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THE SCHR ÖDINGER OPERATOR ON AN INFINITE WEDGE WITH A TANGENT MAGNETIC FIELD

We study a model Schrödinger operator with constant magnetic field on an infinite wedge with Neumann boundary condition. The magnetic field is assumed to be tangent to a face. We compare the bottom of the spectrum to the model spectral quantities coming from the regular case. We are particularly motivated by the influence of the magnetic field and the opening angle of the wedge on the spectrum of the model operator and we exhibit cases where the bottom of the spectrum is smaller than in the regular case. Numerical computations enlighten the theoretical approach.

INTRODUCTION

1.1. The magnetic Laplacian on model domains.

' Motivation. Let p´ih∇ ´Aq 2 be the Schrödinger magnetic operator (also called the magnetic Laplacian) on an open simply connected subset Ω of R 3 . The magnetic potential A : R 3 Þ Ñ R 3 satisfies curl A " B where B is the magnetic field and h is a semi-classical parameter. For a reasonable domain Ω, the Neumann realization of p´ih∇ ´Aq 2 is an essentially self-adjoint operator with compact resolvent. The motivation for the study of this operator comes from the theory of superconductivity, indeed the linearization of the Ginzburg-Landau functional brings the study of the Neumann magnetic Laplacian (see [START_REF] Giorgi | The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model[END_REF]). For a magnetic field of strong intensity, the superconductivity phenomenon is destroyed. We denote by λpB; Ω, hq the first eigenvalue of p´ih∇ ´Aq 2 . The behavior of the critical value of the magnetic field for which the superconductivity disappears is linked to λpB; Ω, hq when h goes to 0 (see [10, Proposition 1.9] for example).

A common interest is to understand the influence of the combined geometries of the domain Ω and the magnetic field B on the asymptotics of λpB; Ω, hq in the semi-classical limit h Ñ 0.

' Link between the semi-classical problem and model operators. In order to find the main term of the asymptotics of λpB; Ω, hq, we are led to study the magnetic Laplacian without semi-classical parameter (h " 1) on unbounded "model" domains invariant by dilatation with a constant magnetic field. More precisely to each point x P Ω we associate its tangent cone Π x and we denote by P Ax, Πx " p´i∇ ´Ax q 2 Date: February 19, 2014. the Neumann realization of the magnetic Laplacian on the model domain Π x where A x satisfies curl A x " B x and where B x is the constant vector field equal to Bpxq. We denote by (1.1) λpB x ; Π x q the bottom of the spectrum of P Ax, Πx .

When the domain belongs to a suitable class of corner domains (see [START_REF] Dauge | Elliptic boundary value problems on corner domains[END_REF]Chapter 1] for example) and if the magnetic field is regular and does not vanish, one should expect that λpB; Ω, hq behaves like h inf xPΩ λpB x ; Π x q when h Ñ 0 1 . To a constant magnetic field we can associate a linear potential and due to a scaling we have λpB x ; Π x q " }B x }λ ´Bx }Bx} ; Π x ¯. Therefore when we will deal with the magnetic Laplacian on model domains, we will always suppose that the magnetic field is constant an unitary.

' Regular case. When Ω is a 3D-domain with regular boundary, we only need to study the magnetic Laplacian on a space and on half-spaces for different orientations of the magnetic field. The bottom of the spectrum of the associated operators is minimal when Π is a halfspace and B is tangent to the boundary (see [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF] and [START_REF] Helffer | Magnetic bottles for the Neumann problem: the case of dimension 3[END_REF]). In that case we have λpB; Πq " Θ 0 « 0.59 (see [START_REF] Saint-James | Onset of superconductivity in decreasing fields[END_REF] for the first work on Θ 0 or Subsection 2.1 for more details and references). When B is constant and Ω Ă R 3 is regular, the following asymptotics is proved in [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF] (see also [START_REF] Helffer | Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case)[END_REF] for more terms):

(1.2) λpΩ; B, hq " hÑ0 Θ 0 h ' Singular cases known.
When Ω has an edge, it is necessary to introduce a new model operator: the magnetic Laplacian on a infinite wedge. We denote by α the opening angle of the wedge. In [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF], Pan has studied the case of a wedge whose opening angle is π 2 and has applied its results to study the first eigenvalue of the magnetic Laplacian on a cuboid in the semi-classical limit. He proved that there exist configurations where the bottom of the spectrum of the magnetic Laplacian on a quarter space is smaller than the spectral quantity Θ 0 coming from the regular case. Using the Neumann boundary condition and symmetrization, he compared the operators to the model operator on a half-plane. When the opening angle is different from π 2 , we can not use this method anymore. Another case already studied is the one of a magnetic field tangent to the axis of the wedge. The operator reduced to a 2D operator on a sector whose spectrum is studied in [START_REF] Jadallah | The onset of superconductivity in a domain with a corner[END_REF] for the special case α " π 2 and in [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF] for wedges of opening α P p0, πq. One of the main result is that for α P p0, π 2 s, the bottom of the spectrum of this model operator is below Θ 0 . In [START_REF] Popoff | When the 3d-magnetic laplacian meets a curved edge in the semi-classical limit[END_REF], the authors deal with the case where Ω is a lens with a curved edge. The model operator involved is the magnetic Laplacian on an infinite wedge with a magnetic field normal to the plane of symmetry of the wedge. The results from [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Chapter 6] show that in that case the bottom of the spectrum of the model operator is always larger than Θ 0 and is decreasing with the opening angle of the wedge.

In this article we study the bottom of the spectrum of the magnetic Laplacian on infinite convex wedges in the case where the magnetic field is tangent to a face of the wedge. We compare the bottom of the spectrum to the model spectral quantity Θ 0 and we characterize the 1 All the asymptotics known for particular domains have this structure. A work with M. Dauge and V. Bonnaillie-Noël is in progress to get the behavior of λpB; Ω, hq at first order for general domains Ω. spectrum of the 2D operator family associated to the magnetic Laplacian on the wedge. We are particularly interested in the influence of the magnetic field orientation and the opening angle of the wedge. Some of our results recover what was done in [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF] for the quarter space and give a new approach using the tools of the spectral theory.

