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It would be obscene to hope for a positive answer. The question is not asked literally; one should at least require the algebraic group to be reductive, if not simple. Moreover it may be necessary to bound the complexity of modules in some sense yet to be explained.

Since there is no K-structure a priori and therefore no notion of a dimension over K, one may focus on actions of finite nilpotence length, that is where unipotent subgroups act unipotently. This setting seems to me more natural than that of MC modules (where centralizer chains are stationary); to support this impression one may bear in mind that the class of MC modules is not stable by going to a quotient, an operation which is likely to be relevant here. One could also make various modeltheoretic assumptions, hoping that they would force configurations into the world of algebraic geometry; this did not seem natural either, since the first computations one can make are much too explicit for logic to play a deep role here. The future might bring contrary evidence; as for now, pure nilpotence seems more relevant.

So let us make our question more precise.

Let K be a field and G be an algebraic group. Let G = G K . Understand the relationships between:

• KG-modules of finite length• G-modules of finite length.

One may be tempted to tackle the question by reducing it to actions of the associated Lie algebra. Two difficulties appear.

• The Lie algebra "remembers" the base field, in a sense which we shall not explicit here; in any case one readily sees that actions of the Lie algebra can take place only in natural characteristic (that of the base field). Yet the group G does not necessarily remember its base field, since there are various isomorphisms the extreme cases of which are over finite fields, such as SL3(F2) ≃ PSL2(F7). These pathologies can be eliminated by reasonable assumptions on the algebraic group and on the field, and we shall deal only with decent cases.

• Above all the Lie algebra g which is a K-vector space, can appear only if V is already equipped with a K-linear structure; since it is not a priori, all one can hope for instead is the Lie ring, which is the (neither associative nor unitary) ring underlying the Lie algebra when one forgets its vector space structure. The representations of the Lie algebra are exactly the Kg-modules, where g is seen as a Lie ring. Similarly, the universal object in this context will not be the enveloping algebra, but the enveloping ring.

And anyway nothing guarantees that reducing a group action to an action of its Lie ring (if possible) is any simpler than directly linearizing the module. It thus looks like the introduction of the Lie algebra will not solve any question but bring new ones. Our central problem extends as follows:

Let K be a field and G be an algebraic group. Let G = G K and g = (Lie G) K be its Lie algebra, seen as a Lie ring. Understand the relationships between:

• KG-modules of finite length • G-modules of finite length

• Kg-modules of finite length • g-modules of finite length. I want to speak for the idea that there are indeed good correspondences between these categories. Here again this should not be taken literally: one may require the field to have sufficiently large characteristic and many roots of unity.

The archetype of an effective linearization is the following result, proved independently by Stephen Smith and Franz Georg Timmesfeld (the latter mathematician actually did not require simplicity).

A simple SL2(K)-module on which the unipotent subgroup acts quadratically is a K SL2(K)-module.

It is not known whether the same holds over a skew-field. We shall not enter the topic, as all our results rely on heavy use of the Steinberg relations. Actually an alternative title might have been: "G-modules and the Steinberg relations".

The present work is constructed as a series of variations on the Smith-Timmesfeld theme, showing the unexpected robustness of the underlying computation. Encountered difficulties and provable results will provide equally important information: one must determine the limits of this computation in order to understand its deep meaning.

• These variations will not be to the taste of geometers: from their point of view, I shall state only partial trivialities in an inadequate language. But to defend these pages, and with a clear sense of proportions, I will appeal to the Borel-Tits famous result. The idea now is to understand to what extent inner constraints of abstract structures determine their representation theory. There is no rational structure here; everything is done elementarily.

• These variations could perhaps amuse group theorists, who must sometimes deal with austere objects with no categorical information. Experts in finite group theory will nonetheless be upset by the lack of depth of my results, and by the efforts they cost: but the fields here may be infinite, and there is no character theory.

• The variations may at least be useful to logicians. Those with an interest in model-theoretic algebra often encounter abstract permutation groups; these sometimes turn out to be groups acting on abelian groups, and one needs results from more or less pure group theory to complete the discussion.

I confess that the present work takes place in a general context, far from model theory: I got carried away by the subject. To conclude this general foreword, I would love as much as the reader to suggest a conjecture describing in precise terms a phenomenon of "linearity of abstract modules of structures of Lie type"; I would love to but I cannot, because it is too early.

My heart-felt thanks to Alexandre Borovik, for he believes in crazy ideas.

The Setting

In this article we study quadratic actions of SL2(K) and sl2(K) on an abelian group.

Expanded.

The articles cited in the next few paragraphs are by no means required in order to understand the hopefully self-contained present work. Only the reader with some knowledge of the topic will find interest in this introduction; the other reader may freely skip it. Such a liminary digression is merely meant to provide some historical background on the notion of quadraticity which lies at the center of our first article. The results we shall quote are not used anywhere and they bear no relationship to the rest of the series nor to its general spirit.

To the reader versed in finite group theory the word quadraticity will certainly evoke a line of thought initiated by J. Thompson: the classification of quadratic pairs, consisting of a finite group and a module with certain properties which we need not make precise. J. Thompson's seminal yet unpublished work [START_REF] Thompson | Quadratic pairs[END_REF] was quite systematically pursued by Ho [START_REF] Ho | On the quadratic pairs[END_REF] among others, and more recently completed by A. Chermak [START_REF] Chermak | Quadratic pairs[END_REF] using the classification of the finite simple groups. This strain of results aims at pushing the group involved in a quadratic pair towards having Lie type. Its purpose may therefore be called group identification.

As A. Premet and I. Suprunenko [START_REF] Arcadievitch | Quadratic modules for Chevalley groups over fields of odd characteristics[END_REF] put it, in [START_REF] Thompson | Quadratic pairs[END_REF] and [START_REF] Ho | On the quadratic pairs[END_REF] "groups generated by quadratic elements are classified as abstract finite groups and corresponding modules are not indicated explicitly." The article [START_REF] Arcadievitch | Quadratic modules for Chevalley groups over fields of odd characteristics[END_REF] by A. Premet and I. Suprunenko we just quoted attempts at remedying the lack of information on the module by listing finite groups of Lie type and representations thereof such that the pair they form is quadratic in J. Thompson's sense. This orthogonal line could conveniently be named representation zoology. Yet one then deals with a representation instead of a general module and this is much more accurate data.

As a matter of fact we shall adopt neither the group identification nor the representation zoology approach but a third one which qualifies as module linearization: given a more-or-less concrete group of Lie type and an abstract module, can one retrieve a linear structure compatible with the action? Such a trend can be traced to a result of G. Glauberman [2, Theorem 4.1] which having among its assumptions both finiteness and quadraticity turns an abelian p-group into a sum of copies of the natural SL2(Fpn)-module. Following S. Smith [START_REF] Smith | Quadratic action and the natural module for SL2(k)[END_REF]Introduction], it was F.G. Timmesfeld who first asked whether similar results identifying the natural SL2(K)-module among abstract quadratic modules would hold over possibly infinite fields. As one sees this involves reconstructing a linear structure without the arsenal of finite group theory. Answers were given by F.G. Timmesfeld [7, Proposition 2.7] and S. Smith [START_REF] Smith | Quadratic action and the natural module for SL2(k)[END_REF].

Of course matters are a little more subtle than this rough historical account as one may be interested in simultaneous identification: actually G. Glauberman [2, Theorem 4.1] also identified the group, and this combined direction has been explored extremely far by F.G. Timmesfeld [START_REF] Georg | Abstract root subgroups and quadratic action[END_REF].

