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Abstract

We prove the compactness of the support of the solution of some stationary Schrödinger
equations with a singular nonlinear order term. We present here a sharper version of some energy
methods previously used in the literature and, in particular, by the authors.
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1 Introduction

Since the beginnings of the eighties of the last century, it is already well-known that the absence of the

maximum principle for the case of systems and higher order nonlinear partial differential equations

was one of the main motivations of the introduction of suitable energy methods allowing to conclude

the compactness of the support of their solutions (see, e.g., the presentation made in the monograph

Antontsev, Dı́az and Shmarev [1].

The application of such type of methods to the case of nonlinear Schrödinger equations with a

singular zero order term required some important improvements of the method. That was the main

object of the author’s papers of Bégout and Dı́az [4, 5].

The main goal of this paper is to present a sharper version of the mentioned method potentially able

to be applied to many other problems related to this type of Schrödinger equations such as the study of

self-similar solutions, case of Neumann boundary conditions, presence of nonlocal terms (such as, for

instance, in Hartree-Fock theory in Cazenave [6]), etc. As a matter of fact, the concrete application of

this sharper energy method to the concrete case of self-similar solutions of the evolution Schrödinger

problem requires many additional arguments justifying the special structure of those solutions, reason

why we decided to present it in a separated work (Bégout and Dı́az [3]). We send the reader to Bégout

and Dı́az [3] for a long description of the important role of the compactness of the solution in this

context and for many other references related to this qualitative property of the solution.

This paper is organized as follows. Below, we give some notations which will be used throughout

this paper. In Section 2, we give the precise “localization” estimates which imply a solution of a

partial differential equation to be compactly supported
(
see Theorems 2.1 and 2.2, and especially

estimates (2.1) and (2.3)
)
. In Section 3, we give a tool which permits, from a solution of some partial

differential equation, to establish the “localization” estimate (Theorem 3.1). The results of these two

sections are proved in Section 4. In Bégout and Dı́az [5], localization property is studied for equation

−∆u+ a|u|−(1−m)u+ bu = F, in Ω. (1.1)

We also study this property here, but with a change of notation. Section 7 helps to understand this

new notation (see also Comments 5.1 below for the motivation of this change). Section 5 is devoted to

the study of the localization property of the solutions of equation (1.1), in the same spirit as in Bégout
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and Dı́az [5], but with the homogeneous Neumann boundary condition instead of the homogeneous

Dirichlet boundary condition (compare Theorem 5.5 below with Theorem 3.5 in Bégout and Dı́az [5]).

Finally, Section 6 is concerned by equation (1.1) with the homogeneous Dirichlet boundary condition.

We state the same results as in Bégout and Dı́az [5], but with the weaker assumption F ∈ L2(Ω)1.

Before ending this section, we shall indicate here some of the notations used throughout. We

write i2 = −1. We denote by z the conjugate of the complex number z, by Re(z) its real part and

by Im(z) its imaginary part. For 1 6 p 6 ∞, p′ is the conjugate of p defined by 1
p + 1

p′ = 1. Let

j, k ∈ Z with j < k. We then write Jj, kK = [j, k] ∩ Z. We denote by Γ the boundary of a nonempty

subset Ω ⊆ RN , Ω its closure, Ωc = RN \ Ω its complement. Unless if specified, any function lying

in a functional space
(
Lp(Ω), Wm,p(Ω), etc

)
is supposed to be a complex-valued function

(
Lp(Ω;C),

Wm,p(Ω;C), etc
)
. For a Banach space E, we denote by E? its topological dual and by 〈 . , . 〉E?,E ∈ R

the E? − E duality product. In particular, for any T ∈ Lp
′
(Ω) and ϕ ∈ Lp(Ω) with 1 6 p < ∞,

〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re
∫
Ω

T (x)ϕ(x)dx. As usual, we denote by C auxiliary positive constants, and

sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate that the constant C

continuously depends only on a1, . . . , an (this convention also holds for constants which are not denoted

by “C”).

2 From suitable local inequalities to the vanishing of the in-
volved complex functions on some small ball

In this section, we establish some results improving the presentation of some energy methods of

Antontsev, Dı́az and Shmarev [1] which allow to prove localization properties of solutions of a general

class of nonlinear partial differential equations (Sections 5, 6 below and Bégout and Dı́az [3]).

Theorem 2.1. Assume 0 < m < 1 and let N ∈ N. Then there exists C = C(N,m) satisfying the

following property: let x0 ∈ RN , ρ0 > 0 and u ∈ H1
loc

(
B(x0, ρ0)

)
. If there exist L > 0 and M > 0 such

that for almost every ρ ∈ (0, ρ0),

‖∇u‖2L2(B(x0,ρ))
+ L‖u‖m+1

Lm+1(B(x0,ρ))
6M

∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ , (2.1)

1in [5], F belongs to L
m+1
m (Ω) ) L2(Ω), when |Ω| <∞ and m ∈ (0, 1).
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then u|B(x0,ρmax) ≡ 0, where

ρνmax =

(
ρν0 − CM2 max

{
1,

1

L2

}
max

{
ρν−1

0 , 1
}

× min
τ∈(m+1

2 ,1]

{
E(ρ0)γ(τ) max{b(ρ0)µ(τ), b(ρ0)η(τ)}

2τ − (1 +m)

})
+

, (2.2)

where,

E(ρ0) = ‖∇u‖2L2(B(x0,ρ0)), b(ρ0) = ‖u‖m+1
Lm+1(B(x0,ρ0)),

k = 2(1 +m) +N(1−m), ν = k
m+1 > 2,

and where

γ(τ) =
2τ − (1 +m)

k
∈ (0, 1), µ(τ) =

2(1− τ)

k
, η(τ) =

1−m
1 +m

− γ(τ) > 0.

for any τ ∈
(
m+1

2 , 1
]
.

Here and in what follows, r+ = max{0, r} denotes the positive part of the real number r. For x0 ∈ RN

and r > 0, B(x0, r) is the open ball of RN of center x0 and radius r, S(x0, r) is its boundary and

B(x0, r) is its closure. Finally, σ is the surface measure on a sphere.

