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We prove the compactness of the support of the solution of some stationary Schrödinger equations with a singular nonlinear order term. We present here a sharper version of some energy methods previously used in the literature and, in particular, by the authors. Contents 1 Introduction 2 2 From suitable local inequalities to the vanishing of the involved complex functions on some small ball 3 3 A general framework of applications related to the Schrödinger operator 5 4 Proofs of the main results 6 5 Application to the localization property to the case of Neumann boundary conditions 10 References 14

Introduction

Since the beginnings of the eighties of the last century, it is already well-known that the absence of the maximum principle for the case of systems and higher order nonlinear partial differential equations was one of the main motivations of the introduction of suitable energy methods allowing to conclude the compactness of the support of their solutions (see, e.g., the presentation made in the monograph Antontsev, Díaz and Shmarev [START_REF] Antontsev | Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics[END_REF]).

The application of such type of methods to the case of nonlinear Schrödinger equations with a singular zero order term required some important improvements of the method. That was the main object of the previous author's papers of Bégout and Díaz [START_REF] Bégout | On a nonlinear Schrödinger equation with a localizing effect[END_REF][START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF].

The main goal of this new paper is to present a sharper version of the mentioned method potentially able to be applied to many other problems related to this type of Schrödinger equations such as the study of self-similar solutions, case of Neumann boundary conditions, presence of nonlocal terms (such as, for instance, in Hartree-Fock theory: Cazenave [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]), etc., which can not be treated with the mere technique presented in Bégout and Díaz [START_REF] Bégout | On a nonlinear Schrödinger equation with a localizing effect[END_REF][START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]. As a matter of fact, the concrete application of this sharper energy method to the concrete case of self-similar solutions of the evolution Schrödinger problem requires many additional arguments justifying the special structure of those solutions, reason why we decided to present it in a separated work (Bégout and Díaz [4]). We send the reader to Bégout and Díaz [START_REF] Bégout | Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations[END_REF] for a long description of the important role of the compactness of the solution in this context and for many other references related to this qualitative property of the solution. This paper is organized as follows. Below, we give some notations which will be used throughout this paper. In Section 2, we give the precise "localization" estimates which imply a solution of a partial differential equation to be compactly supported see Theorems 2.1 and 2.2, and especially estimates (2.1) and (2.3) . In Section 3, we give a tool which permits, from a solution of some partial differential equation, to establish the "localization" estimate (Theorem 3.1). The results of these two sections are proved in Section 4. In Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], localization property is studied for the complex-valued equation

-∆u + a|u| -(1-m) u + bu = F, in Ω. (1.1)
We also study this property here, but with a change of notation (see Remark 5.1 below for the motivation of this change). Section 5 is devoted to the study of the localization property of the solutions of equation (1.1), in the same spirit as Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], but with the homogeneous Theorem 5.6 below with Theorem 3.5 in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]). Finally, at the end of the paper, we treat equation (1.1) with the homogeneous Dirichlet boundary condition (Remark 5.8). We state the same results as in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], but with now the weaker assumption F ∈ L 2 (Ω).

Before ending this section, we shall indicate here some of the notations used throughout. We write i 2 = -1. We denote by z the conjugate of the complex number z. For 1 p ∞, p ′ is the conjugate of p defined by

1 p + 1 p ′ = 1. For j, k ∈ Z with j < k, j, k = [j, k] ∩ Z.
We denote by Γ the boundary of a nonempty subset Ω ⊆ R N and Ω c = R N \ Ω its complement. Unless if specified, any function lying in a functional space L p (Ω), W m,p (Ω), etc is supposed to be a complex-valued function L p (Ω; C), W m,p (Ω; C), etc . For a Banach space E, we denote by E ⋆ its topological dual and by . , . E ⋆ ,E ∈ R the E ⋆ -E duality product. In particular, for any

T ∈ L p ′ (Ω) and ϕ ∈ L p (Ω) with 1 p < ∞, T, ϕ L p ′ (Ω),L p (Ω) = Re Ω T (x)ϕ(x)dx.
As usual, we denote by C auxiliary positive constants, and sometimes, for positive parameters a 1 , . . . , a n , write C(a 1 , . . . , a n ) to indicate that the constant C continuously depends only on a 1 , . . . , a n (this convention also holds for constants which are not denoted by "C").

2 From suitable local inequalities to the vanishing of the involved complex functions on some small ball

In this section, we establish some results improving the presentation of some energy methods of Antontsev, Díaz and Shmarev [START_REF] Antontsev | Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics[END_REF] which allow to prove localization properties of solutions of a general class of nonlinear partial differential equations (Section 5, Remark 5.8 below and Bégout and Díaz [START_REF] Bégout | Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations[END_REF]).

