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Abstract. In 1994, Josh Benaloh proposed a probabilistic homomor-
phic encryption scheme, enhancing the poor expansion factor provided by
Goldwasser and Micali’s scheme. Since then, numerous papers have taken
advantage of Benaloh’s homomorphic encryption function, including vot-
ing schemes, private multi-party trust computation, non-interactive veri-
fiable secret sharing, online poker. In this paper we show that the original
description of the scheme is incorrect, because it can result in ambiguous
decryption of ciphertexts. Then we show on several applications that a
bad choice in the key generation phase of Benaloh’s scheme has a real
impact on the behaviour of the application. For instance in an e-voting
protocol, it can inverse the result of an election. Our main contribution
is a corrected description of the scheme (we provide a complete proof of
correctness). Moreover we also compute the probability of failure of the
original scheme. Finally we show how to formulate the security of the
corrected scheme in a generic setting suitable for several homomorphic
encryptions.

Keywords: public-key encryption, probabilistic encryption, homomorphic
encryption scheme, Benaloh’s scheme.

1 Introduction

An encryption scheme is homomorphic when it preserves some algebraic struc-
ture (usually group, sometimes ring) between the cleartext space and the cipher-
text space, allowing computations on data encrypted with the same key. Exam-
ples of such encryptions are RSA [37] or ElGamal [19] which have the property
that E(m1) × E(m2) = E(m1 ×m2). In 1982 Goldwasser-Micali [25] introduced
an encryption scheme with the different property E(b1) × E(b2) = E(b1 ⊕ b2).
Several homomorphic encryption schemes have followed: Benaloh [3], Naccache
and Stern [32], Okamoto and Uchiyama [33], Paillier [34] and its generalization
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proposed by Damg̊ard and Jurik [17], Sander, Young and Yung [40], Boneh et
al [6]. All these schemes are partially homomorphic, meaning they allow homo-
morphic computation of only one operation (either addition or multiplication) on
plaintexts. A cryptosystem allowing for homomorphic computation of two opera-
tions is called fully homomorphic. In 2009, Craig Gentry [21] found the first fully
homomorphic encryption scheme, using lattice-based cryptography. However his
scheme, while revolutionary, is not really practical and several recent works focus
on concrete realizations of a fully homomorphic encryption scheme [41, 45, 22,
23]. Practitioners rely therefore on already existing partially homomorphic en-
cryption. A survey of such cryptosystems can be found in [7] for non specialists,
or in [2] with a complexity analysis. In [36], Rappe considers homomorphic cryp-
tosystems and their applications, such as multiparty computation [12, 29, 18, 16],
electronic voting [4, 9, 39, 38, 10, 3, 11, 15, 13, 28], key exchange using a server [44],
non-interactive zero-knowledge [14], e-auction [1, 43, 8], non-interactive verifiable
secret sharing [10], and others [27, 26, 20, 31].

Motivations and contributions: In 1994, Benaloh [3] proposed a homomorphic en-
cryption which has a better expansion factor than Goldwasser-Micali’s scheme [25].
This leads to a more practical scheme which has found several applications, such
as voting schemes [4, 38, 10], private multi-party trust computation [12, 29, 18],
non-interactive verifiable secret sharing [10], online poker [26]. Given all these
applications of Benaloh’s scheme, we were surprised to discover that its key
generation process may in some cases lead to an ambiguous encryption.

Our first contribution is to show that the original scheme proposed by Be-
naloh in [3] does not give a unique decryption for all ciphertexts. We exhibit a
simple example and characterize when this can happen and how to produce such
counter-examples. The problem comes from the condition in public key gener-
ation: the original condition is not strong enough and allows to generate such
keys that will compute ambiguous ciphertexts for some plaintexts.

Our second contribution is to describe how this error in key generation can
have dramatic consequences in the applications of Benaloh’s scheme. In each
case we briefly explain how the application works on a simple example and show
that a wrong key generation can have important consequences. In the case of the
e-voting protocol it can change the result of an election; for private multi-party
trust computation it can completely modify the computed trust value.

Our last contribution is a new condition (suitable for implementations) for
the key generation which avoids such problems. We also compute the probability
of failure of the original scheme, in order to understand why nobody discovered
the problem before us. Moreover we discuss some schemes related to Benaloh’s
encryption. We also put the semantic security of the corrected encryption in
the context of Kristian Gjøsteen’s work [24]. Indeed revisited Benaloh’s scheme
can be seen as an instance of the general framework proposed for homomorphic
cryptosystem based on subgroup membership problem.