Theorem 2.2. Assume 0 < m < 1. Let x0 ∈ RN , ρ1 > ρ0 > 0, F ∈ L2
(
B(x0, ρ1)

)
and u ∈

H1
loc

(
B(x0, ρ1)

)
. If there exist L > 0 and M > 0 such that for almost every ρ ∈ (0, ρ1),

‖∇u‖2L2(B(x0,ρ))
+ L‖u‖m+1

Lm+1(B(x0,ρ))
+ L‖u‖2L2(B(x0,ρ))

6M

(∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣+

∫
B(x0,ρ)

|F (x)u(x)|dx

)
, (2.3)

then there exist E? > 0 and ε? > 0 satisfying the following property: if ‖∇u‖2L2(B(x0,ρ1)) < E? and

‖F‖2L2(B(x0,ρ))
6 ε?

(
(ρ− ρ0)+

)p
, ∀ρ ∈ (0, ρ1), (2.4)

where p = 2(1+m)+N(1−m)
1−m , then u|B(x0,ρ0) ≡ 0. In other words, with the notation of Theorem 2.1,

ρmax = ρ0.

Remark 2.3. We may estimate E? and ε? as

E? = E?

(
‖u‖−1

Lm+1(B(x0,ρ1)), ρ1,
ρ0

ρ1
,
L

M
,N,m

)
,

ε? = ε?

(
‖u‖−1

Lm+1(B(x0,ρ1)),
ρ0

ρ1
,
L

M
,N,m

)
.

The dependence on 1
δ means that if δ goes to 0 then E? and ε? may be very large. Note that p = 1

γ(1) ,

where γ is the function defined in Theorem 2.1.
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Remark 2.4. Note that by Cauchy-Schwarz’s inequality, the right-hand side in (2.1) belongs to

L1
loc([0, ρ0);R) and so is defined almost everywhere in (0, ρ0). Consequently, by Hölder’s inequality,

the right-hand side in (2.3) is defined almost everywhere in (0, ρ0).

3 A general framework of applications related to the Schrödinger
operator

The following result will be applied later to many concrete equations associated to the Schrödinger

operator.

Theorem 3.1. Let Ω ⊂ RN be a nonempty open subset of RN , let x0 ∈ Ω, let ρ0 > 0, let 1 6

p1, . . . , pn1
, q1, . . . , qn2

<∞, let F ∈ L1
loc(Ω) be such that F|Ω∩B(x0,ρ0) ∈ L2

(
Ω ∩B(x0, ρ0)

)
and let

f ∈ C

 n2⋂
k=1

Lqkloc(Ω);

n1∑
j=1

L
p′j
loc(Ω)

 .

Let u ∈ H1
loc(Ω) ∩ Lpjloc(Ω) ∩ Lqkloc(Ω), for any (j, k) ∈ J1, n1K× J1, n2K, be any solution to

−∆u+ f(u) = F, in D ′(Ω). (3.1)

If ρ0 > dist(x0,Γ) then assume further that

f ∈ C

 n2⋂
k=1

Lqk(Ω);

n1∑
j=1

Lp
′
j (Ω)

 , u ∈ H1
0 (Ω),

u|Ω∩B(x0,ρ0) ∈ Lpj
(
Ω ∩B(x0, ρ0)

)
∩ Lqk

(
Ω ∩B(x0, ρ0)

)
,

for any (j, k) ∈ J1, n1K× J1, n2K. Set for every ρ ∈ [0, ρ0),

I(ρ) =

∣∣∣∣∣
∫

Ω∩S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ , J(ρ) =

∫
Ω∩B(x0,ρ)

|F (x)u(x)|dx, (3.2)

w(ρ) =

∫
Ω∩S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ, IRe(ρ) = Re

(
w(ρ)

)
, IIm(ρ) = Im

(
w(ρ)

)
. (3.3)

Then we have,

I, J, IRe, IIm ∈ C([0, ρ0);R), (3.4)

‖∇u‖2L2(Ω∩B(x0,ρ))
+ Re

 ∫
Ω∩B(x0,ρ)

f(u)udx

 = Re

 ∫
Ω∩B(x0,ρ)

F (x)u(x)dx

+ IRe(ρ), (3.5)

Im

 ∫
Ω∩B(x0,ρ)

f(u)udx

 = Im

 ∫
Ω∩B(x0,ρ)

F (x)u(x)dx

+ IIm(ρ), (3.6)

for any ρ ∈ [0, ρ0).
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Remark 3.2. One easily sees that if ρ0 < dist(x0,Γ) then I, J, IRe, IIm ∈ C([0, ρ0];R).

Example 3.3. We give some functions f for which Theorem 3.1 applies.

1) Typically, we apply Theorem 3.1 to

f(u) = a|u|−(1−m)u+ bu+ c|x|2u,

with (a, b, c) ∈ C3 and 0 < m < 1. One easily checks that,

f ∈ C
(
L2

loc(Ω) ∩ Lm+1
loc (Ω);L2

loc(Ω) + L
m+1
m

loc (Ω)
)
.

If in addition, Ω is bounded or if c = 0 then one also has,

f ∈ C
(
L2(Ω) ∩ Lm+1(Ω);L2(Ω) + L

m+1
m (Ω)

)
.

Let z ∈ C \ {0}. Since
∣∣|z|−(1−m)z

∣∣ = |z|m, it is understood in the above example that∣∣|z|−(1−m)z
∣∣ = 0 when z = 0.

2) Hartree-Fock type equations. Let V ∈ Lp(RN ;R) +L∞(RN ;R), with min
{

1, N2
}
< p <

∞ and let W ∈ Lq(RN ;R) + L∞(RN ;R), with min
{

1, N4
}
< q <∞. Set r = 2p

p−1 , s = 4q
q−1 ,

E = L2(RN ) ∩ L4(RN ) ∩ Lr(RN ) ∩ Ls(RN ),

f(u) = V u+ (W ? |u|2)u,

for any u ∈ H1(RN ). Then H1(RN ) ↪→ E with dense embedding and, by density of D(RN )

in spaces Lm(RN ), for any m ∈ [1,∞), we have

E? = L2(RN ) + L
4
3 (RN ) + Lr

′
(RN ) + Ls

′
(RN ),

f ∈ C
(
E;E?

)
,

f ∈ C
(
H1(RN );H−1(RN )

)
.

See Cazenave [6] (Proposition 1.1.3, p.3, Proposition 3.2.2, p.58-59, Remark 3.2.3, p.59,

Proposition 3.2.9, p.62, Remark 3.2.10, p.63 and Example 3.2.11, p.63).

