviour is nonlinear then the usual approach is to introduce some kind of
linearization, e.g., by using tangent or secant stiffness moduli for the matrix representing
an elastoplastic aggregate, with applications and extensions to elastoplastic polycrystals
and composites (Hill, 1965a; Hutchinson, 1970; Berveiller and Zaoui, 1979; Tandon and
Weng, 1988; Lipinski et al., 1990). Other types of linearization are used to model rigid-
viscoplastic materials (Hutchinson, 1976; Molinari et al., 1987; Cailletaud, 1992; Leben-
sohn and Tome, 1993; de Botton and Ponte Castañeda, 1995; Ponte Castañeda, 1996;
Kiryk and Petryk, 1998; Masson et al., 2000; Bornert et al., 2001).

The linearization becomes more difficult if both elastic and viscous properties of the
matrix are to be simultaneously taken into account. For linear viscoelasticity the problem
can be solved in an elegant way, at least formally, by using the Stieltjes convolutions and
Laplace-type transform (Hashin, 1969; Christensen, 1969; Laws and McLaughlin, 1978;
Suquet, 1985), although the inverse transform may be difficult and numerically time-
consuming in a general anisotropic case. Extensions of that formalism to cases when
elasticity is accompanied by non-linear viscous properties, as in elastic-viscoplastic mate-
rials, lead to rather complex formulations (Rougier et al., 1994; Masson and Zaoui, 1999;
Pierard and Doghri, 2006). As all mean-field approaches to the mechanics of composites
and polycrystals are approximate, even for strictly linear problems, it is reasonable to
look for simpler linearization schemes.

Therefore, approximate linearization schemes for elasto-viscoplasticity, cf. (Kouddane
et al., 1993; Paquin et al., 1999; Sabar et al., 2002; Molinari, 2002; Lahellec and Suquet,
2007; Mercier and Molinari, 2009; Doghri et al., 2010), are of interest. The common task is
to approximate the interaction between the matrix material and inhomogeneities without
applying the Laplace (or Carson) transform, inversion of which can be cumbersome in a
general case. Differences between some of the existing approaches of that type will be
illustrated in next chapters. Our aim is to develop a related but conceptually different
approach.

The main idea of this paper, not found in the literature, is to abandon the attempts
to incorporate both elastic and viscous properties of the matrix in a single computational
step of an incremental scale-transition scheme. Rather, we propose to use elastic and
viscous properties sequentially within one incremental step. Accordingly, not a single
linear matrix-inhomogeneity problem but two or more different subproblems of that type,
with different matrix-inhomogeneity interaction rules, are to be solved separately. The
results are combined together to simulate the actual, simultaneously viscous and elastic
response of the system to the applied external strain history. It is not evident that such
an approach can work well even for linearly viscoelastic isotropic materials, therefore this
question is examined in the present paper in more detail. Step-by-step sequential lin-
earization of a strongly nonlinear viscous/elastic (elasto-viscoplastic) material behaviour
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will be addressed in a separate paper, and only an illustrative example of moderate non-
linearity is presented below. The attention is restricted to the geometrically linear (small
strain) theory. The predictions of the sequential linearization approach proposed here are
compared with other approximations as well as with the exact results obtained by using
the Laplace transform technique and the correspondence principle.

2. Linear viscoelastic inhomogeneity problem

2.1. Formulation of the sequential approach

We begin with the formulation of the sequential approach to the classical problem of
a linear viscoelastic inhomogeneity1 in a linear viscoelastic infinite matrix, both taken to
be of the Maxwell type. Accordingly, a local strain-rate in phase r is decomposed into
elastic and viscous parts as follows

ε̇r = ε̇
e
r + ε̇

v
r , ε̇

e
r = Me

r · σ̇r , ε̇
v
r = Mv

r · σr , (1)

where σr is a local stress, Me
r and Mv

r are fixed, diagonally symmetric, positive def-
inite tensors of elastic and viscous compliances, respectively, and a superimposed dot
denotes time derivative. The respective stiffness moduli tensors Le

r and Lv
r are defined by

Le
r = (Me

r)
−1 and Lv

r = (Mv
r)

−1, with the inverses taken with due account for the minor
symmetries, i.e. Le

rM
e
r = I = Lv

rM
v
r , where I is the symmetrized fourth-order identity

tensor, cf. Appendix.
Let r = 0 stands for the (infinite) matrix and r = i for the (ellipsoidal) inhomogeneity.

The external strain imposed on the matrix at infinity is denoted by ε0 and is assumed to
vary in a prescribed manner with respect to time t, ε0 = ε0(t), while the associated stress
in the matrix at infinity is denoted by σ0. For the linear purely elastic problem (Mv

r ≡ 0),
we have the following equation for the differences between strain-rates and stress-rates in
the inhomogeneity and in the matrix at infinity (see Appendix),

ε̇
e
i − ε̇0 = −Me

∗ · (σ̇i − σ̇0) if Mv
r ≡ 0 , (2)

where Me
∗ is the inverse of the Hill tensor (95) associated with the matrix moduli Le

0. The
classical solution to (2) is expressed in the form

ε̇
e
i (t) = Ae

i · ε̇0(t) , Ae
i = (I+Pe(Le

i − Le
0))

−1 if Mv
r ≡ 0 , (3)

where Pe is the stress polarisation tensor for the linear elastic problem, defined by Eq.
(96) for the elastic matrix moduli tensor L = Le

0 and for the shape of the ellipsoidal
inhomogeneity expressed by a = ai.

On the other hand, for the linear purely viscous problem (Me
r ≡ 0) the counterpart to

Eq. (2) is
ε̇
v
i − ε̇0 = −Mv

∗ · (σi − σ0) if Me
r ≡ 0 , (4)

1Following Eshelby (1957), we employ the term ”inhomogeneity” in contrast to the term ”inclusion”
used to indicate an incompatible eigenstrain without perturbation of compliances.
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with the solution

ε̇
v
i (t) = Av

i · ε0(t) , Av
i = (I+Pv(Lv

i − Lv
0))

−1 if Me
r ≡ 0 . (5)

Here, Pv is the stress polarisation tensor for the linear viscous problem, defined by Eq.
(96) on substituting L = Lv

0 and a = ai.
The question we address now is how to determine ε̇i, at least approximately, without

employing the Laplace transform technique, if none of Me
r and Mv

r vanishes. The key
concept here is to consider sequentially two linear subproblems within one infinitesimal
time step:

Subproblem V in which the interaction between the inhomogeneity and matrix is assumed
as purely viscous,

Subproblem E in which the interaction between the inhomogeneity and matrix is purely
elastic.

The inhomogeneity-matrix interaction is defined by the Hill tensor, cf. equation (94).
Accordingly, the inhomogeneity-matrix interaction equations for Subproblems V and E,
in analogy to Eqs. (4) and (2), are defined by

ε̇
V
i − ε̇

V
0 = −Mv

∗ · (σi − σ
V
0 ) (6)

and
ε̇
E
i − ε̇

E
0 = −Me

∗ · (σ̇
E
i − σ̇

E
0 ) , (7)

respectively. In the most general case, in the above equations only the interaction tensors
Mv

∗, M
e
∗ and local stress σi is treated as known, and σ

V
0 and all the rate-variables with

a superscript V or E are unknowns.
The basic idea is illustrated in Fig. 1 in one-dimensional case. An infinitesimal in-

crement in strain, dεr = ε̇rdt, in each phase r is split conceptually into two parts cor-
responding to Subproblems V and E, respectively (Fig. 1a). Subproblem V is thought
of as corresponding to a fixed (or sufficiently slowly varying) external stress so that elas-
tic interactions between the inhomogeneity and matrix may be disregarded. In turn,
Subproblem E corresponds to a sudden change in the stresses, e.g., at the end of an in-
finitesimal time interval (t, t+dt) in Subproblem V (Fig. 1b), so that viscous interactions
between the inhomogeneity and matrix may be disregarded. To formulate elastic inter-
actions in the rate form, all instantaneous changes in Subproblem E are referred to the
time interval (t, t + dt) and interpreted as purely elastic rates.

