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ABSTRACT

Computing inter-annotator agreement measures on a manually annotated corpus is necessary to

evaluate the reliability of its annotation. However, the interpretation of the obtained results is

recognized as highly arbitrary. We describe in this article a method and a tool that we developed

which “shuffles” a reference annotation according to different error paradigms, thereby creating

artificial annotations with controlled errors. Agreement measures are computed on these

corpora, and the obtained results are used to model the behavior of these measures and

understand their actual meaning.
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1 Introduction

The quality of manual annotations has a direct impact on the applications using them. For

example, it was demonstrated that machine learning tools learn to make the same mistakes as

the human annotators, if these mistakes follow a certain regular pattern and do not correspond

to simple annotation noise (Reidsma and Carletta, 2008; Schluter, 2011). Furthermore, errors

in a manually annotated reference corpus (a “gold-standard”) can obviously bias an evaluation

performed using this corpus as a reference. Finally, a bad quality annotation would lead to

misleading clues in a linguistic analysis used to create rule-based systems.

However, it is not possible to directly evaluate the validity of manual annotations. Instead, inter-

annotator agreement measures are used: at least two annotators are asked to annotate the same

sample of text in parallel, their annotations are compared and a coefficient is computed. The

latter can be of many types and the well-known Kappa-family is described in details in (Artstein

and Poesio, 2008). However, as pointed out by the authors of this article, the obtained results

are difficult to interpret. Kappa coefficients, for example, are difficult to compare, even within

the same annotation task, as they imply a definition of the markables that can vary from one

campaign to the other (Grouin et al., 2011). More generally, we lack clues to know if a Kappa

of 0.75 is a “good” result, or if a Kappa of 0.8 is twice as good as one of 0.4 or if a result of 0.6

obtained using one coefficient is better than 0.5 with another one, and for which annotation

task.

We first briefly present the state of the art (Section 2), then detail the principles of our method to

benchmark measures (Section 3) and show on some examples how different coefficients can be

compared (Section 4). We finally discuss current limitations and point out future developments.

2 State of the art

A quite detailed analysis of the most commonly used inter-annotator agreement coefficients

is provided by Artstein and Poesio (2008). They present the pros and cons of these methods,

from the statistical and mathematical points of view, with some hints about specific issues

raised in some annotation campaigns, like the prevalence of one category. A section of their

article is dedicated to various attempts at providing an interpretation scale for the Kappa

family coefficients and how they failed to converge. Works such as (Gwet, 2012) are also to be

mentioned. They present various inter-rater reliability coefficients and insist on benchmarking

issues related to their interpretation.

Many authors, among whom (Grouin et al., 2011; Fort et al., 2012), tried to obtain a more

precise assessment of the quality of the annotation in their campaigns by computing different

coefficients and analyzing the obtained results. However, their analyses lack robustness, as

they only apply to similar campaigns. Other studies concerning the evaluation of the quality of

manual annotation identified some factors that influence inter- and intra-annotator agreements,

thereby giving clues on their behavior. Gut and Bayerl (2004) thus demonstrated that the

inter-annotator agreement and the complexity of the annotation task are correlated: the larger

the number of categories, the lower the inter-annotator agreement. However, categories prone

to confusion are in limited number. The meta-analysis presented by Bayerl and Paul (2011)

extends this research on the factors influencing agreement results, identifying 8 such factors

and proposing useful recommendations to improve manual annotation reliability. However,

neither of these studies provides a clear picture of the behavior of the agreement coefficients

0This work has been partially financed by OSEO, the French State Agency for Innovation, under the Quaero program.



or of their meanings. The experiments detailed in (Reidsma and Carletta, 2008) constitute

an interesting step in this direction, focusing on the effect of annotation errors on machine

learning systems and showing the impact of the form of disagreements on the obtained quality

(random noise disagreement being tolerable, but not patterns in disagreements). This work

puts Kappa-like coefficients results into perspective but presents a tool-oriented view, limited to

these coefficients. In summary, the domain lacks a tool providing a clear and generic picture of

the agreement coefficients behavior, allowing to better qualify the obtained agreement results.

3 Generating benchmarking corpora: the Corpus Shuffling Tool

The method presented in this section is currently restricted to annotation campaigns consisting

in delimiting a span of text and characterizing it. It will be extended in the future to relations

and more complex structures.