4 Proofs of the main results

Before proceeding to the proof of Theorems 2.1 and 2.2, we recall the well-known Young’s inequality

and its particular case.
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Lemma 4.1 (Young’s inequality). For any real x > 0, y > 0, λ > 1 and ε > 0, one has

xy 6
1

λ′
ελ
′
xλ
′
+

1

λ
ε−λyλ, (4.1)

and in particular, one has

xy 6
ε2

2
x2 +

1

2ε2
y2. (4.2)

Proof of Theorems 2.1 and 2.2. We write ρ? = ρ0, for the proof of Theorem 2.1 and ρ? = ρ1, for

the proof of Theorem 2.2. Let us introduce some notations. Let ρ ∈ (0, ρ?). We set

E(ρ) = ‖∇u‖2L2(B(x0,ρ))
, b(ρ) = ‖u‖m+1

Lm+1(B(x0,ρ))
, a(ρ) = ‖u‖2L2(B(x0,ρ))

,

θ = (1+m)+N(1−m)
k ∈ (0, 1), ` = 1

θ(1+m) , δ = k
2(1+m) .

We first assume that u ∈ H1
(
B(x0, ρ?)

)
and we will consider the general case at the end of the proof.

We now proceed with the proof in 5 steps.

Step 1. E ∈W 1,1(0, ρ?), for a.e. ρ ∈ (0, ρ?), E
′(ρ) = ‖∇u‖2L2(S(x0,ρ))

and

E(ρ) + b(ρ) 6
1

2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 + (L1M)2‖F‖2L2(B(x0,ρ))
, (4.3)

where K1(τ) = CL2
1M

2 max
{
ρν−1
? , 1

}
max{b(ρ?)µ(τ), b(ρ?)

η(τ)}, C = C(N,m) and L1 = max
{

1, 1
L

}
.

We have the identity E(ρ) =

∫ ρ

0

(∫
S(x0,r)

|∇u|2dσ

)
dr. Since the mapping r 7−→

∫
S(x0,r)

|∇u|2dσ lies

in L1(0, ρ?), E is absolutely continuous on (0, ρ?). We then get the first part of the claim and it

remains to establish (4.3). Let ρ ∈ (0, ρ?). It follows from Cauchy-Schwarz’s inequality that∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ 6 ‖∇u‖L2(S(x0,ρ))‖u‖L2(S(x0,ρ)) = E′(ρ)
1
2 ‖u‖L2(S(x0,ρ)). (4.4)

We recall the interpolation-trace inequality (see Corollary 2.1 in Dı́az and Véron [7], in which a

misprint was present since their δ has to be replaced by −δ) :

‖u‖L2(S(x0,ρ)) 6 C
(
‖∇u‖L2(B(x0,ρ)) + ρ−δ‖u‖Lm+1(B(x0,ρ))

)θ ‖u‖1−θLm+1(B(x0,ρ))
, (4.5)

where C = C(N,m). Putting together (2.1) (for Theorem 2.1), (2.3) (for Theorem 2.2), (4.4) and

(4.5), we obtain,

E(ρ) + b(ρ) + κa(ρ)

6 CL1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + L1M

∫
B(x0,ρ)

|F (x)u(x)|dx, (4.6)
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where

κ =

{
0, in the case of Theorem 2.1,

1, in the case of Theorem 2.2.

In the case of Theorem 2.2, we apply Young’s inequality (4.2) with x = |F |, y = |u| and ε =
√
L1M,

and we get ∫
B(x0,ρ)

|F (x)u(x)|dx 6
L1M

2
‖F‖2L2(B(x0,ρ))

+
1

2L1M
a(ρ), (4.7)

for any ρ ∈ (0, ρ?). Putting together (4.6) and (4.7), we obtain for both theorems,

E(ρ) + b(ρ) 6 C0L1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + (L1M)2‖F‖2L2(B(x0,ρ))

, (4.8)

for almost every ρ ∈ (0, ρ?). Let τ ∈
(
m+1

2 , 1
]

and let ρ ∈ (0, ρ?). A straightforward calculation yields(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)
b(ρ)

1−θ
θ(m+1)

= E(ρ)
1
2 b(ρ)

1−θ
θ(m+1) + ρ−δb(ρ)

1
θ(m+1)

= E(ρ)
1
2 b(ρ)τ(1−θ)`b(ρ)(1−τ)(1−θ)` + ρ−δb(ρ)

1
2 +τ(1−θ)`b(ρ)`−τ(1−θ)`− 1

2

6 2ρ−δ max
{
ρδ?, 1

}
K2

2 (τ)
1
2θ (E(ρ) + b(ρ))

1
2 +τ(1−θ)`

,

where K2
2 (τ) = max{b(ρ?)µ(τ), b(ρ?)

η(τ)}, since µ(τ)
2θ = (1 − τ)(1 − θ)` and η(τ)

2θ = ` − τ(1 − θ)` − 1
2 .

Hence (4.3) follows from (4.8) and the above estimate with K1(τ) = 16C2
0L

2
1M

2K2
2 (τ) max

{
ρν−1
? , 1

}
,

since 2δθ = ν − 1 and θ
(

1
2 + τ(1− θ)`

)
= γ(τ)+1

2 .

Step 2. For any τ ∈
(
m+1

2 , 1
]

and for a.e. ρ ∈ (0, ρ?),

0 6 E(ρ)1−γ(τ) 6 K1(τ)ρ−(ν−1)E′(ρ) + (2L1M)2(1−γ(τ))‖F‖2(1−γ(τ))
L2(B(x0,ρ))

.

Applying Young’s inequality (4.1) with x = 1
2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2 , y = (E(ρ) + b(ρ))

γ(τ)+1
2 , λ =

λ(τ) = 2
γ(τ)+1 and ε = ε(τ) = (γ(τ) + 1)

1
λ(τ) , it follows from Step 1 that,

E(ρ) + b(ρ)

6
1

2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 + (L1M)2‖F‖2L2(B(x0,ρ))
,

6
C(τ)

2
λ(τ)
λ(τ)−1

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+
1

2
(E(ρ) + b(ρ)) + (L1M)2‖F‖2L2(B(x0,ρ))

,

6
1

2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+
1

2
(E(ρ) + b(ρ)) + (L1M)2‖F‖2L2(B(x0,ρ))

,

since

C(τ) =
λ(τ)− 1

λ(τ)
ε(τ)

λ(τ)
λ(τ)−1 <

λ
(
m+1

2

)
− 1

λ
(
m+1

2

) (γ(τ) + 1)
1

λ(τ)−1 <
1

2
2

1
λ(τ)−1 <

1

2
2

λ(τ)
λ(τ)−1 .
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We get,

E(ρ) + b(ρ) 6
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+ (2L1M)2‖F‖2L2(B(x0,ρ))
.