In contrast to the presentation in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] (see e.g. Theorem 1.1), the following statement does not need any information on the second order equation but it will merely use a suitable balance between the total local energy (diffusion + absorption local energies) and the local boundary flux.

This will be crucial for the applicability of the method to cases for which the techniques of Bégout and Díaz [START_REF] Bégout | On a nonlinear Schrödinger equation with a localizing effect[END_REF][START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] can not be applied.

Theorem 2.1. Assume 0 < m < 1 and let N ∈ N. Then there exists C = C(N, m) satisfying the following property: let x 0 ∈ R N , ρ 0 > 0 and u ∈ H 1 loc B(x 0 , ρ 0 ) . If there exist L > 0 and M > 0 such that for almost every ρ ∈ (0, ρ 0 ),

∇u 2 L 2 (B(x0,ρ)) + L u m+1 L m+1 (B(x0,ρ)) M S(x0,ρ) u∇u. x -x 0 |x -x 0 | dσ , (2.1) 
then u |B(x0,ρmax) ≡ 0, where

ρ ν max = ρ ν 0 -CM 2 max 1, 1 L 2 max ρ ν-1 0 , 1 × min τ ∈( m+1 2 ,1] E(ρ 0 ) γ(τ ) max{b(ρ 0 ) µ(τ ) , b(ρ 0 ) η(τ ) } 2τ -(1 + m) + , (2.2) 
and where,

E(ρ 0 ) = ∇u 2 L 2 (B(x0,ρ0)) , b(ρ 0 ) = u m+1 L m+1 (B(x0,ρ0)) , k = 2(1 + m) + N (1 -m), ν = k m+1 > 2, γ(τ ) = 2τ -(1 + m) k ∈ (0, 1), µ(τ ) = 2(1 -τ ) k , η(τ ) = 1 -m 1 + m -γ(τ ) > 0.
for any τ ∈ m+1 2 , 1 .

Here and in what follows, r + = max{0, r} denotes the positive part of the real number r. For x 0 ∈ R N and r > 0, B(x 0 , r) is the open ball of R N of center x 0 and radius r, S(x 0 , r) is its boundary and B(x 0 , r) is its closure. Finally, σ is the surface measure on a sphere. A sharper estimate, in the same line of extension of the applicability of the techniques of Bégout and Díaz [START_REF] Bégout | On a nonlinear Schrödinger equation with a localizing effect[END_REF][START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] indicated before, can be obtained under some additional assumption on F.

Theorem 2.2. Let 0 < m < 1, x 0 ∈ R N , ρ 1 > ρ 0 > 0, F ∈ L 2 B(x 0 , ρ 1
) and u ∈ H 1 loc B(x 0 , ρ 1 ) . If there exist L > 0 and M > 0 such that for almost every ρ ∈ (0, ρ 1 ),

∇u 2 L 2 (B(x0,ρ)) + L u m+1 L m+1 (B(x0,ρ)) + L u 2 L 2 (B(x0,ρ)) M S(x0,ρ) u∇u. x -x 0 |x -x 0 | dσ + B(x0,ρ) |F (x)u(x)|dx , (2.3) 
then there exist E ⋆ > 0 and ε ⋆ > 0 satisfying the following property:

if ∇u 2 L 2 (B(x0,ρ1)) < E ⋆ and F 2 L 2 (B(x0,ρ)) ε ⋆ (ρ -ρ 0 ) + p , ∀ρ ∈ (0, ρ 1 ), (2.4 
)

where p = 2(1+m)+N (1-m) 1-m , then u |B(x0,ρ0) ≡ 0.
In other words, with the notation of Theorem 2.1,

ρ max = ρ 0 .
Remark 2.3. We may estimate E ⋆ and ε ⋆ as

E ⋆ = E ⋆ u -1 L m+1 (B(x0,ρ1)) , ρ 1 , ρ 0 ρ 1 , L M , N, m , ε ⋆ = ε ⋆ u -1 L m+1 (B(x0,ρ1)) , ρ 0 ρ 1 , L M , N, m .
The dependence on 1 δ means that if δ goes to 0 then E ⋆ and ε ⋆ may be very large. Note that p = 1 γ(1) , where γ is the function defined in Theorem 2.1.

L 1 loc ([0, ρ 0 ); R)
and so is defined almost everywhere in (0, ρ 0 ). Consequently, by Hölder's inequality, the right-hand side in (2.3) is defined almost everywhere in (0, ρ 1 ).

A general framework of applications related to the Schrödinger operator

The following result will be applied later to many concrete equations associated to the Schrödinger operator.