The above decomposition is not complete. The second time derivative (acceleration)
of a viscous strain in Subproblem V is nonzero in general, ε̈

v
r 6= 0. The stress-rate

related constitutively to ε̈
v
r by Eq. (1)3 reads Lv

r · ε̈
v
r = σ̇

A
r , say. To accommodate such

a stress-rate, an extra elastic strain-rate ε̇
A
r = MA

r · σ̇A
r is required by Eq. (1)2. It is

called the elastic accommodation strain-rate, to distinguish it from a purely elastic strain-
rate in Subproblem E. The case when accommodation rates σ̇

A
r and ε̇

A
r are nonzero is

roughly indicated by dashed lines in Fig. 1; a more detailed explanation will be provided
in Section 3. The problem is that the local accommodation rates are not known.
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a)

b)

Figure 1: Illustration of the concept of sequential
linearization.

There is a number of ways to complement equations (6) and (7) by further assump-
tions which lead to different variants of approximate models based on the sequential
linearization. We impose the requirement that the solution should exhibit certain de-
sired properties indicated at the end of this subsection, in particular, an exact solution
should be recovered at least in the most classical, isotropic and incompressible case. It
has been found that this requirement can be satisfied by disregarding the local elastic
accommodation rates in the inhomogeneity, so that

ε̇
V
i = ε̇

v
i , ε̇

E
i = ε̇

e
i , σ̇

E
i = σ̇i . (8)

It means that not only the interaction rules, but also the local strain-rates are separated
as purely viscous and purely elastic in Subproblems V and E, respectively. Clearly, this is
an approximation in general, to some extent compensated by the freedom in decomposing
ε̇0 into ε̇

V
0 and ε̇

E
0 . Under the assumption (8), ε̇V0 has the meaning of an external strain-

rate (at infinity) intended to be compatible in Subproblem V with the viscous strain-rate
ε̇
v
i that results from a local uniform stress σi in an ellipsoidal inhomogeneity. Local

elastic accommodation rates are included in Section 3 where the sequential approach to
a single inhomogeneity problem is extended to the sequential self-consistent scheme for a
viscoelastic multi-phase composite.

Kinematic consistency between the imposed external strain-rate ε̇0 and those in Sub-
problems V and E considered jointly is obtained by enforcing the relationship

ε̇
V
0 + ε̇

E
0 = ε̇0 . (9)

On substituting relationships (8) and (9) into (6) and (7), the basic equations for

5
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Subproblems V and E reduce to

ε̇
v
i − ε̇

V
0 = −Mv

∗ · (σi − σ
V
0 ) (10)

and
ε̇
e
i − ε̇0 + ε̇

V
0 = −Me

∗ · (σ̇i − σ̇
E
0 ) , (11)

respectively.
Two additional tensor equations are still required. In conjunction with Eqs. (6), (7),

(8) and (9), two natural variants are 2:

• Variant I:
σ

V
0 = Lv

0 · ε̇
V
0 , σ̇

E
0 = Le

0 · ε̇
E
0 . (12)

• Variant II:
σ

V
0 = σ0 , σ̇

E
0 = σ̇0 . (13)

After straightforward rearrangements, Variants I and II of the sequential linearization
approach to the viscoelastic inhomogeneity/matrix system reduce to the following sets of
equations:

• Variant I:

Subproblem V: ε̇
V
0 = (Av

i )
−1 · ε̇vi , (14)

Subproblem E: ε̇
e
i = Ae

i · (ε̇0 − ε̇
V
0 ) . (15)

• Variant II:

Subproblem V: ε̇
V
0 = ε̇

v
i +Mv

∗ · (σi − σ0) , (16)

Subproblem E: ε̇
e
i = (I+Me

∗L
e
i )

−1 · (ε̇0 − ε̇
V
0 +Me

∗ · σ̇0) . (17)

In each Variant, the essence of Subproblem V is to estimate the part ε̇V0 of external strain-
rate ε̇0 that is intended to correspond to ε̇

e
i = 0 in the inhomogeneity in the current stress

state, in accord with the assumption (8). In Subproblem E, the difference (ε̇0 − ε̇
V
0 ) is

used to determine the elastic strain-rate ε̇
e
i and the corresponding stress-rate σ̇i in the

inhomogeneity. Recall that ε̇vi = Mv
i · σi and σ̇0 = Le

0 · (ε̇0 −Mv
0 · σ0) are known in the

current stress state.
On summing up equations (10) and (11) and substituting assumptions (13) it is found

that Variant II leads to the equation equivalent to that postulated by Molinari (2002).
The present derivation is different as it is based on the novel sequential linearization
method.

2Variant III specified by relations Mv
0
· σV

0
+M

e
0
· σ̇E

0
= ε̇0 and ε̇

V

0
= ε̇

v

0
(then ε̇

E

0
= ε̇

e

0
which follows

from (9) and (1)) has also been tested. This variant, in the special case of a spherical inhomogeneity
and matrix being both of an isotropic and incompressible linearly viscoelastic material, leads to an exact
solution based on the Laplace transform. However, for compressible materials, the results for Variant III
are in a less satisfactory agreement with the exact solution, see Subsection 2.5.
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It is worth noting that in Variant II, after straightforward transformations with the
use of Eqs. (6)-(9) and (13), we have the following relationship

ε̇
V
0 − ε̇

v
0 = (Mv

i +Mv
∗) · (σi −Bv

i · σ0) , (18)

where
Bv

i = (Mv
i +Mv

∗)
−1(Mv

0 +Mv
∗) (19)

is the stress concentration tensor, cf. Eq. (100), determined for viscous compliances.
The above variants (including Variant III - see the preceding footnote 2) exhibit the

following desired properties:

• for the initial stage of the deformation process (t = 0 and σ0 = σi = 0) the problem
defined by Eqs (6)-(7) reduces to the purely elastic problem (3),

• for the limit stage of the proportional deformation process (t→ ∞ and σ̇0 = σ̇i = 0)
the problem defined by Eqs (6)-(7) reduces to the purely viscous problem (5),

• in the special case of the spherical inhomogeneity and matrix being both of isotropic
and incompressible linear viscoelastic materials, the solution of Eqs (6)-(7) coincides
with an exact solution obtained by using the Laplace transform by Hashin (1969),
see Subsection 2.5.

2.2. Extension to the Mori-Tanaka scheme for multiphase composites

The above sequential linearization approach is immediately applicable to multiphase
composites in conjunction with the averaging scheme of Mori-Tanaka type (Mori and
Tanaka, 1973), widely used in the analysis of linear two-phase composite materials. It
suffices to define the meaning of strain ε0 and stress σ0 in the above formulae as the
corresponding average values in the matrix, and impose the conditions

ε̄ =

N∑

i=0

ciεi , σ̄ =

N∑

i=0

ciσi ,

N∑

i=0

ci = 1, (20)

where the quantities with a bar, ε̄ and σ̄, are the overall variables for the composite, N
is the number of different phases r occupying ellipsoidal inhomogeneities, average values
in the matrix are denoted by index 0, and ci denote respective volume fractions in the
representative volume element (RVE).