Outline: In Section 2 we recall the original Benaloh scheme. In Section 3 we give
a small example of parameters following the initial description and where we
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have ambiguous decryption. In the next section, we discuss the (possibly serious)
consequences of the problem we discovered in some applications. In Section 5
we give a corrected description of the scheme, with a proof of correctness. Then
in Section 6, we analyze the probability of choosing incorrect parameters in the
initial scheme. In Section 7 we discuss some schemes related to Benaloh’s scheme.
Finally before concluding, a semantic security analysis of the corrected scheme
is given in Section 8.

2 Original Description of Benaloh’s Scheme

Benaloh’s “Dense Probabilistic Encryption” [3] describes a homomorphic en-
cryption scheme with a significant improvement in terms of expansion factor
compared to Goldwasser-Micali [25]. For the same security parameter (the size
of the RSA modulus n), the ciphertext is in both cases an integer mod n, but
the cleartext in Benaloh’s scheme is an integer mod r for some parameter r de-
pending on the key, whereas the cleartext in Goldwasser-Micali is only a bit.
When computing the expansion factor for random keys, we found that it is most
of the times close to 2 while it is dlog2(n)e for Goldwasser-Micali. We now recall
the three steps of the original scheme given in Benaloh’s paper [3].

Key Generation: The public and private key are generated as follows:

– Choose a block size r and two large primes p and q such that:

• r divides (p− 1).

• r and (p− 1)/r are relatively prime.

• r and q − 1 are relatively prime.

• n = pq.

– Select y ∈ (Zn)∗ = {x ∈ Zn : gcd(x, n) = 1} such that

yϕ/r 6= 1 mod n (1)

where ϕ denotes (p− 1)(q − 1).

The public key is (y, r, n), and the private key is the two primes p and q.

Encryption: If m is an element in Zr and u a random number in (Zn)∗ then we
compute the randomized encryption of m using the following formula:

Er(m) = {ymur mod n : u ∈ (Zn)∗}.

It is easily verified that:

Er(m1)× Er(m2) = Er(m1 +m2).
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Decryption: We first notice that for any m, u we have:

(ymur)(p−1)(q−1)/r = ym(p−1)(q−1)/ru(p−1)(q−1) = ym(p−1)(q−1)/r mod n.

Since m < r and y(p−1)(q−1)/r 6= 1 mod n, Benaloh concludes that m =
0 mod r if and only if (ymur)(p−1)(q−1)/r = 1 mod n. So if z = ymur mod n is an
encryption of m, given the secret key (p, q) we can determine whether m = 0 mod
r. If r is small, we can decrypt z by doing an exhaustive search of the smallest
non-negative integer m such that (y−mz mod n) ∈ Er(0). By precomputing
values and using the baby-step giant-step algorithm it is possible to perform
the decryption in time O(

√
r). Finally if r is smooth we can use classical index-

calculus techniques. More details about these optimization of decryption are
discussed in the original paper [3].

We remark that there is a balance to find between three parameters in this
cryptosystem:

– ease of decryption, which requires that r is a product of small prime powers,
– a small expansion factor, defined as the ratio between the size of the cipher-

texts and the size of the cleartexts. Because p and q have the same size and
r | p− 1, this expansion factor is at least 2,

– strength of the private key, meaning that n should be hard to factorize. In
the context of the P-1 factorization method [35], a large smooth factor of
p− 1 is a definite weakness.

We notice that the cryptosystem proposed by Naccache-Stern [32] four years
after Benaloh’s scheme and based on the same approach addresses this issue and
does not produce ambiguous encryption.

3 A Small Counter-Example

We start by picking a secret key n = pq = 241× 179 = 43139, for which we can
set r = 15. Algorithm 1 may be used to compute the maximal suitable value of
the r parameter if you start by picking p and q at random, but a smaller and
smoother value may be used instead, for an easier decryption.

Algorithm 1 Compute r from p and q.
r ← p− 1;
while gcd(q − 1, r) 6= 1 do

r ← r/ gcd(r, q − 1);
end while

We verify that r = 15 divides p−1 = 240 = 16×15, r and (p−1)/r = 16 are
relatively prime, r = 15 = 3× 5 and q − 1 = 178 = 2× 89 are coprime. Assume
we pick y = 27, then gcd(y, n) = 1 and y(p−1)(q−1)/r = 40097 6= 1 mod n so
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according to Benaloh’s key generation procedure all the original conditions are
satisfied.