1.2. The operator on a wedge. Let px 1 , x 2 , x 3 q be the cartesian coordinates of R 3 . The infinite sector of opening α P p0, πq is denoted by

S α :" tpx 1 , x 2 q P R 2 , |x 2 | ď x 1 tan α
2 u and the infinite wedge of opening α is

W α :" S α ˆR .
The magnetic field B " pb 1 , b 2 , b 3 q is constant and unitary and we denote by B :" pb 1 , b 2 q its projection on R 2 . The spherical coordinates are denoted by pγ, θq and satisfied cos γ " B ¨p0, 0, 1q and cos θ " B ¨p0, 1q. We will assume that the magnetic field B is tangent to a face of the edge (see figure 1). Due to symmetry we will restrict our study to the case where γ P r0, π 2 s and θ " π´α 2 , and therefore the magnetic field writes (1.3)

B " psin γ cos α 2 , sin γ sin α 2 , cos γq .
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The infinite wedge W α of opening α and the magnetic field B of spherical coordinate pγ, θq.

We assume that the magnetic potential A " pa 1 , a 2 , a 3 q satisfies curl A " B and the magnetic Schrödinger operator writes:

P A, Wα " pD x 1 ´a1 q 2 `pD x 2 ´a2 q 2 `pD x 3 ´a3 q 2 .
with D x j " ´iB x j . Due to gauge invariance, the spectrum of P A, Wα does not depend on the choice of A as soon as it satisfies curl A " B and we will denote by "choice of gauge" the choice of a magnetic potential that satisfies curl A " B. According to (1.1) we note:

λpB; W α q :" inf SpP A, Wα q , where we denote by SpP q the spectrum of an operator P . We also denote by S ess pP q the essential spectrum an operator P . Due to the invariance by translation in the x 3 -variable, the spectrum of P A, Wα is absolutely continuous and we have SpP A, Wα q " S ess pP A, Wα q.

' Reduction to a parameter family of operators on the sector. We take a magnetic potential of the form Apx 1 , x 2 , x 3 q " pApx 1 , x 2 q, x 2 b 1 ´x1 b 2 q where the 2D-magnetic potential A satisfies curl A " b 3 . An example for the choice of A is the "Landau" potential A L px 1 , x 2 q " p´x 2 b 3 , 0q and the associated operator writes

P A L , Wα " pD x 1 `x2 b 3 q 2 `D2 x 2 `pD x 3 ´x2 b 1 `x1 b 2 q 2 .
We introduce the reduced electric potential on the sector:

V B, τ px 1 , x 2 q :" px 1 b 2 ´x2 b 1 ´τ q 2 ,
where the Fourier parameter τ lies in R. Performing a Fourier transform in the x 3 variable, we get the following direct integral decomposition (see [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]):

(1.4)

P A, Wα " ż À τ PR P A, Sα `VB, τ dτ .
where P A, Sα `VB, τ is the Neumann realization of p´i∇ ´Aq 2 `VB, τ on the sector S α . Let us define spB; α, τ q :" inf SpP A, Sα `VB, τ q and Q τ the quadratic form associated to P A, Sα `VB, τ . It is elementary that the form domain of P A, Sα `VB, τ is DompQ τ q " tu P L 2 pS α q, p´i∇ ´Aqu P L 2 pS α q, |x 1 b 2 ´x2 b 1 |u P L 2 pS α qu and for u P DompQ τ q the expression of the quadratic form is

Q τ puq :" ż Sα |p´i∇ ´Aqu| 2 `VB, τ |u| 2 dx 1 dx 2 .
Since the form domain does not depend on τ , from Kato's perturbation theory (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]) the function τ Þ Ñ spB; α, τ q is continuous on R. Thanks to (1.4) we have the fundamental relation, sometimes called the F-principle (see [START_REF] Lu | Gauge invariant eigenvalue problems in R 2 and in R 2[END_REF]):

(1.5) λpB; W α q " inf τ PR spB; α, τ q
Therefore we are reduced to study the spectrum of a 2D-family of Schrödinger operators.

' Invariance principles. We recall the action of isometry on the 2D-magnetic Laplacian:

' Translation: let Ω P R 2 and t P R 2 . Let Ω t :" Ω `t be the domain deduced by translation. Let A be a magnetic field such that curl A is a constant denoted by B.

Then P A, Ω and P A, Ω t are unitary equivalent, moreover u is an eigenfunction for P A, Ω if and only if x Þ Ñ e iB 2 x^t upx ´tq is an eigenfunction for P A, Ω t . ' Rotation: let Ω P R 2 and R ω be the rotation of angle ω. Let Ω ω :" R ω pΩq be the domain deduced by rotation. Then P A, Ω and P A, Ωω are unitary equivalent, moreover u is an eigenfunction for P A, Ω if and only if u ˝R´1 ω is an eigenfunction for P A, Ωω .

1.3. Problematic. We study the spectral quantity λpB; W α q and the associated "band function" τ Þ Ñ spB; α, τ q. We are particularly interested in the following questions:

' Does the band function τ Þ Ñ spB; α, τ q reach its infimum? ' If it does, is this infimum a discrete eigenvalue for the operator P A, Sα `VB, τ ? ' Is it possible to compare λpB; Wαq and Θ 0 ?

In [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF], these questions are partially answered for the special case α " π 2 . It is proved that the band function τ Þ Ñ spB; π 2 , τ q always reaches its infimum and that λpB; W π 2 q ă Θ 0 when the magnetic field is tangent to a face, except when it is normal to the axis of the wedge, and it this case λpB; W π 2 q " Θ 0 . As said before the proofs are specific to the case α " π 2 and the general case cannot be deduced using the same arguments.