We shall follow the line of pure module linearization. Our group or Lie ring is explicitly known to be SL2(K) or sl2(K); given a quadratic module, we wish to retrieve a compatible linear geometry. Parts of the present article, namely the Theme and Variations n • 1-n • 3, are no original work but are adapted from F.G. Timmesfeld's book [START_REF] Georg | Abstract root subgroups and simple groups of Lie type[END_REF]. What we add to the existing literature is the replacement of an assumption on the unipotent subgroup by an assumption on a single unipotent element, and the treatment of the Lie ring sl2(K).

The liminary digression ends here. Our main result is the following.

Variations n • 7, n • 3, and n • 12. Let K be a field of characteristic = 2, 3, G = SL2(K) or sl2(K), and V be a G-module. Suppose that there is a unipotent element u (resp., nilpotent element x) of G acting quadratically on V , meaning that (u -1)

2 or x 2 is zero in End V . If G = sl2(K)
where Fixed K has characteristic 0, suppose in addition that V is 3-torsion-free. Then V is the direct sum of a G-trivial submodule and of copies of the natural representation G.

The result for the Lie ring sl2(K) (Variation n • 12) seems to be new. The result for the group SL2(K) is a non-trivial strengthening (Variation n • 7) of F.G. Timmesfeld's work (Variation n • 3), as the assumption is now only about one unipotent element, not about a unipotent subgroup; however the argument works only in characteristic = 2, 3. It could be Revised expected from J. Thompson's work in characteristic ≥ 5 and Ho's delicate extension to characteristic 3 (see the introductory digression above) that the case p = 3 would be quite harder if not different.

In the case of the Lie ring G = sl2(K), one can produce counterexamples in characteristic 3 but this requires the "opposite" nilpotent Revised element y to behave non-quadratically. In the case of the group G = SL2(K), I do not know.

The reader may also find of interest Variation n • 8, whose lengthy proof indicates that reducing an SL2(K)-module to an sl2(K)-module is not any simpler than directly linearizing the former.

The current section §1 is devoted to notations and basic observations. In §2 the core of the Smith-Timmesfeld argument for quadratic SL2(K)modules is reproduced; it will be generalized in following papers whence our present recasting it. Still on quadratic SL2(K)-modules, §3.1 bears no novelty but §3.2 may. In §4, the Lie ring sl2(K) and its quadratic modules are studied.

Notation. Let K be a field and G be the K-points of SL2 or sl2.

K, G

G will thus denote either a group G or a Lie ring g.

The Group

Notation. Let G be the group SL2(K).

G

Notation. For λ ∈ K (resp. K × ), let:

u λ , t λ u λ = 1 λ 0 1 and t λ = λ 0 0 λ -1
One simply writes u = u1 and i = t-1 ∈ Z(G).

u, i

If the characteristic is 2, one has i = 1.

Notation. Let:

U, T U = u λ : λ ∈ K + ≃ K + and T = t λ : λ ∈ K × ≃ K × Let B = U ⋊ T = NG(U ).

B

B is a Borel subgroup of G and U is its unipotent radical, which is a maximal unipotent subgroup; T is a maximal algebraic torus.

Relations.

• u λ uµ = u λ+µ ;

• t λ tµ = t λµ ; • tµu λ t µ -1 = u λµ 2 .
Note that in characteristic = 2, every element is a difference of two squares: consequently T, u = T ⋉ U .

Notation. Let w = 0 1 -1 0 .
w Relations. One has w 2 = i and wt λ w -1 = t λ -1 = t -1 λ . Relations. u λ wu λ -1 wu λ w = t λ , and in particular (uw) 3 = 1.

The natural (left-) module Nat SL2(K) corresponds to the natural action of G on K 2 .

The Lie Ring

Notation. Let g be the Lie ring sl2(K). g Notation. For λ ∈ K, let:

h λ , x λ , y λ h λ = λ 0 0 -λ , x λ = 0 λ 0 0 , y λ = 0 0 λ 0 One simply writes h = h1, x = x1, y = y1.

h, x, y

Notation. Let:

u, t u = x λ : λ ∈ K + ≃ K + and t = h λ : λ ∈ K + ≃ K + Let b = u ⊕ t = Ng(u).
b b is a Borel subring of g and u is its nilpotent radical; t is a Cartan subring.

Relations.

•

[h λ , xµ] = 2x λµ ; • [h λ , yν] = -2y λν ; • [xµ, yν] = hµν .
The natural (left-) module Nat sl2(K) corresponds to the natural action of g on K 2 .

The Module

Notation. Let V be a G-module, that is a G-or g-module.

V

The names of the elements of G will still denote their images in End V .

Notation. When G = G, one lets for λ ∈ K: ∂ λ = u λ -1 ∈ End V . One ∂ λ , ∂ simply writes ∂ = ∂1.
Relations.

• ∂ λ • ∂µ = ∂µ • ∂ λ ; • t λ ∂µ = ∂ λ 2 µ t λ ; • ∂ λ+µ = ∂ λ + ∂µ + ∂ λ • ∂µ.
Proof of Claim. The first claim is by abelianity of U ; the second comes from the action of T on U . Finally, denoting by u λ the corresponding element in the group ring (or more precisely its image in End V ), one has:

∂ λ+µ = u λ+µ -1 = u λ uµ -1 = (u λ uµ -uµ) + (uµ -1) = ∂ λ uµ + ∂µ = ∂ λ (∂µ + 1) + ∂µ = ∂ λ ∂µ + ∂ λ + ∂µ as desired. ♦ Notation. When G = g, one lets for i ∈ Z: Ei(V ) = {a ∈ V : h • a = iv}. E i (V )
When there is no ambiguity on the module, one simply writes Ei.

Each h λ (resp. xµ, resp. yν) maps Ei into Ei (resp. Ei+2, resp. Ei-2). One should however be careful that if the module contains torsion, the Added various Ei's need not be in direct sum.

Notation.

The length of V is the smallest integer, if there is one:

ℓ U (V ), ℓ u (V ) • when G = G, such that [U, . . . , U, V ] = 0 (U -length); • when G = g, such that u . . . u • V = 0 (u-length).
A length 2 module is called quadratic.

Clearly, if V is simple (i.e. without a proper, non-trivial G-submodule), then V either has prime exponent, or is torsion-free and divisible. We shall not always assume this.

The group G is said to act trivially on V if it centralizes it, that is if the image of G in End V is {Id}; the Lie ring g is said to act trivially on V if it annihilates it, that is if the image of g in End V is {0}. We then say that V is G-(respectively g-) trivial. The following observations will be used with no reference.

Observation. Suppose that

G = g = sl2(K). Let V be a g-module. 1. If K has characteristic p and V is p-torsion-free, then V is g-trivial. 2. If K has characteristic 0 and V is torsion, then V is g-trivial.
Proof of Claim. Fix a ∈ V \ {0} and any element z of g.

1.

If K has characteristic p, then g has exponent p. Suppose that V is p-torsion-free; then pz • a = 0 implies that z • a = 0: g annihilates V .

2. If K has characteristic 0, then g is divisible. Suppose that V is torsion; let n be the order of a. Then

n 1 n z • a = 0 = z • a: g annihilates V .
♦

The case of the group is hardly less trivial.

Observation. Suppose that

G = G = SL2(K). Let V be a G-module. Suppose that ∂ is nilpotent in End V . 1. If K has characteristic p and V is p-torsion-free, then V is G-trivial. 2. If K has characteristic 0 and V is torsion, then V is G-trivial.
Proof of Claim.

1. We show that u centralizes V . Otherwise, from the assumptions, there is a2

∈ ker ∂ 2 \ ker ∂. Let a1 = ∂(a2) ∈ ker ∂ \ {0}. Since K has characteristic p and V is p-torsion-free, u p • a2 = a2 = a2 + pa1 implies a1 = 0: a contradiction. Hence u centralizes V . So CG(V ) is a normal subgroup of G containing an element of order p: it follows that CG(V ) = G (this still holds of K = F2 or F3).
2. If K has characteristic 0, the previous argument is no longer valid. Since V splits as the direct sum of its p-torsion components, one may assume that V is a p-group. We further assume that V has exponent p.