Theorem 3.1. Let Ω ⊂ R N be a nonempty open subset of R N , let x 0 ∈ Ω, let ρ 0 > 0, let 1 p 1 , . . . , p n1 , q 1 , . . . , q n2 < ∞, let F ∈ L 1 loc (Ω) be such that F |Ω∩B(x0,ρ0) ∈ L 2 Ω ∩ B(x 0 , ρ 0 ) and let f ∈ C   n2 k=1 L q k loc (Ω); n1 j=1 L p ′ j loc (Ω)   . Let u ∈ H 1 loc (Ω) ∩ L pj loc (Ω) ∩ L q k loc (Ω), for any (j, k) ∈ 1, n 1 × 1, n 2
, be any solution to the complexvalued equation

-∆u + f (u) = F, in D ′ (Ω).
(3.1)

If ρ 0 > dist(x 0 , Γ) then assume further that f ∈ C   n2 k=1 L q k (Ω); n1 j=1 L p ′ j (Ω)   , u ∈ H 1 0 (Ω), u |Ω∩B(x0,ρ0) ∈ L pj Ω ∩ B(x 0 , ρ 0 ) ∩ L q k Ω ∩ B(x 0 , ρ 0 ) , for any (j, k) ∈ 1, n 1 × 1, n 2 . Set for every ρ ∈ [0, ρ 0 ), I(ρ) = Ω∩S(x0,ρ) u∇u. x -x 0 |x -x 0 | dσ , J(ρ) = Ω∩B(x0,ρ) |F (x)u(x)|dx, (3.2) 
w(ρ) = Ω∩S(x0,ρ) u∇u. x -x 0 |x -x 0 | dσ, I Re (ρ) = Re w(ρ) , I Im (ρ) = Im w(ρ) . (3.3)
Then we have,

I, J, I Re , I Im ∈ C([0, ρ 0 ); R), (3.4 
)

∇u 2 L 2 (Ω∩B(x0,ρ)) + Re    Ω∩B(x0,ρ) f (u)udx    = Re    F (x)u(x)dx    + I Re (ρ), (3.5) Im    Ω∩B(x0,ρ) f (u)udx    = Im    Ω∩B(x0,ρ) F (x)u(x)dx    + I Im (ρ), (3.6) 
for any ρ ∈ [0, ρ 0 ).

Remark 3.2. One easily sees that if ρ 0 < dist(x 0 , Γ) then I, J, I Re , I Im ∈ C([0, ρ 0 ]; R).

Example 3.3. We give some functions f for which Theorem 3.1 applies.

1) Typically, we apply Theorem 3.1 to

f (u) = a|u| -(1-m) u + bu + V u, with (a, b) ∈ C 2 , V ∈ L ∞ loc (Ω) and 0 < m < 1. One easily checks that, f ∈ C L 2 loc (Ω) ∩ L m+1 loc (Ω); L 2 loc (Ω) + L m+1 m loc (Ω) .
If in addition, V ∈ L ∞ (Ω) then one also has,

f ∈ C L 2 (Ω) ∩ L m+1 (Ω); L 2 (Ω) + L m+1 m (Ω) . Let z ∈ C \ {0}. Since |z| -(1-m) z = |z| m , it is understood in the above example that |z| -(1-m) z = 0 when z = 0. 2) Hartree-Fock type equations. Let V ∈ L p (R N ; R) + L ∞ (R N ; R), with min 1, N 2 < p < ∞ and let W ∈ L q (R N ; R) + L ∞ (R N ; R), with min 1, N 4 < q < ∞. Set r = 2p p-1 , s = 4q q-1 , E = L 2 (R N ) ∩ L 4 (R N ) ∩ L r (R N ) ∩ L s (R N ), f (u) = V u + (W ⋆ |u| 2 )u,
for any u ∈ H 1 (R N ). Then H 1 (R N ) ֒→ E with dense embedding and, by density of

D(R N ) in spaces L m (R N ), for any m ∈ [1, ∞),
we have

E ⋆ = L 2 (R N ) + L 4 3 (R N ) + L r ′ (R N ) + L s ′ (R N ), f ∈ C E; E ⋆ , f ∈ C H 1 (R N ); H -1 (R N ) .
See Cazenave [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] 

Proofs of the main results

Before proceeding to the proof of Theorems 2.1 and 2.2, we recall the well-known Young's inequality.

For any real x 0, y 0, λ > 1 and ε > 0, one has

xy 1 λ ′ ε λ ′ x λ ′ + 1 λ ε -λ y λ . (4.1)
Proof of Theorems 2.1 and 2.2. We write ρ ⋆ = ρ 0 , for the proof of Theorem 2.1 and ρ ⋆ = ρ 1 , for the proof of Theorem 2.2. Let us introduce some notations. Let ρ ∈ (0, ρ ⋆ ). We set

E(ρ) = ∇u 2 L 2 (B(x0,ρ)) , b(ρ) = u m+1 L m+1 (B(x0,ρ)) , a(ρ) = u 2 L 2 (B(x0,ρ)) , θ = (1+m)+N (1-m) k ∈ (0, 1), ℓ = 1 θ(1+m) , δ = k 2(1+m) .
We may assume that u ∈ H 1 B(x 0 , ρ ⋆ ) . Indeed, the case u ∈ H 1 loc B(x 0 , ρ ⋆ ) can be treated by following the method in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] (see the end of Step 6, p.49, for Theorem 2.1 and the end of Step 7, p.50, for Theorem 2.2. We now proceed with the proof in 3 steps.