1.4. Organization of the paper. In Section 2 we recall results about model operators and we introduce auxiliary operators linked to the behavior of the operator on the wedge at infinity. In Section 3 we determine the bottom of the essential spectrum of the operator P A, Sα `VB, τ on the sector. In Section 4 we compute the limit of spB; α, τ q when τ Ñ ´8 and τ Ñ `8. We provide an explicit expression for these limits using the spectral model quantity coming from the problem on the half-plane. In Section 5 we construct quasi-modes for the operator on the sector and we deduce a rough upper bound for λpB; W α q. In Section 6 we study the special case where the magnetic field is tangent to a face and normal to the axis of the wedge. In Section 7 we present several numerical computations of the first eigenpair of P A, Sα `VB, τ .

MODEL AND AUXILIARY OPERATORS

In this section we recall results about the bottom of the spectrum of the magnetic Laplacian in model domains.

2.1. The half-space. Let R 3 `:" tps, t, zq P R 3 , t ą 0u be the model half-space. We assume that the constant unitary magnetic field B θ makes an angle θ with the boundary of R 3

`. Thanks to symmetries, we only need to study θ P r0, π 2 s. ' Tangent case: the de Gennes operator. Here we assume that the magnetic field B 0 is tangent to the boundary, then in a suitable gauge, the magnetic operator writes

P A 0 , R 3 `" pD s `tq 2 `D2 t `D2 z .
Using a Fourier transform in the variables ps, zq we have (2.1)

P A 0 , R 3 `" ż À pτ,kqPR 2 h N τ `k2 dτ dk
where the de Gennes operator h N τ is defined as the following 1D-operator:

h N τ :" D 2 t `pt ´τ q 2 , t ą 0 on the domain (2.2) B 2
Neu pR `q :" tu P H 2 pR `q, t 2 u P L 2 pR `q, u 1 p0q " 0u .

This operator has compact resolvent and we define (2.3) µ N 1 pτ q :" inf Sph N τ q its first eigenvalue. We have (see [START_REF] Helffer | Spectral properties of higher order anharmonic oscillators[END_REF] and also [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]):

lim τ Ñ´8 µ N 1 pτ q " `8 and lim τ Ñ`8 µ N 1 pτ q " 1 .
It is shown in [START_REF] Bolley | Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation[END_REF] and [START_REF] Dauge | Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators[END_REF] that it exists ξ 0 ą 0 such that the function τ Þ Ñ µ N 1 pτ q is decreasing on p´8, ξ 0 s and increasing on rξ 0 , `8q, therefore it has a unique minimum denoted by Θ 0 , in addition this minimum is non-degenerate and we have ξ 2 0 " Θ 0 . Refined numerical computations coming from [START_REF] Ël | Numerical estimates of characteristic parameters θ 0 and φp0q for superconductivity[END_REF] provide the following approximation with an error inferior to 10 ´9:

(2.4) Θ 0 » 0.590106125 and ξ 0 » 0.76818365314 .

Due to (2.1), when curl A is tangent to the boundary of R 3 `we have:

SpP A, R 3
`q " rΘ 0 , `8q . ' Non tangent case. We now assume that the magnetic field makes an angle θ P p0, π 2 s with the boundary of R 3 `. After using a rotation, we take B θ " pcos θ, sin θ, 0q and we choose an associated magnetic potential by taking A θ ps, t, zq " p0, 0, t cos θ ´s sin θq. The magnetic Laplacian writes:

P A θ , R 3 `" D 2 s `D2
t `pD z ´t cos θ `s sin θq 2 . We introduce the bottom of its spectrum (2.5) σpθq :" inf SpP A θ , R 3 `q . This model spectral quantity has been widely studied (see [START_REF] Lu | Gauge invariant eigenvalue problems in R 2 and in R 2[END_REF], [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF], [START_REF] Helffer | Magnetic bottles for the Neumann problem: the case of dimension 3[END_REF] [21] or more recently [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF]). Let us recall that the function θ Þ Ñ σpθq is increasing from p0, π 2 s onto pΘ 0 , 1s (see [START_REF] Lu | Surface nucleation of superconductivity in 3-dimensions[END_REF]).

2.2.

The wedge with a magnetic field tangent to the edge. We deal with the case where the magnetic field B " p0, 0, 1q is tangent to the edge tx 3 " 0u. In that case the electric potential on the sector is V B, τ " τ 2 and we have spB; α, τ q " µpαq `τ 2

where µpαq is the bottom of the spectrum of P A, Sα with curl A " 1. Therefore thanks to (1.5) we get in that case: λpB; αq " µpαq . Let us gather results coming from [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF] about the model operator P A, Sα : Proposition 2.1. Let A be a 2D-magnetic potential such that curl A " 1, P A, Sα the associated magnetic Laplacian on the sector S α and µpαq " inf SpP A, Sα q. Then we have:

(1) S ess pP A, Sα q " rΘ 0 , `8q, (2) @α P p0, π 2 s, µpαq ă Θ 0 , (3) Asymptotics for the small angle limit: µpαq " αÑ0 α ?

.

Numerical simulations coming from [START_REF] Ël | Computations of the first eigenpairs for the Schrödinger operator with magnetic field[END_REF] show that (2) seems to hold for all α P p0, πq. In addition α Þ Ñ µpαq seems to be increasing for α P p0, πq. These two problems are still open.

Auxiliary operators.