Raising both sides of the above inequality to the power 1−γ(τ) and recalling that
(
1−γ(τ)

)
∈ (0, 1),

we obtain Step 2.

Step 3. Let α ∈ (0, ρ0]. If E(α) = 0 then necessarily u|B(x0,α) ≡ 0.

Indeed, from our hypothesis, E′ = 0 on (0, α). Furthermore, ‖F‖L2(B(x0,α)) = 0 (from assumption in

Theorem 2.1 or (2.4) in in Theorem 2.2). It follows from Step 1 and the continuity of b that b(α) = 0.

Hence Step 3 follows.

Step 4. Proof of Theorem 2.1.

We have ρ? = ρ0 and ‖F‖L2(B(x0,ρ0)) = 0. For any τ ∈
(
m+1

2 , 1
]
, set r(τ)ν =

(
ρν0 − ν

K1(τ)E(ρ0)γ(τ)

γ(τ)

)
+

and let ρmax = max
τ∈(m+1

2 ,1]
r(τ). Note that definition of ρmax coincides with (2.2). Let τ ∈

(
m+1

2 , 1
]
.

We claim that E(r(τ)) = 0. Otherwise, E(r(τ)) > 0 and so E > 0 on [r(τ), ρ0). One has from Step 2

(we recall that γ(τ)− 1 < 0),

for a.e. ρ ∈ (r(τ), ρ0), K1(τ)E′(ρ)E(ρ)γ(τ)−1 > ρν−1.

We integrate this estimate between r(τ) and ρ0. We obtain

ν
K1(τ)

γ(τ)

(
E(ρ0)γ(τ) − E(r(τ))γ(τ)

)
> ρν0 − rν(τ).

By definition of r(τ), this gives E(r(τ)) 6 0. A contradiction, hence the claim. In particular,

E(ρmax) = 0. It follows from Step 3 that u|B(x0,ρmax) ≡ 0, which is the desired result. It remains

to treat the case where u ∈ H1
loc

(
B(x0, ρ0)

)
. We proceed as follows. Let n ∈ N, n > 1

ρ0
. We work on

B
(
x0, ρ0 − 1

n

)
instead of B(x0, ρ0) and apply the above result. Thus u|B(x0,ρnmax) ≡ 0, where ρnmax is

given by (2.2) with ρ0 − 1
n in place of ρ0. We then let n↗∞ which leads to the result. This finishes

the proof of Theorem 2.1.

Step 5. Proof of Theorem 2.2.

We have ρ? = ρ1. Let γ = γ(1) and set for any ρ ∈ [0, ρ1], G(ρ) = (2L1M)2(1−γ)‖F‖2(1−γ)
L2(B(x0,ρ))

and

K = K1(1)ρ
−(ν−1)
0 . Let E? =

(
γ

2K (ρ1 − ρ0)
) 1
γ and ε? = 1

2p′ (2L1M)2

(
γ

2K

)p
. Note that p = 1

γ . Assume

now E(ρ1) < E?. Applying Step 2 with τ = 1, one has for a.e. ρ ∈ (ρ0, ρ1),

−KE′(ρ) + E(ρ)1−γ 6 G(ρ). (4.9)

Let define the function H by

∀ρ ∈ [0, ρ1], H(ρ) =
( γ

2K
(ρ− ρ0)+

) 1
γ

. (4.10)
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Then H(ρ1) = E?, H ∈ C1([0, ρ1];R)
(

since 1
γ > 2

)
and H satisfies

∀ρ ∈ [0, ρ1], −KH ′(ρ) +
1

2
H(ρ)1−γ = 0, (4.11)

E(ρ1) < H(ρ1). (4.12)

Finally and recalling that γ = 1
p , from our hypothesis (2.4) and (4.10), one has

∀ρ ∈ (0, ρ1), G(ρ) 6
1

2

( γ

2K
(ρ− ρ0)+

) 1−γ
γ

=
1

2
H(ρ)1−γ . (4.13)

Putting together (4.9), (4.13) and (4.11), one obtains

−KE′(ρ) + E(ρ)1−γ 6 −KH ′(ρ) +H(ρ)1−γ , for a.e. ρ ∈ (ρ0, ρ1). (4.14)

Now, we claim that for any ρ ∈ [ρ0, ρ1), E(ρ) 6 H(ρ). Indeed, if the claim does not hold, it follows

from (4.12) and continuity of E and H that there exist r ∈ (ρ0, ρ1) and δ ∈ (0, r − ρ0] such that

E(r) = H(r), (4.15)

∀ρ ∈ (r − δ, r), E(ρ) > H(ρ). (4.16)

It follows from (4.14) and (4.16) that for a.e. ρ ∈ (r − δ, r), H ′(ρ) < E′(ρ). But, with (4.15), this

implies that for any ρ ∈ (r− δ, r), H(ρ) > E(ρ), which contradicts (4.16), hence the claim. It follows

that 0 6 E(ρ0) 6 H(ρ0) = 0. We deduce with the help of Step 3 that u|B(x0,ρ0) ≡ 0, which is the

desired result. It remains to treat the case where u ∈ H1
loc

(
B(x0, ρ1)

)
. We proceed as follows. Assume

E(ρ1) < E?. Then there exists ε > 0 small enough such that ρ0 < ρ1 − ε and E(ρ1) < E?(ε), where

E?(ε) =
(
γ

2K (ρ1 − ρ0 − ε)
) 1
γ . Since ε? is a non increasing function of ρ1, we do not need to change

its definition. Estimates (4.9)–(4.14) holding with ρ1 − ε in place of ρ1, it follows that E(ρ0) = 0 and

we finish with the help of Step 3. This ends the proof of Theorem 2.2.