Step

1. E ∈ W 1,1 (0, ρ ⋆ ), for a.e. ρ ∈ (0, ρ ⋆ ), E ′ (ρ) = ∇u 2 L 2 (S(x0,ρ))
and

E(ρ) + b(ρ) 1 2 K 1 (τ )ρ -(ν-1) E ′ (ρ) 1 2 (E(ρ) + b(ρ)) γ(τ )+1 2 + (L 1 M ) 2 F 2 L 2 (B(x0,ρ)) , (4.2) 
where

K 1 (τ ) = C(N, m)L 2 1 M 2 max ρ ν-1 ⋆ , 1 max{b(ρ ⋆ ) µ(τ ) , b(ρ ⋆ ) η(τ ) } and L 1 = max 1, 1 L .
By the first lines of Step 2, p.47, in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], we only have to show (4.2). Let ρ ∈ (0, ρ ⋆ ).

We have to slightly modify the proof of Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]. Indeed, since F ∈ L 2 , we need of the term u 2 L 2 . We have,

S(x0,ρ) u∇u. x -x 0 |x -x 0 | dσ E ′ (ρ) 1 2 u L 2 (S(x0,ρ)) , (4.3) 
u L 2 (S(x0,ρ)) C(N, m) ∇u L 2 (B(x0,ρ)) + ρ -δ u L m+1 (B(x0,ρ)) θ u 1-θ L m+1 (B(x0,ρ)) . (4.4) 
See Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]: estimates (7.11), p.47, and (7.12), p.48. Putting together (2.1) (for Theorem 2.1), (2.3) (for Theorem 2.2), (4.3) and (4.4), we obtain,

E(ρ) + b(ρ) + κa(ρ) CL 1 M E ′ (ρ) 1 2 E(ρ) 1 2 + ρ -δ b(ρ) 1 m+1 θ b(ρ) 1-θ m+1 + L 1 M B(x0,ρ) |F (x)u(x)|dx, (4.5)
where κ = 0, in the case of Theorem 2.1 and where κ = 1, in the case of Theorem 2.2. In the case of 

|F (x)u(x)|dx L 1 M 2 F 2 L 2 (B(x0,ρ)) + 1 2L 1 M a(ρ), (4.6) 
for any ρ ∈ (0, ρ ⋆ ). Putting together (4.5) and (4.6), we obtain for both theorems, for a.e. ρ ∈ (0, ρ ⋆ ),

E(ρ) + b(ρ) C 0 L 1 M E ′ (ρ) 1 2 E(ρ) 1 2 + ρ -δ b(ρ) 1 m+1 θ b(ρ) 1-θ m+1 + (L 1 M ) 2 F 2 L 2 (B(x0,ρ)) . (4.7) 
Let τ ∈ m+1 2 , 1 and let ρ ∈ (0, ρ ⋆ ). A straightforward calculation yields

E(ρ) 1 2 + ρ -δ b(ρ) 1 m+1 b(ρ) 1-θ θ(m+1) = E(ρ) 1 2 b(ρ) 1-θ θ(m+1) + ρ -δ b(ρ) 1 θ(m+1) = E(ρ) 1 2 b(ρ) τ (1-θ)ℓ b(ρ) (1-τ )(1-θ)ℓ + ρ -δ b(ρ) 1 2 +τ (1-θ)ℓ b(ρ) ℓ-τ (1-θ)ℓ-1 2 2ρ -δ max ρ δ ⋆ , 1 K 2 2 (τ ) 1 2θ (E(ρ) + b(ρ)) 1 2 +τ (1-θ)ℓ ,
where

K 2 2 (τ ) = max{b(ρ ⋆ ) µ(τ ) , b(ρ ⋆ ) η(τ ) }, since µ(τ ) 2θ = (1 -τ )(1 -θ)ℓ and η(τ ) 2θ = ℓ -τ (1 -θ)ℓ -1 2 .
Hence (4.2) follows from (4.7) and the above estimate with

K 1 (τ ) = 16C 2 0 L 2 1 M 2 K 2 2 (τ ) max ρ ν-1 ⋆ , 1 , since 2δθ = ν -1 and θ 1 2 + τ (1 -θ)ℓ = γ(τ )+1 2 .
Step 2. For any τ ∈ m+1 2 , 1 and for a.e. ρ ∈ (0, ρ ⋆ ),