Let us define the half-planes Hp up :" tx 2 ă x 1 tan α 2 u and Hp low :" tx 2 ą ´x1 tan α 2 u such that S α " Hp up X Hp low . In this section we study the operators pD x 1 ´x2 b 3 q 2 `D2

x 2 `px 1 b 2 ´x2 b 1 ´τ q 2 acting on L 2 pHp up q and L 2 pHp low q with Neumann boundary condition. We denote by P A, Hp up `VB, τ and P A, Hp low `VB, τ these two operators. They have been introduced in [22, Section 5] where the author gives bounds for the bottom of their spectrum. In this section we give explicit formulae using the spectral model quantities µ N 1 and σ coming from the previous Subsection. ' Operators for the upper boundary. Lemma 2.2. Assume that the magnetic field writes B " psin γ cos α 2 , sin γ sin α 2 , cos γq. Then we have

(2.6) inf S pP A, Hp up `VB, τ q " inf ξ 2 PR
`µN 1 pξ 2 cos γ `τ sin γq `pξ 2 sin γ ´τ cos γq 2

Proof.

For a suitable choice of gauge the expression of the operator is P A, Hp up `VB, τ " pD x 1 q 2 `pD x 2 ´x1 cos γq 2 `px 1 sin γ sin α 2 ´x2 sin γ cos α 2 ´τ q 2 where pγ, π´α 2 q are the spherical coordinates of B. Using a rotation of angle π´α 2 and a change of gauge, the operator P A, Hp up `VB, τ is unitary equivalent to the Neumann realization of

pD s ´t cos γq 2 `D2 t `pt sin γ ´τ q 2 , ps, tq P R 2 `,
where R 2 `:" tps, tq P R 2 , t ą 0u. Making a partial Fourier transform in the s variable, we get that pD s ´t cos γq 2 `D2 t `pt sin γ ´τ q 2 " ż À

ξ 2 PR D 2 t `pξ 2 ´t cos γq 2 `pt sin γ ´τ q 2 dξ 2
where the operator D 2 t `pξ 2 ´t cos γq 2 `pt sin γ ´τ q 2 acts on the functions of the variable t belonging to B 2

Neu pR `q (see (2.2)). Since we have for fixed ξ 2 P R: inf S `D2 t `pξ 2 ´t cos γq 2 `pt sin 2 γ ´τ q 2 " inf S `D2 t `pt ´τ sin γ ´ξ2 cos γq 2 ˘`pξ 2 sin γ ´τ cos γq 2 , we get (2.6) using (2.3).

' Operators for the lower boundary. Lemma 2.3. Assume that the magnetic field writes B " psin γ cos α 2 , sin γ sin α 2 , cos γq. Then the spectrum of P A, Hp low `VB, τ does not depend of τ and we have (2.7) @τ P R, inf S `PA, Hp low `VB, τ ˘" σpβq with β " arcsinpsin α sin γq.

Proof. The half-plane Hp low is invariant by translation along psin α 2 , cos α 2 q. Using this translation, we get that all the operators `PA, Hp low `VB, τ ˘τPR are unitary equivalent and their spectrum does not depend on τ . Using a Fourier integral decomposition we have

P A, Hs low " ż À τ PR P A, Hp low `VB, τ dτ ,
where Hs low is the half-space Hp low ˆR. The normal of the boundary of Hs low is p´sin α 2 , ´cos α 2 , 0q. Therefore we have inf S `PA, Hp low `VB, τ ˘" inf S `PA, Hs low ˘.

By an elementary computation we check that the magnetic field B makes the angle β :" arcsinpsin γ sin αq with the boundary of Hs low . Using the definition (2.5), we get that the bottom of the spectrum of P A, Hs low is σpβq.

ESSENTIAL SPECTRUM OF THE OPERATORS ON THE SECTOR

Let Υ :" V ´1 B, τ pt0uq be the line where the electric potential vanish. Let us notice that V B, τ pxq is the square of the distance between x and Υ, moreover when B is tangent to a face of the wedge, the line Υ is parallel to one of the boundary of the sector S α . Since the domain is unbounded and the electric potential does not blow up in all directions, one should expect that the essential spectrum is not empty (see [13, proposition 3.7] for a similar situation). We denote by S ess pP A, Sα `VB, τ q the essential spectrum of P A, Sα `VB, τ and we are looking for: s ess pB; α, τ q " inf S ess pP A, Sα `VB, τ q . When the magnetic field is tangent to the edge, we use the results recalled in Subsection 2.2 and we get s ess pB, α, τ q " Θ 0 `τ 2 . We will now assume that the magnetic field is not tangent to the edge, that is γ ‰ 0 where γ is the first spherical coordinate of B (see (1.3)). We recall a useful criterion for the characterization of the essential spectrum (see [START_REF] Persson | Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator[END_REF]): Lemma 3.1. We have s ess pB; α, τ q " lim RÑ`8 Σ pP A, Sα `VB, τ , Rq with Σ pP A, Sα `VB, τ , Rq :" inf

uPC 8 0 pSαXAB R q Q τ puq }u} 2 L 2 pSαq
where B R is the ball of radius R centered at the origin and AB R its complementary in R 2 . Proposition 3.2. Assume that the magnetic field writes B " psin γ cos α 2 , sin γ sin α 2 , cos γq. We have:

(3.1) s ess pB; α, τ q " inf ξ 2 PR
`µN 1 pξ 2 cos γ `τ sin γq `pξ 2 sin γ ´τ cos γq 2

˘.

Proof. We show that s ess pB; α, τ q " inf S pP A, Hp up `VB, τ q: UPPER BOUND. Let ą 0. Using the min-max principle we find a normalized function u P C 8 0 pHp up q such that xpP A, Hp up `VB, τ q u , u y L 2 pHp up q ă inf S pP A, Hp up `VB, τ q ` . Let t α " pcos α 2 , sin α 2 q be the direction vector of the line Υ and for r ą 0 let u ,r pxq :" e i 2 rb 3 tα^x u px ´rt α q. Let R ą 0, we have Supppu ,r q " Supppu q `rt α and therefore it exists r 0 ą 0 such that @r ą r 0 , Supppu ,r q Ă S α X AB R and u ,r P DompP A, Sα `VB, τ q. We have V B, τ px ´rt α q " V B, τ pxq hence from the translation principle we have Q τ puq " xpP A, Sα `VB, τ q u ,r , u ,r y L 2 pSαq " xpP A, Hp up `VB, τ q u , u y L 2 pHp up q .