Proof of Theorem 3.1. If ρ0 > dist(x0,Γ) then u ∈ H1
0 (Ω). So we may extend u by 0 on Ωc ∩

B(x0, ρ0). Denoting ũ this extension, we have ũ ∈ H1
0

(
Ω ∪ B(x0, ρ0)

)
. We first consider the case

where ρ0 6= dist(x0,Γ). We deal with ρ0 = dist(x0,Γ) at the end of the proof. We first note that

J ∈ C([0, ρ0);R) and by Cauchy-Schwarz’s inequality, we have

‖I‖L1(0,ρ0) 6 ‖u‖2H1(Ω∩B(x0,ρ0)) <∞,

‖J‖L∞(0,ρ0) 6 ‖F‖L2(Ω∩B(x0,ρ0))‖u‖L2(Ω∩B(x0,ρ0)) <∞.

We then get, I, IRe, IIm ∈ L1((0, ρ0);R), so that I, J, IRe, IIm are defined almost everywhere on (0, ρ0).

It follows from (3.1) that,

〈∇u,∇ϕ〉D′(Ω),D(Ω) + 〈f(u), ϕ〉D′(Ω),D(Ω) = 〈F,ϕ〉D′(Ω),D(Ω), (4.17)
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for any ϕ ∈ D(Ω). Let ρ ∈ (0, ρ0). For any n ∈ N, n > 1
ρ , we define the cutoff function ψn ∈

W 1,∞(R;R) by

∀t ∈ R, ψn(t) =


1, if |t| ∈

[
0, ρ− 1

n

]
,

n(ρ− |t|), if |t| ∈
(
ρ− 1

n , ρ
)
,

0, if |t| ∈ [ρ,∞),

and we set ϕ̃n(x) = ψn(|x − x0|)ũ(x) and ϕn = ϕ̃n|Ω, for almost every x ∈ Ω ∪ B(x0, ρ0). We easily

check that for any (j, k) ∈ J1, n1K× J1, n2K,

ϕn|Ω∩B(x0,ρ0) ∈ H1
0

(
Ω ∩B(x0, ρ0)

)
∩ Lpj

(
Ω ∩B(x0, ρ0)

)
∩ Lqk

(
Ω ∩B(x0, ρ0)

)
,

ϕ̃n ∈ H1
0

(
Ω ∪B(x0, ρ0)

)
∩ Lpj

(
Ω ∪B(x0, ρ0)

)
∩ Lqk

(
Ω ∪B(x0, ρ0)

)
,

ϕn ∈ H1
0 (Ω) ∩ Lpj (Ω) ∩ Lqk(Ω).

It follows that there exists (ϕmn )m∈N ⊂ D(Ω) such that for any (n,m) ∈ N2, suppϕmn ⊂ Ω∩B(x0, ρ0)

and

ϕmn
H1

0 (Ω)∩Lpj (Ω)∩Lqk (Ω)−−−−−−−−−−−−−−−→
m−→∞

ϕn,

for any (j, k) ∈ J1, n1K × J1, n2K. Consequently, ϕ = ϕn and ϕ = iϕn are admissible test functions in

(4.17). We have,〈
∇u,∇ϕn

〉
L2(Ω),L2(Ω)

= 〈∇ũ,∇ϕ̃n〉L2(Ω∪B(0,ρ0)),L2(Ω∪B(0,ρ0))

=

∫
B(x0,ρ)

ψn
(
|x− x0|

)
|∇ũ|2dx+ Re

∫
B(x0,ρ)

ψ′n
(
|x− x0|

)
ũ∇ũ. x− x0

|x− x0|
dx

=

∫
B(x0,ρ)

ψn
(
|x− x0|

)
|∇ũ|2dx− nRe

∫
B(x0,ρ)\B(x0,ρ− 1

n )

ũ∇ũ. x− x0

|x− x0|
dx

=

∫
B(x0,ρ)

ψn
(
|x− x0|

)
|∇ũ|2dx− nRe

 ρ∫
ρ− 1

n

 ∫
S(x0,r)

ũ∇ũ. x− x0

|x− x0|
dσ

 dr


=

∫
Ω∩B(x0,ρ)

ψn
(
|x− x0|

)
|∇u|2dx− n

ρ∫
ρ− 1

n

IRe(r)dr,

where we introduced the spherical coordinates (r, σ) at the fifth line. We now let n↗∞. Using the

Lebesgue’s dominated convergence Theorem and recalling that IRe ∈ L1((0, ρ0);R), we obtain

lim
n→∞

〈
∇u,∇ϕn

〉
L2(Ω),L2(Ω)

= ‖∇u‖2L2(Ω∩B(x0,ρ))
− IRe(ρ). (4.18)
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Still by the Lebesgue’s dominated convergence Theorem, and proceeding as above, we get

lim
n→∞

〈
∇u, i∇ϕn

〉
L2(Ω),L2(Ω)

= −IIm(ρ), (4.19)

lim
n→∞

〈f(u), ϕn〉 n1∑
j=1

L
p′
j (Ω),

n2⋂
j=1

Lpj (Ω)
= Re

 ∫
Ω∩B(x0,ρ)

f(u)udx

 , (4.20)

lim
n→∞

〈f(u), iϕn〉 n1∑
j=1

L
p′
j (Ω),

n2⋂
j=1

Lpj (Ω)
= Im

 ∫
Ω∩B(x0,ρ)

f(u)udx

 , (4.21)

lim
n→∞

〈F,ϕn〉L2(Ω),L2(Ω) = Re

 ∫
Ω∩B(x0,ρ)

F (x)u(x)dx

 , (4.22)

lim
n→∞

〈F, iϕn〉L2(Ω),L2(Ω) = Im

 ∫
Ω∩B(x0,ρ)

F (x)u(x)dx

 . (4.23)

Choosing ϕ = ϕn in (4.17), estimates (4.18), (4.20) and (4.22) allow to pass in the limit as n↗∞ in

(4.17). Putting together these estimates, we obtain (3.5). Choosing ϕ = ϕn in (4.17), estimates (4.19),

(4.21) and (4.23) allow to pass in the limit as n↗∞ in (4.17). Putting together these estimates, we

obtain (3.6). We proved that (3.5) and (3.6) hold for almost every ρ ∈ (0, ρ0). Since all terms in (3.5)(
respectively, in (3.6)

)
are continuous on [0, ρ0), except eventually IRe

(
respectively, IIm

)
, it follows

that IRe (respectively, IIm) is continuous and (3.5)
(
respectively, (3.6)

)
holds for any ρ ∈ [0, ρ0). We

then get (3.4). It remains the case ρ0 = dist(x0,Γ). It follows from the above proof that (3.4)–(3.6)

holds for ρn0 = ρ0 − 1
n in place of ρ0, for any integer n > 1

ρ0
. We conclude by letting n ↗ ∞. This

finishes the proof.