For any a ∈ V and any integer k, one has

u k • a = i≤k k i ∂ i (a); since ∂ has finite order ℓ, for k ≥ ℓ one even has u k •a = ℓ i=0 k i ∂ i (a). But since V has exponent p, for k big enough (independently of a) one finds u k • a = a.
Hence u k centralizes V . Here again the normal closure of u k is G, which must centralize V . We finish the argument. Let Vpn be the G-submodule of V of exponent p n . Then G centralizes every Vpn /V p n-1 . But G = SL2(K) is perfect; it therefore centralizes V . ♦

The Natural Module

Theme. Let K be a field, G = SL2(K), and V be a simple G-module of U -length 2. Then there exists a K-vector space structure on V making it isomorphic to Nat SL2(K).

This theorem was proved by F.G. Timmesfeld in a more general context (Theorem 3.4 of chapter I in his book [START_REF] Georg | Abstract root subgroups and simple groups of Lie type[END_REF]) and independently by S. Smith [START_REF] Smith | Quadratic action and the natural module for SL2(k)[END_REF]. Let us adapt the proof to our notations.

Proof. The assumption means that

[U, U, V ] = 0. Let Z1 = CV (U ), so that U centralizes V /Z1. Recall that one lets ∂ λ = u λ -1 ∈ End V . These functions map V to Z1 and annihilate Z1.
Observe that by simplicity, CV (G) = 0.

Finding a Decomposition

Step

1. Z1 ∩ w • Z1 = 0. Proof of Claim. Z1 ∩ w • Z1 = CV (U, wU w -1 ) = CV (G) = 0. ♦ Recall that i denotes the central element of G (i = 1 in characteristic 2). Step 2. For all a1 ∈ Z1, ∂ λ (w • a1) = it λ • a1. Proof of Claim. Let b1 = ∂ λ (w • a1) and c1 = ∂ λ -1 (w • b1);
by assumption, b1 and c1 lie in Z1. Then:

u λ -1 wu λ w • a1 = u λ -1 w • (w • a1 + b1) = i • a1 + w • b1 + c1 = (u λ w) -1 t λ • a1 = w -1 u -λ t λ • a1 = iwt λ • a1 So i • a1 + c1 = w • (it λ • a1 -b1) ∈ Z1 ∩ w • Z1 = 0 and the claim follows. ♦

Linear Structure

Notation 3. For λ ∈ K and a1 ∈ Z1, let:

λ • a1 = t λ • a1 λ • (w • a1) = w • (λ • a1)
Step 4. This defines an action of K on Z1 ⊕ w • Z1.

Proof of Claim. It is clearly well-defined. The action is obviously multiplicative on Z1 ⊕ w • Z1, because each term is T -invariant. Moreover one has:

• on Z1:

(λ + µ) • a1 = t λ+µ • a1 = i • ∂ λ+µ (w • a1) = i • (∂ λ (w • a1) + ∂µ(w • a1) + ∂ λ ∂µ(w • a1)) = i • ∂ λ (w • a1) + i • ∂µ(w • a1) = t λ • a1 + tµ • a1 = λ • a1 + µ • a1 • on w • Z1: (λ + µ) • (w • a1) = w • ((λ + µ) • a1) = w • (λ • a1 + µ • a1) = w • (λ • a1) + w • (µ • a1) = λ • (w • a1) + µ • (w • a1)
and everything is proved.

♦ Step 5. G is linear on Z1 ⊕ w • Z1.
Proof of Claim. Clearly T, w acts linearly. Moreover ∂ λ is trivially linear on Z1.

Finally ∂ λ (µ • (w • a1)) = ∂ λ (w • (µ • a1)) = it λ • (µ • a1) = µ • (it λ • a1) = µ • ∂ λ (w • a1
) so ∂ λ is linear, and u λ is therefore too. ♦

V being simple is additively generated by the G-orbit of any a1 ∈ Z1 \ {0}, and one then sees that V ≃ K 2 as the natural G-module. This finishes the proof.

Remark. Note that although there are a priori several K-vector spaces structures such that G acts linearly (twist the action by any field automorphism), our construction is uniquely defined. It is functorial: if V1 and V2 are two simple SL2(K)-modules and ϕ : V1 → V2 is a morphism of SL2(K)-modules, then for our construction ϕ is K-linear.

First Variations

Centralizers

The statements of this subsection can be found in F.G. Timmesfeld's book [START_REF] Georg | Abstract root subgroups and simple groups of Lie type[END_REF].

Variation n • 1. Let K be a field of characteristic = 2 with more than three elements, G = SL2(K), and V be a G-module. Suppose that V has U -length at most 2. Then G centralizes CV (i).

Proof. We assume that the central involution i centralizes V and show that G does too. By our assumptions, G centralizes the 2-torsion component V2 of V . Recall that one writes

∂ = ∂1. Let a ∈ CV (U ), b = ∂(w • a), and c = ∂(w • b). One then has: uwuw • a = uw • (w • a + b) = a + w • b + c = w -1 u • a = w • a Hence w•(a-b) = a+c.
But by assumption on the U -length, b, c ∈ CV (U ), so b -a ∈ CV (U, wU w -1 ) = CV (G). Let us resume:

uwuw • a = uw • (w • a + (b -a) + a) = a + (b -a) + (w • a + (b -a) + a) = w -1 u • a = w • a Therefore 2b = 0, that is b ∈ V2 ≤ CV (G), whence a = (a-b)+b ∈ CV (G).
As a conclusion G centralizes CV (U ). But by assumption on the Ulength, U centralizes V /CV (U ), so by the same argument G centralizes V /CV (U ) as well. Now G being perfect by the assumptions on K, G does centralize V .

Variation n • 2 ([9, Lemma 3.1 of chapter I]). Let K be a field of characteristic = 2 having more that three elements, G = SL2(K), and

V be a G-module of U -length 2 satisfying CV (G) = 0. Then for any λ ∈ K × , [u λ , V ] = [U, V ] = CV (U ) = CV (u λ ).
In particular CV (u λ ) does not depend on λ.

Proof. We can prove it as a Corollary to the Theme (modulo a few adjustements) or argue as follows. Since CV (G) = 0, V is 2-torsion-free, and by Variation n • 1, CV (i) = 0. It follows that i inverts V .

By assumption on the

U -length, [u λ , V ] ≤ [U, V ] ≤ CV (U ) ≤ CV (u λ ). Let a ∈ CV (u λ ): we show that a ∈ [u λ , V ]. Let b = ∂ λ -1 (w • a) and c = ∂ λ (w • b), so that: u λ wu λ -1 w • a = (u λ w) • (w • a + b) = -a + w • b + c = (w -1 u -1 λ -1 t λ -1 ) • a = -(wt λ -1 u -λ ) • a Hence a-c = w•(b+t λ -1 •a). But on the one hand c ∈ [U, V ] ≤ CV (u λ )
, so a -c commutes with u λ , and on the other hand

t λ -1 • a ∈ CV (t λ -1 u λ t λ ) = CV (u λ -1
) so a -c also commutes with wu λ -1 w -1 . Hence CG(a -c) contains:

(u λ wu λ -1 w -1 ) 3 = i(u λ wu λ -1 w) 3 = i(u λ wu λ -1 wu λ w)(u λ -1 wu λ wu λ -1 w) = it λ t λ -1 So i which inverts V , centralizes a -c; since V is 2-torsion-free it follows that a = c ∈ [u λ , V ].
Recall that when i is an involutive automorphism of an abelian group V , one lets

V + i = {v ∈ V : i•v = v} and V -i = {v ∈ V : i•v = -v}; when there is no ambiguity one simply writes V + and V -. If V is 2-torsion-free then V + ∩ V -= 0; if V is 2-divisible then V = V + + V -. Actually if [i, V ] is 2-divisible, one has V = V + + [i, V ].
Variation n • 3 ([9, Exercise 3.8.1 of chapter I]). Let K be a field of characteristic = 2 with more than three elements, G = SL2(K), and V be a

G-module of U -length ≤ 2. Then V = CV (G) ⊕ [G, V ],
and there exists a K-vector space structure on [G, V ] making it isomorphic to a direct sum of copies of Nat SL2(K). In particular CV (U ) = CV (u λ ) for any λ ∈ K × .