We deduce from the Persson's Lemma that s ess pB; α, τ q ď inf S pP A, Hp up `VB, τ q. LOWER BOUND. We denote by pρ, φq the polar coordinates of R 2 . Let χ pol 1 and χ pol 2 in C 8 pS α q that satisfy 0 ď χ pol j ď 1 and χ pol j pr, φq " χ pol j p1, φq. We assume that χ pol 1 satisfies χ pol 1 pr, φq " 1 when φ P p α 4 , α 2 q and χ pol 1 pr, φq " 0 when φ P p´α 2 , ´α 4 q. We assume that χ pol 2 satisfies pχ pol 1 q 2 `pχ pol 2 q 2 " 1 and we denote by χ 1 and χ 2 the associated functions in cartesian coordinates. By construction for all x P S α we have χ j pxq " χ j `x }x} ˘. We deduce:

@j P t1, 2u, DC 0 , @R ą 0, @x P S α X AB R , |∇χ j pxq| 2 ď C 0 R 2 . Let u P C 8
0 pS α q, the IMS formula (see [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF]) provides Q τ puq "

ÿ j Q τ pχ j uq ´ÿ j }∇χ j u} 2 .
Since Supppχ 1 uq Ă Hp up we have Q τ pχ 1 uq ě inf S pP A, Hp up `VB, τ q }χ 1 u} 2 L 2 pSαq . On the other part, elementary computations give R 0 ą 0 such that for R ą R 0 we have distpSupppχ 2 uq, Υq " |R sin α 4 sin γ `τ |, therefore:

@R ą R 0 , @x P Supppχ 2 uq, V B, τ pxq ě |R sin α 4 sin γ `τ | 2 and for R ą R 0 we get Q τ pχ 2 uq ě |R sin α 4 `τ | 2 }χ 2 u} 2 .
We deduce that for R ą R 0 :

ΣpP A, Sα `VB, τ , Rq ě inf S pP A, Hp up `VB, τ q ´C0 R 2 and we deduce s ess pB; α, τ q ě inf S pP A, Hp up `VB, τ q from Persson's Lemma. We conclude using Lemma (2.2).

We have an Agmon estimate for any eigenfunction associated to an eigenvalue below the essential spectrum. Corollary 3.3. Let B be a magnetic field tangent to a face of the wedge and pλ, u λ q an eigenpair of P A, Sα `VB, τ such that λ ă s ess pB; α, τ q. We have

@η P p0, a s ess pB; α, τ q ´λq, DC ą 0, Q τ pe ηΦ u λ q ă C}u λ } L 2 pSαq with Φpx 1 , x 2 q " a x 2 1 `x2 2 .
Proof. We refer to the standard proof of [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF] and [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF] for this Agmon estimate.

Proposition 3.4. We have lim τ Ñ`8 s ess pB; α, τ q " 1 .

Proof. For τ ě 0, we take ξ 2 " τ cot γ in (3.1) and we get s ess pB; α, τ q ď µ N 1 p τ sin γ q ă 1 . For the lower bound, we use (3.1) and we make the distinction between two zones for ξ 2 : ' If ξ 2 R rτ cot γ ´1 sin γ , τ cot γ `1 sin γ s, we get pξ 2 sin γ ´τ cos γq 2 ě 1. ' If ξ 2 P rτ cot γ ´1 sin γ , τ cot γ `1 sin γ s, we have ξ 2 cos γ `τ sin γ P I τ with I τ " r τ sin γ ´cot γ, τ sin γ `cot γs. For τ large enough we have I τ Ă pξ 0 , `8q. Since µ N 1 is increasing on pξ 0 , `8q, we get τ 0 ą 0 such that for all τ ą τ 0 : @ξ 2 P rτ cot γ ´1 sin γ , τ cot γ `1 sin γ s, µ N 1 pξ 2 cos γ `τ sin γq ě µ N 1 p τ sin γ ´cot γq . We conclude by using (3.1) and the fact that µ N 1 pτ q tends to 1 as τ goes to `8.

Theorem 3.5. Let B a magnetic field tangent to a face of the wedge W α . We have λpB; W α q ď Θ 0 .

Proof. We choose τ " ξ 0 sin γ where ξ 0 is the unique point where µ N 1 reaches its infimum (see subsection 2.1). Thanks to the proposition 3.2 we get s ess pB; α, ξ 0 sin γq " µ N 1 pξ 0 q " Θ 0 and we conclude using (1.5).

LIMIT WHEN THE FOURIER PARAMETER GETS LARGE

In this section we investigate the limits of spB; α, τ q when the Fourier parameter τ goes to ´8 and `8. In the special case α " π 2 , Pan has identified these limits as eigenvalues of a model problem on a half-space and has given upper and lower bounds (see [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF]). We provide an expression of these limits in the general case using the function σ defined in (2.5). Let B be a magnetic field of the form (1.3). Since

lim τ Ñ´8 ˆmin px 1 ,x 2 qPSα V B, τ px 1 , x 2 q ˙" `8 ,
we have from the min-max principle:

lim τ Ñ´8 spB; α, τ q " `8 .
When τ goes to `8 the situation is much more different: Υ X S α is a half line which makes an angle α P p0, πq with the boundary tx 2 " ´tan α 2 u of S α . Moreover one should expect that any eigenfunction with energy below the essential spectrum is localized near the line Υ. In this situation we expect that spB; a, τ q tends to a quantity coming from a problem on regular domain when τ tends to `8. Proposition 4.1. Assume that the magnetic field writes B " psin γ cos α 2 , sin γ sin α 2 , cos γq. Then we have lim τ Ñ`8 spB; α, τ q " σpβq with β " arcsinpsin α sin γq.