The sequential linearization method formulated above, employed within the Mori-
Tanaka scheme, results in the following two interaction equations for subproblems Vi and
Ei,

ε̇
v
i − ε̇

Vi
0 = −Mv

∗ · (σi − σ
Vi
0 ), (21)

ε̇
e
i − ε̇

Ei
0 = −Me

∗ · (σ̇i − σ̇
Ei
0 ) , (22)

with the additional assumption for every variant:

ε̇
Vi
0 + ε̇

Ei
0 = ε̇0 , (23)

where ε̇0 is the average strain-rate in the matrix. As in Section (2.1) above, we have
different variants dependent on further specifications, in particular,

7
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• Variant I:
σ

Vi
0 = Lv

0 · ε̇
Vi
0 , σ̇

Ei
0 = Le

0 · ε̇
Ei
0 , (24)

• Variant II:
σ

Vi
0 = σ0 , σ̇

Ei
0 = σ̇0 . (25)

Jointly with the constitutive laws (1), the equations above are sufficient to determine
the elastic strain-rate in each inhomogeneity in terms of the average strain-rate ε̇0 in the
matrix, in full analogy to Eqs. (14)-(17).

The final step is to relate ε̇0 to the overall strain-rate ˙̄ε for the composite by using the
rate form of Eq. (20)1, viz.

c0ε̇0 = ˙̄ε−
N∑

i=1

ci(ε̇
v
i + ε̇

e
i ). (26)

The specific versions of Eq. (26) for the above two variants are:

• Variant I:

ε̇0 =

(

c0I+

N∑

i=1

ciA
e
i

)−1

·

(

˙̄ε−

N∑

i=1

ci(ε̇
v
i −Ae

i · ε̇
Vi
0 )

)

, (27)

• Variant II:

ε̇0 =

(

c0I+

N∑

i=1

ciA
e
i

)−1

·

(

˙̄ε−

N∑

i=1

ci
(
ε̇
v
i − (I+Me

∗L
e
i )

−1 · (ε̇Vi
0 +Me

∗L
e
0 · ε̇

v
0)
)

)

,

(28)

where in the last equation the following identity has been used:

Ae
i = (I+Me

∗L
e
i )

−1(I+Me
∗L

e
0).

If ˙̄ε is prescribed then the above equations constitute the full set of equations of
the sequential linearization approach to a linear viscoelastic multi-phase composite in
conjunction with the Mori-Tanaka averaging scheme.

2.3. Comparison of different approximation schemes

The above two variants of the sequential approach to a viscoelastic inhomogeneity
problem are now compared with the Kröner-Weng (Kröner, 1958; Weng, 1981) and Paquin
et al. (1999) approaches. For this purpose we use the relationship between a stress-rate
in an ellipsoidal inhomogeneity and a remote stress-rate.

In the case of the Kröner-Weng model the interaction is purely elastic, that is

ε̇i − ε̇0 = −Me
∗ · (σ̇i − σ̇0). (29)

On substituting the constitutive relationships (1) and rearranging, we obtain the following
relationship

σ̇i = Be
i · σ̇0 − (Me

i +Me
∗)

−1 · (ε̇vi − ε̇
v
0) , (30)

8
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where
Be

i = (Me
i +Me

∗)
−1(Me

0 +Me
∗) (31)

is the stress concentration tensor determined for elastic compliances.
The Paquin et al. (1999) approach has been formulated within the self-consistent av-

eraging scheme for heterogeneous materials. The solution for the inhomogeneity problem
can be extracted in the limit case when

ci → 0, Ae
0 → I, Av

0 → I. (32)

In this case the micro-macro relationship derived by Paquin et al. (1999) reduces to

ε̇
e
i = ε̇i − ε̇

v
i = Ae

i ·
[
ε̇0 + (Se − Sv) · δε̇vi − (Av

i )
−1 · ε̇vi

]
, (33)

where Se and Sv is the Eshelby tensor for the purely elastic and purely viscous matrix,
respectively, δε̇vi = ε̇

v
i −Av

i · ε̇
v
0, and ε̇

v
0 is the remote viscous strain-rate. The respective

expression for the stress-rate in the inhomogeneity, in terms of the remote stress-rate, is

σ̇i = Be
i · σ̇0 − (Me

i +Me
∗)

−1H
PQ
i · ((Av

i )
−1 · ε̇vi − ε̇

v
0), (34)

where
H

PQ
i = (I+Me

∗L
e
0)(I− (Se − Sv)Av

i ). (35)

Note that, similarly to the examined variants of sequential linearization, for the initial
and final stages of a proportional deformation process, the rate-solutions for the purely
elastic and purely viscous problem, respectively, are recovered. On the contrary, for the
final stage of a proportional deformation process for the Kröner-Weng model, a purely
viscous solution of the Eshelby problem is not recovered, as one finds ε̇vi = ε̇

v
0 instead.

In case of Variants I and II of the sequential linearization approach, the expression for
the stress-rate in the inhomogeneity takes the form

σ̇i = Be
i · σ̇0 − (Me

i +Me
∗)

−1HK · ((Av
i )

−1 · ε̇vi − ε̇
v
0), (36)

where3

HI = I+Me
∗L

e
0 and HII = I+Mv

∗L
v
0. (37)

Consider an incompressible isotropic (elastic and viscous) matrix for which the elastic
bulk modulus K0 is infinite and

M
e/v
0 =

1

h
eD/v
0

ID, ID = I− IP, IP =
1

3
1⊗ 1 (38)

3For Variant III tensor HK reads

H
III = (Me

∗
L
e

0)(M
v

∗
L
v

0)
−1(I+M

v

∗
L
v

0),

which for an elastically compressible isotropic material with M
v
r = 1/hv

rID and a spherical inhomogeneity
can be represented by a single scalar βIII,

βI ≤ βIII =
5 + 15η(ν)

3 + 4η(ν)
≤

15

7

with η(ν) specified in Eq. (43).
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with heD0 = 2µ0, h
v
0 = 2η0, where µ0 and η0 are the elastic shear modulus and the viscosity

of the matrix, respectively; 1 is the second-order identity tensor. In this case we have

Se = Sv, Me
∗L

e
0 = Mv

∗L
v
0 . (39)

Then, all the three variants of the sequential linearization approach and the Paquin et
al. model provide the same concentration relationship as the exact solution obtained by
Hashin (1969) with use of the Laplace transform and the correspondence principle. This
fact was already demonstrated in (Mercier et al., 2005) for the Paquin et al. (1999) and
Molinari (2002) approaches, the latter being equivalent to the present Variant II of the
sequential linearization approach. This particular exact solution is not recovered using
the model developed by Sabar et al. (2002), which is therefore not analyzed in this work
in more detail.

In the case of isotropic elastically compressible materials (viscous incompressibility is
still assumed, Mv

r = 1/hvrID), for which

Me
r =

1

hePr
IP +

1

heDr
ID, hePr = 3Kr , (40)

and a spherical inhomogeneity, the fourth order tensor H in the concentration relationship
can be replaced by a single scalar,

σ̇i = Be · σ̇0 − βK(Me
i +Me

∗)
−1 · ((Av)−1 · ε̇vi − ε̇

v
0), (41)

where the coefficient βK is specified as follows

βK =







5+10η(ν)
3+4η(ν)

if K = I
5
3

if K = II(M)
5+10η(ν)γv
3+4η(ν)

if K = PQ

(42)

and (for a non-negative Poisson ratio ν, 0 ≤ η ≤ 1)

η(ν) =
1− 2ν

1 + ν
, γv =

2 + ξv
3 + ξv

, ξv =
hvi
hv0
, γv ∈

(
2

3
, 1

)

. (43)

The following relation between the coefficients is obtained:

βII ≤ βPQ ≤ βI ≤
10

7
. (44)

If
hv

i

hv

0

→ 0 (the inhomogeneity behaves as a void in terms of viscous properties) then the

Paquin et al. model coincides with Variant II (the Molinari model), βPQ(ν, 2/3) = βII.