By definition, y112r = 24187 mod n is a valid encryption of m1 = 1, while
y64r = 24187 mod n is also a valid encryption of m2 = 6. In fact we can verify
that with this choice of y, the true cleartext space is now Z5 instead of Z15 (hence
the ambiguity in decryption): first notice that in Zp, y5 = 275 = 8 = 4115 = 41r.
This means that a valid encryption of 5 is also a valid encryption of 0. For any
message m, the set of encryptions of m is the same as the set of encryptions of
m+ 5, hence the collapse in message space size. The fact that the message space
size does not collapse further can be checked by brute force with this small set
of parameters.

For this specific choice of p and q, there are r−1
r ϕ(n) = 39872 possible values

of y according to the original paper, but 17088 of them would lead to an am-
biguity in decryption (that’s a ratio of 3/7), decreasing the cleartext space to
either Z3 or Z5. Details are provided in Section 6.

4 Applications

In this section, we present some applications which explicitly use Benaloh’s en-
cryption scheme. We analyze the consequences of using a bad y parameter pro-
duced during the key generation for each application. In general, the ambiguity
in the ciphertexts means that for a given cleartext m ∈ Zr the value actually
computed by the decryption algorithm is

m′ = D(Er(m)) ≡ m mod r′ (2)

with r′ 6= r. Depending on the implementation of the discrete logarithm used by
D (naive enumeration, baby steps/giant steps, possibly combined with a divide-
and-conquer strategy when r is smooth) the value m′ can be any of the values
defined mod r that satisfy Equation (2). As the discrete logarithm algorithm
used is not aware of the reduction from r to r′, the impact in terms of computa-
tion time should be minimal (except for a naive increasing enumeration strategy
which will always finish earlier, and where we are guaranteed to get the canonical
solution mod r′).

4.1 Receipt-free Elections

In [4], Benaloh and Tuinstra propose an application of homomorphic encryption
for designing new receipt-free secret-ballot elections. They describe two protocols
which use a homomorphic encryption scheme and verify a list of properties. They
also give in the appendix of the paper a precise description of an encryption
scheme which satisfies their properties. Its relation with [3] is given in Section 7.

The new voting protocol uses the fact that the encryption is homomorphic
and probabilistic. If we have two candidates Nicolas and Ségolène then the system
associates for instance the ballot 0 for Nicolas and the ballot 1 for Ségolène. The
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main idea is that the server collects the m authenticated encrypted ballots {vi}k
corresponding to the choices vi of the m voters. Then the server performs the
multiplication of the ciphertexts to sum the votes and decrypts the product once
to obtain the result. The number obtained corresponds to the number of votes
nS for Ségolène and the difference m−nS gives the number of votes for Nicolas.

We construct a basic application of the first protocol proposed in [4] and
based on the example described in Section 3. In this example we consider only
12 voters. Suppose when the encryption is correctly done the final result is {11}k.
It means that after decryption Ségolène has 11 votes and Nicolas has 1 vote. But
if as we explain in Section 3 instead of computing the result 11 mod 15 we are
taking the result modulo 5, then we obtain a result of 11 mod 5 = 1. This time
the server concludes that Nicolas obtains 11 votes and Ségolène only 1. This
example clearly shows that the flaw in the parameters generation process can
have important consequences.

4.2 Private Multi-Party Trust Computation

In [18], Dolev et al give a multiple private key protocol for private multi-party
computation of a trust value: an initiating user wants to know the (possibly
weighted) average trust the network of nodes has in some user. In a first phase
of the protocol, each of the n nodes splits its trust value t in n − 1 shares (si)
such that

t = s1 + s2 + . . .+ sn−1 mod r.

Here r is a common modulus chosen large enough with respect to the maximum
possible global trust value, and in order to ensure the privacy of its trust value the
shares should be taken as random number mod r, except for the last one. The
shares are then sent encrypted (using Benaloh’s scheme) to each other user, to
be later recombined. If we assume that one of the users has chosen a faulty value
for his public parameter y, then his contribution to the recombined value will
be computed mod r′ instead of mod r for some divisor r′ of r. As an extreme
example, assume

– that the queried user is a newcomer, untrusted by anyone (hence the private
value of t for every node is 0),

– that the true recombined value contributed by the faulty user should have
been r − 1,

– that r′ = r/3.