0 E(ρ) 1-γ(τ ) K 1 (τ )ρ -(ν-1) E ′ (ρ) + (2L 1 M ) 2(1-γ(τ )) F 2(1-γ(τ )) L 2 (B(x0,ρ)) .
Following Step 4, p.48, in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] but with Young's inequality (4.1) applied with x =

1 2 K 1 (τ )ρ -(ν-1) E ′ (ρ) 1 2 , y = (E(ρ) + b(ρ)) γ(τ )+1 2 , λ = λ(τ ) = 2 γ(τ )+1 and ε = ε(τ ) = (γ(τ ) + 1) 1 λ(τ ) ,
Step 2 follows from the estimates

E(ρ) + b(ρ) 1 2 K 1 (τ )ρ -(ν-1) E ′ (ρ) 1 2 (E(ρ) + b(ρ)) γ(τ )+1 2 + (L 1 M ) 2 F 2 L 2 (B(x0,ρ)) , C(τ ) 2 λ(τ ) λ(τ )-1 K 1 (τ )ρ -(ν-1) E ′ (ρ) 1 1-γ(τ ) + 1 2 (E(ρ) + b(ρ)) + (L 1 M ) 2 F 2 L 2 (B(x0,ρ)) , 1 2 K 1 (τ )ρ -(ν-1) E ′ (ρ) 1 1-γ(τ ) + 1 2 (E(ρ) + b(ρ)) + (L 1 M ) 2 F 2 L 2 (B(x0,ρ)) , C(τ ) = λ(τ ) -1 λ(τ ) ε(τ ) λ(τ ) λ(τ )-1 < λ m+1 2 -1 λ m+1 2 (γ(τ ) + 1) 1 λ(τ )-1 < 1 2 2 1 λ(τ )-1 < 1 2 2 λ(τ ) λ(τ )-1 .
Step 3. Conclusion.

Now, following from

Step 5 to Step 7, p.48-50, in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], where estimate (7.16) therein has to be replaced with estimate of the above Step 2 and where the mapping ρ -→ F (ρ) has to be replaced with the new function ρ

-→ (2L 1 M ) 2(1-γ) F 2(1-γ) L 2 (B(x0,ρ))
, we prove Theorems 2.1 and 2.2. This achieves the proof.

Proof of Theorem 3.1. If ρ 0 > dist(x 0 , Γ) then u ∈ H 1 0 (Ω). So we may extend u by 0 on Ω c ∩ B(x 0 , ρ 0 ). Denoting u this extension, we have u ∈ H 1 0 Ω ∪ B(x 0 , ρ 0 ) . We first consider the case where ρ 0 = dist(x 0 , Γ). We deal with ρ 0 = dist(x 0 , Γ) at the end of the proof. It follows that J ∈ C([0, ρ 0 ]; R) and by Cauchy-Schwarz's inequality, I ∈ L 1 (0, ρ 0 ). Thus, I, J, I Re , I Im are defined almost everywhere on (0, ρ 0 ). It follows from (3.1) that,

∇u, ∇ϕ D ′ (Ω),D(Ω) + f (u), ϕ D ′ (Ω),D(Ω) = F, ϕ D ′ (Ω),D(Ω) , (4.8) 
for any ϕ ∈ D(Ω). Let ρ ∈ (0, ρ 0 ). For any n ∈ N, n > 1 ρ , we define

ψ n ∈ W 1,∞ (R; R) by ∀t ∈ R, ψ n (t) =          1, if |t| ∈ 0, ρ -1 n , n(ρ -|t|), if |t| ∈ ρ -1 n , ρ , 0, if |t| ∈ [ρ, ∞),
and we set ϕ n (x) = ψ n (|xx 0 |) u(x) and ϕ n = ϕ n|Ω , for almost every x ∈ Ω ∪ B(x 0 , ρ 0 ). We easily check that for any (j, k) ∈ 1,

n 1 × 1, n 2 , ϕ n|Ω∩B(x0,ρ0) ∈ H 1 0 Ω ∩ B(x 0 , ρ 0 ) ∩ L pj Ω ∩ B(x 0 , ρ 0 ) ∩ L q k Ω ∩ B(x 0 , ρ 0 ) , ϕ n ∈ H 1 0 Ω ∪ B(x 0 , ρ 0 ) ∩ L pj Ω ∪ B(x 0 , ρ 0 ) ∩ L q k Ω ∪ B(x 0 , ρ 0 ) , ϕ n ∈ H 1 0 (Ω) ∩ L pj (Ω) ∩ L q k (Ω).
Then there exists (ϕ m n ) m∈N ⊂ D(Ω) such that for any (n, m) ∈ N 2 , supp ϕ m n ⊂ Ω ∩ B(x 0 , ρ 0 ) and