On the other hand, if
hv

i

hv

0

→ ∞ (the inhomogeneity is elastic) the Paquin et al. model

coincides with Variant I, βPQ(ν, 1) = βI(ν). Dependence of the coefficient β on the Poisson
ratio ν for different models and viscosity contrasts is presented in Fig. 2.
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Figure 2: Comparison of coefficients β in the con-
centration relationship for different variants of the
sequential linearization and Paquin et al. (PQ) ap-
proaches for isotropic elastically compressible mate-
rials and a spherical inhomogeneity; HI (Hard Inclu-
sion) - hv

i /h
v
0 = 10, UV (Uniform Viscous properties)

- hv
i
/hv

0
= 1, SI (Soft Inclusion) - hv

i
/hv

0
= 0.1.

2.4. An exact solution in the Laplace transform space

As shown by Hashin (1969) for isotropic materials and by Laws and McLaughlin (1978)
in a general anisotropic case, the problem of an ellipsoidal viscoelastic inhomogeneity
embedded in a viscoelastic matrix, both described by the Maxwell-type constitutive law
(1), can be solved by using the Laplace transform technique and the correspondence
principle. Taking the Laplace transform of equations (1) for the inhomogeneity (r = i)
and for the matrix at infinity (r = 0), and assuming the initial conditions εr|t=0 =
0, σr|t=0 = 0, we obtain

sε̂r(s) = (sMe
r +Mv

r) · σ̂r(s), (45)

denoting f̂(s) ≡
∫∞

0
e−stf(t) dt, with s as a complex variable.

We will specify the solution for isotropic materials which are elastically compressible

and viscously incompressible, of elastic compliance tensors specified by Eq. (40) and
viscous compliance tensors as in Eq. (38), and a spherical inhomogeneity. Decompose the
strain and stress into hydrostatic and deviatoric parts, denoted by upper indices P and D,
respectively. On taking the Laplace transform of equations (1) decomposed in this way,
we obtain

σ̂
P
r (s) = hPer

︸︷︷︸

ĥP
r (s)

ε̂
P
r (s), σ̂

D
r (s) =

shvr

1 + s hv
r

hDe
r

︸ ︷︷ ︸

ĥD
r (s)

ε̂
D
r (s). (46)

Using the correspondence principle and the Eshelby solution for a spherical inclusion, we
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obtain, cf. Hashin (1969),4

ε̂
P
i (s) = ÂP

i (s)ε̂
P
0 (s) , ÂP

i (s) =
hPe0 + 2ĥD0 (s)

hPei + 2ĥD0 (s)
(47)

and

ε̂
D
i (s) = ÂD

i (s)ε̂
D
0 (s) , ÂD

i (s) =
ĥD0 (s) + ĥD∗ (s)

ĥDi (s) + ĥD∗ (s)
, (48)

where

ĥD∗ (s) = ĥD0 (s)
3hPe0 + 4ĥD0 (s)

2(hPe0 + 3ĥD0 (s))
. (49)

Consider the external strain programme specified as follows

ε0(t) = εP0 (t)1 + εD0 (t)ND, ND = const, trND = 0, (50)

where εP0 (t), ε
D
0 (t) are given scalar functions of time. Thus

ε̂0(s) = ε̂P0 (s)1+ ε̂D0 (s)ND. (51)

From Eqs. (47)-(48) it follows that

ε̂
P
i (s) = ε̂Pi (s)1 = ÂP

i (s)ε̂
P
0 (s)1 → ε̂Pi (s) = ÂP

i (s)ε̂
P
0 (s), (52)

ε̂
D
i (s) = ε̂Di (s)ND = ÂD

i (s)ε̂
D
0 (s)ND → ε̂Di (s) = ÂD

i (s)ε̂
D
0 (s). (53)

Similarly, an ‘exact’ solution can be derived for the averaged response of a two-phase
composite within the Mori-Tanaka-type averaging scheme. Then, the Laplace transform
of an external strain in Eqs (47)-(48) is replaced by the Laplace transform of the corre-
sponding average strain in the matrix. Moreover, the Laplace transform of Eq. (20)1 is
used, in the form

ˆ̄ε(s) = ciε̂i(s) + (1− ci)ε̂0(s), (54)

where ˆ̄ε(s) is prescribed by an equation analogous to Eq. (51). After manipulations
outlined above for the spherical inhomogeneity problem, in the case of isotropic materials
and compressible elasticity, one finds

ε̂
P/D
0 (s) =

ε̂P/D(s)

1− ci(1− Â
P/D
i (s))

, ε̂
P/D
i (s) =

Â
P/D
i (s)ε̂P/D(s)

1− ci(1− Â
P/D
i (s))

. (55)

4In the case of the corresponding elastic solution there is

Ai = αP
IP + αD

ID =
hPe
0

+ 2hDe
0

hPe
i

+ 2hDe
0

IP +
hDe
0

+ hDe
∗

hDe
i

+ hDe
∗

ID,

where

hDe

∗
= hDe

0

3hPe
0

+ 4hDe
0

2(hPe
0

+ 3hDe
0

)
.

Relations (47) and (48) can be compared with Eqs (6.34)-(6.37) in (Hashin, 1969) using

hP = 3K, hD = 2µ, ν =
hP − hD

2hP + hD
.
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Table 1: Analysed examples of a spherical inhomogeneity

Case Ei/E0 hvi /h
v
m

Hard Elastic Inclusion 10 ∞
Hard Inclusion 3 10
Soft Inclusion 1/3 1/10

Void 0 ∼ 0

In the special case of homogeneous elastic properties, exact solutions for an isotropic
linear viscoelastic two-phase material have recently been obtained (Ricaud and Masson,
2009) by the finite expansion of relaxation functions into the Prony series, without the
need of inversion of the Laplace transform.

2.5. Comparison of results for a tension-compression cycle

Quantitative predictions of the approximate schemes from Section 2.3 are now com-
pared with the exact solution outlined above for a tension-compression cycle under the
constraint of constant overall volume (not necessarily in individual phases). This is done
for the inhomogeneity problem; results for the Mori-Tanaka scheme for a two-phase com-
posite would be analogous. As already mentioned, in the case of fully incompressible

(both for elastic and viscous deformations) isotropic materials of the inhomogeneity and
matrix, an exact solution is obtained. Specifically, the solution obtained with the use of
the three variants of the sequential approach, as well as of the Paquin et al. model, for an
incompressible spherical inhomogeneity problem coincides with the corresponding exact
solution obtained with use of the Laplace transform. Therefore, the analysis is performed
below for elastically compressible materials. A low value of the Poisson ratio is assumed,
equal for the matrix and inhomogeneity, since the difference between approximate schemes
is then more pronounced, cf. Fig. 3. Different elastic and viscous properties of the matrix
and spherical inhomogeneity (inclusion) have been examined, namely

• a hard elastic inclusion in a viscoelastic matrix,

• a hard/soft viscoelastic inclusion in a viscoelastic matrix,

• a void in viscoelastic matrix.