Proof. Thanks to Lemma 2.3, for ą 0 it exists u P C 8 0 pHp low q X DompP A, Hp low `VB, τ q such that xpP A, Hp low `VB, τ qu , u y L 2 pHp low q ă σpβq ` . We construct the test function v , τ pxq :" e i τ 2 x^t ά u px ´τ t ά q , When j P t1, 3u, Supppχ j q X S α Ă tx P S α , distpx, Υq ě τ 2 u. We deduce

@j P t1, 3u, lim τ Ñ`8 ˆinf Supppχ j, τ q V B, τ ˙" `8
and due to (4.5):

@j P t1, 3u, lim τ Ñ`8 ż Supppχ j, τ q |u τ | 2 dx 1 dx 2 " 0 .
We deduce that it exists τ 2 ą τ 1 such that @τ ě τ 2 , @j P t1, 3u, }χ j, τ u τ } 2 L 2 pSαq ď and using that }u τ } L 2 pSαq " 1:

@τ ě τ 2 , }χ 2, τ u τ } 2
L 2 pSαq ě 1 ´2 . Using (4.3) and (4.4) we get for τ ě τ 2 :

Q τ pu τ q ě σpβqp1 ´2 q ´3 .
Since u τ is normalized, we get lim inf τ Ñ`8 spB; α, τ q ě σpβq and the proposition is proved. Using Theorem 3.5, we deduce the following: Corollary 4.2. Assume that the magnetic field writes B " psin γ cos α 2 , sin γ sin α 2 , cos γq. Then the function τ Þ Ñ spB; α, τ q reaches its infimum.

ROUGH UPPER BOUNDS

In this Section we provide an upper bound for λpB; W α q using quasi-modes from [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF]. Proposition 5.1. Assume that the magnetic field writes B " psin γ cos α 2 , sin γ sin α 2 , cos γq. Then (5.1) @pα, γq P p0, πq ˆr0, π 2 s, λpB; W α q ď α ˆ1 ?

3 `?3 2 sin 2 γ ˙.
Proof. We set τ " 0 and we make several standard transformations in the quadratic form Q τ in order to study a quadratic form on a domain independent from α (see [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF]Section 3] or [2, Section 5.1] for the details). We start with a change of variables associated with the polar coordinates pρ, φq P Ω α with Ω α " R `ˆp´α 2 , α 2 q and we are led to the quadratic form

v Þ Ñ ż Ω α ˆ|B ρ v| 2 `1 ρ 2 |pB φ `i ρ 2 2 qv| 2 `V pol B |v| 2 ˙ρ dρ dφ with (5.2) V pol B pρ, ηq :" `ρ cospηαqb 2 ´ρ sinpηαqb 1 ˘2 .
the electric potential in polar coordinates We make the change of gauge upρ, φq :" e i ρ 2 2 φ vpρ, φq and we normalize the angle with the scaling η " φ α . Using these transformations we get that for τ " 0 the quadratic form Q τ is unitary equivalent to the quadratic form (5.3) Q pol puq :"

ż Ω 0 ˆ|pB ρ ´iαρηb 3 qu| 2 `1 α 2 ρ 2 |B η u| 2 `V pol B |u| 2 ˙ρ dρ dη
with Ω 0 " R `ˆp´1 2 , 1 2 q. The form domain is

DompQ pol q " " u P L 2 ρ pΩ 0 q, pB ρ ´iαρηb 3 qu P L 2 ρ pΩ 0 q, 1 ρ B η u P L 2 r pΩ 0 q, b V pol B u P L 2 ρ pΩ 0 q *
where L 2 ρ pΩ 0 q stands for the set of the square-integrable functions for the weight ρ dρ. Let B 1 ρ pR `q :" tu P L 2 ρ pR `q, u 1 P L 2 ρ pR `q, ρu P L 2 ρ pR `qu. We have an injection from B 1 ρ pR `q into DompQ pol q, and for u P B 1 ρ pR `q an elementary computation (see [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Proposition 6.26]) yields:

Q pol puq " }u 1 } 2 L 2 ρ pR `q `ˆb 2 2 `α2 12 b 2 3 `1 2 p1 ´sinc αqpb 2 1 ´b2 2 q ˙}ρu} 2 L 2 ρ pR `q ,
where sinc α :" sin α α . We take the quasimode u α pρ, ηq :" 3 ´1{4 exp ´´αρ 2 4 ?

3 ¯coming from [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF]. The function u α is in B 1 r pR `q. We get

}u 1 α } 2 L 2 ρ pR `q " 1 2 ? 3 and }ρu α } 2 L 2 ρ pR `q " 2 ? 3 α 2 .
Using pb 1 , b 2 , b 3 q " psin γ cos α 2 , sin γ sin α 2 , cos γq, we get

Q pol pu α q " 1 2 ? 3 `?3 2 ´sinc α 2 ¯2 sin 2 γ `cos 2 γ 2 ? 3 `?3 1 ´sinc α α 2 cos α sin 2 γ . Since sinc α 2 ď 1 and 0 ď 1´sinc α α 2 ď 1 6 , using }u α } 2 L 2
ρ pR `q " 1 α we get from the min-max principle: @α P p0, πs, spB; α, 0q ď α ˆ1 ? 3 `?3 2 sin 2 γ ˙.

We conclude with the relation (1.5).

When the magnetic field is tangent to a face of the wedge, we deduce:

(5.4) lim αÑ0 λpB; W α q " 0.