Proof. We have made no assumption on 2-divisibility or 2-torsion-freeness of V , so one may not a priori decompose V as V + and V -under the action of the central involution; the argument is more subtle.

By Variation n

• 1, G centralizes V + , that is V + = CV (G). Let W = [G, V ] and W = W/CW (G) = W/W + ; these are G-modules of U -length ≤ 2. By perfectness of G, C W (G) = 0.
One then reads the proof of the Theme again and sees that simplicity was only used to show that CV (G) = 0. In particular the Theme constructs, for any ā1 ∈ C W (U )\{0}, a K-linear structure on G•ā1 such that G acts naturally. We then take a maximal family of such vector planes in direct sum. By perfectness of

G one has W = [G, W ] and W = [G, W ]. Since G = U, wU w -1 , one has W = [G, W ] = [U, W ] + [wU w -1 , W ] ≤ G • C W (U )
, so W is itself a direct sum of vector planes all isomorphic to the natural representation of G.

In particular i inverts W , and the characteristic of

K being = 2, W is 2- divisible and 2-torsion-free. Let a ∈ W . As W is 2-divisible, there is b ∈ W such that a-2b ∈ CW (G). Since i inverts W , (i+1)•b ∈ CW (G). We take the sum: a + (i -1) • b ∈ CW (G). This means that W ≤ [i, W ] + CW (G), and therefore W = [G, W ] ≤ [G, [i, W ]] = [i, W ]. Now let a ∈ CW (G) = W + ; as W = [i, W ] there is b ∈ W such that a = i • b -b,
and applying i one gets 2b ∈ CW (G). But W is 2-torsion-free, so b ∈ CW (G) and a = 0. This implies CW (G) = 0, and retrospectively

W = W = [i, W ] = [i, V ] = [G, V ] which is 2-divisible and 2-torsion-free. One thus has V = V + + [i, V ] = CV (G) ⊕ [G, V ].
The final claim on centralizers is obtained by Variation n • 2, or more prosaically by inspection in each copy of Nat SL2(K).

Length

Variation n • 4. Let K be a field of characteristic = 2, G = SL2(K), and B be a Borel subgroup of G. Let V be a B-module. Suppose that V has u-length at most k, meaning that

∂ k = 0 in End V . Then for any λ ∈ K, ∂ 2k-1 λ = 0. Proof. Indeed, λ is a difference of two squares λ = µ 2 -ν 2 , so ∂ λ = ∂ µ 2 -ν 2 = ∂ µ 2 + ∂ -ν 2 + ∂ µ 2 ∂ -ν 2 . But ∂ µ 2 and ∂ ν 2 are T -conjugate to ∂, so they have order at most k. Moreover ∂ -ν 2 = -∂ ν 2 + ∂ 2 ν 2 + • • • + (-1) k-1 ∂ k-1 ν 2 . It is now clear that ∂ 2k-1 λ = 0. Variation n • 5. Let K be a field, G = SL2(K), B ≤ G be a Borel subgroup, and V be a B-module. Suppose that V has u-length ≤ k, meaning ∂ k = 0.
If every element of K is a (positive or negative) integer multiple of a square, then for every λ ∈ K, one has ∂ k λ = 0.

Proof. Let λ be a square.

Then ∂ λ is T -conjugate to ∂, so ∂ k λ = 0. Now for any n ∈ N, ∂ nλ = u nλ -1 = u n λ -1 = n j=1 n j ∂ j λ , the k th power of which Fixed typo is zero. Finally u-λ = u -1 λ = (1 + ∂ λ ) -1 = 1 -∂ λ + ∂ 2 λ • • • + (-1) k-1 ∂ k-1 , so ∂ k -λ = 0.
Hence any integer multiple of λ will satisfy ∂ k λ = 0. Our assumption is precisely that every element of K is of this form.

Variation n • 6. Let K be a field, G = SL2(K), and U be a unipotent subgroup of G. Let V be a U -module. If for all λ ∈ K, ∂ n λ = 0 in End V and V is n!-torsion-free, then V has U -length ≤ n.

Proof. Suppose that for any λ, one has ∂ n λ = 0; we show that every product ∂ λ 1 . . . ∂ λn annihilates V . Fix λ and µ. Then ∂ λ+µ = ∂ λ + ∂µ + ∂ λ ∂µ and ∂ n λ+µ = 0, so that:

0 = n i=0 n i (∂ λ ∂µ) n-i i j=0 i j ∂ j λ ∂ i-j µ = 0≤j≤i≤n n i i j ∂ n-i+j λ ∂ n-j µ
The monomials occuring in this sum have weight 2n -i. We show by induction on k = 2n -1 . . . n that every monomial of weight ≥ k is zero. 

0 = 0≤j≤i≤n n i i j ∂ k-i+j λ ∂ n-j µ
But when i < n, the terms have weight n + k -i ≥ k + 1, so all monomials are zero. Hence only the terms with i = n remain, that is:

0 = n j=0 n j ∂ k-n+j λ ∂ n-j µ = n-1 j=1 n j ∂ k-n+j λ ∂ n-j µ
We now replace µ by iµ. Since ∂iµ is equal to i∂µ modulo terms of weight ≥ 2, one actually has for all i = 1 . . . n -1:

0 = n-1 j=1 n j i n-j ∂ k-n+j λ ∂ n-j µ
This gives n -1 equations in n -1 variables, with determinant:

n j i n-j i,j=1...n-1 = i j i,j=1...n-1 n-1 j=1 n j = n-1 j=1 j! n j = (n!) n-1 n-1 j=1 (n -j)!
Since V is n!-torsion-free, one deduces that all terms are trivial: the latter are the monomials of weight k. This completes the induction. It follows in particular that ∂ n-1 λ ∂µ is trivial in End V . But µ being fixed, U acts on im ∂µ which is (n -1)!torsion-free, and ∂ n-1 λ acts trivially. By induction on n, one gets that every product ∂µ n . . . ∂µ 1 is trivial on V : which was to be proved.

Remark.

If K has characteristic p and V has exponent p, then without any assumption on u, every unipotent element u λ acts with length at most p: one has indeed u p λ = 1 = (1 + ∂ λ ) p = 1 + ∂ p λ . Yet V does not necessarily have U -length at most p, even if V actually is a G-module.

For any prime p, one may check that the Steinberg module St SL2(F p 2 ) is a simple SL2(F p 2 )-module of exponent p with U -length > p: all unipotent elements have length p, but the action hasn't. Going to St SL2(Fpn ) one can even make the U -length arbitrarily big.

Variation n • 7. Let K be a field of characteristic = 2, 3, G = SL2(K), and V be a G-module. Suppose that V has u-length ≤ 2, meaning that

∂ 2 = 0. Then V has U -length ≤ 2.
Proof.

Step 1. We may assume CV (G) = 0.

Proof of Claim. Let V = V /CV (G); by perfectness of G, C V (G) = 0, and one still has ∂ 2 = 0 in End V . Suppose the result is proved for V ; we shall prove it for V .