A hard and soft inclusion means that its elastic and viscous moduli are, correspondingly,
higher or lower than respective moduli of the matrix. Isotropic material properties of the
matrix are specified by

ν0/i = 0.05 , E0 = 200MPa , hv0 =
2

3
MPa × s. (56)

The examined cases of inclusion properties are collected in Table 1.
As a particular case of Eq. (50), the remote strain history ε0(t) is assumed as follows

ε0(t) = (ε1(t)− ε2(t))ND, where







ε1(t) = 0 if t < 0
ε1(t) = t if t ≥ 0
ε2(t) = 0 if t < T
ε2(t) = 2(t− T ) if t ≥ T

(57)
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with

ND =
1

2
(3e1 ⊗ e1 − 1) , [NDij] =





1 0 0
0 −1/2 0
0 0 −1/2



 , (58)

e1 being the tension-compression direction. The corresponding strain-rate history is

ε̇0(t) = ε̇D0 (t)ND, where







ε̇D0 (t) = 0 if t < 0
ε̇D0 (t) = 1 if 0 ≤ t < T
ε̇D0 (t) = −1 if t ≥ T.

[1/s]. (59)

The Laplace transform of the strain programme (57) is ε̂0(s) = ε̂0(s)ND, with

ε̂0(s) = ε̂1(s)− ε̂2(s) =
1

s2
(1− 2 exp(−sT )) . (60)

Analytical inversion of the Laplace transform has been performed with the help of Math-

ematica package (Wolfram, 2003).
Conclusions from the analysis are the following (see Fig. 3 and Fig. 4):

• For hard inclusions, the approximate schemes give results close to each other, with
Variant II (Molinari model) being the softest. As the contrast in viscous properties
increases (the asymptotic case is the hard elastic inclusion), the exact solution is
less stiff in the transient regime than the approximate solutions, therefore Variant
II provides the best prediction among the approximate schemes examined. As ex-
pected for hard inclusions, predictions of the Paquin model are close to Variant I
predictions.

• For soft inclusions, the exact solution predicts a ‘peak’ of stress in the transient
regime which is not observed for Variant I and III of the sequential model and can
be predicted (although usually less intensive than those in the exact solution) by
Variant II and the Paquin model. As expected for soft inclusions, predictions of the
Paquin model are close to Variant II predictions.

• Void has been modelled as an inhomogeneity with Ei = 0 and hvi /h
v
m → 0 (a finite

value due to numerical reasons), so that σi(t) = 0 as a natural condition for the
void. In the case of Variant I, the evolution of the strain-rate in a void coincides with
that for the problem of a void in a purely elastic matrix and as such does not agree
with an exact solution. Variant II and Paquin et al. model provide good predictions.
Similarly to an exact solution, the solution obtained with the use of Variant II is
not sensitive to the value of hvi /h

v
m ratio, provided σi(t) = 0 is enforced, and in the

limit of the proportional straining the purely viscous solution is recovered. This is
not the case for the Paquin et al. model for which results depend on hvi /h

v
m ratio.

In particular, if one assumes Ei → 0 and hvi /h
v
m → ∞, predictions of this model

tend to the purely elastic solution of the problem for a void and disagree with an
exact solution obtained under these conditions.

• The predictions of the Kröner-Weng model (K) are depicted only in Fig. 4. Except
of a hard elastic inclusion, for the regimes for which the strain-rate of the matrix
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is almost totally viscous, they tend to the Voigt model assumption, ε̇i = ε̇0. The
stress-strain loops obtained with use of this model are not presented in Fig. 3
since the stress level is highly overpredicted (hard inclusion) or underpredicted (soft
inclusion) as compared to the exact solution in the regimes dominated by a viscous
flow.
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Figure 3: Comparison of the stress-strain loops pre-
dicted by different approaches within a spherical in-
homogeneity embedded in an infinite matrix sub-
jected to the tension-compression cycle: a) Hard In-
clusion, b) Soft Inclusion.

On the basis of the performed analysis, Variant II of the sequential method has been
selected for further developments as it provides the best predictions in comparison to the
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Figure 4: Comparison of strain-rate evolution pre-
dicted by different approaches within a spherical in-
homogeneity embedded in an infinite matrix sub-
jected to the tension-compression cycle: a) Hard In-
clusion, b) Soft Inclusion, c) Void.

exact solution. As indicated above, this variant is equivalent to the Molinari (2002) model
in the case of a single inhomogeneity problem.
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3. Self-consistent averaging scheme

3.1. Formulation of the sequential approach

Consider now a heterogeneous material composed of N constituents, of volume frac-
tions ci, which obey the constitutive relation (1) with elastic compliances Me

i and viscous
compliances Mv

i , i = 1, . . . , N . The overall strain-rate and stress-rate are now defined by

ε̄ = 〈εi〉 , σ̄ = 〈σi〉 , 〈ψi〉 ≡
N∑

i=1

ciψi,
N∑

i=1

ci = 1 , (61)

where εi, σi are themselves averages over individual phases.
In the self-consistent treatment of a multi-phase composite investigated below, fluc-

tuations within each phase are disregarded. The change with respect to the single in-
homogeneity problem and the Mori-Tanaka scheme addressed above is that the matrix
properties are no longer those of any specific phase and are to be replaced by effective
properties of the homogenized composite. Denote by M̄e and M̄v the fourth-order ten-
sors of effective elastic and viscous compliances of the homogenized composite and by
L̄e and L̄v their inverses, determined for the purely elastic and purely viscous problem,
respectively. The latter are determined implicitly from the well-known equations

L̄e = 〈Le
iA

e
i 〉, Ae

i = (I+Pe(Le
i − L̄e))−1, (62)

L̄v = 〈Lv
iA

v
i 〉, Av

i = (I+Pv(Lv
i − L̄v))−1, (63)

where the concentration tensorsAe
i andAv

i for phase i, in comparison with Eqs (3) and (5)
for a single ellipsoidal inhomogeneity embedded in the matrix of prescribed properties,
depend now on the overall properties of the homogenized composite rather than of a
given matrix. The remote stress σ0 and strain ε0 at infinity in the inhomogeneity-matrix
interaction equation, cf. (94), are equal to the respective overall quantities, σ0 = σ̄ and
ε0 = ε̄ . In the case of ellipsoidal inhomogeneities of the same shape and orientations, the
concentration tensors fulfill the identity 〈A

e/v
i 〉 = I. It is known that the approximations

involved in the above equations themselves may not always be realistic, for instance,
for a high contrast between phase properties (Christensen, 2005) or in the presence of
high anisotropy (Kowalczyk-Gajewska, 2009). Our aim here is, however, not to discuss
validity of the self-consistent scheme as such for a linear problem, rather, to examine
a more difficult viscous/elastic problem in the case when the self-consistent scheme is
appropriate for each linear subproblem separately.

The concept of sequential linearization described in Section 2 is adapted below to the
self-consistent averaging scheme. The basic Subproblems V and E are now formulated for
each constituent separately and hence consist of Subproblems Vi and Ei, i = 1, . . . , N ,
respectively. To reduce the number of possible variants, Variant II of the sequential
approach from Section 2 is selected as the best from those considered. However, an
accommodation Subproblem A, of the origin indicated in Section 2.1, is now also included.
Accordingly, we use the following local decompositions

ε̇i = ε̇
v
i + ε̇

A
i + ε̇

E
i , σ̇i = σ̇

A
i + σ̇

E
i (64)
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along with analogous decompositions of the overall response

ε̇0 = ε̇
V
0 + ε̇

A
0 + ε̇

E
0 , σ̇0 = σ̇

A
0 + σ̇

E
0 . (65)

In Subproblem Vi we find an external strain-rate at infinity, ε̇
Vi
0 , intended to be

compatible with the viscous strain-rate ε̇
v
i that results from a local uniform stress σi in

an ellipsoidal inhomogeneity of constituent i. As in Variant II in Section 2, this is done
by assuming purely viscous interaction between the inhomogeneity and the homogenized
matrix, now of moduli L̄v under remote stress σ0. Note that those external strain-rates
ε̇
Vi
0 depend on the phase index i and differ from each other in general (and also from

overall quantities independent of i). They are determined for different phases i from the
equation analogous to (10), viz.