5 Application to the localization property to the case of Neu-
mann boundary conditions

In Bégout and Dı́az [5], the authors study the localization property for equation (5.6) below with the

homogeneous Dirichlet boundary condition (see, for instance, Theorem 3.5 in Bégout and Dı́az [5]). In

Theorem 5.5 below, we show that the same property holds with the homogeneous Neumann boundary

condition. Note that from Bégout and Dı́az [5] to this paper, there was a slight change of notation.

See Comments 5.1 below and Section 7 for precision.

Comments 5.1. In the context of the paper of Bégout and Dı́az [5], we can establish an existence

result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet
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condition) and F ∈ L2(Ω)
(
instead of F ∈ Lm+1

m (Ω)
)
. In Bégout and Dı́az [5], we introduced the set,

Ã = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

and assumed that (ã, b̃) ∈ C2 satisfies,

(ã, b̃) ∈ Ã× Ã and



Re(ã)Re(̃b) > 0,

or

Re(ã)Re(̃b) < 0 and Im(̃b) >
Re(̃b)

Re(ã)
Im(ã),

(5.1)

with possibly b̃ = 0, and we worked with

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ .

But here in order to follow a closer notation with most of the works dealing with Schrödinger equations,

we do not work any more with this equation but with,

−∆u+ a|u|−(1−m)u+ bu = F,

and b 6= 0. This means that we choose, ã = ia, b̃ = ib and F̃ = iF. Then assumptions on (a, b) are

changed by the fact that,

Re(a) = Re(−iã) = Im(ã), (5.2)

Im(b) = Im(−ĩb) = −Re(̃b). (5.3)

It follows that the set Ã and (5.1) become,

A = C \
{
z ∈ C; Re(z) 6 0 and Im(z) = 0

}
, (5.4)

(a, b) ∈ A× A and


Im(a)Im(b) > 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a).

(5.5)

Obviously, (
(ã, b̃) ∈ Ã× Ã satisfies (5.1)

)
⇐⇒

(
(a, b) ∈ A× A satisfies (5.5)

)
.

Assumptions (5.5) are made to prove the existence and the localization property of solutions to

equation

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω). (5.6)

For uniqueness, the hypotheses are the following (Theorem 2.12 in Bégout and Dı́az [2]).
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Assumption 5.2 (Uniqueness). Assume that (a, b) ∈ C2 satisfies one of the two following condi-

tions.

1) a 6= 0, Re(a) > 0 and Re(ab) > 0.

2) b 6= 0, Re(b) > 0 and a = kb, for some k > 0.

A geometric interpretation of (5.5) and 1) of Assumption 5.2 is given in Section 7 (as in Section 6 of

Bégout and Dı́az [5]). Now, we give some results about equation (5.6) when (a, b) ∈ A × A satisfies

(5.5).

Theorem 5.3 (Neumann boundary conditions). Let Ω be a nonempty bounded open subset of

RN having a C1 boundary, let ν be the outward unit normal vector to Γ, let 0 < m < 1 and let

(a, b) ∈ A2 satisfies (5.5).

1. For any F ∈ L2(Ω), there exists at least one solution u ∈ H1(Ω) to−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω),
∂u

∂ν |Γ
= 0.

(5.7)

Symmetry property. If furthermore, for any R ∈ SON (R), RΩ = Ω and if F ∈ L2(Ω) is

spherically symmetric then there exists a spherically symmetric solution u ∈ H1(Ω) ∩ H2
loc(Ω)

of (5.7). For N = 1, this means that if F is an even (respectively, odd) function then u is also

an even (respectively, odd) function.

2. If furthermore (a, b) satisfies Assumption 5.2 then the solution of (5.7) is unique.

3. Let u ∈ H1(Ω) be any solution to (5.7). Then u ∈ H2
loc(Ω). In addition,

‖u‖H1(Ω) 6M‖F‖L2(Ω), (5.8)

where M = M(|a|, |b|). Finally, if for some α ∈ (0,m], F ∈ C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

Here and in what follows, SON (R) denotes the special orthogonal group of RN .

Remark 5.4. One easily checks that if (a, b) ∈ A2 satisfies Re(a) > 0 and Re(ab) > 0 then (a, b) ∈ A2

verifies (5.5). In this case, uniqueness assumptions imply existence assumptions.

Proof of Theorem 5.3. The result comes from Bégout and Dı́az [2]: Theorem 2.9 (existence

and symmetry property), Theorem 2.12 (uniqueness), Theorem 2.11
(
a priori estimate (5.8)

)
and

Theorem 2.15 (local smoothness). The proof of the theorem is achieved.
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Theorem 5.5. Let Ω be a nonempty bounded open subset of RN having a C1 boundary, let 0 < m < 1

and let (a, b) ∈ A2 satisfies (5.5). Then there exists ε? > 0 such that for any 0 < ε 6 ε?, there exists

δ0 = δ0(ε, |a|, |b|, N,m) > 0 satisfying the following property. Let F ∈ L2(Ω) and let u ∈ H1(Ω)

be a solution to (5.7). If uniqueness holds for the problem (5.7)2, suppF is a compact set and

‖F‖L2(Ω) 6 δ0 then suppu ⊂ K(ε) ⊂ Ω, where

K(ε) =
{
x ∈ RN ; ∃y ∈ suppF such that |x− y| 6 ε

}
,

which is compact.

The proof relies on the following lemma.

Lemma 5.6. Let Ω ⊂ RN be a nonempty open subset of RN , let 0 < m < 1 and let (a, b) ∈ A2

satisfies (5.5). Let F ∈ L1
loc(Ω) and let u ∈ H1

loc(Ω) be any solution to

−∆u+ a|u|−(1−m)u+ bu = F, in D ′(Ω). (5.9)

Then there exist two positive constants L = L(|a|, |b|) and M = M(|a|, |b|) satisfying the following

property. Let x0 ∈ Ω and ρ? > 0. If F|Ω∩B(x0,ρ?) ∈ L2
(
Ω ∩B(x0, ρ?)