Since V has U -length at most 2 and C V (G) = 0, V is by Variation n • 3 a direct sum of copies of the natural representation of G. In particular the central involution i inverts V , which is 2-divisible and 2-torsion-free. For any a ∈ V , there is therefore b ∈ V such that a -2b ∈ CV (G); moreover

(1 + i) • b ∈ CV (G), so a + (i -1) • b ∈ CV (G), proving V = [i, V ] + CV (G). Now let a ∈ [i, V ] ∩ CV (G). Then there is b ∈ V such that a = [i, b] ∈ CV (G) ≤ CV (i), so 2b ∈ CV (i). Since i inverts V , (i+1)•2b = 4b ∈ CV (G), and as V is 2-torsion-free, b ∈ CV (G) ≤ CV (i), whence a = 0. One thus has V = [i, V ] ⊕ CV (G).
In particular [i, V ] ≃ V as Gmodules, and V has U -length ≤ 2. ♦

It follows from the assumptions on the base field that V is 6-torsionfree. By Variations n • 4 and n • 6, V has U -length at most 3: [U, U, U, V ] = 0. Let Z1 = CV (U ) and Z2 be defined by Z2/Z1 = C V /Z 1 (U ). These subgroups are B-invariant; the ∂ λ 's map V into Z2, Z2 into Z1, and annihilate Z1. We must show that Z2 = V .

Step 2. CV (i) = 0.

Proof of Claim. Consider CV (i) which is G-invariant and satisfies our assumptions; we may therefore suppose

V = CV (i). Let a1 ∈ Z1, b2 = ∂(w • a1), and c2 = ∂(w • b2). Note that b2, c2 ∈ im ∂ ≤ ker ∂. Then: (uw) -1 • a1 = uwuw • a1 = wu -1 • a1 = uw • (w • a1 + b2) = w • a1 = a1 + w • b2 + c2
We apply ∂: since c2 ∈ im ∂ ≤ ker ∂, there remains b2 = c2. In particular (w -1) • a1 = (w + 1) • b2. We apply (w -1): one finds (w -1)

2 • a1 = 2(1 -w) • a1 = 0. Since V is 2-torsion-free, one has w • a1 = a1 ∈ Z1 ∩ w • Z1 = CV (U, wU w -1 ) = CV (G) = 0.
Hence Z1 = 0, and since V has finite U -length, V = 0. ♦

In particular (and with no assumptions on 2-divisibility), i inverts V .

Notation 3. For any λ ∈ K × , let f λ : Z2 → Z2 be such that f λ (a2) = ∂ λ (w • a2).
It is not clear a priori whether f λ stabilizes Z1.

Step

4. If a1 ∈ Z1 ∩ w • Z2 and λ ∈ K × , then f λ (a1) = -t λ • a1.
Proof of Claim. For any g ∈ G,

• either g ∈ B, in which case g • a1 ∈ Z1 ≤ Z2;

• or g ∈ BwU , in which case g • a1 ∈ Z2.

Let V0 = G • (Z1 ∩ w • Z2) : V0 is therefore a G-submodule of V included in Z2, whence of U -length ≤ 2
. By Variation n • 3 and since the involution inverts V , V0 is a direct sum of copies of the natural representation of G.

It follows that for all a1 ∈ Z1 ∩ w • Z2, f λ (a1) = ∂ λ (w • a1) = -t λ • a1. ♦
We now go to the group ring Z[G], or more precisely its image in End(V ). We shall drop parentheses and the application point • of a function to an element. There is no risk of confusion.

Step 5. For any µ ∈ K × and a2 ∈ Z2, one has:

tµf µ -1 a2 = fµt µ -1 a2
(1)

-a2 -∂ µ -1 a2 + wfµa2 + f µ -1 fµa2 = -wtµa2 + wtµ∂ µ -1 a2 (2) -∂ µ -1 a2 + f µ -1 fµa2 + ∂ µ -1 f µ -1 fµa2 = -t µ -1 fµa2 + t µ -1 fµ∂ µ -1 a2 (3)
Proof of Claim. First of all:

tµf µ -1 a2 = tµ∂ µ -1 wa2 = ∂µtµwa2 = ∂µwt µ -1 a2 = fµt µ -1 a2
This proves ( 1), which we shall use with no reference. Now to [START_REF] Glauberman | A sufficient condition for p stability[END_REF]. On the one hand uµwa2 = wa2 + fµa2, and since a2 ∈ Z2, one has on the other hand u -µ -1 a2 = a2 -∂ µ -1 a2, so that:

u µ -1 wuµwa2 = u µ -1 w(wa2 + fµa2) = -u µ -1 a2 + wfµa2 + f µ -1 fµa2 = -a2 -∂ µ -1 a2 + wfµa2 + f µ -1 fµa2 = (uµw) -1 tµa2 = -wu-µtµa2 = -wtµu -µ -1 a2 = -wtµa2 + wtµ∂ µ -1 a2
which proves (2). To derive (3), apply ∂ µ -1 . ♦

Step 6. If b2 ∈ Z2 and λ ∈ K × are such that:

f λ -1 f λ b2 = -t λ -1 f λ b2 + t λ -1 ∂ λ f λ b2 ∂ λ f λ b2 ∈ w • Z2 then ∂ λ f λ b2 = 0.
Proof of Claim. We apply formula (2) of Step 5 with a2 = f λ (b2) and µ = λ -1 :

-f λ b2 -∂ λ f λ b2 + wf λ -1 f λ b2 + f λ f λ -1 f λ b2 = -wt λ -1 f λ b2 + wt λ -1 ∂ λ f λ b2
But by assumption

f λ -1 f λ b2 = -t λ -1 f λ b2 + t λ -1 ∂ λ f λ b2, so: -wt λ -1 f λ b2 + wt λ -1 ∂ λ f λ b2 = -f λ b2 -∂ λ f λ b2 -wt λ -1 f λ b2 + wt λ -1 ∂ λ f λ b2 -f λ t λ -1 f λ b2 + f λ t λ -1 ∂ λ f λ b2
One thus has:

f λ b2 + ∂ λ f λ b2 = -t λ f λ -1 f λ b2 + t λ f λ -1 ∂ λ f λ b2 = f λ b2 -∂ λ f λ b2 + t λ f λ -1 ∂ λ f λ b2
But by Step 4 which applies here thanks to the second assumption, one has

f λ -1 ∂ λ f λ b2 = -t λ -1 ∂ λ f λ b2, so one finds 3∂ λ f λ b2 = 0. Since V is 3-torsion-free, we are done. ♦ Step 7. Z1 ≤ w • Z2; in particular if a1 ∈ Z1, then f λ a1 = -t λ a1.
Proof of Claim. Note that the second claim follows immediately from the first and Step 4. So let a1 ∈ Z1. We apply formula (3) of Step 5 with a2 = a1 and µ = λ:

f λ -1 f λ a1 + ∂ λ -1 f λ -1 f λ a1 = -t λ -1 f λ a1 or equivalently put u λ -1 f λ -1 f λ a1 = -t λ -1 f λ a1. It follows that f λ -1 f λ a1 = -u -λ -1 t λ -1 f λ a1 = -t λ -1 u -λ f λ a1. Since f λ a1 ∈ Z2, one finds: f λ -1 f λ a1 = -t λ -1 f λ a1 + t λ -1 ∂ λ f λ a1
This equation is the first assumption of Step 6. In order to check the second assumption we go back to formula (2) of Step 5, which rewrites as follows:

-a1 + wf λ a1 -t λ -1 f λ a1 + t λ -1 ∂ λ f λ a1 = -wt λ a1 or: (wt λ -1)a1 + (wt λ -1)t λ -1 f λ a1 + t λ -1 ∂ λ f λ a1 = 0
We apply (wt λ + 1); there remains:

-2a1 -2t λ -1 f λ a1 + (wt λ + 1)t λ -1 ∂ λ f λ a1 = 0
This implies in particular that ∂ λ f λ a1 ∈ w • Z2: which is the second assumption needed to apply Step 6 to b2 = a1 and µ = λ.