From Corollary 4.2 we know that the function τ Þ Ñ spB; α, τ q reaches its infimum when B is tangent to a face of W α . For α small enough, we are able to characterize the bottom of the spectrum of the operator on the sector, indeed using Proposition 3.2 and the lower bound (5.1) we get:

We introduce two 1D-operators on the half-line with a Neumann boundary condition:

L ρ,u 2 :" ´B2 u 1
`ρ2 pu 1 cosp α 2 `ωq ´u2 sinp α 2 `ωq ´τ q 2 , u 1 ą 0 , and L ρ,u 1 :" ´B2 u 2 `p1 ´ρ2 qpu 1 cosp α 2 `ωq ´u2 sinp α 2 `ωq ´τ q 2 , u 2 ą 0 . Since α P r π 2 , πs, we can choose ω P p´α 2 , ´π 2 `α 2 q such that the two axes tu 1 ą 0u and tu 2 ą 0u belong to R ω pS α q. Therefore we have (in the sense of quadratic forms):

´B2 u 1 ´B2 u 2 `pu 1 cosp α 2 `ωq ´u2 sinp α 2 `ωq ´τ q 2 ě L ρ,u 2 `Lρ,u 2 .
Due to an elementary scaling, we have:

(6.1)
L ρ,u 2 ě ρ cosp α 2 `ωqΘ 0 and L ρ,u 1 ě a 1 ´ρ2 sinp α 2 `ωqΘ 0 . Therefore we have @τ P R, spB; α, τ q ě ρ cosp α 2 `ωqΘ 0 `a1 ´ρ2 sinp α 2 `ωqΘ 0 . We optimize the lower bound by taking ρ " cosp α 2 `ωq and using (1.5) we get λpB; W α q ě Θ 0 .

NUMERICAL SIMULATIONS

Numerically we compute the first eigenpair of the operator P A, Sα `VB, τ on the triangle T α,L :" S α X t0 ă x 1 ă Lu with a Dirichlet condition on the artificial boundary tx 1 " Lu. We use the finite element library Mélina ( [START_REF] Mélina | bibliothèque de calculs éléments finis[END_REF]) and we refer to [24, Section 4.4 and Annex C] for more details about the meshes and the degree of the elements we have used. We choose for the magnetic potential A R px 1 , x 2 q :" p´x 1 b 3 , 0q.

On figures 2 and 3 we take α " π 2 and a magnetic field of spherical coordinates pγ, θq " p π 10 , π 4 q tangent to a face of the wedge. The computational domain is T π 2 ,14 . On figure 2 we show numerical approximation of the band function τ Þ Ñ spB; α, τ q. We denote by spB; α, τ q these approximations. We have made the computations for τ " k 10 with ´10 ď k ď 18. We have also plotted the bottom of the essential spectrum of the operator P A, Sα `VB, τ (according to the relation (3.1)), the constant Θ 0 and σpβq with β " arcsinpsin γ sin α 2 q. The numerical approximation of σpβq comes from [START_REF] Ël | Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions[END_REF]. We observe that spB; α, τ q ă s ess pB; α, τ q and that τ Þ Ñ spB; α, τ q has a unique minimum. Moreover this minimum is smaller than Θ 0 . When τ goes to `8, spB; α, τ q tends to σpβq according to Proposition 4.1.

On figure 3 we have plotted the eigenfunctions associated to the values of spB; α, τ q shown in figure 2 for τ " k 2 with 0 ď k ď 4. From top to bottom we show the modulus, the base-10 logarithm of the modulus and the phases modulo π of the eigenfunctions. The logarithm is set to -13 when the value of the modulus is less than 10 ´13 . The phases of an eigenfunction u is computed according to the formula (7.1) φpx 1 , x 2 q :" arcsin ˜Im `upx 1 , x 2 q |upx 1 , x 2 q| ¸. Opening angle: α " π 2 . Spherical coordinates of B: pγ, θq " p π 10 , π 4 q. The approximation spγ, θ; α, τ q with respect to τ for τ " k 10 , ´10 ď k ď 18 compared to s ess pB; α, τ q, Θ 0 and σpβq.

On the logarithm scale of the modulus we have shown in dash line the set Υ where the potential V B, τ vanishes.

τ " 0 τ " 0.5 τ " 1 τ " 1.5 τ " 2 FIGURE 3. Opening angle: α " π 2 . Spherical coordinates of B: pγ, θq " p π 10 , π 4 q. From top to bottom: the modulus, the base-10 logarithm of the modulus and the phases modulo π of the eigenfunction associated to spB; α, τ q for τ " k 2 , 0 ď k ď 4. In dash line : the set Υ. Computational domain: T π 2 ,14 . Magnetic potential: A R .

On figure 4 we take a magnetic field of spherical coordinates pγ, θq " p π 2 , π´α 2 q. The magnetic field is tangent to a face and normal to the edge. For each value of α we make several computations of spB; α, τ q and we define λpB; W α q :" inf τ spB; α, τ q a numerical approximation of λpB; W α q. We have plotted λpB; W α q for α " k π 20 with 1 ď k ď 19. We have also plotted the constant Θ 0 and the upper bound from Proposition 5.1.

We observe that the α Þ Ñ λpB; W α q is non decreasing on p0, π 2 s and close to Θ 0 for α P r π 2 , πs, according to Proposition 6.1 and Theorem 6.2. Moreover λpB; W α q seems to go to 0 when α goes to 0, according with the results from Section 5. , π´α 2 q. The approximation λpB; W α q with respect to ϑ :" α π for ϑ " k 20 , 1 ď k ď 19 compared to Θ 0 and to the upper bound from Proposition 5.1.
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  FIGURE 2. Opening angle: α " π 2 . Spherical coordinates of B: pγ, θq " p π 10 , π 4 q. The approximation spγ, θ; α, τ q with respect to τ for τ " k 10 , ´10 ď k ď 18 compared to s ess pB; α, τ q, Θ 0 and σpβq.

FIGURE 4 .