ε̇
v
i − ε̇

Vi
0 = −M̄v

∗ · (σi − σ0) , (66)

where the Hill tensor inverse M̄v
∗ is associated with the viscous effective moduli tensor L̄v

for the homogenized composite. Upon multiplying Eq. (66) by ci and summing up, we
obtain 〈ε̇vi 〉 = 〈ε̇Vi

0 〉 on account of σ0 = 〈σi〉.
On the other hand, the homogenized matrix of effective viscous compliance tensor

M̄v undergoes viscous flow with the strain-rate ε̇
v
0 = M̄v · σ0 at infinity, while volume

averaging for the purely viscous subproblem gives the overall viscous strain-rate 〈ε̇vi 〉. The
difference between ε̇

v
0 and 〈ε̇vi 〉 is to be accommodated elastically. The respective internal

elastic accommodation rates in phases are distinguished by a superscript A and obey the
elastic constitutive relationships σ̇A

i = Le
i · ε̇

A
i .

It is possible to retain consistency with Eq. (66) when the accommodation strain-rates
are included in Subproblem Vi. For this purpose, each external elastic accommodation
strain-rate ε̇

Ai
0 is taken to coincide with its internal counterpart ε̇

A
i for phase i, so that

they cancel each other when incorporated into Eq. (66), viz.

ε̇
Ai
0 = ε̇

A
i and (ε̇vi + ε̇

A
i )− (ε̇Vi

0 + ε̇
Ai
0 ) = −M̄v

∗ · (σi − σ0) . (67)

Suppose for a moment that the introduced accommodation strain-rates and stress-
rates are known. The purely elastic Subproblem Ei is specified as follows

ε̇
E
i − ε̇

Ei
0 = −M̄e

∗ · (σ̇
E
i − σ̇

E
0 ) , (68)

where the Hill tensor inverse M̄e
∗ is associated with the elastic effective moduli tensor L̄e

for the homogenized composite. The quantities with a superscript E, involved in Eqs.
(64) and (65), represent the differences between total elastic and accommodation terms,

ε̇
E
i = ε̇

e
i − ε̇

A
i , σ̇

E
i = σ̇i − σ̇

A
i , σ̇

E
0 = σ̇0 − σ̇

A
0 , (69)

In analogy to the kinematic consistency condition (9), for each i we assume that

ε̇
Ei
0 = ε̇0 − ε̇

Ai
0 − ε̇

Vi
0 . (70)

It can easily be shown that the requirements

〈ε̇i〉 = ε̇0 , 〈σ̇i〉 = σ̇0 (71)
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together with the equations above lead to

σ̇
A
0 =

〈
σ̇

A
i

〉
. (72)

One can verify that, if σ̇A
i are known, the set of equations (66)-(71) implies the following

equation that relates the local and global responses of the heterogeneous medium:

ε̇i − ε̇0 = −M̄v
∗ · (σi − σ0)− M̄e

∗ · (σ̇i − σ̇0)− M̄e
∗ · (σ̇

A
i − σ̇

A
0 ) . (73)

It remains, therefore, to estimate the local accommodation stress-rates. There are
different possible ways to approximate these quantities.

The simplest way is to neglect the influence of accommodation rates entirely by as-
suming that

σ̇
A
i = σ̇

A
0 . (74)

Then, Eq. (73) reduces to that postulated in (Molinari, 2002) for the self-consistent model
for elastic-viscoplastic materials, cf. also (Mercier et al., 2005; Mercier and Molinari,
2009).

A more consequent (although still simplified) way is to define the overall elastic ac-
commodation strain-rate and the respective overall accommodation stress-rate as follows

ε̇
A
0 = ε̇

v
0 − 〈ε̇vi 〉 = ε̇

v
0 − 〈ε̇Vi

0 〉 , σ̇
A
0 = L̄e · ε̇A0 . (75)

Local accommodation stress-rates can be related to an overall accommodation stress-rate
through the viscous concentration tensors Bv

i ,

σ̇
A
i = Bv

i · σ̇
A
0 , (76)

which is consistent with treating the accommodation stress-rates as constitutively related
to viscous strain accelerations in the calculation step based on interactions of viscous type,
cf. the remark in Section 2.1. Note that Eq. (72) is then satisfied if 〈Bv

i 〉 = I, which is an
identity for ellipsoidal inclusions of equal orientations and aspect ratios. An alternative
way, apparently less consequent, is to use elastic concentration tensors instead,

σ̇
A
i = Be

i · σ̇
A
0 ⇐⇒ ε̇

A
i = Ae

i · ε̇
A
0 . (77)

As an outcome, we obtain three variants of Subproblem A of elastic accommodation
in the sequential self-consistent scheme for linearly viscoelastic heterogeneous materials:

• Variant 1 based on Eq. (74),

• Variant 2 based on Eqs (75) and (76),

• Variant 3 based on Eqs (75) and (77).

After straightforward substitutions, the proposed sequential self-consistent scheme for
linear viscoelastic heterogeneous materials is summarized in Table 2.

From Eq. (75) for Variants 2 and 3 we obtain

ε̇
A
0 = Mv

0 · σ0 − 〈Mv
i · σi〉. (82)

It can easily be verified that
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Table 2: The sequential self-consistent scheme for linear viscoelastic materials

(i) Subproblem V: Determine the external viscous strain-rate ε̇
Vi
0 intended to corre-

spond to ε̇
e
i = 0 in the i-th phase in the current stress state, from the equation

ε̇
v
i − ε̇

Vi
0 = −M̄v

∗ · (σi − σ0) with ε̇
v
i = Mv

i · σi . (78)

(ii) Subproblem A: Determine the overall elastic accommodation rates of strain and
stress from the equations

ε̇
A
0 = M̄v · σ0 − 〈ε̇vi 〉, σ̇

A
0 = L̄e · ε̇A0 (79)

and define the related internal accommodation rates for each phase by

σ̇
A
i = Bi · σ̇

A
0 , ε̇

A
i = Me

i · σ̇
A
i (80)

using Bi = I, Bi = Bv
i or Bi = Be

i in Variant 1, 2 or 3, respectively.

(iii) Subproblem E: Determine the elastic strain-rate ε̇ei and the corresponding stress-
rate σ̇i in the i-th phase, from the equations

ε̇
e
i − ε̇0 + ε̇

Vi
0 = −M̄e

∗ · (σ̇i − σ̇
A
i − σ̇0 + σ̇

A
0 ) , σ̇i = Le

i · ε̇
e
i , σ̇0 = 〈σ̇i〉 . (81)

(iv) Select a time step, update σi and σ0, and continue.
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• when viscous properties are uniform then ε̇
A
0 = 0 and both Variants 2 and 3 reduce

to Variant 1,

• when elastic properties are uniform then σ̇
A
i = σ̇

A
0 and Variant 3 reduces to Variant

1,

• in the limit when volume fraction of one phase tends to 1, predictions of all three
Variants 1, 2 and 3 tend to those of Variant II for an inhomogeneity embedded in
an infinite matrix analysed in the preceding Section.