So one finds ∂ λ f λ a1 = 0. This means that ∂ 2 λ wa1 = 0, and this does not depend on λ. Let us polarize like in Variation n • 5, that is let us replace λ by λ + µ; one finds 2∂ λ ∂µwa1 = 0. Since V is 2-torsion-free, one has that for all λ, µ ∈ K × , ∂ λ ∂µwa1 = 0, and therefore wa1 ∈ Z2.

♦

We now finish the proof. Let a2 ∈ Z2. Formula (3) of Step 5 is:

-∂ µ -1 a2 + f µ -1 fµa2 + ∂ µ -1 f µ -1 fµa2 = -t µ -1 fµa2 + t µ -1 fµ∂ µ -1 a2 But since ∂ µ -1 a2 ∈ Z1, one has by Step 7 that t µ -1 fµ∂ µ -1 a2 = -∂ µ -1 a2.
So one has:

f µ -1 fµa2 + ∂ µ -1 f µ -1 fµa2 = -t µ -1 fµa2 or u µ -1 f µ -1 fµa2 = -t µ -1 fµa2, so that: f µ -1 fµa2 = -u -µ -1 t µ -1 fµa2 = -t µ -1 fµa2 + ∂ µ -1 t µ -1 fµa2 = -t µ -1 fµa2 + t µ -1 ∂µfµa2
which is the first assumption of Step 6. To check the second assumption, recall that ∂µfµa2 ∈ Z1 ≤ w • Z2. It follows from Step 6 applied to b2 = a2 that ∂µfµa2 = 0, that is ∂ 2 µ wa2 = 0. Here again one polarizes, replacing µ by λ + µ, and one finds w • Z2 ≤ Z2.

So Z2 is U, w = G-invariant; clearly G centralizes V /Z2, so i does too. But i inverts V , and since V is 2-torsion-free, it follows that V = Z2.

Remark.

• The assumption that the characteristic is not 3 appears twice: after

Step 1, in order to bound the U -length by 3, and in Step 6. One may wonder what happens in characteristic 3. • If K is finite, the classification of SL2(K)-modules (Steinberg's tensor product theorem) should imply that only the sums of copies of the natural representation and of trivial modules meet the assumption. • If K is infinite, I do not know. One should first study the actions of SL2(F3(X)), and I hope that some knowledgeable reader will find the question interesting.

However and in spite of the Theme, characteristic 3 is as far as quadratic actions are concerned a special case.

Towards the Algebra

Algebrica

Variation n • 8. Let K be a field of characteristic = 2 with more than three elements, G = SL2(K), and V be a simple G-module of U -length 2. Then the action of SL2(K) induces an action of sl2(K) on V of u-length ≤ 2, meaning that u 2 • V = 0.

Proof. We shall of course argue directly, without using the Theme. Since V is simple, V is 2-divisible and 2-torsion-free; moreover i either centralizes or inverts it. We work in End(V ).

From the relations u λ wu λ -1 wu λ w = t λ , which may be written u λ wu λ -1 = t λ wu -λ w, we derive:

w + ∂ λ w + w∂ λ -1 + ∂ λ w∂ λ -1 = it λ -t λ w∂ λ w
which rewrites as:

it λ -w = ∂ λ w + w∂ λ -1 + ∂ λ w∂ λ -1 + t λ w∂ λ w (1)
We apply ∂ λ -1 to the right:

(it λ -w)∂ λ -1 = ∂ λ w∂ λ -1 + t λ w∂ λ w∂ λ -1 = (1 + t λ w)∂ λ w∂ λ -1 (2) 
There are two cases.

• If i centralizes V then (t λ w) 2 = 1 and (1 -t λ w)(1 + t λ w) = 0, hence: 0 = (1 -t λ w)(t λ -w)∂ λ -1 = (t λ -w -w + t λ )∂ λ -1
Dividing by 2, one finds t λ ∂ λ -1 = w∂ λ -1 . We apply ∂ λ to the left in (1):

∂ λ t λ -∂ λ w = ∂ λ w∂ λ -1 + ∂ λ t λ w∂ λ w = t λ ∂ λ -1 w∂ λ w = 0 It follows that ∂ λ w = ∂ λ t λ = t λ ∂ λ -1 = w∂ λ -1 , or u λ = wu λ -1 w.
Hence t λ = u λ wu λ -1 wu λ w = u 3 λ w, and u 3λ = t λ w has order dividing 2; in particular u 6λ = 1. The normal closure of unipotent elements is G: so if the characteristic is not 3 one has G = {1} in End V . If the characteristic is 3 then t λ w = 1 and w = t λ ; in particular w = t1 = 1. But since K > F3, the normal closure of w is G, which therefore centralizes V . In this case, sl2(K) acts trivially.

• If i inverts V , then (t λ w) 2 = -1 and (1 + t λ w) 2 = 2t λ w. One deduces from (2):

(

1 + t λ w)(-t λ -w)∂ λ -1 = 2t λ w∂ λ w∂ λ -1 = -(1 + t λ w)(t λ + w)∂ λ -1 = -(t λ + w + w -t λ )∂ λ -1 = -2w∂ λ -1
Hence t λ ∂ λ -1 + ∂ λ w∂ λ -1 = 0. We go back to [START_REF] Chermak | Quadratic pairs[END_REF], which rewrites as:

-t λ -w = ∂ λ w + w∂ λ -1 + t λ w∂ λ w -t λ ∂ λ -1 or (1 + t λ w)∂ λ w + (w -t λ )∂ λ -1 + (t λ + w) = 0. We apply (1 -t λ w) to the left: 2∂ λ w + 2w∂ λ -1 + 2t λ = 0.
From now on we suppose i = -1, so that:

∂ λ w + w∂ λ -1 = -t λ
With this equation we can reconstruct an action of sl2(K). Let indeed x λ = ∂ λ , y λ = w∂ λ w, and h λ = w∂ λ -∂ λ w. We check that we do get a copy of the Lie ring. Since the U -length is 2 it is clear that ∂ λ+µ = ∂ λ +∂µ: which proves the additivity of the maps λ → x λ , λ → y λ , and λ → h λ . It remains to check the bracket identities. Clearly [x λ , xµ] = [y λ , yµ] = [h λ , hµ] = 0. Now since ∂ λ w + w∂ λ -1 = -t λ , one has in particular:

t λ tµ = (∂ λ w + w∂ λ -1 )(∂µw + w∂ µ -1 ) = ∂ λ w∂µw + w∂ λ -1 w∂ µ -1 = t λµ = -∂ λµ w -w∂ (λµ) -1 so that: (∂ λ w∂µ + ∂ λµ ) = w(∂ (λµ) -1 + ∂ λ -1 w∂ µ -1 )w
Let q = ∂ λ w∂µ+∂ λµ : one thus has ∂q = ∂wq = 0. But since ∂w+w∂ = -1, one has -q = ∂wq + w∂q = 0, whence q = 0, that is ∂ λ w∂µ = -∂ λµ . Hence:

[h λ , xµ] = (w∂ λ -∂ λ w)∂µ -∂µ(w∂ λ -∂ λ w) = -∂ λ w∂µ -∂µw∂ λ = 2∂ λµ = 2x λµ
The similar verification for [h λ , yµ] is not any harder. Finally:

[x λ , yµ] = ∂ λ w∂µw -w∂µw∂ λ = -∂ λµ w + w∂ λµ = h λµ
We do retrieve an action of sl2(K). Clearly u 2 • V = 0.

Remark. One could have with extra arguments avoided the simplicity assumption; these would have involved a few cohomological computations which look alien to the core of the matter. What the proof given here really shows, is that turning a G-module into a g-module is likely to be harder than turning a G-module into a KG-module.

Logarithmic Variation

The following should not be compared to Variation n • 7.