ϕ m n H 1 0 (Ω)∩L p j (Ω)∩L q k (Ω) ---------------→ m-→∞ ϕ n ,
for any (j, k) ∈ 1, n 1 × 1, n 2 . Consequently, ϕ = ϕ n are admissible test functions in (4.8). We have,

∇u, ∇ϕ n L 2 (Ω),L 2 (Ω) = ∇ u, ∇ ϕ n L 2 (Ω∪B(x0,ρ0)),L 2 (Ω∪B(x0,ρ0)) = B(x0,ρ) ψ n |x -x 0 | |∇ u| 2 dx -n Re    ρ ρ-1 n    S(x0,r) u∇ u. x -x 0 |x -x 0 | dσ    dr    ,
where we introduced the spherical coordinates (r, σ) at the last line. We now let n ր ∞. Using the Lebesgue's dominated convergence Theorem and recalling that

I Re ∈ L 1 ((0, ρ 0 ); R), we obtain lim n→∞ ∇u, ∇ϕ n L 2 (Ω),L 2 (Ω) = ∇u 2 L 2 (Ω∩B(x0,ρ)) -I Re (ρ). (4.9)
Proceeding as above but also with ϕ = iϕ n , we get lim

n→∞ ∇u, i∇ϕ n L 2 ,L 2 = -I Im (ρ) and lim n→∞ f (u), ϕ n F ⋆ ,E = Re A(u) , lim n→∞ f (u), iϕ n F ⋆ ,E = Im A(u) , lim n→∞ F, ϕ n L 2 ,L 2 = Re B(u) , lim n→∞ F, iϕ n L 2 ,L 2 = Im B(u) .
where E = 5 Application to the localization property to the case of Neumann boundary conditions

In Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], the authors study the localization property for equation (5.6) below with the homogeneous Dirichlet boundary condition (see, for instance, Theorem 3.5 in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]). In Theorem 5.6 below, we show that the same property holds with the homogeneous Neumann boundary condition. Before, we need to prove that solutions exist. This can be found in Bégout and Díaz [START_REF] Bégout | Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity[END_REF].

Note that from Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] 

with possibly b = 0, and we worked with Assumptions (5.5) are made to prove the existence and the localization property of solutions to

-i∆u + a|u| -(1-m) u + bu = F .
-∆u + a|u| -(1-m) u + bu = F, in L 2 (Ω). (5.6)
For uniqueness, the hypotheses are the following (Theorem 2.10 in Bégout and Díaz [START_REF] Bégout | Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity[END_REF]).

Assumption 5.2 (Uniqueness). Assume that (a, b) ∈ C 2 satisfies one of the two following conditions.

1) a = 0, Re(a) 0 and Re(ab) 0.

2) b = 0, Re(b) 0 and a = kb, for some k 0.

A geometric interpretation of (5.5) and 1) of Assumption 5.2 is given in Section 6 in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], modulus a rotation in the complex plane. Now, we give some results about equation (5.6) when (a, b) ∈ C 2 satisfies (5.5). If furthermore (a, b) satisfies Assumption 5.2 then the solution of (5.7) is unique. Let v ∈ H 1 (Ω) be any solution to (5.7). Then v ∈ H 2 loc (Ω). In addition,

v H 1 (Ω) M F L 2 (Ω) , (5.8) 
where M = M (|a|, |b|). Finally, if for some α ∈ (0, m], F ∈ C 0,α loc (Ω) then u ∈ C 2,α loc (Ω).

Symmetry Property 5.4. If furthermore, for any R ∈ SO N (R), RΩ = Ω and if F is spherically symmetric then we may construct a solution which is additionally spherically symmetric. For N = 1, this means that if F is an even (respectively, an odd) function then u is also an even (respectively, an odd) function.

Here and in what follows, SO N (R) denotes the special orthogonal group of R N . be a solution to (5.7). If uniqueness holds for the problem (5.7)1 , supp F is a compact set and

F L 2 (Ω) δ 0 then supp u ⊂ K(ε) ⊂ Ω, where 
K(ε) = x ∈ R N ; ∃y ∈ supp F such that |x -y| ε ,
which is compact.

The proof relies on the following lemma. 

⋆ > 0. If F |Ω∩B(x0,ρ⋆) ∈ L 2 Ω ∩ B(x 0 , ρ ⋆ ) then for any ρ ∈ [0, ρ ⋆ ), ∇u 2 L 2 (Ω∩B(x0,ρ)) + L u m+1 L m+1 (Ω∩B(x0,ρ)) + L u 2 L 2 (Ω∩B(x0,ρ)) M Ω∩S(x0,ρ) u∇u. x -x 0 |x -x 0 | dσ + Ω∩B(x0,ρ) |F (x)u(x)|dx , (5.10)
where it is additionally assumed that u ∈ H 1 0 (Ω) if ρ ⋆ > dist(x 0 , Γ).