3.1 Objectives and principles

Manual annotation, as already mentioned, is subject to human errors. Except for very simple

annotation tasks, these errors may involve several paradigms. Indeed, each manually annotated

element may diverge from what it should be (which is called the reference, see below), in

one or multiple ways, including: (i) the location is not correct (the frontiers of an element

do not exactly match those of the reference); (ii) the characterization is not correct (wrong

category, or wrong feature value); (iii) the annotation does not belong to the reference (false

positive); or (iv), on the contrary, a reference element is missing (false negative). All of these

error paradigms tend to damage the annotations, so each of them should be taken into account

by agreement measures. We propose here to apply each measure to a set of corpora, each of

which embeds errors from one or more paradigms, and with a certain magnitude (the higher

the magnitude, the higher the number of errors). This experiment should allow us to observe

how the measures behave w.r.t. the different paradigms, and with a full range of magnitudes.

The idea of creating artificial damaged corpora is inspired by Pevzner and Hearst (2002),

then Bestgen (2009) in thematic segmentation, but our goal (giving meaning to measures) and

our method (e.g. applying progressive magnitudes) are very different.

3.2 Protocol

Reference. A reference annotation set (called reference) is provided to the system: a true

Gold Standard or an automatically generated set based on a statistical model. It is assumed to

correspond exactly to what annotations should be, with respect to the annotation guidelines.

Shuffling. A shuffling process is an algorithm that automatically generates a multi-annotated

corpus given three parameters: a reference annotation, a number n of annotators to simulate,

and a coefficient 0≤ m≤ 1 called magnitude (in reference to earthquake measures). Each time

it is run, it creates a set of n parallel annotations (simulating n different annotators) on the

corpus, but with a quality damaged according to magnitude m.

Process. The system iteratively runs a given shuffling process on the full range of possible

magnitudes (from 0 to 1) with a parametrizable step (default is 0.05).

Agreement measure graph. For each of these annotation sets, i.e., for each magnitude, we

submit each agreement measure we want to evaluate, and record its score. At the end of the



process, we obtain a graph showing how a given measure reacts to a progressive shuffling,

where the x-axis represents the magnitude from 0 to 1, and the y-axis represents the agreement.

3.3 Overview of the implemented shuffling processes

All processes described here come from real observations of various corpora: false positives and

false negatives are usual in many campaigns, fragmentation and shift are observed in thematic

segmentation, category mistake is so usual that most agreement measures (e.g. Kappa) address

it, and combination of them appear for instance in discourse annotation.

3.3.1 False negative

A false negative is the fact for an annotator not to annotate an element belonging to the reference.

It is simulated as follows: (i) magnitude m = 0: the annotator did not miss any annotation;

(ii) magnitude m = 1: the annotator missed all the annotations and therefore did not produce

any; and (iii) 0< m< 1: each element to be annotated has a probability m of being missed.

3.3.2 False positive

Reversely, a false positive is the fact for an annotator to annotate an element not belonging

to the reference. We made the following decisions: (i) the maximum shuffling corresponds

to adding x times the number of elements of the reference, x default value being 1; (ii) for

0≤ m≤ 1, m · x elements are added; (iii) the way annotations are added is done with respect

to the characteristics of the reference (statistical distribution of categories, etc.)

3.3.3 Fragmentation

Sometimes, annotators have the choice between using several contiguous elements (of the same

category), or just one (covering the same text spans). Fragmentation simulates this by splitting

up reference elements. The protocol is as follows, n being the number of reference elements:

(i) the number of fragmentations to apply is nfrag = n · x ·m, where x is settable (its default

value is 1); (ii) for each fragmentation to apply, one element is chosen at random, and is split

(not necessarily in its center); (iii) the fragment of a split may be re-split next time, so that we

finally get several levels of fragmentation.

3.3.4 Shift

In some annotation campaigns, annotators manage to properly identify the phenomenon to

annotate, but have trouble locating it perfectly. We try to reproduce this error paradigm

with the shift shuffling, that moves the frontiers of the reference annotations. It is defined

as follows: (i) for magnitude m, we take into account the average length of the elements

(w.r.t. their category), using for instance a statistical model as described in section 3.2, called

maxlength, to compute the possible shifting latitude of each frontier, called maxlat, as follows:

maxlat =maxlength ·m · x , where m is the magnitude and x is a parameter whose default value

is 2; (ii) a number is chosen at random for each frontier, in the range from -maxlat to +maxlat,
and the frontier is shifted by this algebraic value. This shuffling process is conceptually more

difficult to design than the previous ones because the shuffling space being finite (the text

length), it is difficult to know to what extent it is actually possible to shuffle the annotations.