Variation n • 9. Let K be a field of characteristic = 2, g = sl2(K), b be a Borel subring, and V be a b-module. Suppose that

x 2 • V = 0. Then u 2 • V = 0.
Proof. Let λ and µ be in K. Then:

x λ 2 x = [h λ 4 , x]x = -xh λ 4 x = -x[h λ 4 , x] = -xx λ 2
So xx λ annihilates V . Now:

x λ xµ = [h λ 2 , x]xµ = -xh λ 2 xµ = -x[h λ 2 , xµ] = -xx λµ = 0 which means that u 2 • V = 0.
Variation n • 10. Let K be a field of characteristic = 2, g = sl2(K), and V be a g-module. Suppose that x 2 • V = 0. Then for all λ ∈ K × , ker x λ = ker x and im x λ = im x.

Proof. By Variation n • 9, observe that u 2 annihilates V . Then in End V :

x λ = [h λ 2µ , xµ] = [[xµ, y λ 2µ 2 ], xµ] = 2xµy λ 2µ 2 xµ
In particular, ker xµ ≤ ker x λ and im x λ ≤ im xµ.

Variation n • 11. Let K be a field of characteristic = 2, 3, g = sl2(K), and V be a simple g-module. Suppose that V has x-length 2, meaning that x 2 • V = 0. Then there exists a K-vector space structure on V making it isomorphic to Nat sl2(K).

Proof. The proof starts here. By simplicity, AnnV (g) = 0; by our assumptions on the base field, V is 6-torsion-free.

Step 1. hx = x and (h -1)h(h + 1) = 0. Proof of Claim. One proves by induction in the enveloping ring:

y i x = xy i -i(h + i -1)y i-1
This equation holds for i = 0; one deduces:

y i x 2 = x 2 y i -2i(h + i -2)xy i-1 + i(i -1)(h + i -1)(h + i -2)y i-2 (1)
which holds for all i ≥ 0. We take i = 1 in (1); one finds 0 = 0 -2(h -1)x, and since V is 2-torsion-free:

hx = x (2)
We now take i = 2 in (1); one finds 0 = 0 -4hxy + 2(h + 1)h, whence by (2), 2xy = (h + 1)h. In particular, (h -1)h(h + 1) = 2(h -1)xy = 2(hx -x)y = 0. ♦

Here appears the assumption that the characteristic is not 3. Recall that for i ∈ Z one lets Ei = {a ∈ V : h • a = iv}.

Step 2. V = E-1 ⊕ E1 and ker x = E1. Proof of Claim. By simplicity, V is 2-divisible and 2-torsion-free. Since (h -1)h(h + 1) = 0, one has V = E-1 ⊕ E0 ⊕ E1; the corresponding projectors are respectively 1 2 h(h -1), 1 -h 2 , and 1 2 h(h + 1). If a0 ∈ E0, one has x λ • a0 ∈ E2; since V is 3-torsion-free, E2 = 0. So E0 is annihilated by x λ and similarly by yµ: it follows that E0 ≤ AnnV (g) = 0. Hence V = E-1 ⊕ E1 (the projectors, namely 1 2 (1 -h) and

1 2 (1 + h), still require V to be 2-divisible).
We see that E1 ≤ ker x; let us prove the converse. Let a ∈ ker x; let us write a = a-1 + a1 with obvious notations. Then 0

= x • a = x • a-1, so a-1 ∈ E-1 ∩ ker x. But since E-1 ≤ ker y, one finds: -a-1 = h • a-1 = xy • a-1 -yx • a-1 = 0 hence a-1 = 0, that is a ∈ E1. ♦ Notation 3. For λ ∈ K and vi ∈ Ei, let: λ • vi = ih λ • vi ∈ Ei
Step 4. This defines an action of K on V ; sl2(K) is linear.

Proof of Claim. This is clearly additive in vi and λ; it therefore suffices to prove multiplicativity in λ. Let λ, µ in K.

If a1 ∈ E1, one has λ • a1 = h λ • a1 = xy λ • a1 = x λ y • a1. Hence: λ•(µ•a1) = h λ hµ•a1 = x λ yxyµ•a1 = -x λ hyµ•a1 = x λ yµ•a1 = h λµ •a1 = (λµ)•a1 Similarly, for a-1 ∈ E-1, λ • a-1 = -h λ • a-1 = y λ x • a-1 = yx λ • a-1, whence: λ•(µ•a-1) = h λ hµ•a-1 = y λ xyxµ•a-1 = y λ xµ•a-1 = -h λµ •a-1 = (λµ)•a-1
and multiplicativity is proved. We now show that the action of sl2(K) is linear. The linearity of h λ is obvious; so it suffices to prove that of x and y. Let λ ∈ K. The linearity of x on E1 is obvious; now if a-1 ∈ E-1, one has:

λ • (x • a-1) = h λ x • a-1 = xy λ x • a-1 = -xh λ • a-1 = x • (λ • a-1)
The linearity of y on E-1 is obvious; if a1 ∈ E1, one has:

λ • (y • a1) = -h λ y • a1 = yx λ y • a1 = yh λ • a1 = y • (λ • a1) ♦
This completes the proof.

Remark. One could also directly prove that a suitable action of sl2(K) induces an action of SL2(K); this would be a converse to Variation n • 8. One would let u λ = x λ and w = x -y. We leave the pleasure of details to the reader; the computations are longer than those of Variation n • 11, and the point of going to the group in order to study the Lie ring is disputable.

Variation n • 12. Let K be a field of characteristic = 2, 3, g = sl2(K), and V be a g-module of x-length at most 2, meaning that x 2 • V = 0. If K has characteristic 0, suppose in addition that V is 3-torsion-free. Then Fixed V = ker h⊕ker(h-1)(h+1) where ker h = AnnV (sl2(K)), and there exists a K-vector space structure on ker(h -1)(h + 1) making it isomorphic to a direct sum of copies of Nat sl2(K). In particular, ker x = ker x λ for all λ ∈ K × .

Proof. Let V = V / AnnV (g). By perfectness, one has Ann V (g) = 0. One then reads the proof of Variation n • 11 again, and sees that simplicity was first used in order to kill AnnV (g) and 6-torsion, and then in order to guarantee 2-divisibility. So one still has E0( V ) = 0 and 2

V ≤ E-1( V ) ⊕ E1( V ). In particular if a0 ∈ E0(V ) then a0 = 0, that is E0(V ) = AnnV (g).
The proof of Variation n • 11 constructs for all ā1 ∈ E1( V ) \ {0} a K-linear structure on g • ā1 such that sl2(K) acts naturally; this also works for ā-1 ∈ E-1( V ) \ {0}. In particular, E-1( V ) ⊕ E1( V ) is a direct sum of vector planes, and so is 2

-divisible. If ā ∈ V , there is therefore b ∈ V such that 2ā = 4 b. Since V is 2-torsion-free, ā = 2 b ∈ 2 V and V = 2 V = E-1( V ) ⊕ E1( V ).
We go back up to V and show that

V = E-1(V )⊕E0(V )⊕E1(V ). Let Revised a1 ∈ π -1 (E1( V )). Then h•a1 = a1 so there is a0 ∈ AnnV (g) = E0(V ) such that h • a1 = a1 + a0. Hence a1 = (a1 + a0) -a0 with h • (a1 + a0) = a1 + a0, and a1 ∈ E0(V ) + E1(V ). Similarly π -1 (E-1( V )) ≤ E-1(V ) + E0(V ). Hence V = π -1 ( V ) = π -1 (E-1( V ) ⊕ E1( V )) ≤ E-1(V ) + E0(V ) + E1(V ).
The latter sum is direct, for if one has a relation a-1 +a0 +a1 = 0 with obvious notations, then applying h twice one finds a-1 +a1 = -a-1 +a1 = 0 whence 2a1 = 0. But 2 is invertible in K so 2h 1 2