 4 FIGURE 4. Spherical coordinates of B: pγ, θq " p π 2 , π´α 2 q. The approximation λpB; W α q with respect to ϑ :" α π for ϑ " k 20 , 1 ď k ď 19 compared to Θ 0 and to the upper bound from Proposition 5.1.

where t ά " pcos α 2 , ´sin α 2 q is the direction of the lower boundary of S α . For τ large enough, we have Supppv , τ q Ă S α and thus v , τ P DompP A, Sα `VB, τ q. From the translation principle we get xpP A, Sα `VB, τ qv , τ , v , τ y L 2 pSαq " xpP A, Hp low `VB, τ qu , u y L 2 pHp low q ă σpβq ` and we deduce from the min-max principle that (4.1) lim sup τ Ñ`8 spB; α, τ q ď σpβq .

When α " π 2 the proposition has already been proved in [START_REF] Pan | Upper critical field for superconductors with edges and corners[END_REF]. We now suppose that α ‰ π 2 and thus β ‰ π 2 . Using Proposition 3.4 and the fact that @β P p0, π 2 q, σpβq ă 1, we get that for τ large enough, spB; α, τ q is an eigenvalue of P A, Sα `VB, τ with finite multiplicity. We denote by u τ an associated eigenfunction. To establish a lower bound for spB; α, τ q, we use the concentration of the eigenfunctions near the line Υ and an IMS formula. Let pχ j q jPt1,2,3u P C 8 pRq such that 0 ď χ j ď 1 and

χ 1 " 1 on p´8, ´1 2 s and χ 1 " 0 on r´1 4 , `8q , χ 2 " 1 on p´1 4 , 1 4 s and χ 2 " 0 on p´8, ´1 2 s Y r 1 2 , `8q , χ 3 " 0 on p´8, 1 4 s and χ 3 " 1 on r 1 2 , `8q ,

We define for j P t1, 2, 3u:

Since the magnetic field is non tangent to the edge, b 1 or b 2 is non-zero and it exists C ą 0 and τ 1 ą 0 such that (4.2) @τ ě τ 1 , @j P t1, 2, 3u, @px 1 , x 2 q P S α , |∇χ j, τ px 1 , x 2 q| 2 ď C τ 2 . Using the IMS formula we get:

Let ą 0. It exists τ 1 such that we have

Since Supppχ 2, τ qXBS α Ă tx 2 " ´x1 tan α 2 u, we extend χ 2, τ u τ to a function of Dom `PA, Hp low `VB, τ which satisfy the Neumann boundary condition by taking the value 0 outside Supppχ 2, τ u τ q. Therefore using Lemma 2.3 we get

L 2 pHp low q . For τ large enough we have from (4.1):

Corollary 5.2. Assume that the magnetic field writes B " psin γ cos α 2 , sin γ sin α 2 , cos γq and that α ´1 ? 3 `?3

2 sin 2 γ ¯ă Θ 0 . Let τ ˚be a value of the parameter such that λpB; W α q " spB; α, τ ˚q. Then spB; α, τ ˚q is a discrete eigenvalue for P A, Sα `VB, τ ˚.

Remark 5.3. The approximation (2.4) gives a precise set of values for α and γ such that the condition in the previous corollary holds.

PARTICULAR CASE: A MAGNETIC FIELD NORMAL TO THE EDGE

We assume here that the magnetic field B is tangent to a face and normal to the edge. Therefore its spherical coordinates are pγ, θq " p π 2 , π´α 2 q and its cartesian coordinates are pcos α 2 , sin α 2 , 0q. In that case we have A " 0 and the operator P A, Sα `VB, τ writes ´∆ `VB, τ with V B, τ " px 1 sin α 2 ´x2 cos α 2 ´τ q 2 . Proposition 6.1. Let B be a constant magnetic field of spherical coordinates p π 2 , π´α 2 q. Then α Þ Ñ λpB; W α q is non-decreasing on p0, π 2 s.

Proof. Let α P p0, π 2 s. The operator P A, Sα `VB, τ writes ´∆ `px 1 sin α 2 ´x2 cos α 2 ´τ q 2 in the sector S α . We denote by R ω the rotation centered at the origin of angle ω. We make the change of variables pu 1 , u 2 q :" R ´α 2 px 1 , x 2 q. Since α ď π 2 , we have R ´α 2 pS α q " tpu 1 , u 2 q P R 2 , u 1 ą 0, ´u1 tan α ď u 2 ď 0u. In these variables the operator P A, Sα `VB, τ becomes ´∆ `pu 2 ´τ q 2 . We make the dilatation pv 1 , v 2 q " p´u 1 tan α, u 2 q and the problem is unitary equivalent to the Neumann realization of

Using the min-max principle, we find that spB; α, τ q is nondecreasing with α on p0, π 2 q for all τ P R. Using (1.5) we get the proposition.

The following result was already known by Pan for α " π 2 : Theorem 6.2. Let B a constant magnetic field of spherical coordinates p π 2 , π´α 2 q. Then @α P " π 2 , π ‰ , λpB; W α q " Θ 0 .

Moreover spB; α, τ q " λpB; W α q if and only if τ " ξ 0 , and λpB; W α q " s ess pB; α, ξ 0 q.

Proof. The upper bound comes from Theorem 3.5. We will provide a lower bound (in the sense of the quadratic forms) for the operator ´∆ `px 1 cos α 2 ´x2 sin α 2 ´τ q 2 . Let ω P p0, 2πq. Making the change of variables pu 1 , u 2 q " R ω px 1 , x 2 q, we get that the operator ´∆ `px 1 cos α 2 ´x2 sin α 2 ´τ q 2 is unitary equivalent to the Neumann realization of ´B2 

´B2

u 2 `pu 1 cosp α 2 `ωq ´u2 sinp α 2 `ωq ´τ q 2 , pu 1 , u 2 q P R ω pS α q .