In general, the three variants provide different predictions. They are compared below
by an illustrative example.

3.2. Comparison of results

The model is tested for a two-phase incompressible material (data are the same as in
(Paquin et al., 1999) and (Mercier and Molinari, 2009)) subjected to a tension-compression
cycle under the constraint of constant overall volume. The overall strain-rate is prescribed
in the form

ε̇0(t) = ε̇(t)ND, where







ε̇(t) = 0 if t < 0
ε̇(t) = 10−4 if 0 ≤ t < T
ε̇(t) = −10−4 if t ≥ T

[1/s] , (83)

where ND is specified by Eq. (58). Both phases are isotropic with compliances of phases
specified by Eq. (38) with heDi = hei being a doubled elastic shear modulus and hvi a
doubled viscosity modulus; a spherical shape of inhomogeneities is assumed. In the first
example, the following values of these material parameters are examined:

he1 = 100MPa, he2 = 500MPa, hv1 = 20MPa × s, hv2 = 2000MPa× s , (84)

for volume fractions of phase 1 equal to c1 = 0.1, 0.25, 0.5, 0.75.
Note that phase 1 as above is less stiff than phase 2 with respect to the elastic and

viscous compliances. Other cases have also been examined, namely, uniform viscosity
with the material parameters

he1 = 100MPa, he2 = 2000MPa, hv1 = hv2 = 2000MPa× s , (85)

and uniform elasticity with

he1 = he2 = 100MPa, hv1 = 20MPa× s, hv2 = 2000MPa× s . (86)

In both cases c1 = 0.5 is assumed.
In Fig. 5 the calculated overall stress-strain curves are presented for non-uniform

viscous and elastic properties and different volume fractions of phase 1. It has been found
that differences between the predictions of the analyzed models are best visible in the case
of equal volume fractions of phases, therefore in Fig. 6 the evolution of local stresses in
phases is shown only for this case. Fig. 7 includes overall stress-strain curves for the cases
of uniform elasticity and uniform viscosity. For equal volume fractions of the phases, the
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results obtained with the use of the proposed variants (V1,V2,V3) of the self-consistent
model employing the sequential linearization method are compared to the exact5 solution
(R) of Rougier et al. (1993) found with the use of Laplace transform, and to the predictions
of the Paquin et al. (1999) model (PQ). In the latter case the concentration relation for
the average strain-rate in phase i is of quite a complicated form.

The conclusions from the analysis are the following.

• As it can be seen in Figs 5a and 6, in the case of non-uniform elastic and viscous
properties and equal volume fractions of the phases (c1 = 0.5), Variant 2 gives
a response similar to that for the Paquin model and clearly softer than that for
Variant 1 (equivalent to the Molinari (2002) model). The former two responses are
also closer to, although softer than, the exact solution provided by Rougier et al.
(1993). Variant 3 is also satisfactory in this case, although the predicted response
is stiffer than in the case of the exact solution.

• Very good agreement of Variant 2 with the exact macroscopic solution, in compari-
son with the remaining variants of the sequential model, is observed for the case of
uniform elastic properties (Fig. 7). When the viscous properties are uniform then
all three variants collapse into one (thus coincide with the Molinari (2002) model)
and provide good predictions. The Paquin model is also successful in both cases.

• When the volume fraction of one phase is noticeably smaller than that of a second
phase then the differences between the macroscopic predictions for the examined
models are less visible, cf. Fig. 5a-d. If the volume fraction of one phase tends
to zero then the problem examined here tends to that of a single inhomogeneity
embedded in an infinite matrix, and therefore the predicted responses converge to
the exact solution.

The uniform elasticity case is worth being analyzed in more detail. It can be seen
that in this case the predictions of Variant 1 and 3 are not satisfactory in comparison
with the exact solution. This supports the viewpoint that the reduction of the overall
stress level within the accommodation step should be related to viscous non-uniformity,
as assumed in Variant 2 of the model. It has been checked that, for the case considered,
the accommodation strain-rate defined by Eq. (75) has an opposite direction than the
imposed total strain-rate, and within a half of cycle its magnitude increases from zero to
some maximum value and then decreases again towards zero in the purely viscous limit.
The viscous redistribution of the corresponding accommodation stress-rate between the
phases, cf. Eq. (76) and Fig. 8b and d, causes the higher (lower) reduction of the stress
level in the stiffer (softer) phase, respectively, than in the case of the remaining variants.
It leads to the acceleration of the viscous flow in the softer phase and to a softer overall
response of the composite. The evolution of accommodation terms in Variants 2 and 3 in
the case of non-uniform viscous and elastic properties is presented in Fig. 8a and c.

On the basis of the analysis performed, Variant 2 of the proposed model is recom-
mended for further use. Variant 1 (equivalent to the Molinari (2002) model), due to its

5Of course, exact only within the approximations inherent to the self-consistent scheme itself.
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relative simplicity, is also worth considering, especially in the case of a small contrast
in viscous properties of the phases. It is worth emphasizing that the softening of the
macroscopic response in the transient regime, observed for the recommended Variant 2
in comparison with Variant 1 and making the predictions of the former variant closer
to the exact solution, has been achieved here without introducing any additional tuning
parameters. The latter technique has been used in (Mercier and Molinari, 2009) in order
to improve the Molinari (2002) model predictions in this respect.
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Figure 5: Averaged stress-strain response calculated by different variants of the self-consistent approach
for a two-phase material of non-uniform elastic and viscous properties: a) c1 = 0.5, b) c1 = 0.1, c)
c1 = 0.25, d) c1 = 0.75.
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Figure 6: Stress evolution in phase 1 (a) and phase
2 (b) of a two-phase material of non-uniform elastic
and viscous properties, corresponding to Fig.5a (c1 =
0.5).

24



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

a)

0.000 0.002 0.004 0.006 0.008 0.010
-0.04

-0.02

0.00

0.02

0.04

¶0
11

Σ
011

R
PQ
V3
V2
V1HML

b)

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007
-0.2

-0.1

0.0

0.1

0.2

¶0
11

Σ
011

R
PQ
V3
V2
V1HML

Figure 7: Averaged stress-strain response calcu-
lated by different variants of the self-consistent ap-
proach for a two-phase material: a) uniform elastic
properties (V1=V3), b) uniform viscous properties
(V1=V2=V3); c1 = 0.5.
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Figure 8: Evolution of local and overall accommodation stress-rates for Variant 2 and Variant 3 of
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viscous properties, d) ∆σ̇A
i

for uniform elastic properties; c1 = 0.5.