Due to his miscalculation, the faulty node will contribute the value r′ − 1 in-
stead of −1, causing the apparent calculated trust value to be quite high (about
1/3 of the maximum possible trust value, instead of 0). This can have dramatic
consequences if the trust value is used later on to grant access to some resource.
These assumptions are not entirely unlikely: remember that r = 3k is an ex-
plicitly suggested choice of parameter of the cryptosystem in which we will find
that the failure probability (ρ) is close to 1/3 and faulty nodes occur with high
probability even with moderate-sized networks (see Section 6). We also note

6



that the description from [3] is given in extenso, with its incorrect condition.
One reason for choosing Benaloh’s cryptosystem in this application is because
the cleartext space can be common among several private keys, a feature unfor-
tunately not achieved e.g. by Paillier’s cryptosystem [34] but also possible with
Naccache-Stern’s [32].

4.3 Privacy Preserving Clustering

In [29] the authors present another application of additive homomorphic en-
cryption. They propose two new algorithms for solving the problem of privacy-
preserving for clustering. Its allow them to solve the weighted average problem
(WAP): two parties A and B knowing respectively (x, n) and (y,m) want to
compute x+y

n+m without revealing their own knowledge. The second algorithm
they present uses a probabilistic semantically-secure additive homomorphic en-
cryption scheme. They explicitly advise to use Benaloh’s scheme. Their protocol
works as follows:

1. A generates a Benaloh secret and public keys;
2. A knows (x, n) and B knows (y,m);
3. A starts the protocol by sending to B the two following encrypted messages
x1 = E(x) and n1 = E(n).

4. B samples a random number z, computes z1 = E(z×y) and z2 = E(z×m).
Moreover he sends to A the two following messages m1 = xz1 × z1 and m2 =
nz1 × z2.

5. A decrypts m1 and m2 and performs the division D(m1)/D(m2) = x+y
n+m .

Finally A sends to B the result of his computation.

A synthetic description of the protocol is given in Figure 1.

A B
(x, n) −→ x1 = E(x) −→

n1 = E(n)
(y,m), z ← Rand

z1 = E(z × y), z2 = E(z ×m)
←− m1 = xz

1 × z1 ←−
m2 = nz

1 × z2
m1 = E(z × x + z × y)
m2 = E(z × n + z ×m)

−→ x+y
n+m

−→

Fig. 1. Privacy preserving Weighted Average Protocol based on Benaloh’ scheme E,
introduced in [29]

A wrong choice in the key parameters could produce wrong values for m1

and m2, resulting in a wrong result shared by A and B as produced by the WAP
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algorithm. As a consequence the privacy-preserving k-means algorithm would
not compute the correct value. The authors have implemented their protocols
using Benaloh’s encryption and they provide execution timings (they claim that
the implementation using Benaloh’s encryption is more efficient that the one
using oblivious polynomial evaluation). It is really surprising that they did not
discover the problem, as they chose a value of r = 3k for which the probability
of picking a faulty parameter is close to 1/3 (see §6).

4.4 Secure Cards Dealing

Another application of this encryption scheme is given in [26]: securely dealing
cards in poker (or similar games). Here again the author gives the complete
description of the original scheme, with a choice of parameter r = 53 (which
is prime). Because r is prime, this application does not suffer from the flaw
explained here, but this choice of a prime number is done for reasons purely
internal to the cards dealing protocol, namely testing the equality of dealt cards.

Given two ciphertext E(m1) and E(m2), the players need to test if m1 = m2

without revealing anything more about the cards m1 and m2. The protocol is
as follows:

1. Let m = m1−m2, each player can compute E(m) = E(m1)/E(m2) because
of the homomorphic property of the encryption.

2. Each player Pi secretly picks a value 0 < αi < 53, computes E(m)αi and
discloses it to everyone.

3. Each player can compute
∏
iE(m)αi = E(m)α with α =

∑
i αi. The players

jointly decrypt E(m)α to get the value mα mod r.

Now because for each player the value of α is unknown and random, if mα 6=
0 mod r then the players learn nothing about m. Otherwise they conclude that
the cards are equal.

We claim that this protocol fails to account for two problems:

– there is no guarantee that α 6= 0 mod r. When this happens, two distinct
cards will be incorrectly considered equal. One possible fix is to repeat the
protocol to decrease the probability of false positive to an acceptable level.