3.3.5 Category mistake

A frequent annotation mistake is to assign a wrong category to an annotated element. Two

important phenomena are to be mentioned, that are quite frequent and lead to some important

differences among current measurement methods: Prevalence is the fact that some categories

are more frequent than others. Some measures take this phenomenon into account in their

definition of so-called (and controversial) chance correction in order not to overrate the

observed agreement. Overlapping is the fact for two categories to cover, even slightly, a same

phenomenon: in such cases, annotators happen to choose a wrong but not so different category,

and some measures consider them as less important mistakes. The question now is to define

how best to simulate, the more gradually possible, a progressive category assignation mistake.

To define such a simulation, we rely, for a given magnitude, on a matrix that indicates, for

each category of the reference annotation, what is the probabilistic distribution of the chosen

categories for 100 annotations. We have made the following choices: (i) for m= 0, we use the

perfect matrix A (as given in table 1); (ii) for m = 1, we use the worst matrix B or C depending

on the choice of simulating prevalence (B) or not (C). The prevalence matrix B simulates a

(semi) random behavior with respect of the prevalence observed in the reference, while the

noPrevalence matrix C reflects a full random choice; (iii) Besides, overlapping is simulated

by the overlapping matrix D, which describes the way an annotator, for a given category in

the reference, makes mistakes more often in favor of friendly categories than in favor of others;

(iv) then, for each 0< m< 1, we built a matrix by weighted averaging of perfect matrix (100%

weighted at m= 0) and worst matrix (100% weighted at m= 1), as shown in Figure 1 (right).

When the overlapping option is chosen, the overlapping matrix is integrated in the averaging,

with a weight distribution being zero at m = 0 and m = 1, and a maximum in the intermediate

magnitudes, as shown in Figure 1 (left). Indeed, we consider such errors as neither belonging

to perfect annotation, nor to worst annotation.
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Figure 1: Weight distributions for averaging with overlapping (left) or without it (right)

A:Perfect B:Prevalence C:NoPrevalence D:Overlapping

Noun Verb Adj Prep Noun Verb Adj Prep Noun Verb Adj Prep Noun Verb Adj Prep

Noun 100 0 0 0 27 9 18 45 25 25 25 25 0 80 15 5

Verb 0 100 0 0 27 9 18 45 25 25 25 25 80 0 0 20

Adj 0 0 100 0 27 9 18 45 25 25 25 25 15 10 0 75

Prep 0 0 0 100 27 9 18 45 25 25 25 25 5 20 75 0

Table 1: The four confusion matrices used for interpolation

Combining the two options, 4 different experiments can be built: with or without overlapping

and with or without prevalence.



3.3.6 Combination

Each previously defined shuffling process involves a particular paradigm. However, in the

real world, human annotation errors in a given campaign may involve several paradigms at

the same time, sometimes on the same annotated element (e.g. a slight shift and a category

mistake). To address this situation, we provide a shuffling process that combines as many

shuffling processes as needed, defined as follows: (i) n sub-processes are chosen in a given

order; (ii) for a magnitude m, the main process shuffles the reference annotation, successively

applying each sub-process (in the given order) with magnitude m/n (hence, this multi-shuffling

is not n times faster as classic ones).

4 Using shuffled corpora to compare measures: a brief overview

To demonstrate the consistency of the method we briefly show in this section how it can be

used with two types of annotation paradigms.

4.1 Segmentation: Comparison of WindowDiff, G-Hamming and GM

Segmentation consists in determining frontiers between contiguous textual segments. We

compare here two metrics already compared by (Bestgen, 2009): WindowDiff (WD) described

in (Pevzner and Hearst, 2002) and Generalized Hamming Distance (GH) described in (Bookstein

et al., 2002), as well as a new versatile measure, the Glozz Measure (GM), described in (Mathet

and Widlöcher, 2011), which can be adapted to several paradigms, including segmentation. WD

and GH cannot exactly be considered as agreement measures, as they are distances between a

reference and a human annotation. These distances equal 0 when annotations are the same,

and 1 in the worst case. We have adapted the results as follows: agreement = 1− distance.

Moreover, since these metrics consider two annotators only, we have averaged the one-to-one

results when working with 3 or more annotators.
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Figure 2: False negatives (upper left), false positives (upper right), shift (lower left) and

combination (lower right)



Figure 2 shows the behavior of these three measures for three paradigms and their combination:

for false negatives WD and GH are quite close, with an almost linear response until magnitude

0.6. Their drawback is that their responses are limited by an asymptote, while GM shows a

full range of agreements, but is not linear; again, for false positives, WD and GH are very

similar, and their responses, if not asymptotic, show a lower limit at a quite high value (resp.