26



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3.3. Extension to non-linear viscosity

The next step is to extend the model to the case of non-linear viscosity,

ε̇
v
i = f(σi). (87)

That extension is not straightforward. In Subproblem V of the sequential approach, a
purely viscous problem is solved by using the Eshelby method. When the constitutive
law describing viscous behaviour becomes non-linear, some method of linearization of the
constitutive law has to be employed. As it has been mentioned in the introduction, dif-
ferent linearization schemes developed for the rigid-viscoplastic materials can be found
in the literature. Three schemes most widely discussed in the literature were proposed
by Hutchinson (1976), Molinari et al. (1987) and Masson et al. (2000). We use here
the Masson et al. (2000) proposal which seems to provide the most accurate predictions
(Lebensohn et al., 2004). In the selected linearization scheme the viscous tangent compli-
ance tensor of a homogenized matrix is determined. Consequently, Subproblem V takes
the form

ε̇
v
i − ε̇

Vi
0 = −M̄vTG

∗ · (σi − σ0) , (88)

where

ε̇
v
i = MvTG

i · σi + ε̇
res
i , MvTG

i =
∂f(σi)

∂σi

, ε̇
res
i = f(σi)−MvTG

i · σi (89)

and
M̄vTG = 〈MvTG

i BvTG
i 〉 , BvTG

i = (MvTG
i + M̄vTG

∗ )−1(M̄vTG + M̄vTG
∗ ) . (90)

Additionally, following the tangent linearization scheme, it is assumed that

˙̄εres = 〈ε̇resi ·BvTG
i 〉 . (91)

The Hill tensor inverse M̄vTG
∗ depends on M̄vTG and the shape of an inhomogeneity

according to the formulae (95) and (96) in the Appendix.
Presence of viscous non-linearity requires also reconsideration of Subproblem A. In

the case of Variant 1 we use the formula (74) as previously. Variant 2 requires a defini-
tion of the overall accommodation strain-rate and respective accommodation stress-rate.
Following the reasoning employed previously, we define

σ̇
A
0 = L̄e · (M̄vTG · σ0 + ˙̄εres − 〈ε̇vi 〉) , σ̇

A
i = BvTG

i · σ̇A
0 . (92)

Numerical tests for moderate non-linearity6 of the viscosity law have been performed,
that is, for a power-type relationship (87) with an exponent equal to 1.5. The results for a
two-phase material in uniaxial tension obtained by using two variants of the sequential self-
consistent (SC) scheme are shown in Fig. 9. To enable comparison to other approaches,

6The accommodation step in Variant 2 requires further re-consideration in the case of highly non-linear
problems. Preliminary calculations have indicated that formula (92) at high non-linearity can introduce
too strong reduction of the total instantaneous tangent modulus which can lead to overall softening of
the homogenized material. This problem requires further study.
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the constitutive law has been taken the same as that used by Pierard et al. (2007) and
Mercier and Molinari (2009); details can be found in these references. A spherical shape
of inhomogeneities has been assumed. It can be seen in the Figures that the difference
between Variant 2 and Variant 1 (the latter equivalent to the Molinari model) is hardly
visible. The reason for that lies in a relatively small contrast in viscous properties of the
phases. As already shown in (Mercier and Molinari, 2009), in the examined case the Mori-
Tanaka (MT) averaging scheme applied jointly with the Molinari model (here Variant II
of the sequential method) is in the excellent agreement with FEM results reported in
(Pierard et al., 2007) as concerns the average response of the composite, while the self-
consistent scheme slightly overestimates the stress level. In turn, the local stress in the
stronger phase is somewhat better predicted by the self-consistent model, especially at
the advanced stage of the process.
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Figure 9: Comparison of the response predicted by the sequential SC and MT models with FEM results
taken from (Pierard et al., 2007) for a viscously non-linear two-phase composite in uniaxial tension,
ci = 0.3: a) stress-strain curve for the composite at axial strain-rate ε̇ = 10−31/s (top curves) and
ε̇ = 10−41/s (bottom curves), b) stress-strain curve in phases for ε̇ = 10−31/s (top curves - inhomogeneity,
bottom curves - matrix).

4. Conclusions

In this paper, a new approach has been proposed to predict the behaviour of vis-
cous/elastic heterogeneous materials. Instead of incorporating both elastic and viscous
properties of the constituents in a single computational step, we propose to use elastic
and viscous properties within an applied averaging scheme sequentially. The goal is to
obtain an efficient homogenization scheme that is able to generate results comparable to
the approaches that require much higher computational effort.

First, the model has been evaluated for the classical problem of an ellipsoidal inho-
mogeneity embedded in an infinite matrix. Predictions of the outlined variants of the
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proposed method have been compared with other models available in the literature, and
with the exact analytical solution obtained with use of the Laplace transform and the cor-
respondence principle, in the case of isotropic materials that are viscously and elastically
linear and elastically compressible. On the basis of this analysis, the best variant of the
sequential decomposition of elastic and viscous responses has been selected for further
application into the averaging schemes for heterogeneous materials. It has been found
that the variant selected for the inhomogeneity problem is equivalent for that particular
problem to the Molinari (2002) model. The coincidence is not automatically extended to
the self-consistent treatment of a composite.

The sequential linearization concept can be combined with various averaging schemes.
The extension to the Mori-Tanaka averaging scheme for a composite is immediate. The
major problem in this paper has been to adapt the sequential linearization approach to
the self-consistent averaging scheme for composite materials. In this case, the sequential
approach consists of solving three subproblems. It has been demonstrated that an ad-
ditional accommodation step, besides the viscous and elastic subproblems, is needed in
order to estimate the material response satisfactorily. By examples of an isotropic two-
phase material we have shown that the proposed method provides acceptable predictions
in comparison to the existing models.
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Appendix

Some well-known formulae for the micro-macro transition in a heterogeneous mate-
rial are summarized for convenience. Assume an affine (linear with eigenstrains ε

res)
relationship between strain and stress tensors,

σ = L · (ε− ε
res), ε = M · σ + ε

res, LM = I, (93)

where L and M ≡ L−1 are given fourth-order stiffness and compliance tensors, respec-
tively, while I is the symmetrized fourth-order identity tensor, Iijkl = (1/2)(δikδjl+δilδjk).
(For a viscous material, strain is to be replaced by strain-rate.) The analytical (Eshelby)
solution for an ellipsoidal inclusion embedded in an infinite medium (matrix) of consti-
tutive relations analogous to (93), with uniform stiffness moduli L0 and uniform residual
strain ε

res
0 , provides the following fundamental relationship between the stress σ0 and

strain ε0 at infinity and their local counterparts,

σ − σ0 = −L∗ · (ε− ε0), (94)

where L∗ is called the Hill tensor (Hill, 1965b). This fourth-order tensor is calculated as
follows

L∗ = P−1 − L0 (95)
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and the polarisation tensor P is specified by the shape of ellipsoidal inhomogeneity and
the matrix properties, namely (Willis, 1981)

P =
1

4πabc

∫

|ν|=1

|a−1 · ν|−3
(
ν ⊗ (νL0ν)

−1 ⊗ ν

)sym
dS, (96)

where a is the second-order tensor of principal values a, b, c equal to the ellipsoid semi-axes
(for a spherical inhomogeneity a = b = c and a = aI), and the integration is over the
surface of the unit sphere |ν| = 1. The Eshelby tensor S reads

S = PL0 = (I+M0L∗)
−1 = M∗(M0 +M∗)

−1,

on using the inverses M0 = L−1
0 , M∗ = L−1

∗ .
On substituting the constitutive equations for the inhomogeneity and matrix into

Eq. (94), the following relationships are derived:

σ = B · σ0 + (M+M∗)
−1 · (εres0 − ε

res), (97)

ε = A · ε0 − (L+ L∗)
−1 · (L0 · ε

res
0 − L · εres), (98)

where A and B are the strain and stress concentration tensors, respectively, specified as
follows:

A = (L + L∗)
−1(L0 + L∗) = (I+P(L− L0))

−1, (99)

B = (M+M∗)
−1(M0 +M∗). (100)
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Ponte Castañeda, P., 1996. Exact second-order estimates for the effective mechanical
properties of nonlinear composite materials. J. Mech. Phys. Solids 44, 827–862.

Ricaud, J.-M., Masson, R., 2009. Effective properties of linear viscoelastic heterogeneous
media: Internal variables formulation and extension to ageing behaviours. Int. J. Solids
Struct. 46, 1599–1606.

Rougier, Y., Stolz, C., Zaoui, A., 1993. Representation spectrale en viscoèlasticité linéaire
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