– knowing the value of E(m) and E(m)αi , it is easy to recover αi because
of the small search space for αi. This means the protocol leaks information
when m1 6= m2. The fix here is to multiply by some random encryption of
0.

It should be noted that these problems are unrelated to the incorrect parameter
generation flaw discussed in this paper.

5 Corrected Version of Benaloh’s Scheme

Let g be a generator of the group (Zp)∗, and since y is coprime with n, let α be
the value in Zp−1 such that y = gα mod p. We will now state in Theorem 1 our
main contribution:
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Theorem 1 The following properties are equivalent:

a) α and r are coprime;
b) decryption works unambiguously;
c) for all prime factors s of r, we have y(ϕ/s) 6= 1 mod n.

Of course property (b) is what we expect of the scheme, while (a) is useful
to analyze the proportion of invalid y’s and (c) is more efficient to verify in
practice than (a), especially considering that in order to decrypt efficiently the
factorization of r is assumed to be known. In the following proof we interpret
statement (b) to mean that two different cleartexts cannot be encrypted to the
same value:

∀m1,m2 ∈ Zr,∀u1, u2 ∈ (Zn)∗, ym1ur1 = ym2ur2 mod n⇒ m1 = m2 mod r.

Another way to interpret (b) is that, for a given z mod n, there is at most
one value m mod r such that y−mz is an r-th power mod n. In fact these two
interpretations are equivalent: assume we can write

y−m1z = ur1

y−m2z = ur2

for two messages m1,m2 ∈ Zr and two numbers u1, u2 ∈ (Zn)∗. Then

z = ym1ur1 = ym2ur2

and the proof follows.

Proof. We prove first (a)⇔ (b) then we show (a)⇔ (c).

– We start by showing (a) ⇒ (b). Assume two messages m1 and m2 are en-
crypted to the same element using nonce u1 and u2:

ym1ur1 = ym2ur2 mod n.

Reducing mod p we get:

gα(m1−m2) = (u2/u1)r mod p

and using the fact that g is a generator of (Zp)∗, there exists some β such
that

gα(m1−m2) = gβr mod p

which in turns implies

α(m1 −m2) = βr mod p− 1.

By construction r divides (p− 1), we can further reduce mod r and get

α(m1 −m2) = 0 mod r

and since r and α are coprime, we can deduce m1 = m2 mod r, which means
that decryption works unambiguously since the cleartexts are defined mod
r.
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– We now prove (b) ⇒ (a). Assume α and r are not coprime and let s =
gcd(α, r), r = sr′, α = sα′. Then

yr
′

= gαr
′

mod p

= (gα
′
)r mod p.

Since r and q − 1 are coprime, every invertible number mod q is an r-th
power. Therefore yr

′
is an r-th power mod n and is a valid encryption of 0

as well as a valid encryption of r′.
– We now prove that (a)⇒ (c). Assume that there exists some prime factor s

of r such that
y(ϕ/s) = 1 mod n.

As above, by reducing mod p and using the generator g of (Zp)∗ we get

α
ϕ

s
= 0 mod p− 1.

So

α
ϕ

s
= (p− 1)

α(q − 1)

s

is a multiple of p− 1 and s divides α(q− 1). Since s does not divide q− 1, s
divides α and α and r are not coprime.

– We now prove (c)⇒ (a). Assume α and r are not coprime and denote by s
some common prime factor. Then

y(ϕ/s) = gαϕ/s mod p

= g(α/s)ϕ mod p = 1 mod p.

And by construction of r, s - q − 1 so y(ϕ/s) = 1 mod q. ut

Notice than in the example of Section 3 we have y(p−1)(q−1)/3 = 1 mod n so
condition (c) is not satisfied. We claimed that the real ciphertext space is now
Z5, and we gave a precise analysis of the cleartext space reduction at the end of
Section 6.

6 Probability of Failure of Benaloh’s Scheme

We now estimate the probability of failure in the scheme as originally described.
For this we need to count the numbers y that satisfy Equation (1) in Section 2
and not property (c) of Theorem 1. We call these values of y “faulty”.

Lemma 1 Equation (1) is equivalent to the statement: r - α.

Proof. Assume that r divides α: α = rα′. So

yϕ/r = gαϕ/r mod p

= (gα
′
)ϕ mod p

= 1 mod p.
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Since r divides p− 1, yϕ/r = 1 mod q hence yϕ/r = 1 mod n.