0.7 and 0.6). GM behaves in the same way as for false negatives, but with an asymptote at

agreement = 0.2 much lower than WD and GH; once again, for shifts, WD and GH show an

asymptote at about agreement = 0.4, when GM shows values from 1 to 0. Not surprisingly,

when using combination, the overall responses look like an average of the other paradigms.

This very first and brief comparison reveals that WD and GH are quite close, but GH scores are

a little more severe, and with a wider range. For these reasons, according to this experiment,

GH seems slightly better. GM is quite different, with almost a full range of agreements, probably

because it takes chance into account.

4.2 Categorization: Comparison of Kappa, W-Kappa and GM

We focus here on categorization only, assuming a situation where the elements to annotate

are pre-located. Four sets of corpora were created, with respect to the two available options

described in section 3.3.5. The measures we compare here are Cohen’s Kappa (Cohen, 1960),

the weighted Kappa (Cohen, 1968), with two different weight matrices (W-Kappa 1 being much

more forgiving than W-Kappa 2); and GM (Mathet and Widlöcher, 2011), with two different

options, GM1 which has overlapping capabilities, and GM2 which has not. We also add a very

simple percentage agreement value as a baseline (called BM, for Baseline Measure) for all

the other measures. The results are shown in Figure 3. First of all, when neither overlapping
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Figure 3: Results of different measures with prevalence (bottom-left), overlapping (top-right),

overlapping+prevalence (top-left), and none (bottom-right)

nor prevalence is involved, all the measures behave almost in the same way (even though

BM slightly overrates the agreement as magnitude increases, because it does not take chance



into account). When a prevalence phenomenon occurs, all the measures (except BM) still

perform equivalently, but BM increasingly overrates the agreement by up to about 0.25. Taking

chance into account has more impact here. The overlapping phenomenon clearly opposes

W-Kappa and GM to others. Whatever the prevalence option (top-left and top-right figures), the

differences are important in the 0.1 to 0.6 magnitude range (where the overlapping matrix has

more influence), with a difference of up to 0.15 for GM, and up to about 0.25 for W-Kappa-1.

The latter reacts with more strength because we set it with a very forgiving weight matrix,

while W-Kappa-2 is set with a less forgiving one, and is very close to GM whose weight matrix

is data-driven. Besides, it is interesting to note that when applying these two measures to

non-overlapping data (bottom figures), they behave almost exactly the same way as their basic

versions not taking overlapping into account.

5 Limitations and future work

Enhancing annotators’ simulation. We shall try in the future to get closer to real annotation

constraints. For instance, shifting is currently free, whereas in some campaigns annotating

overlapping entities is prohibited. We will also address the question of differences of behavior

between annotators.

Using real Gold Standard corpora. It is also possible to use a real Gold Standard corpus as a

reference for the system, and then to shuffle it. We started this work with the TCOF-POS-tagged

corpus (Benzitoun et al., 2012), for which annotators reached a 0.96 Kappa agreement, which

corresponds to a magnitude of 0.1 in the Shuffling Tool, i.e., to a matrix averaged between the

perfect one at 95% and the worst one at 5%.

Playing with more parameters. For each experiment this tool makes possible, it will be

possible to generate sub-experiments, each of which taking into account a given parameter,

including: (i) the number of annotators, (ii) the number of categories, (iii) the number of

annotated elements, as already studied with statistical considerations by (Gwet, 2012).

Relations and more complex structures. Finally, we shall extend the current work, focused

on entities as textual segments, to relations and sets of entities, in order to address other

annotation types such as co-reference chains and discourse relations.

Conclusion

According to the results on various types of paradigms, and with quite different agreement

measures, the proposed method and corpora happen to be consistent: as expected, it is

confirmed that the different measures provide decreasing scores from 1 to 0. Some important

differences as well as some similarities, appear between the studied methods. This seems

promising for further comparisons, in particular for measures with multi error paradigms

capabilities, e.g. Krippendorff’s αU (Krippendorff, 1995) and GM. To sum up, this tool will

help to (i) objectively compare the behavior of different agreement measures, (ii) obtain a new

and enhanced interpretation of their results: a given result of a given method corresponds to a

certain magnitude, of which we have a clear and formal definition, (iii) set and enhance existing

or future measures (checking improvements and regressions). The shuffling tool used in this

work to generate the damaged corpora is written in Java and is freely available1 under the GPL

license and all the corpora we generated and used for this paper are also freely available.

1http://www.glozz.org/shufflingtool
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