• a1 = 0 = h • a1 = a1 and a-1 = a0 = 0 as well. Hence V = E-1(V ) ⊕ E0(V ) ⊕ E1(V ).
We also claim that

E-1(V ) ⊕ E1(V ) is g-invariant. If a1 ∈ E1(V ), then write x • a1 = b-1 + b0 + b1 with obvious notations and apply h. One finds hx • a1 = 3x • a1 = -b-1 + b1 = 3b-1 + 3b1 whence 2b1 = 4b-1 = 0, but applying h 1 2
this results in b1 = b-1 = 0. There remains x • a1 = b0 with 3b0 = 0. If K has finite characteristic p = 2, 3, then b0 ∈ g • V implies pb0 = 0 and therefore b0 = 0. If K has characteristic 0 then by assumption on V , b0 = 0. In either case x • a1 = 0 and this means that E1(V ) ≤ ker x. Notice that we did not use quadraticity of x, so E-1(V ) ≤ ker y similarly. Hence E-1(V ) ⊕ E1(V ) is x, y -invariant. Moreover, using quadraticity of x and Variation n • 10, E1(V ) ≤ ker x = ker x λ , so E-1(V ) ⊕ E1(V ) is {x λ : λa ∈ K}, y = g-invariant.

Finally E-1(V ) ⊕ E1(V ) is a g-submodule disjoint from E0(V ) = AnnV (g), so it is isomorphic to V : it is a direct sum of copies of the natural representation.

Characteristic 3

Remark. As opposed to the Theme to which it is a Lie ring analog, Variation n • 11 does not hold in characteristic 3.

Let indeed K be a field of characteristic 3. Let V = Ke2 ⊕ Ke0 ⊕ Ke1; let x and y act by:

x • e2 = e1 x • e0 = 0 x • e1 = 0 , y • e2 = e0 y • e0 = e1 y • e1 = e2
and extend linearly. One may check that this does define an action of sl2(K) where x 2 is trivial.

E0 E-1 E1 y y x y

One will in particular note that x 2 = 0 = y 2 : this representation of the Lie ring cannot come from a representation of the group.

Variation n • 13. Let K be a field of characteristic 3, g = sl2(K), and V be a simple g-module with x 2 = 0 in End V . Then E-1 ⊕ E1 may be equipped with a K-vector space structure such that, saying that K annihilates E0, the maps h λ and x λ are everywhere linear (the y λ 's a priori only on E1).

Proof. We go back to the proof of Variation n • 11; in characteristic 3 one still has the equations (h -1)h(h + 1) = 0 and hx = x. V being 2-divisible (it has exponent 3), it follows that V = E-1 ⊕ E0 ⊕ E1, and x • V ≤ E1. In particular, x • E0 ≤ E-1 ∩ E1 = 0, and x • E1 ≤ E0 ∩ E1 = 0. This proves E0 ⊕ E1 ≤ ker x. Now suppose a-1 ∈ E-1 ∩ ker x. Then:

-a-1 = h • a-1 = xy • a-1 -yx • a-1
Since y • a-1 ∈ E1 ≤ ker x, one finds a-1 = 0: hence ker x = E0 ⊕ E1. Therefore the module is as in the diagram above. On E-1 ⊕ E1 one defines the same linear structure as in Variation n • 11: this still makes sense as one will check.

Remark. One can't go any further. Let indeed K > F3 be a field of characteristic 3 and take three copies of K 3 , denoted Ei, the elements of which are the λi's for λ ∈ K, i ∈ {-1, 0, 1}; one identifies 0-1 = 00 = 01.

Let σ be an additive map from K to K. We then define an action of sl2(K) as follows:

x λ • (µ1) = 0 x λ • (µ0) = 0 x λ • (µ-1) = (λµ)1 , y λ • (µ1) = (λµ)-1 y λ • (µ0) = (λµ)1 y λ • (µ-1) = (σ(λµ))0
Since σ is additive, this does define a g-module where x 2 = 0. One can actually make V simple by taking σ to be injective; in general, starting with any element of im σ, one can reconstruct E-1 ⊕ (im σ)0 ⊕ E1.

If there were a compatible linear structure, y 3 would be linear; yet (y 3 ) |E 0 = σ. One can chose σ so that ker(σ -Id) has exactly 3 elements: σ will then be linear for no K-vector space structure.

We have just constructed a representation of the Lie ring sl2(K) which cannot come from a representation of the Lie algebra.

There is slightly worse. We now take σ to be an additive map such that the cardinal of im σ is strictly less than that of K (this is possible be K finite or infinite). One then obtains a simple sl2(K)-module of the form E-1 ⊕ (im σ)0 ⊕ E1. For cardinality reasons, the null weight subgroup cannot be equipped with any K-vector space structure: this explains our embarrassment on E0 in Variation n • 13.

Remark. Observe however that even in characteristic 3, if both x 2 and y 2 are zero on the simple sl2(K)-module V , then both x and y annihilate E0. As a consequence and by Variation n • 10, E0 ≤ AnnV (sl2(K)) = 0. So there exists a K-vector space structure on V making it isomorphic to Nat sl2(K).

One may remove simplicity.

From there on, added.

Variation n • 14. Let K be a field of characteristic 3, g = sl2(K), and V be a g-module with x 2 = y 2 = 0 in End V . Then V = AnnV (g) ⊕ g • V , and there exists a K-vector space structure on g • V making it isomorphic to a direct sum of copies of Nat sl2(K).

  When k = 2n -1, the only two such monomials are ∂ n λ ∂ by assumption. So suppose the result holds for k + 1; we prove it for k, with k ≥ n. Multiplying the equation by ∂ k-n λ , one finds:

Proof. We shall first work with F3, the field with three elements. Let g1 = sl2(F3) as a Lie subring of g and consider the g1-module V . The g-analysis will be made in the end.

V need not have exponent 3. If one reads the computations of Variation n • 11 again, one will merely expect 2hx = 2x and 2(h-1)h(h+1) = 0. However g1 • V does have exponent 3, and so does the ideal generated by g1 in End V . In particular one has (h -1)h(h + 1) = 0 and hx = x in End V ; by the quadraticity assumption on y one has hy = -y as well.

Let V = V / AnnV g1. By perfectness of g1, Ann V g1 = 0. So 3 V ≤ Ann V g1 = 0 and V has exponent 3. Of course in End V the equations (h -1)h(h + 1) = 0, hx = x, and hy = -y still hold.

Since V is a vector space over F3 one derives

As said, x annihilates E1( V ) and

We go back up to V exactly like in Variation n • 12 and show that

then a priori using the same notations as in Variation n • 12 one should find x • a1 = b0 with b0 ∈ AnnV g1 = E0(V ) of order 3. But quadraticity of x proved that in End V , 2hx = 2x. Hence 0 = 2h • b0 = 2hx • a1 = 2x • a1 = 2b0. There remains b0 = 3b0 -2b0 = 0, and E1(V ) ≤ ker x. But since we have assumed that y is quadratic as well, one also has E-1(V ) ≤ ker y, and this proves that

It is now clear that g1 • V = E-1(V ) ⊕ E1(V ) ≃ V /E0(V ) ≃ V as a g1-module is a direct sum of copies of Nat g1, and V = AnnV g1 ⊕ g1 • V .

We move to another set of ideas. By Variation n • 10, im x = im x λ and ker x = ker x λ for all λ ∈ K × , and similarly with y and y λ . So as a matter of fact, AnnV g1 = ker x ∩ ker y = AnnV g and g1 • V = im x + im y = g • V .

The same linear construction as in Variation n • 11 will then provide a suitable K-vector space structure on g • V = E-1(V ) ⊕ E1(V ). Future variations will explore the symmetric powers of Nat G.