Conversely, if yϕ/r = 1 mod n, then

gαϕ/r = 1 mod p

α
ϕ

r
= 0 mod p− 1.

Since r divides p− 1 and is coprime with ϕ
r (by definition), we have r | α. ut

Since picking y ∈ (Zp)∗ at random is the same when seen mod p as picking
α ∈ {0, . . . , p − 2} at random, we can therefore conclude that the proportion ρ
of faulty y’s is exactly the proportion of non-invertible numbers mod r among

the non-zero mod r. So ρ = 1− ϕ(r)
r−1 . We notice that this proportion depends on

r only, and it is non-zero when r is not a prime. Since decryption in Benaloh’s
scheme is essentially solving a discrete logarithm in the subgroup of (Zp)∗ of
order r, the original scheme recommends to use r as a product of small primes’
powers, which tends to increase ρ. In fact, denoting by (pi) the prime divisors
of r we have:

ρ = 1− ϕ(r)

r − 1

= 1− r

r − 1

ϕ(r)

r

= 1− r

r − 1

∏
i

pi − 1

pi

≈ 1−
∏
i

pi − 1

pi

which shows that the situation where decryption is easy also increases the
proportion of invalid y’s when using the initial description of the encryption
scheme.

As a practical example, assume we pick two 512 bits primes p and q as

p = 2× (3× 5× 7× 11× 13)× p′ + 1

p′ = 4464804505475390309548459872862419622870251688508955\

5037374496982090456310601222033972275385171173585381\

3914691524677018107022404660225439441679953592

q = 1005585594745694782468051874865438459560952436544429\

5033292671082791323022555160232601405723625177570767\

523893639864538140315412108959927459825236754568279.
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Then

gcd(q − 1, p− 1) = 2

r = (3× 5× 7× 11× 13)× p′

ρ = 1− r

r − 1
× 2

3
× 4

5
× 6

7
× 10

11
× 12

13
× p′ − 1

p′

ρ > 61%.

This example was constructed quite easily: first we take p′ of suitable size, and
multiply its value until p = k×p′+1 is prime. Then we generate random primes
q of suitable size until the condition gcd(p− 1, q − 1) = 2 is verified; it took less
than a second on a current laptop using Sage [42].

Putting it all together, we can also characterize the faulty values of y, together
with the actual value r′ of the cleartext space size (compared to the expected
value r):

Lemma 2 Let u = gcd(α, r). Then r′ = r
u . Moreover if r′ 6= r, this faulty value

of y goes undetected by the initial condition as long as u 6= r.

Proof. Let r̂ = r
u and α′ = α

u . Consider

yr̂ = gur̂α
′

mod p

= (gα
′
)r mod p.

Since r is coprime with q − 1, yr̂ is an r-th power mod q. Hence yr̂ is a valid
encryption of r̂ and of 0 at the same time, which means r′|r̂.

We need to prove that the smallest positive power of y which is an r-th power
is yr

′
. Assume

ym = ur

for some u ∈ (Zn)∗. Then

ym = ur mod n

gαm = ur mod p

= gβr mod p for some β

αm = βr mod p− 1

αm = 0 mod r

α′um = 0 mod r

α′m = 0 mod r̂

m = 0 mod r̂

which proves that the effective cleartext space size r′ is at least r̂.
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The second point of Lemma 2 is a mere rephrasing of the previous lemma.
This result can be used to craft counter-examples as we did in Section 3:

for a valid value y of the parameter and u a proper divisor of r, the value
y′ = yu mod n is an undetected faulty value with actual cleartext space size
r′ = r/u. It can also be used to determine precisely, for every proper divisor
r′ of r the probability of picking an undetected faulty parameter y of actual
cleartext space size r′. Such an extensive study was not deemed necessary in the
examples of Section 4, but it confirms that ambiguous parameters can happen
more frequently than expected.

7 Related Schemes

We briefly discuss in this section some schemes related to that of [3].
In [4], Benaloh and Tuinstra describe a cryptosystem which closely resembles

that of [3], but the conditions given on r are less strict. Let us recall briefly the
parameters of the cryptosystem as described in [4]:

– r | p− 1 but r2 - p− 1.
– r - q − 1.
– y is coprime with n and y(p−1)(q−1)/r 6= 1 mod n.