)
then for any ρ ∈ [0, ρ?),

‖∇u‖2L2(Ω∩B(x0,ρ))
+ L‖u‖m+1

Lm+1(Ω∩B(x0,ρ))
+ L‖u‖2L2(Ω∩B(x0,ρ))

6M

(∣∣∣∣∣
∫

Ω∩S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣+

∫
Ω∩B(x0,ρ)

|F (x)u(x)|dx

)
, (5.10)

where it is additionally assumed that u ∈ H1
0 (Ω) if ρ? > dist(x0,Γ).

Proof. Let x0 ∈ Ω and let ρ? > 0. We set for every ρ ∈ [0, ρ?),

I(ρ) =

∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ and J(ρ) =

∫
Ω∩B(x0,ρ)

|F (x)u(x)|dx.

It follows from Theorem 3.1 that I, J ∈ C([0, ρ?);R) and∣∣∣‖∇u‖2L2(Ω∩B(x0,ρ))
+ Re(a)‖u‖m+1

Lm+1(Ω∩B(x0,ρ))
+ Re(b)‖u‖2L2(Ω∩B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ), (5.11)∣∣∣Im(a)‖u‖m+1
Lm+1(Ω∩B(x0,ρ))

+ Im(b)‖u‖2L2(Ω∩B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ), (5.12)

for any ρ ∈ [0, ρ?). Estimate (5.10) then follows from (5.11), (5.12) and Lemma 4.5 from Bégout and

Dı́az [2] with δ = 0.

2which is the case, for instance, if (a, b) ∈ A2 satisfies Assumption 5.2.
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Proof of Theorem 5.5. Let F ∈ L2(Ω) with suppF ⊂ Ω and let u ∈ H1(Ω) a solution to (5.7) be

given by Theorem 5.3. Set K = suppF and

O(ε) =
{
x ∈ RN ; ∃y ∈ K such that |x− y| < ε

}
.

Then K(ε) = O(ε). Let ε? > 0 be small enough to have K(5ε?) ⊂ Ω and let ε ∈ (0, ε?]. Let L and

M be given by Lemma 5.6 applied with ρ? = 2ε. By Theorem 2.1 and estimate (5.8) in Theorem 5.3

above, there exists δ0 = δ0(ε, |a|, |b|, N,m) > 0 such that if ‖F‖L2(Ω) 6 δ0 then u|B(x0,ε) ≡ 0, for any

x0 ∈ Ω such that B(x0, 2ε) ∩K = ∅ and B(x0, 2ε) ⊂ Ω. Let x0 ∈ K(2ε)c ∩K(3ε). Let y ∈ B(x0, 2ε)

and let z ∈ K. By definition of K(2ε), dist(K(2ε)c,K) = 2ε. We then have

2ε = dist(K(2ε)c,K) 6 |x0 − z| 6 |x0 − y|+ |y − z| < 2ε+ |y − z|.

It follows that for any z ∈ K, y 6= z so that y 6∈ K. This means that B(x0, 2ε) ∩ K = ∅, for any

x0 ∈ K(2ε)c ∩K(3ε). We deduce that for any x0 ∈ K(2ε)c ∩K(3ε), u|B(x0,ε) ≡ 0. By compactness,

there exist n ∈ N and x1, . . . , xn ∈ K(2ε)c ∩K(3ε) such that,

K(ε)c ∩ O(4ε) ⊂
n⋃
j=1

B(xj , ε) ⊂
n⋃
j=1

B(xj , 2ε) ⊂ K(5ε) ⊂ Ω.

It follows that u|K(ε)c∩O(4ε) ≡ 0. Let us define ũ in Ω by,

ũ =

{
u, in O(2ε),

0, in Ω \ O(2ε).

It follows that supp ũ ⊂ K(ε) and ũ ∈ H1
0 (Ω) is a solution to (5.7). By uniqueness assumption, ũ = u

so that suppu ⊂ K(ε) ⊂ Ω, which is the desired result.

6 Further results on the cases of Dirichlet boundary condi-
tions and the whole space

In Bégout and Dı́az [5], the authors study existence, uniqueness, smoothness and localization prop-

erty for the equations (6.1) below with an external source F belonging to L
m+1
m (Ω) with 0 < m < 1

(see, for instance, Theorem 3.5 in Bégout and Dı́az [5]). In theorems below, we show that the same

results hold true with the weaker assumption F ∈ L2(Ω). Indeed, when |Ω| < ∞ and 0 < m < 1,

L
m+1
m (Ω) ↪→ L2(Ω) and L

m+1
m (Ω) 6= L2(Ω). Hypotheses on (a, b) ∈ C2 are the same as in Bégout and

Dı́az [5], except we have to require b 6= 0. Note that from Bégout and Dı́az [5] to this paper, there

was a change of notation. See Comments 5.1 for precision.
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In this section, we will repeatedly refer to Bégout and Dı́az [5], so for brevity, we denote by The-

orem · . · ? (respectively, Corollary · . · ?) the theorems (respectively, the corollaries) in Bégout and

Dı́az [5].

Results which are stated for F ∈ Lm+1
m (Ω) are Theorems 1.1?, 1.2?, 3.1?, 3.5?, 4.1?, 4.4? and Corol-

lary 5.3 ? .

Below, we first begin by stating a result analogous to Theorems 4.1?, 4.4? and Corollary 5.3? (exis-

tence, uniqueness, smoothness and a priori bound).

Theorem 6.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1 and let (a, b) ∈ A2 satis-

fies (5.5).

1. For any F ∈ L2(Ω), there exists at least one solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to{

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω) + L
m+1
m (Ω),

u|Γ = 0.
(6.1)

Symmetry property. If furthermore, for any R ∈ SON (R), RΩ = Ω and if F is spherically

symmetric then there exists a spherically symmetric solution u ∈ H1
0 (Ω) ∩ H2

loc(Ω) of (6.1).

For N = 1, this means that if F is an even (respectively, odd) function then u is also an even

(respectively, odd) function.