Proof. Let x 0 ∈ Ω and let ρ ⋆ > 0. We set for every ρ ∈ [0, ρ ⋆ ),

I(ρ) = Ω∩S(x0,ρ)
u∇u.

x It follows that supp u ⊂ K(ε) and u ∈ H 1 0 (Ω) is a solution to (5.7). By uniqueness assumption, u = u so that supp u ⊂ K(ε) ⊂ Ω, which is the desired result.

Remark 5.8. In Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], the authors study existence, uniqueness, smoothness and localization property for the equations (5.6) with an external source F belonging to L m+1 m (Ω) with 0 < m < 1 (see, for instance, Theorem 3.5 in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]). Below, we explain how the same results hold true with the weaker assumption F ∈ L 2 (Ω). Indeed, when |Ω| < ∞ and 0 < m < 1, L m+1 m (Ω) ֒→ L 2 (Ω) and L m+1 m (Ω) = L 2 (Ω). Results of existence can be found in Bégout and Díaz [START_REF] Bégout | Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity[END_REF] 

Theorem 2 . 2 ,

 22 we apply (4.1) with x = |F |, y = |u|, λ = 2 and ε = √ L 1 M , and we get B(x0,ρ)

L

  qj (Ω), F = n1 j=1 L pj (Ω), A(u) = Ω∩B(x0,ρ) f (u) u dx and B(u) = Ω∩B(x0,ρ) F (x)u(x)dx. Estimates (3.5) and (3.6) then follow from (4.9) and these five last estimates. Since all terms in (3.5) and (3.6) are continuous on [0, ρ 0 ], except eventually I Re and I Im , we deduce that I Re and I Im are continuous and (3.5) and (3.6) hold for any ρ ∈ [0, ρ 0 ]. The case ρ 0 = dist(x 0 , Γ) follows from the above proof applied with ρ n 0 = ρ 0 -1 n in place of ρ 0 and letting n ր ∞.

Remark 5 . 1 .

 51 to this paper, there was a slight change of notation. See Remark 5.1 below. In the context of the paper of Bégout and Díaz [3], we can establish an existence result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet condition) and F ∈ L 2 (Ω) instead of F ∈ L m+1 m (Ω) . In Bégout and Díaz [3], we introduced the set, A = C \ z ∈ C; Re(z) = 0 and Im(z) 0 , and assumed that ( a, b) ∈ C 2 satisfies, ( a, b) ∈ A × A and              Re( a)Re( b) 0, or Re( a)Re( b) < 0 and Im( b) > Re( b) Re( a) Im( a),

  But here in order to follow a closer notation with most of the works dealing with Schrödinger equations, we do not work any more with this equation but with,-∆u + a|u| -(1-m) u + bu = F,and b = 0. This means that we choose, a = ia, b = ib and F = iF. Then assumptions on (a, b) are changed by the fact that for z = iz, Re(z) = Re(-i z) = Im( z), (5.2) Im(z) = Im(-i z) = -Re( z). (5.3) It follows that the set A and (5.1) become, A = C \ z ∈ C; Re(z) 0 and Im(z) = 0 , b) ∈ C 2 satisfies (5.1) ⇐⇒ (a, b) ∈ C 2 satisfies (5.5) .

Corollary 5 . 3 (

 53 Neumann boundary conditions). Let Ω be a nonempty bounded open subset of R N having a C 1 boundary, let ν be the outward unit normal vector to Γ, let 0 < m < 1 and let (a, b) ∈ C 2 satisfies (5.5). For any F ∈ L 2 (Ω), there exists at least one solutionu ∈ H 1 (Ω) to    -∆u + a|u| -(1-m) u + bu = F, in L 2 (Ω),

Remark 5 . 5 .Theorem 5 . 6 .

 5556 One easily checks that if (a, b) ∈ A 2 satisfies Re(a) 0 and Re(ab) 0 then (a, b) ∈ C 2 verifies (5.5). In this case, uniqueness assumptions imply existence assumptions. Proof of Corollary 5.3 and Symmetry Property 5.4. The result comes from Bégout and Díaz [5]: Theorem 2.8 (existence and symmetry property), Theorem 2.10 (uniqueness), Theorem 2.9 a priori estimate (5.8) and Theorem 2.12 (local smoothness). Concerning the support of solution of (5.7) we have: Let Ω be a nonempty bounded open subset of R N having a C 1 boundary, let 0 < m < 1 and let (a, b) ∈ C 2 satisfies (5.5). Then there exists ε ⋆ > 0 such that for any 0 < ε ε ⋆ , there exists δ 0 = δ 0 (ε, |a|, |b|, N, m) > 0 satisfying the following property. Let F ∈ L 2 (Ω) and let u ∈ H 1 (Ω)

Lemma 5 . 7 .