It is clear that r2 - p− 1 is weaker than gcd((p− 1)/r, r) = 1, and that r - q − 1
is weaker than gcd(q − 1, r) = 1. Therefore any set of parameters satisfying [3]
are also valid parameters as defined in [4].

Unfortunately the condition imposed on y is the same and still insufficient,
and finding counter-examples is again a matter of picking α not coprime with
r. Our theorem still stands for this cryptosystem if you replace condition (c) by
the following condition:

For all prime factors s of r, we have y(p−1)/s 6= 1 mod p. (3)

Going back in time, the scheme of Goldwasser and Micali [25] can be seen as a
precursor of [4] with a fixed choice of r = 2. The choice of y in [25] as a quadratic
non-residue mod n is clearly an equivalent formulation of condition (3).

Before [3] and [4], the scheme was defined by Benaloh in [5], with the parame-
ter r being a prime. In this case our condition (c) is the same as the one proposed
by Benaloh, and the scheme in this thesis is indeed correct. The main difference
between the different versions proposed afterwards and this one is that it is not
required for r to be prime, which leads in some cases to ambiguous ciphers. This
remark clearly shows that all details are important in cryptography and that the
problem we discovered is subtle because even Benaloh himself did not notice it.

Finally the scheme proposed by Naccache and Stern [32] is quite close to the
one proposed in [5] but with a parameterization of p and q. It makes decryption
correct, efficient, and leaves the expansion factor as an explicit function of the
desired security level with respect to methods of factoring taking advantage of
this specific form of n, like the P−1 method [35] (the expansion is essentially the
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added size of the big cofactors of p−1 and q−1). If we drop this requirement that
p−1 and q−1 have big cofactors, their scheme becomes a corrected generalization
of Benaloh’s, so application writers should probably use Naccache-Stern’s scheme
directly. We note that a modulus size of 768 bits was considered secure at the
time, a fact disproved twelve years later [30] only!

8 Semantic Security of the Corrected Scheme

In [24], Kristian Gjøsteen formulates the security of several homomorphic en-
cryption schemes in a common setting and relates the semantic security of the
schemes to a generic problem (the Decisional Subgroup Membership Problem)
which we recall here:

Problem 1 (DSMP). Let G be an abelian group with subgroups K, H such that
G = KH and K ∩ H = {1}. The Decisional Subgroup Membership Problem is
to decide whether a given g ∈ G is in K or not.

The cryptosystems by Goldwasser-Micali, Naccache-Stern, Okamoto-Uchiyama
and Paillier respectively are shown to fit in this setting, with a proper definition
for G (the ciphertexts space), H (coding the cleartexts) and K (the “cloak”
space used to randomize encryptions). For example for Paillier’s encryption, the
ciphertext space is G = (Zn2)∗ ' (Zn)∗ × Zn, the cleartexts coding subgroup
H is the subgroup of order n (generated by g = 1 + n) and K is the set of the
invertible n-th powers mod n2. This is consistent with the probabilistic encryp-
tion function

Eu(m) = (1 + n)mun mod n2.

It can be verified quite easily that the following choices make the corrected
version of Benaloh’s scheme fit in this setting:

– G = (Zn)∗

– H the cyclic subgroup of order r of G
– K the set of invertible r-th powers in G
– the public element y must generate H.

Using the result in [24], the semantic security of our corrected scheme is
therefore equivalent to the DSMP for K, that is, being able to distinguish r-th
powers modulo n.

Although several homomorphic encryption schemes are analyzed in [24], Be-
naloh’s is not. Our correction ensures that the last condition is met, otherwise
y could generate a strict subgroup of the intended group H.

9 Conclusion

We have shown that the original definition of Benaloh’s homomorphic encryp-
tion does not give sufficient conditions in the choice of public key to get an
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unambiguous encryption scheme. We also explain on some examples what can
be the consequences of the use of the original Benaloh scheme. Our discussion
on the probability of choosing an incorrect public key shows that this proba-
bility is non negligible for parameters where decryption is efficient: for example
using the suggested value of the form r = 3k, this probability is already close
to 1/3. Our main contribution is to propose a necessary and sufficient condition
which fixes the scheme. In fact, it is surprising this result was not found before,
considering the number of applications built on the homomorphic property of
Benaloh’s scheme. This strongly suggests this scheme was rarely implemented
or even worse, implementations were rarely well tested.
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