2. If furthermore (a, b) satisfies Assumption 5.2 then the solution of (6.1) is unique.

3. Let u ∈ H1
0 (Ω) ∩ Lm+1(Ω) be any solution to (6.1). Then u ∈ H2

loc(Ω). In addition,

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6M‖F‖2L2(Ω), (6.2)

where M = M(|a|, |b|). Finally, if for some α ∈ (0,m], F ∈ C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

Remark 6.2. One easily checks that if (a, b) ∈ A2 satisfies Re(a) > 0 and Re(ab) > 0 then (a, b) ∈ A2

verifies (5.5). In this case, uniqueness assumptions imply existence assumptions.

Proof of Theorem 6.1. See Bégout and Dı́az [2] (Theorems 2.9, 2.11, 2.12 and 2.15).

Now, we give results analogous to Theorems 3.1? and 3.5? (localization property).

Theorem 6.3. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1 and let (a, b) ∈ A2 satisfying

(5.5). Let F ∈ L1
loc(Ω), let u ∈ H1

loc(Ω) be any solution in D ′(Ω) of (5.9), let x0 ∈ Ω and let ρ1 > 0.
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If ρ1 > dist(x0,Γ) then assume further that u ∈ H1
0 (Ω). Then there exist E? > 0 and ε? > 0 satisfying

the following property. Let ρ0 ∈ (0, ρ1). If ‖∇u‖2L2(Ω∩B(x0,ρ1)) < E? and

∀ρ ∈ (0, ρ1), ‖F‖2L2(Ω∩B(x0,ρ))
6 ε?

(
(ρ− ρ0)+

)p
, (6.3)

where p = 2(1+m)+N(1−m)
1−m , then u|Ω∩B(x0,ρ0) ≡ 0. In other words, with the notation of Theorem 2.1?

(or Theorem 2.1), ρmax = ρ0.

Theorem 6.4. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1 and let (a, b) ∈ A2 satisfying

(5.5). Then for any ε > 0, there exists δ0 = δ0(ε, |a|, |b|, N,m) > 0 satisfying the following property.

Let F ∈ L2(Ω) and let u ∈ H1
0 (Ω)∩Lm+1(Ω) be any solution to (6.1). If suppF is a compact set and

if ‖F‖L2(Ω) 6 δ0 then suppu ⊂ Ω ∩K(ε), where K(ε) is the compact set

K(ε) =
{
x ∈ RN ; ∃y ∈ suppF such that |x− y| 6 ε

}
.

In particular, if ε > 0 is small enough then suppu ⊂ K(ε) ⊂ Ω.

Proof of Theorem 6.3. If ρ1 > dist(x0,Γ) then we extend u by 0 on Ωc ∩ B(x0, ρ0). The result

then comes from Lemma 5.6 and Theorem 2.2.

Proof of Theorem 6.4. Apply the proof of Theorem 3.5?, p.50-51, with ‖F‖L2(Ω) 6 δ0 in Property 3

of Theorem 6.1 above in place of ‖F‖
L
m+1
m (Ω)

6 δ0 in Theorem 4.4 ? .

We end this section by giving results analogous to Theorems 1.1? and 1.2? (particular cases).

Theorem 6.5. Let 0 < m < 1, let a ∈ R \ {0} and let b ∈ R, b > 0. Let F ∈ L2(RN ) with compact

support. Then there exists a unique solution u ∈ H1(RN ) ∩ Lm+1(RN ) of the problem

−∆u+ ia|u|−(1−m)u+ bu = F, in L2(RN ) + L
m+1
m (RN ).

In addition, u ∈ H2(RN ) and u is compactly supported.

Theorem 6.6. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let a ∈ R \ {0} and let b ∈ R,

b > 0. Let F ∈ L2(Ω) with compact support. Assume that F is small enough in L2(Ω). Then there

exists a unique solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to the problem−∆u+ ia|u|−(1−m)u+ bu = F, in L2(Ω) + L

m+1
m (Ω),

u|Γ = 0, on Γ.

In addition, u ∈ H2(Ω) and u is compactly supported in Ω.

Proof of Theorem 6.5. Apply Theorems 6.1 and 3.6 ? .

Proof of Theorem 6.6. Apply Theorems 6.1 and 6.4.
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7 Some planar representations on the complex coefficients as-
sumptions

In this section, we give some geometric interpretation of the values of a and b. For convenience, we

repeat the hypotheses (5.5) of existence and 1) of Assumption 5.2 of uniqueness. We recall that,

A = C \ D,

D =
{
z ∈ C; Re(z) 6 0 and Im(z) = 0

}
.

For existence of solutions to problem (5.6) in Theorems 5.3 and 6.1, we suppose (a, b) ∈ C2 satisfies

(a, b) ∈ A× A and


Im(a)Im(b) > 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a),

(7.1)

while for uniqueness, we assume

a 6= 0, Re(a) > 0 and Re(ab) > 0. (7.2)

Existence. Condition (7.1) may easily be interpreted in this way: [a, b] ∩ D = ∅, where D is the

geometric representation of D, which is the half-axis of the complex plane where Re(z) 6 0. See

Figures 1 and 2 below.

Uniqueness. Condition (7.2) is trivial. Indeed, we first choose a ∈ C \ {0} such that Re(a) > 0, and

we choose b with respect to a. We see a and b as vectors of R2. Then we write, −→a =

(
Re(a)
Im(a)

)
,

−→
b =

(
Re(b)
Im(b)

)
and we have

Re
(
ab
)

= Re(a)Re(b) + Im(a)Im(b) = −→a .
−→
b , (7.3)

where . denotes the scalar product between two vectors of R2. Then the condition Re
(
ab
)
> 0 is

equivalent to
∣∣∣∠(−→a ,

−→
b )
∣∣∣ 6 π

2
rad (see Figure 3 below).

Remark 7.1. Let (a, b) ∈ C2. Thanks to (7.3), the following assertions are equivalent.

1) (a, b) ∈ C2 satisfies (7.1)–(7.2).

2) (a, b) ∈ A× A satisfies (7.2).

3)
(

(a, b) satisfies (7.2)
)

and
(

Re(a) = Im(b) = 0 =⇒ Re(b) > 0
)
.

In other words, when Re(a) 6= 0, uniqueness hypothesis (7.2) implies existence hypothesis (7.1) (see

Figure 4 below).
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Figure 1: Existence, choice of b Figure 2: Existence, choice of a and b

Figure 3: Uniqueness Figure 4: Uniqueness implies existence
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