 57 Let Ω ⊂ R N be a nonempty open subset of R N , let 0 < m < 1 and let (a, b) ∈ C 2 satisfies (5.5). Let F ∈ L 1 loc (Ω) and let u ∈ H 1 loc (Ω) be any solution to -∆u + a|u| -(1-m) u + bu = F, in D ′ (Ω). (5.9) Then there exist two positive constants L = L(|a|, |b|) and M = M (|a|, |b|) satisfying the following property. Let x 0 ∈ Ω and ρ

-x 0 2 L 2 ( 2 L 2 ( 2 L 2 (

 0222222 |xx 0 | dσ and J(ρ) = Ω∩B(x0,ρ) |F (x)u(x)|dx. It follows from Theorem 3.1 that I, J ∈ C([0, ρ ⋆ ); R) and ∇u Ω∩B(x0,ρ)) + Re(a) u m+1 L m+1 (Ω∩B(x0,ρ)) + Re(b) u Ω∩B(x0,ρ)) I(ρ) + J(ρ), (5.11) Im(a) u m+1 L m+1 (Ω∩B(x0,ρ)) + Im(b) u Ω∩B(x0,ρ))I(ρ) + J(ρ),(5.12)for any ρ ∈ [0, ρ ⋆ ). Estimate (5.10) then follows from (5.11), (5.12) and Lemma 4.5 from Bégout and Díaz[START_REF] Bégout | Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity[END_REF] with δ = 0.Proof of Theorem 5.6. Let F ∈ L 2 (Ω) with supp F ⊂ Ω and let u ∈ H 1 (Ω) a solution to (5.7) be given by Theorem 5.3. Set K = supp F andO(ε) = x ∈ R N ; ∃y ∈ K such that |x -y| < ε . Then K(ε) = O(ε). Let ε ⋆ > 0 be small enough to have K(5ε ⋆ ) ⊂ Ω and let ε ∈ (0, ε ⋆ ]. Let L andM be given by Lemma 5.7 applied with ρ ⋆ = 2ε. By Theorem 2.1 and estimate (5.8) in Corollary 5.3 above, there exists δ 0 = δ 0 (ε, |a|, |b|, N, m) > 0 such that if F L 2 (Ω) δ 0 then u |B(x0,ε) ≡ 0, for anyx 0 ∈ Ω such that B(x 0 , 2ε) ∩ K = ∅ and B(x 0 , 2ε) ⊂ Ω. One easily sees that B(x 0 , 2ε) ∩ K = ∅, for anyx 0 ∈ K(2ε) c ∩ K(3ε). We deduce that for any x 0 ∈ K(2ε) c ∩ K(3ε), u |B(x0,ε) ≡ 0. By compactness, there exist n ∈ N and x 1 , . . . , x n ∈ K(2ε) c ∩ K(3ε) such that,K(ε) c ∩ O(4ε) ⊂ n j=1 B(x j , ε) ⊂ n j=1 B(x j , 2ε) ⊂ K(5ε) ⊂ Ω.It follows that u |K(ε) c ∩O(4ε) ≡ 0. Let us define u in Ω by, u = u, in O(2ε), 0, in Ω \ O(2ε).

Ω∩B(x0,ρ)

which is the case, for instance, if (a, b) ∈ C

satisfies Assumption 5.2.

† The research of J.I. Díaz was partially supported by the project ref. MTM200806208 of the DGISPI (Spain) and the Research Group MOMAT (Ref. 910480) supported by UCM. He has received also support from the ITN FIRST of the Seventh Framework Program of the European Community's (grant agreement number 238702) 2010 Mathematics

jointly to some others additional results. Hypotheses on (a, b) ∈ C 2 are the same as in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF], except we have to require b = 0. Note that from Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] to the present paper, there was a change of notation. See Remark 5.1 for precision. Throughout this remark, equation Indeed, by Bégout and Díaz [START_REF] Bégout | Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity[END_REF] (Theorems 2.8, 2.9, 2.10 and 2.12), these results hold but with u ∈ H 2 loc (Ω) and

(Ω), (4.1) and (4.2) in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]. Concerning the localization property, Theorems 3.1 and 3.5 in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] still hold true but with F ∈ L 2 (Ω) and

instead of (3.1) in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]. The proofs are essentially the same where we use Lemma 5.7 and (5.13) above instead of (4.1) in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF]. It follows that Theorems 1.1 and 1.2 in Bégout and Díaz [START_REF] Bégout | Localizing estimates of the support of solutions of some nonlinear Schrödinger equations -The stationary case[END_REF] can be easily adapted with the obvious modifications.